Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Memory Migration functionality - linux/mm/migrate.c
0004  *
0005  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
0006  *
0007  * Page migration was first developed in the context of the memory hotplug
0008  * project. The main authors of the migration code are:
0009  *
0010  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
0011  * Hirokazu Takahashi <taka@valinux.co.jp>
0012  * Dave Hansen <haveblue@us.ibm.com>
0013  * Christoph Lameter
0014  */
0015 
0016 #include <linux/migrate.h>
0017 #include <linux/export.h>
0018 #include <linux/swap.h>
0019 #include <linux/swapops.h>
0020 #include <linux/pagemap.h>
0021 #include <linux/buffer_head.h>
0022 #include <linux/mm_inline.h>
0023 #include <linux/nsproxy.h>
0024 #include <linux/pagevec.h>
0025 #include <linux/ksm.h>
0026 #include <linux/rmap.h>
0027 #include <linux/topology.h>
0028 #include <linux/cpu.h>
0029 #include <linux/cpuset.h>
0030 #include <linux/writeback.h>
0031 #include <linux/mempolicy.h>
0032 #include <linux/vmalloc.h>
0033 #include <linux/security.h>
0034 #include <linux/backing-dev.h>
0035 #include <linux/compaction.h>
0036 #include <linux/syscalls.h>
0037 #include <linux/compat.h>
0038 #include <linux/hugetlb.h>
0039 #include <linux/hugetlb_cgroup.h>
0040 #include <linux/gfp.h>
0041 #include <linux/pfn_t.h>
0042 #include <linux/memremap.h>
0043 #include <linux/userfaultfd_k.h>
0044 #include <linux/balloon_compaction.h>
0045 #include <linux/page_idle.h>
0046 #include <linux/page_owner.h>
0047 #include <linux/sched/mm.h>
0048 #include <linux/ptrace.h>
0049 #include <linux/oom.h>
0050 #include <linux/memory.h>
0051 #include <linux/random.h>
0052 #include <linux/sched/sysctl.h>
0053 
0054 #include <asm/tlbflush.h>
0055 
0056 #include <trace/events/migrate.h>
0057 
0058 #include "internal.h"
0059 
0060 int isolate_movable_page(struct page *page, isolate_mode_t mode)
0061 {
0062     const struct movable_operations *mops;
0063 
0064     /*
0065      * Avoid burning cycles with pages that are yet under __free_pages(),
0066      * or just got freed under us.
0067      *
0068      * In case we 'win' a race for a movable page being freed under us and
0069      * raise its refcount preventing __free_pages() from doing its job
0070      * the put_page() at the end of this block will take care of
0071      * release this page, thus avoiding a nasty leakage.
0072      */
0073     if (unlikely(!get_page_unless_zero(page)))
0074         goto out;
0075 
0076     /*
0077      * Check PageMovable before holding a PG_lock because page's owner
0078      * assumes anybody doesn't touch PG_lock of newly allocated page
0079      * so unconditionally grabbing the lock ruins page's owner side.
0080      */
0081     if (unlikely(!__PageMovable(page)))
0082         goto out_putpage;
0083     /*
0084      * As movable pages are not isolated from LRU lists, concurrent
0085      * compaction threads can race against page migration functions
0086      * as well as race against the releasing a page.
0087      *
0088      * In order to avoid having an already isolated movable page
0089      * being (wrongly) re-isolated while it is under migration,
0090      * or to avoid attempting to isolate pages being released,
0091      * lets be sure we have the page lock
0092      * before proceeding with the movable page isolation steps.
0093      */
0094     if (unlikely(!trylock_page(page)))
0095         goto out_putpage;
0096 
0097     if (!PageMovable(page) || PageIsolated(page))
0098         goto out_no_isolated;
0099 
0100     mops = page_movable_ops(page);
0101     VM_BUG_ON_PAGE(!mops, page);
0102 
0103     if (!mops->isolate_page(page, mode))
0104         goto out_no_isolated;
0105 
0106     /* Driver shouldn't use PG_isolated bit of page->flags */
0107     WARN_ON_ONCE(PageIsolated(page));
0108     SetPageIsolated(page);
0109     unlock_page(page);
0110 
0111     return 0;
0112 
0113 out_no_isolated:
0114     unlock_page(page);
0115 out_putpage:
0116     put_page(page);
0117 out:
0118     return -EBUSY;
0119 }
0120 
0121 static void putback_movable_page(struct page *page)
0122 {
0123     const struct movable_operations *mops = page_movable_ops(page);
0124 
0125     mops->putback_page(page);
0126     ClearPageIsolated(page);
0127 }
0128 
0129 /*
0130  * Put previously isolated pages back onto the appropriate lists
0131  * from where they were once taken off for compaction/migration.
0132  *
0133  * This function shall be used whenever the isolated pageset has been
0134  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
0135  * and isolate_hugetlb().
0136  */
0137 void putback_movable_pages(struct list_head *l)
0138 {
0139     struct page *page;
0140     struct page *page2;
0141 
0142     list_for_each_entry_safe(page, page2, l, lru) {
0143         if (unlikely(PageHuge(page))) {
0144             putback_active_hugepage(page);
0145             continue;
0146         }
0147         list_del(&page->lru);
0148         /*
0149          * We isolated non-lru movable page so here we can use
0150          * __PageMovable because LRU page's mapping cannot have
0151          * PAGE_MAPPING_MOVABLE.
0152          */
0153         if (unlikely(__PageMovable(page))) {
0154             VM_BUG_ON_PAGE(!PageIsolated(page), page);
0155             lock_page(page);
0156             if (PageMovable(page))
0157                 putback_movable_page(page);
0158             else
0159                 ClearPageIsolated(page);
0160             unlock_page(page);
0161             put_page(page);
0162         } else {
0163             mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
0164                     page_is_file_lru(page), -thp_nr_pages(page));
0165             putback_lru_page(page);
0166         }
0167     }
0168 }
0169 
0170 /*
0171  * Restore a potential migration pte to a working pte entry
0172  */
0173 static bool remove_migration_pte(struct folio *folio,
0174         struct vm_area_struct *vma, unsigned long addr, void *old)
0175 {
0176     DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
0177 
0178     while (page_vma_mapped_walk(&pvmw)) {
0179         rmap_t rmap_flags = RMAP_NONE;
0180         pte_t pte;
0181         swp_entry_t entry;
0182         struct page *new;
0183         unsigned long idx = 0;
0184 
0185         /* pgoff is invalid for ksm pages, but they are never large */
0186         if (folio_test_large(folio) && !folio_test_hugetlb(folio))
0187             idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
0188         new = folio_page(folio, idx);
0189 
0190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
0191         /* PMD-mapped THP migration entry */
0192         if (!pvmw.pte) {
0193             VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
0194                     !folio_test_pmd_mappable(folio), folio);
0195             remove_migration_pmd(&pvmw, new);
0196             continue;
0197         }
0198 #endif
0199 
0200         folio_get(folio);
0201         pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
0202         if (pte_swp_soft_dirty(*pvmw.pte))
0203             pte = pte_mksoft_dirty(pte);
0204 
0205         /*
0206          * Recheck VMA as permissions can change since migration started
0207          */
0208         entry = pte_to_swp_entry(*pvmw.pte);
0209         if (is_writable_migration_entry(entry))
0210             pte = maybe_mkwrite(pte, vma);
0211         else if (pte_swp_uffd_wp(*pvmw.pte))
0212             pte = pte_mkuffd_wp(pte);
0213 
0214         if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
0215             rmap_flags |= RMAP_EXCLUSIVE;
0216 
0217         if (unlikely(is_device_private_page(new))) {
0218             if (pte_write(pte))
0219                 entry = make_writable_device_private_entry(
0220                             page_to_pfn(new));
0221             else
0222                 entry = make_readable_device_private_entry(
0223                             page_to_pfn(new));
0224             pte = swp_entry_to_pte(entry);
0225             if (pte_swp_soft_dirty(*pvmw.pte))
0226                 pte = pte_swp_mksoft_dirty(pte);
0227             if (pte_swp_uffd_wp(*pvmw.pte))
0228                 pte = pte_swp_mkuffd_wp(pte);
0229         }
0230 
0231 #ifdef CONFIG_HUGETLB_PAGE
0232         if (folio_test_hugetlb(folio)) {
0233             unsigned int shift = huge_page_shift(hstate_vma(vma));
0234 
0235             pte = pte_mkhuge(pte);
0236             pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
0237             if (folio_test_anon(folio))
0238                 hugepage_add_anon_rmap(new, vma, pvmw.address,
0239                                rmap_flags);
0240             else
0241                 page_dup_file_rmap(new, true);
0242             set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
0243         } else
0244 #endif
0245         {
0246             if (folio_test_anon(folio))
0247                 page_add_anon_rmap(new, vma, pvmw.address,
0248                            rmap_flags);
0249             else
0250                 page_add_file_rmap(new, vma, false);
0251             set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
0252         }
0253         if (vma->vm_flags & VM_LOCKED)
0254             mlock_page_drain_local();
0255 
0256         trace_remove_migration_pte(pvmw.address, pte_val(pte),
0257                        compound_order(new));
0258 
0259         /* No need to invalidate - it was non-present before */
0260         update_mmu_cache(vma, pvmw.address, pvmw.pte);
0261     }
0262 
0263     return true;
0264 }
0265 
0266 /*
0267  * Get rid of all migration entries and replace them by
0268  * references to the indicated page.
0269  */
0270 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
0271 {
0272     struct rmap_walk_control rwc = {
0273         .rmap_one = remove_migration_pte,
0274         .arg = src,
0275     };
0276 
0277     if (locked)
0278         rmap_walk_locked(dst, &rwc);
0279     else
0280         rmap_walk(dst, &rwc);
0281 }
0282 
0283 /*
0284  * Something used the pte of a page under migration. We need to
0285  * get to the page and wait until migration is finished.
0286  * When we return from this function the fault will be retried.
0287  */
0288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
0289                 spinlock_t *ptl)
0290 {
0291     pte_t pte;
0292     swp_entry_t entry;
0293 
0294     spin_lock(ptl);
0295     pte = *ptep;
0296     if (!is_swap_pte(pte))
0297         goto out;
0298 
0299     entry = pte_to_swp_entry(pte);
0300     if (!is_migration_entry(entry))
0301         goto out;
0302 
0303     migration_entry_wait_on_locked(entry, ptep, ptl);
0304     return;
0305 out:
0306     pte_unmap_unlock(ptep, ptl);
0307 }
0308 
0309 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
0310                 unsigned long address)
0311 {
0312     spinlock_t *ptl = pte_lockptr(mm, pmd);
0313     pte_t *ptep = pte_offset_map(pmd, address);
0314     __migration_entry_wait(mm, ptep, ptl);
0315 }
0316 
0317 #ifdef CONFIG_HUGETLB_PAGE
0318 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
0319 {
0320     pte_t pte;
0321 
0322     spin_lock(ptl);
0323     pte = huge_ptep_get(ptep);
0324 
0325     if (unlikely(!is_hugetlb_entry_migration(pte)))
0326         spin_unlock(ptl);
0327     else
0328         migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
0329 }
0330 
0331 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
0332 {
0333     spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
0334 
0335     __migration_entry_wait_huge(pte, ptl);
0336 }
0337 #endif
0338 
0339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
0340 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
0341 {
0342     spinlock_t *ptl;
0343 
0344     ptl = pmd_lock(mm, pmd);
0345     if (!is_pmd_migration_entry(*pmd))
0346         goto unlock;
0347     migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
0348     return;
0349 unlock:
0350     spin_unlock(ptl);
0351 }
0352 #endif
0353 
0354 static int folio_expected_refs(struct address_space *mapping,
0355         struct folio *folio)
0356 {
0357     int refs = 1;
0358     if (!mapping)
0359         return refs;
0360 
0361     refs += folio_nr_pages(folio);
0362     if (folio_test_private(folio))
0363         refs++;
0364 
0365     return refs;
0366 }
0367 
0368 /*
0369  * Replace the page in the mapping.
0370  *
0371  * The number of remaining references must be:
0372  * 1 for anonymous pages without a mapping
0373  * 2 for pages with a mapping
0374  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
0375  */
0376 int folio_migrate_mapping(struct address_space *mapping,
0377         struct folio *newfolio, struct folio *folio, int extra_count)
0378 {
0379     XA_STATE(xas, &mapping->i_pages, folio_index(folio));
0380     struct zone *oldzone, *newzone;
0381     int dirty;
0382     int expected_count = folio_expected_refs(mapping, folio) + extra_count;
0383     long nr = folio_nr_pages(folio);
0384 
0385     if (!mapping) {
0386         /* Anonymous page without mapping */
0387         if (folio_ref_count(folio) != expected_count)
0388             return -EAGAIN;
0389 
0390         /* No turning back from here */
0391         newfolio->index = folio->index;
0392         newfolio->mapping = folio->mapping;
0393         if (folio_test_swapbacked(folio))
0394             __folio_set_swapbacked(newfolio);
0395 
0396         return MIGRATEPAGE_SUCCESS;
0397     }
0398 
0399     oldzone = folio_zone(folio);
0400     newzone = folio_zone(newfolio);
0401 
0402     xas_lock_irq(&xas);
0403     if (!folio_ref_freeze(folio, expected_count)) {
0404         xas_unlock_irq(&xas);
0405         return -EAGAIN;
0406     }
0407 
0408     /*
0409      * Now we know that no one else is looking at the folio:
0410      * no turning back from here.
0411      */
0412     newfolio->index = folio->index;
0413     newfolio->mapping = folio->mapping;
0414     folio_ref_add(newfolio, nr); /* add cache reference */
0415     if (folio_test_swapbacked(folio)) {
0416         __folio_set_swapbacked(newfolio);
0417         if (folio_test_swapcache(folio)) {
0418             folio_set_swapcache(newfolio);
0419             newfolio->private = folio_get_private(folio);
0420         }
0421     } else {
0422         VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
0423     }
0424 
0425     /* Move dirty while page refs frozen and newpage not yet exposed */
0426     dirty = folio_test_dirty(folio);
0427     if (dirty) {
0428         folio_clear_dirty(folio);
0429         folio_set_dirty(newfolio);
0430     }
0431 
0432     xas_store(&xas, newfolio);
0433 
0434     /*
0435      * Drop cache reference from old page by unfreezing
0436      * to one less reference.
0437      * We know this isn't the last reference.
0438      */
0439     folio_ref_unfreeze(folio, expected_count - nr);
0440 
0441     xas_unlock(&xas);
0442     /* Leave irq disabled to prevent preemption while updating stats */
0443 
0444     /*
0445      * If moved to a different zone then also account
0446      * the page for that zone. Other VM counters will be
0447      * taken care of when we establish references to the
0448      * new page and drop references to the old page.
0449      *
0450      * Note that anonymous pages are accounted for
0451      * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0452      * are mapped to swap space.
0453      */
0454     if (newzone != oldzone) {
0455         struct lruvec *old_lruvec, *new_lruvec;
0456         struct mem_cgroup *memcg;
0457 
0458         memcg = folio_memcg(folio);
0459         old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
0460         new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
0461 
0462         __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
0463         __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
0464         if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
0465             __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
0466             __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
0467         }
0468 #ifdef CONFIG_SWAP
0469         if (folio_test_swapcache(folio)) {
0470             __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
0471             __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
0472         }
0473 #endif
0474         if (dirty && mapping_can_writeback(mapping)) {
0475             __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
0476             __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
0477             __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
0478             __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
0479         }
0480     }
0481     local_irq_enable();
0482 
0483     return MIGRATEPAGE_SUCCESS;
0484 }
0485 EXPORT_SYMBOL(folio_migrate_mapping);
0486 
0487 /*
0488  * The expected number of remaining references is the same as that
0489  * of folio_migrate_mapping().
0490  */
0491 int migrate_huge_page_move_mapping(struct address_space *mapping,
0492                    struct folio *dst, struct folio *src)
0493 {
0494     XA_STATE(xas, &mapping->i_pages, folio_index(src));
0495     int expected_count;
0496 
0497     xas_lock_irq(&xas);
0498     expected_count = 2 + folio_has_private(src);
0499     if (!folio_ref_freeze(src, expected_count)) {
0500         xas_unlock_irq(&xas);
0501         return -EAGAIN;
0502     }
0503 
0504     dst->index = src->index;
0505     dst->mapping = src->mapping;
0506 
0507     folio_get(dst);
0508 
0509     xas_store(&xas, dst);
0510 
0511     folio_ref_unfreeze(src, expected_count - 1);
0512 
0513     xas_unlock_irq(&xas);
0514 
0515     return MIGRATEPAGE_SUCCESS;
0516 }
0517 
0518 /*
0519  * Copy the flags and some other ancillary information
0520  */
0521 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
0522 {
0523     int cpupid;
0524 
0525     if (folio_test_error(folio))
0526         folio_set_error(newfolio);
0527     if (folio_test_referenced(folio))
0528         folio_set_referenced(newfolio);
0529     if (folio_test_uptodate(folio))
0530         folio_mark_uptodate(newfolio);
0531     if (folio_test_clear_active(folio)) {
0532         VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
0533         folio_set_active(newfolio);
0534     } else if (folio_test_clear_unevictable(folio))
0535         folio_set_unevictable(newfolio);
0536     if (folio_test_workingset(folio))
0537         folio_set_workingset(newfolio);
0538     if (folio_test_checked(folio))
0539         folio_set_checked(newfolio);
0540     /*
0541      * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
0542      * migration entries. We can still have PG_anon_exclusive set on an
0543      * effectively unmapped and unreferenced first sub-pages of an
0544      * anonymous THP: we can simply copy it here via PG_mappedtodisk.
0545      */
0546     if (folio_test_mappedtodisk(folio))
0547         folio_set_mappedtodisk(newfolio);
0548 
0549     /* Move dirty on pages not done by folio_migrate_mapping() */
0550     if (folio_test_dirty(folio))
0551         folio_set_dirty(newfolio);
0552 
0553     if (folio_test_young(folio))
0554         folio_set_young(newfolio);
0555     if (folio_test_idle(folio))
0556         folio_set_idle(newfolio);
0557 
0558     /*
0559      * Copy NUMA information to the new page, to prevent over-eager
0560      * future migrations of this same page.
0561      */
0562     cpupid = page_cpupid_xchg_last(&folio->page, -1);
0563     page_cpupid_xchg_last(&newfolio->page, cpupid);
0564 
0565     folio_migrate_ksm(newfolio, folio);
0566     /*
0567      * Please do not reorder this without considering how mm/ksm.c's
0568      * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
0569      */
0570     if (folio_test_swapcache(folio))
0571         folio_clear_swapcache(folio);
0572     folio_clear_private(folio);
0573 
0574     /* page->private contains hugetlb specific flags */
0575     if (!folio_test_hugetlb(folio))
0576         folio->private = NULL;
0577 
0578     /*
0579      * If any waiters have accumulated on the new page then
0580      * wake them up.
0581      */
0582     if (folio_test_writeback(newfolio))
0583         folio_end_writeback(newfolio);
0584 
0585     /*
0586      * PG_readahead shares the same bit with PG_reclaim.  The above
0587      * end_page_writeback() may clear PG_readahead mistakenly, so set the
0588      * bit after that.
0589      */
0590     if (folio_test_readahead(folio))
0591         folio_set_readahead(newfolio);
0592 
0593     folio_copy_owner(newfolio, folio);
0594 
0595     if (!folio_test_hugetlb(folio))
0596         mem_cgroup_migrate(folio, newfolio);
0597 }
0598 EXPORT_SYMBOL(folio_migrate_flags);
0599 
0600 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
0601 {
0602     folio_copy(newfolio, folio);
0603     folio_migrate_flags(newfolio, folio);
0604 }
0605 EXPORT_SYMBOL(folio_migrate_copy);
0606 
0607 /************************************************************
0608  *                    Migration functions
0609  ***********************************************************/
0610 
0611 /**
0612  * migrate_folio() - Simple folio migration.
0613  * @mapping: The address_space containing the folio.
0614  * @dst: The folio to migrate the data to.
0615  * @src: The folio containing the current data.
0616  * @mode: How to migrate the page.
0617  *
0618  * Common logic to directly migrate a single LRU folio suitable for
0619  * folios that do not use PagePrivate/PagePrivate2.
0620  *
0621  * Folios are locked upon entry and exit.
0622  */
0623 int migrate_folio(struct address_space *mapping, struct folio *dst,
0624         struct folio *src, enum migrate_mode mode)
0625 {
0626     int rc;
0627 
0628     BUG_ON(folio_test_writeback(src));  /* Writeback must be complete */
0629 
0630     rc = folio_migrate_mapping(mapping, dst, src, 0);
0631 
0632     if (rc != MIGRATEPAGE_SUCCESS)
0633         return rc;
0634 
0635     if (mode != MIGRATE_SYNC_NO_COPY)
0636         folio_migrate_copy(dst, src);
0637     else
0638         folio_migrate_flags(dst, src);
0639     return MIGRATEPAGE_SUCCESS;
0640 }
0641 EXPORT_SYMBOL(migrate_folio);
0642 
0643 #ifdef CONFIG_BLOCK
0644 /* Returns true if all buffers are successfully locked */
0645 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
0646                             enum migrate_mode mode)
0647 {
0648     struct buffer_head *bh = head;
0649 
0650     /* Simple case, sync compaction */
0651     if (mode != MIGRATE_ASYNC) {
0652         do {
0653             lock_buffer(bh);
0654             bh = bh->b_this_page;
0655 
0656         } while (bh != head);
0657 
0658         return true;
0659     }
0660 
0661     /* async case, we cannot block on lock_buffer so use trylock_buffer */
0662     do {
0663         if (!trylock_buffer(bh)) {
0664             /*
0665              * We failed to lock the buffer and cannot stall in
0666              * async migration. Release the taken locks
0667              */
0668             struct buffer_head *failed_bh = bh;
0669             bh = head;
0670             while (bh != failed_bh) {
0671                 unlock_buffer(bh);
0672                 bh = bh->b_this_page;
0673             }
0674             return false;
0675         }
0676 
0677         bh = bh->b_this_page;
0678     } while (bh != head);
0679     return true;
0680 }
0681 
0682 static int __buffer_migrate_folio(struct address_space *mapping,
0683         struct folio *dst, struct folio *src, enum migrate_mode mode,
0684         bool check_refs)
0685 {
0686     struct buffer_head *bh, *head;
0687     int rc;
0688     int expected_count;
0689 
0690     head = folio_buffers(src);
0691     if (!head)
0692         return migrate_folio(mapping, dst, src, mode);
0693 
0694     /* Check whether page does not have extra refs before we do more work */
0695     expected_count = folio_expected_refs(mapping, src);
0696     if (folio_ref_count(src) != expected_count)
0697         return -EAGAIN;
0698 
0699     if (!buffer_migrate_lock_buffers(head, mode))
0700         return -EAGAIN;
0701 
0702     if (check_refs) {
0703         bool busy;
0704         bool invalidated = false;
0705 
0706 recheck_buffers:
0707         busy = false;
0708         spin_lock(&mapping->private_lock);
0709         bh = head;
0710         do {
0711             if (atomic_read(&bh->b_count)) {
0712                 busy = true;
0713                 break;
0714             }
0715             bh = bh->b_this_page;
0716         } while (bh != head);
0717         if (busy) {
0718             if (invalidated) {
0719                 rc = -EAGAIN;
0720                 goto unlock_buffers;
0721             }
0722             spin_unlock(&mapping->private_lock);
0723             invalidate_bh_lrus();
0724             invalidated = true;
0725             goto recheck_buffers;
0726         }
0727     }
0728 
0729     rc = folio_migrate_mapping(mapping, dst, src, 0);
0730     if (rc != MIGRATEPAGE_SUCCESS)
0731         goto unlock_buffers;
0732 
0733     folio_attach_private(dst, folio_detach_private(src));
0734 
0735     bh = head;
0736     do {
0737         set_bh_page(bh, &dst->page, bh_offset(bh));
0738         bh = bh->b_this_page;
0739     } while (bh != head);
0740 
0741     if (mode != MIGRATE_SYNC_NO_COPY)
0742         folio_migrate_copy(dst, src);
0743     else
0744         folio_migrate_flags(dst, src);
0745 
0746     rc = MIGRATEPAGE_SUCCESS;
0747 unlock_buffers:
0748     if (check_refs)
0749         spin_unlock(&mapping->private_lock);
0750     bh = head;
0751     do {
0752         unlock_buffer(bh);
0753         bh = bh->b_this_page;
0754     } while (bh != head);
0755 
0756     return rc;
0757 }
0758 
0759 /**
0760  * buffer_migrate_folio() - Migration function for folios with buffers.
0761  * @mapping: The address space containing @src.
0762  * @dst: The folio to migrate to.
0763  * @src: The folio to migrate from.
0764  * @mode: How to migrate the folio.
0765  *
0766  * This function can only be used if the underlying filesystem guarantees
0767  * that no other references to @src exist. For example attached buffer
0768  * heads are accessed only under the folio lock.  If your filesystem cannot
0769  * provide this guarantee, buffer_migrate_folio_norefs() may be more
0770  * appropriate.
0771  *
0772  * Return: 0 on success or a negative errno on failure.
0773  */
0774 int buffer_migrate_folio(struct address_space *mapping,
0775         struct folio *dst, struct folio *src, enum migrate_mode mode)
0776 {
0777     return __buffer_migrate_folio(mapping, dst, src, mode, false);
0778 }
0779 EXPORT_SYMBOL(buffer_migrate_folio);
0780 
0781 /**
0782  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
0783  * @mapping: The address space containing @src.
0784  * @dst: The folio to migrate to.
0785  * @src: The folio to migrate from.
0786  * @mode: How to migrate the folio.
0787  *
0788  * Like buffer_migrate_folio() except that this variant is more careful
0789  * and checks that there are also no buffer head references. This function
0790  * is the right one for mappings where buffer heads are directly looked
0791  * up and referenced (such as block device mappings).
0792  *
0793  * Return: 0 on success or a negative errno on failure.
0794  */
0795 int buffer_migrate_folio_norefs(struct address_space *mapping,
0796         struct folio *dst, struct folio *src, enum migrate_mode mode)
0797 {
0798     return __buffer_migrate_folio(mapping, dst, src, mode, true);
0799 }
0800 #endif
0801 
0802 int filemap_migrate_folio(struct address_space *mapping,
0803         struct folio *dst, struct folio *src, enum migrate_mode mode)
0804 {
0805     int ret;
0806 
0807     ret = folio_migrate_mapping(mapping, dst, src, 0);
0808     if (ret != MIGRATEPAGE_SUCCESS)
0809         return ret;
0810 
0811     if (folio_get_private(src))
0812         folio_attach_private(dst, folio_detach_private(src));
0813 
0814     if (mode != MIGRATE_SYNC_NO_COPY)
0815         folio_migrate_copy(dst, src);
0816     else
0817         folio_migrate_flags(dst, src);
0818     return MIGRATEPAGE_SUCCESS;
0819 }
0820 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
0821 
0822 /*
0823  * Writeback a folio to clean the dirty state
0824  */
0825 static int writeout(struct address_space *mapping, struct folio *folio)
0826 {
0827     struct writeback_control wbc = {
0828         .sync_mode = WB_SYNC_NONE,
0829         .nr_to_write = 1,
0830         .range_start = 0,
0831         .range_end = LLONG_MAX,
0832         .for_reclaim = 1
0833     };
0834     int rc;
0835 
0836     if (!mapping->a_ops->writepage)
0837         /* No write method for the address space */
0838         return -EINVAL;
0839 
0840     if (!folio_clear_dirty_for_io(folio))
0841         /* Someone else already triggered a write */
0842         return -EAGAIN;
0843 
0844     /*
0845      * A dirty folio may imply that the underlying filesystem has
0846      * the folio on some queue. So the folio must be clean for
0847      * migration. Writeout may mean we lose the lock and the
0848      * folio state is no longer what we checked for earlier.
0849      * At this point we know that the migration attempt cannot
0850      * be successful.
0851      */
0852     remove_migration_ptes(folio, folio, false);
0853 
0854     rc = mapping->a_ops->writepage(&folio->page, &wbc);
0855 
0856     if (rc != AOP_WRITEPAGE_ACTIVATE)
0857         /* unlocked. Relock */
0858         folio_lock(folio);
0859 
0860     return (rc < 0) ? -EIO : -EAGAIN;
0861 }
0862 
0863 /*
0864  * Default handling if a filesystem does not provide a migration function.
0865  */
0866 static int fallback_migrate_folio(struct address_space *mapping,
0867         struct folio *dst, struct folio *src, enum migrate_mode mode)
0868 {
0869     if (folio_test_dirty(src)) {
0870         /* Only writeback folios in full synchronous migration */
0871         switch (mode) {
0872         case MIGRATE_SYNC:
0873         case MIGRATE_SYNC_NO_COPY:
0874             break;
0875         default:
0876             return -EBUSY;
0877         }
0878         return writeout(mapping, src);
0879     }
0880 
0881     /*
0882      * Buffers may be managed in a filesystem specific way.
0883      * We must have no buffers or drop them.
0884      */
0885     if (folio_test_private(src) &&
0886         !filemap_release_folio(src, GFP_KERNEL))
0887         return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
0888 
0889     return migrate_folio(mapping, dst, src, mode);
0890 }
0891 
0892 /*
0893  * Move a page to a newly allocated page
0894  * The page is locked and all ptes have been successfully removed.
0895  *
0896  * The new page will have replaced the old page if this function
0897  * is successful.
0898  *
0899  * Return value:
0900  *   < 0 - error code
0901  *  MIGRATEPAGE_SUCCESS - success
0902  */
0903 static int move_to_new_folio(struct folio *dst, struct folio *src,
0904                 enum migrate_mode mode)
0905 {
0906     int rc = -EAGAIN;
0907     bool is_lru = !__PageMovable(&src->page);
0908 
0909     VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
0910     VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
0911 
0912     if (likely(is_lru)) {
0913         struct address_space *mapping = folio_mapping(src);
0914 
0915         if (!mapping)
0916             rc = migrate_folio(mapping, dst, src, mode);
0917         else if (mapping->a_ops->migrate_folio)
0918             /*
0919              * Most folios have a mapping and most filesystems
0920              * provide a migrate_folio callback. Anonymous folios
0921              * are part of swap space which also has its own
0922              * migrate_folio callback. This is the most common path
0923              * for page migration.
0924              */
0925             rc = mapping->a_ops->migrate_folio(mapping, dst, src,
0926                                 mode);
0927         else
0928             rc = fallback_migrate_folio(mapping, dst, src, mode);
0929     } else {
0930         const struct movable_operations *mops;
0931 
0932         /*
0933          * In case of non-lru page, it could be released after
0934          * isolation step. In that case, we shouldn't try migration.
0935          */
0936         VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
0937         if (!folio_test_movable(src)) {
0938             rc = MIGRATEPAGE_SUCCESS;
0939             folio_clear_isolated(src);
0940             goto out;
0941         }
0942 
0943         mops = page_movable_ops(&src->page);
0944         rc = mops->migrate_page(&dst->page, &src->page, mode);
0945         WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
0946                 !folio_test_isolated(src));
0947     }
0948 
0949     /*
0950      * When successful, old pagecache src->mapping must be cleared before
0951      * src is freed; but stats require that PageAnon be left as PageAnon.
0952      */
0953     if (rc == MIGRATEPAGE_SUCCESS) {
0954         if (__PageMovable(&src->page)) {
0955             VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
0956 
0957             /*
0958              * We clear PG_movable under page_lock so any compactor
0959              * cannot try to migrate this page.
0960              */
0961             folio_clear_isolated(src);
0962         }
0963 
0964         /*
0965          * Anonymous and movable src->mapping will be cleared by
0966          * free_pages_prepare so don't reset it here for keeping
0967          * the type to work PageAnon, for example.
0968          */
0969         if (!folio_mapping_flags(src))
0970             src->mapping = NULL;
0971 
0972         if (likely(!folio_is_zone_device(dst)))
0973             flush_dcache_folio(dst);
0974     }
0975 out:
0976     return rc;
0977 }
0978 
0979 static int __unmap_and_move(struct page *page, struct page *newpage,
0980                 int force, enum migrate_mode mode)
0981 {
0982     struct folio *folio = page_folio(page);
0983     struct folio *dst = page_folio(newpage);
0984     int rc = -EAGAIN;
0985     bool page_was_mapped = false;
0986     struct anon_vma *anon_vma = NULL;
0987     bool is_lru = !__PageMovable(page);
0988 
0989     if (!trylock_page(page)) {
0990         if (!force || mode == MIGRATE_ASYNC)
0991             goto out;
0992 
0993         /*
0994          * It's not safe for direct compaction to call lock_page.
0995          * For example, during page readahead pages are added locked
0996          * to the LRU. Later, when the IO completes the pages are
0997          * marked uptodate and unlocked. However, the queueing
0998          * could be merging multiple pages for one bio (e.g.
0999          * mpage_readahead). If an allocation happens for the
1000          * second or third page, the process can end up locking
1001          * the same page twice and deadlocking. Rather than
1002          * trying to be clever about what pages can be locked,
1003          * avoid the use of lock_page for direct compaction
1004          * altogether.
1005          */
1006         if (current->flags & PF_MEMALLOC)
1007             goto out;
1008 
1009         lock_page(page);
1010     }
1011 
1012     if (PageWriteback(page)) {
1013         /*
1014          * Only in the case of a full synchronous migration is it
1015          * necessary to wait for PageWriteback. In the async case,
1016          * the retry loop is too short and in the sync-light case,
1017          * the overhead of stalling is too much
1018          */
1019         switch (mode) {
1020         case MIGRATE_SYNC:
1021         case MIGRATE_SYNC_NO_COPY:
1022             break;
1023         default:
1024             rc = -EBUSY;
1025             goto out_unlock;
1026         }
1027         if (!force)
1028             goto out_unlock;
1029         wait_on_page_writeback(page);
1030     }
1031 
1032     /*
1033      * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1034      * we cannot notice that anon_vma is freed while we migrates a page.
1035      * This get_anon_vma() delays freeing anon_vma pointer until the end
1036      * of migration. File cache pages are no problem because of page_lock()
1037      * File Caches may use write_page() or lock_page() in migration, then,
1038      * just care Anon page here.
1039      *
1040      * Only page_get_anon_vma() understands the subtleties of
1041      * getting a hold on an anon_vma from outside one of its mms.
1042      * But if we cannot get anon_vma, then we won't need it anyway,
1043      * because that implies that the anon page is no longer mapped
1044      * (and cannot be remapped so long as we hold the page lock).
1045      */
1046     if (PageAnon(page) && !PageKsm(page))
1047         anon_vma = page_get_anon_vma(page);
1048 
1049     /*
1050      * Block others from accessing the new page when we get around to
1051      * establishing additional references. We are usually the only one
1052      * holding a reference to newpage at this point. We used to have a BUG
1053      * here if trylock_page(newpage) fails, but would like to allow for
1054      * cases where there might be a race with the previous use of newpage.
1055      * This is much like races on refcount of oldpage: just don't BUG().
1056      */
1057     if (unlikely(!trylock_page(newpage)))
1058         goto out_unlock;
1059 
1060     if (unlikely(!is_lru)) {
1061         rc = move_to_new_folio(dst, folio, mode);
1062         goto out_unlock_both;
1063     }
1064 
1065     /*
1066      * Corner case handling:
1067      * 1. When a new swap-cache page is read into, it is added to the LRU
1068      * and treated as swapcache but it has no rmap yet.
1069      * Calling try_to_unmap() against a page->mapping==NULL page will
1070      * trigger a BUG.  So handle it here.
1071      * 2. An orphaned page (see truncate_cleanup_page) might have
1072      * fs-private metadata. The page can be picked up due to memory
1073      * offlining.  Everywhere else except page reclaim, the page is
1074      * invisible to the vm, so the page can not be migrated.  So try to
1075      * free the metadata, so the page can be freed.
1076      */
1077     if (!page->mapping) {
1078         VM_BUG_ON_PAGE(PageAnon(page), page);
1079         if (page_has_private(page)) {
1080             try_to_free_buffers(folio);
1081             goto out_unlock_both;
1082         }
1083     } else if (page_mapped(page)) {
1084         /* Establish migration ptes */
1085         VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086                 page);
1087         try_to_migrate(folio, 0);
1088         page_was_mapped = true;
1089     }
1090 
1091     if (!page_mapped(page))
1092         rc = move_to_new_folio(dst, folio, mode);
1093 
1094     /*
1095      * When successful, push newpage to LRU immediately: so that if it
1096      * turns out to be an mlocked page, remove_migration_ptes() will
1097      * automatically build up the correct newpage->mlock_count for it.
1098      *
1099      * We would like to do something similar for the old page, when
1100      * unsuccessful, and other cases when a page has been temporarily
1101      * isolated from the unevictable LRU: but this case is the easiest.
1102      */
1103     if (rc == MIGRATEPAGE_SUCCESS) {
1104         lru_cache_add(newpage);
1105         if (page_was_mapped)
1106             lru_add_drain();
1107     }
1108 
1109     if (page_was_mapped)
1110         remove_migration_ptes(folio,
1111             rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1112 
1113 out_unlock_both:
1114     unlock_page(newpage);
1115 out_unlock:
1116     /* Drop an anon_vma reference if we took one */
1117     if (anon_vma)
1118         put_anon_vma(anon_vma);
1119     unlock_page(page);
1120 out:
1121     /*
1122      * If migration is successful, decrease refcount of the newpage,
1123      * which will not free the page because new page owner increased
1124      * refcounter.
1125      */
1126     if (rc == MIGRATEPAGE_SUCCESS)
1127         put_page(newpage);
1128 
1129     return rc;
1130 }
1131 
1132 /*
1133  * Obtain the lock on page, remove all ptes and migrate the page
1134  * to the newly allocated page in newpage.
1135  */
1136 static int unmap_and_move(new_page_t get_new_page,
1137                    free_page_t put_new_page,
1138                    unsigned long private, struct page *page,
1139                    int force, enum migrate_mode mode,
1140                    enum migrate_reason reason,
1141                    struct list_head *ret)
1142 {
1143     int rc = MIGRATEPAGE_SUCCESS;
1144     struct page *newpage = NULL;
1145 
1146     if (!thp_migration_supported() && PageTransHuge(page))
1147         return -ENOSYS;
1148 
1149     if (page_count(page) == 1) {
1150         /* Page was freed from under us. So we are done. */
1151         ClearPageActive(page);
1152         ClearPageUnevictable(page);
1153         /* free_pages_prepare() will clear PG_isolated. */
1154         goto out;
1155     }
1156 
1157     newpage = get_new_page(page, private);
1158     if (!newpage)
1159         return -ENOMEM;
1160 
1161     newpage->private = 0;
1162     rc = __unmap_and_move(page, newpage, force, mode);
1163     if (rc == MIGRATEPAGE_SUCCESS)
1164         set_page_owner_migrate_reason(newpage, reason);
1165 
1166 out:
1167     if (rc != -EAGAIN) {
1168         /*
1169          * A page that has been migrated has all references
1170          * removed and will be freed. A page that has not been
1171          * migrated will have kept its references and be restored.
1172          */
1173         list_del(&page->lru);
1174     }
1175 
1176     /*
1177      * If migration is successful, releases reference grabbed during
1178      * isolation. Otherwise, restore the page to right list unless
1179      * we want to retry.
1180      */
1181     if (rc == MIGRATEPAGE_SUCCESS) {
1182         /*
1183          * Compaction can migrate also non-LRU pages which are
1184          * not accounted to NR_ISOLATED_*. They can be recognized
1185          * as __PageMovable
1186          */
1187         if (likely(!__PageMovable(page)))
1188             mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1189                     page_is_file_lru(page), -thp_nr_pages(page));
1190 
1191         if (reason != MR_MEMORY_FAILURE)
1192             /*
1193              * We release the page in page_handle_poison.
1194              */
1195             put_page(page);
1196     } else {
1197         if (rc != -EAGAIN)
1198             list_add_tail(&page->lru, ret);
1199 
1200         if (put_new_page)
1201             put_new_page(newpage, private);
1202         else
1203             put_page(newpage);
1204     }
1205 
1206     return rc;
1207 }
1208 
1209 /*
1210  * Counterpart of unmap_and_move_page() for hugepage migration.
1211  *
1212  * This function doesn't wait the completion of hugepage I/O
1213  * because there is no race between I/O and migration for hugepage.
1214  * Note that currently hugepage I/O occurs only in direct I/O
1215  * where no lock is held and PG_writeback is irrelevant,
1216  * and writeback status of all subpages are counted in the reference
1217  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1218  * under direct I/O, the reference of the head page is 512 and a bit more.)
1219  * This means that when we try to migrate hugepage whose subpages are
1220  * doing direct I/O, some references remain after try_to_unmap() and
1221  * hugepage migration fails without data corruption.
1222  *
1223  * There is also no race when direct I/O is issued on the page under migration,
1224  * because then pte is replaced with migration swap entry and direct I/O code
1225  * will wait in the page fault for migration to complete.
1226  */
1227 static int unmap_and_move_huge_page(new_page_t get_new_page,
1228                 free_page_t put_new_page, unsigned long private,
1229                 struct page *hpage, int force,
1230                 enum migrate_mode mode, int reason,
1231                 struct list_head *ret)
1232 {
1233     struct folio *dst, *src = page_folio(hpage);
1234     int rc = -EAGAIN;
1235     int page_was_mapped = 0;
1236     struct page *new_hpage;
1237     struct anon_vma *anon_vma = NULL;
1238     struct address_space *mapping = NULL;
1239 
1240     /*
1241      * Migratability of hugepages depends on architectures and their size.
1242      * This check is necessary because some callers of hugepage migration
1243      * like soft offline and memory hotremove don't walk through page
1244      * tables or check whether the hugepage is pmd-based or not before
1245      * kicking migration.
1246      */
1247     if (!hugepage_migration_supported(page_hstate(hpage))) {
1248         list_move_tail(&hpage->lru, ret);
1249         return -ENOSYS;
1250     }
1251 
1252     if (page_count(hpage) == 1) {
1253         /* page was freed from under us. So we are done. */
1254         putback_active_hugepage(hpage);
1255         return MIGRATEPAGE_SUCCESS;
1256     }
1257 
1258     new_hpage = get_new_page(hpage, private);
1259     if (!new_hpage)
1260         return -ENOMEM;
1261     dst = page_folio(new_hpage);
1262 
1263     if (!trylock_page(hpage)) {
1264         if (!force)
1265             goto out;
1266         switch (mode) {
1267         case MIGRATE_SYNC:
1268         case MIGRATE_SYNC_NO_COPY:
1269             break;
1270         default:
1271             goto out;
1272         }
1273         lock_page(hpage);
1274     }
1275 
1276     /*
1277      * Check for pages which are in the process of being freed.  Without
1278      * page_mapping() set, hugetlbfs specific move page routine will not
1279      * be called and we could leak usage counts for subpools.
1280      */
1281     if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1282         rc = -EBUSY;
1283         goto out_unlock;
1284     }
1285 
1286     if (PageAnon(hpage))
1287         anon_vma = page_get_anon_vma(hpage);
1288 
1289     if (unlikely(!trylock_page(new_hpage)))
1290         goto put_anon;
1291 
1292     if (page_mapped(hpage)) {
1293         enum ttu_flags ttu = 0;
1294 
1295         if (!PageAnon(hpage)) {
1296             /*
1297              * In shared mappings, try_to_unmap could potentially
1298              * call huge_pmd_unshare.  Because of this, take
1299              * semaphore in write mode here and set TTU_RMAP_LOCKED
1300              * to let lower levels know we have taken the lock.
1301              */
1302             mapping = hugetlb_page_mapping_lock_write(hpage);
1303             if (unlikely(!mapping))
1304                 goto unlock_put_anon;
1305 
1306             ttu = TTU_RMAP_LOCKED;
1307         }
1308 
1309         try_to_migrate(src, ttu);
1310         page_was_mapped = 1;
1311 
1312         if (ttu & TTU_RMAP_LOCKED)
1313             i_mmap_unlock_write(mapping);
1314     }
1315 
1316     if (!page_mapped(hpage))
1317         rc = move_to_new_folio(dst, src, mode);
1318 
1319     if (page_was_mapped)
1320         remove_migration_ptes(src,
1321             rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1322 
1323 unlock_put_anon:
1324     unlock_page(new_hpage);
1325 
1326 put_anon:
1327     if (anon_vma)
1328         put_anon_vma(anon_vma);
1329 
1330     if (rc == MIGRATEPAGE_SUCCESS) {
1331         move_hugetlb_state(hpage, new_hpage, reason);
1332         put_new_page = NULL;
1333     }
1334 
1335 out_unlock:
1336     unlock_page(hpage);
1337 out:
1338     if (rc == MIGRATEPAGE_SUCCESS)
1339         putback_active_hugepage(hpage);
1340     else if (rc != -EAGAIN)
1341         list_move_tail(&hpage->lru, ret);
1342 
1343     /*
1344      * If migration was not successful and there's a freeing callback, use
1345      * it.  Otherwise, put_page() will drop the reference grabbed during
1346      * isolation.
1347      */
1348     if (put_new_page)
1349         put_new_page(new_hpage, private);
1350     else
1351         putback_active_hugepage(new_hpage);
1352 
1353     return rc;
1354 }
1355 
1356 static inline int try_split_thp(struct page *page, struct page **page2,
1357                 struct list_head *from)
1358 {
1359     int rc = 0;
1360 
1361     lock_page(page);
1362     rc = split_huge_page_to_list(page, from);
1363     unlock_page(page);
1364     if (!rc)
1365         list_safe_reset_next(page, *page2, lru);
1366 
1367     return rc;
1368 }
1369 
1370 /*
1371  * migrate_pages - migrate the pages specified in a list, to the free pages
1372  *         supplied as the target for the page migration
1373  *
1374  * @from:       The list of pages to be migrated.
1375  * @get_new_page:   The function used to allocate free pages to be used
1376  *          as the target of the page migration.
1377  * @put_new_page:   The function used to free target pages if migration
1378  *          fails, or NULL if no special handling is necessary.
1379  * @private:        Private data to be passed on to get_new_page()
1380  * @mode:       The migration mode that specifies the constraints for
1381  *          page migration, if any.
1382  * @reason:     The reason for page migration.
1383  * @ret_succeeded:  Set to the number of normal pages migrated successfully if
1384  *          the caller passes a non-NULL pointer.
1385  *
1386  * The function returns after 10 attempts or if no pages are movable any more
1387  * because the list has become empty or no retryable pages exist any more.
1388  * It is caller's responsibility to call putback_movable_pages() to return pages
1389  * to the LRU or free list only if ret != 0.
1390  *
1391  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1392  * an error code. The number of THP splits will be considered as the number of
1393  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1394  */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396         free_page_t put_new_page, unsigned long private,
1397         enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1398 {
1399     int retry = 1;
1400     int thp_retry = 1;
1401     int nr_failed = 0;
1402     int nr_failed_pages = 0;
1403     int nr_succeeded = 0;
1404     int nr_thp_succeeded = 0;
1405     int nr_thp_failed = 0;
1406     int nr_thp_split = 0;
1407     int pass = 0;
1408     bool is_thp = false;
1409     struct page *page;
1410     struct page *page2;
1411     int rc, nr_subpages;
1412     LIST_HEAD(ret_pages);
1413     LIST_HEAD(thp_split_pages);
1414     bool nosplit = (reason == MR_NUMA_MISPLACED);
1415     bool no_subpage_counting = false;
1416 
1417     trace_mm_migrate_pages_start(mode, reason);
1418 
1419 thp_subpage_migration:
1420     for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1421         retry = 0;
1422         thp_retry = 0;
1423 
1424         list_for_each_entry_safe(page, page2, from, lru) {
1425 retry:
1426             /*
1427              * THP statistics is based on the source huge page.
1428              * Capture required information that might get lost
1429              * during migration.
1430              */
1431             is_thp = PageTransHuge(page) && !PageHuge(page);
1432             nr_subpages = compound_nr(page);
1433             cond_resched();
1434 
1435             if (PageHuge(page))
1436                 rc = unmap_and_move_huge_page(get_new_page,
1437                         put_new_page, private, page,
1438                         pass > 2, mode, reason,
1439                         &ret_pages);
1440             else
1441                 rc = unmap_and_move(get_new_page, put_new_page,
1442                         private, page, pass > 2, mode,
1443                         reason, &ret_pages);
1444             /*
1445              * The rules are:
1446              *  Success: non hugetlb page will be freed, hugetlb
1447              *       page will be put back
1448              *  -EAGAIN: stay on the from list
1449              *  -ENOMEM: stay on the from list
1450              *  Other errno: put on ret_pages list then splice to
1451              *           from list
1452              */
1453             switch(rc) {
1454             /*
1455              * THP migration might be unsupported or the
1456              * allocation could've failed so we should
1457              * retry on the same page with the THP split
1458              * to base pages.
1459              *
1460              * Head page is retried immediately and tail
1461              * pages are added to the tail of the list so
1462              * we encounter them after the rest of the list
1463              * is processed.
1464              */
1465             case -ENOSYS:
1466                 /* THP migration is unsupported */
1467                 if (is_thp) {
1468                     nr_thp_failed++;
1469                     if (!try_split_thp(page, &page2, &thp_split_pages)) {
1470                         nr_thp_split++;
1471                         goto retry;
1472                     }
1473                 /* Hugetlb migration is unsupported */
1474                 } else if (!no_subpage_counting) {
1475                     nr_failed++;
1476                 }
1477 
1478                 nr_failed_pages += nr_subpages;
1479                 break;
1480             case -ENOMEM:
1481                 /*
1482                  * When memory is low, don't bother to try to migrate
1483                  * other pages, just exit.
1484                  * THP NUMA faulting doesn't split THP to retry.
1485                  */
1486                 if (is_thp && !nosplit) {
1487                     nr_thp_failed++;
1488                     if (!try_split_thp(page, &page2, &thp_split_pages)) {
1489                         nr_thp_split++;
1490                         goto retry;
1491                     }
1492                 } else if (!no_subpage_counting) {
1493                     nr_failed++;
1494                 }
1495 
1496                 nr_failed_pages += nr_subpages;
1497                 /*
1498                  * There might be some subpages of fail-to-migrate THPs
1499                  * left in thp_split_pages list. Move them back to migration
1500                  * list so that they could be put back to the right list by
1501                  * the caller otherwise the page refcnt will be leaked.
1502                  */
1503                 list_splice_init(&thp_split_pages, from);
1504                 nr_thp_failed += thp_retry;
1505                 goto out;
1506             case -EAGAIN:
1507                 if (is_thp)
1508                     thp_retry++;
1509                 else
1510                     retry++;
1511                 break;
1512             case MIGRATEPAGE_SUCCESS:
1513                 nr_succeeded += nr_subpages;
1514                 if (is_thp)
1515                     nr_thp_succeeded++;
1516                 break;
1517             default:
1518                 /*
1519                  * Permanent failure (-EBUSY, etc.):
1520                  * unlike -EAGAIN case, the failed page is
1521                  * removed from migration page list and not
1522                  * retried in the next outer loop.
1523                  */
1524                 if (is_thp)
1525                     nr_thp_failed++;
1526                 else if (!no_subpage_counting)
1527                     nr_failed++;
1528 
1529                 nr_failed_pages += nr_subpages;
1530                 break;
1531             }
1532         }
1533     }
1534     nr_failed += retry;
1535     nr_thp_failed += thp_retry;
1536     /*
1537      * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1538      * counting in this round, since all subpages of a THP is counted
1539      * as 1 failure in the first round.
1540      */
1541     if (!list_empty(&thp_split_pages)) {
1542         /*
1543          * Move non-migrated pages (after 10 retries) to ret_pages
1544          * to avoid migrating them again.
1545          */
1546         list_splice_init(from, &ret_pages);
1547         list_splice_init(&thp_split_pages, from);
1548         no_subpage_counting = true;
1549         retry = 1;
1550         goto thp_subpage_migration;
1551     }
1552 
1553     rc = nr_failed + nr_thp_failed;
1554 out:
1555     /*
1556      * Put the permanent failure page back to migration list, they
1557      * will be put back to the right list by the caller.
1558      */
1559     list_splice(&ret_pages, from);
1560 
1561     count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1562     count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1563     count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1564     count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1565     count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1566     trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1567                    nr_thp_failed, nr_thp_split, mode, reason);
1568 
1569     if (ret_succeeded)
1570         *ret_succeeded = nr_succeeded;
1571 
1572     return rc;
1573 }
1574 
1575 struct page *alloc_migration_target(struct page *page, unsigned long private)
1576 {
1577     struct folio *folio = page_folio(page);
1578     struct migration_target_control *mtc;
1579     gfp_t gfp_mask;
1580     unsigned int order = 0;
1581     struct folio *new_folio = NULL;
1582     int nid;
1583     int zidx;
1584 
1585     mtc = (struct migration_target_control *)private;
1586     gfp_mask = mtc->gfp_mask;
1587     nid = mtc->nid;
1588     if (nid == NUMA_NO_NODE)
1589         nid = folio_nid(folio);
1590 
1591     if (folio_test_hugetlb(folio)) {
1592         struct hstate *h = page_hstate(&folio->page);
1593 
1594         gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1595         return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1596     }
1597 
1598     if (folio_test_large(folio)) {
1599         /*
1600          * clear __GFP_RECLAIM to make the migration callback
1601          * consistent with regular THP allocations.
1602          */
1603         gfp_mask &= ~__GFP_RECLAIM;
1604         gfp_mask |= GFP_TRANSHUGE;
1605         order = folio_order(folio);
1606     }
1607     zidx = zone_idx(folio_zone(folio));
1608     if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1609         gfp_mask |= __GFP_HIGHMEM;
1610 
1611     new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1612 
1613     return &new_folio->page;
1614 }
1615 
1616 #ifdef CONFIG_NUMA
1617 
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620     while (nr-- > 0) {
1621         if (put_user(value, status + start))
1622             return -EFAULT;
1623         start++;
1624     }
1625 
1626     return 0;
1627 }
1628 
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630         struct list_head *pagelist, int node)
1631 {
1632     int err;
1633     struct migration_target_control mtc = {
1634         .nid = node,
1635         .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636     };
1637 
1638     err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1640     if (err)
1641         putback_movable_pages(pagelist);
1642     return err;
1643 }
1644 
1645 /*
1646  * Resolves the given address to a struct page, isolates it from the LRU and
1647  * puts it to the given pagelist.
1648  * Returns:
1649  *     errno - if the page cannot be found/isolated
1650  *     0 - when it doesn't have to be migrated because it is already on the
1651  *         target node
1652  *     1 - when it has been queued
1653  */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655         int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657     struct vm_area_struct *vma;
1658     struct page *page;
1659     int err;
1660 
1661     mmap_read_lock(mm);
1662     err = -EFAULT;
1663     vma = vma_lookup(mm, addr);
1664     if (!vma || !vma_migratable(vma))
1665         goto out;
1666 
1667     /* FOLL_DUMP to ignore special (like zero) pages */
1668     page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1669 
1670     err = PTR_ERR(page);
1671     if (IS_ERR(page))
1672         goto out;
1673 
1674     err = -ENOENT;
1675     if (!page || is_zone_device_page(page))
1676         goto out;
1677 
1678     err = 0;
1679     if (page_to_nid(page) == node)
1680         goto out_putpage;
1681 
1682     err = -EACCES;
1683     if (page_mapcount(page) > 1 && !migrate_all)
1684         goto out_putpage;
1685 
1686     if (PageHuge(page)) {
1687         if (PageHead(page)) {
1688             err = isolate_hugetlb(page, pagelist);
1689             if (!err)
1690                 err = 1;
1691         }
1692     } else {
1693         struct page *head;
1694 
1695         head = compound_head(page);
1696         err = isolate_lru_page(head);
1697         if (err)
1698             goto out_putpage;
1699 
1700         err = 1;
1701         list_add_tail(&head->lru, pagelist);
1702         mod_node_page_state(page_pgdat(head),
1703             NR_ISOLATED_ANON + page_is_file_lru(head),
1704             thp_nr_pages(head));
1705     }
1706 out_putpage:
1707     /*
1708      * Either remove the duplicate refcount from
1709      * isolate_lru_page() or drop the page ref if it was
1710      * not isolated.
1711      */
1712     put_page(page);
1713 out:
1714     mmap_read_unlock(mm);
1715     return err;
1716 }
1717 
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719         struct list_head *pagelist, int __user *status,
1720         int start, int i, unsigned long nr_pages)
1721 {
1722     int err;
1723 
1724     if (list_empty(pagelist))
1725         return 0;
1726 
1727     err = do_move_pages_to_node(mm, pagelist, node);
1728     if (err) {
1729         /*
1730          * Positive err means the number of failed
1731          * pages to migrate.  Since we are going to
1732          * abort and return the number of non-migrated
1733          * pages, so need to include the rest of the
1734          * nr_pages that have not been attempted as
1735          * well.
1736          */
1737         if (err > 0)
1738             err += nr_pages - i - 1;
1739         return err;
1740     }
1741     return store_status(status, start, node, i - start);
1742 }
1743 
1744 /*
1745  * Migrate an array of page address onto an array of nodes and fill
1746  * the corresponding array of status.
1747  */
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749              unsigned long nr_pages,
1750              const void __user * __user *pages,
1751              const int __user *nodes,
1752              int __user *status, int flags)
1753 {
1754     int current_node = NUMA_NO_NODE;
1755     LIST_HEAD(pagelist);
1756     int start, i;
1757     int err = 0, err1;
1758 
1759     lru_cache_disable();
1760 
1761     for (i = start = 0; i < nr_pages; i++) {
1762         const void __user *p;
1763         unsigned long addr;
1764         int node;
1765 
1766         err = -EFAULT;
1767         if (get_user(p, pages + i))
1768             goto out_flush;
1769         if (get_user(node, nodes + i))
1770             goto out_flush;
1771         addr = (unsigned long)untagged_addr(p);
1772 
1773         err = -ENODEV;
1774         if (node < 0 || node >= MAX_NUMNODES)
1775             goto out_flush;
1776         if (!node_state(node, N_MEMORY))
1777             goto out_flush;
1778 
1779         err = -EACCES;
1780         if (!node_isset(node, task_nodes))
1781             goto out_flush;
1782 
1783         if (current_node == NUMA_NO_NODE) {
1784             current_node = node;
1785             start = i;
1786         } else if (node != current_node) {
1787             err = move_pages_and_store_status(mm, current_node,
1788                     &pagelist, status, start, i, nr_pages);
1789             if (err)
1790                 goto out;
1791             start = i;
1792             current_node = node;
1793         }
1794 
1795         /*
1796          * Errors in the page lookup or isolation are not fatal and we simply
1797          * report them via status
1798          */
1799         err = add_page_for_migration(mm, addr, current_node,
1800                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1801 
1802         if (err > 0) {
1803             /* The page is successfully queued for migration */
1804             continue;
1805         }
1806 
1807         /*
1808          * The move_pages() man page does not have an -EEXIST choice, so
1809          * use -EFAULT instead.
1810          */
1811         if (err == -EEXIST)
1812             err = -EFAULT;
1813 
1814         /*
1815          * If the page is already on the target node (!err), store the
1816          * node, otherwise, store the err.
1817          */
1818         err = store_status(status, i, err ? : current_node, 1);
1819         if (err)
1820             goto out_flush;
1821 
1822         err = move_pages_and_store_status(mm, current_node, &pagelist,
1823                 status, start, i, nr_pages);
1824         if (err)
1825             goto out;
1826         current_node = NUMA_NO_NODE;
1827     }
1828 out_flush:
1829     /* Make sure we do not overwrite the existing error */
1830     err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831                 status, start, i, nr_pages);
1832     if (err >= 0)
1833         err = err1;
1834 out:
1835     lru_cache_enable();
1836     return err;
1837 }
1838 
1839 /*
1840  * Determine the nodes of an array of pages and store it in an array of status.
1841  */
1842 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1843                 const void __user **pages, int *status)
1844 {
1845     unsigned long i;
1846 
1847     mmap_read_lock(mm);
1848 
1849     for (i = 0; i < nr_pages; i++) {
1850         unsigned long addr = (unsigned long)(*pages);
1851         struct vm_area_struct *vma;
1852         struct page *page;
1853         int err = -EFAULT;
1854 
1855         vma = vma_lookup(mm, addr);
1856         if (!vma)
1857             goto set_status;
1858 
1859         /* FOLL_DUMP to ignore special (like zero) pages */
1860         page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1861 
1862         err = PTR_ERR(page);
1863         if (IS_ERR(page))
1864             goto set_status;
1865 
1866         if (page && !is_zone_device_page(page)) {
1867             err = page_to_nid(page);
1868             put_page(page);
1869         } else {
1870             err = -ENOENT;
1871         }
1872 set_status:
1873         *status = err;
1874 
1875         pages++;
1876         status++;
1877     }
1878 
1879     mmap_read_unlock(mm);
1880 }
1881 
1882 static int get_compat_pages_array(const void __user *chunk_pages[],
1883                   const void __user * __user *pages,
1884                   unsigned long chunk_nr)
1885 {
1886     compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1887     compat_uptr_t p;
1888     int i;
1889 
1890     for (i = 0; i < chunk_nr; i++) {
1891         if (get_user(p, pages32 + i))
1892             return -EFAULT;
1893         chunk_pages[i] = compat_ptr(p);
1894     }
1895 
1896     return 0;
1897 }
1898 
1899 /*
1900  * Determine the nodes of a user array of pages and store it in
1901  * a user array of status.
1902  */
1903 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1904              const void __user * __user *pages,
1905              int __user *status)
1906 {
1907 #define DO_PAGES_STAT_CHUNK_NR 16UL
1908     const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1909     int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1910 
1911     while (nr_pages) {
1912         unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1913 
1914         if (in_compat_syscall()) {
1915             if (get_compat_pages_array(chunk_pages, pages,
1916                            chunk_nr))
1917                 break;
1918         } else {
1919             if (copy_from_user(chunk_pages, pages,
1920                       chunk_nr * sizeof(*chunk_pages)))
1921                 break;
1922         }
1923 
1924         do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1925 
1926         if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1927             break;
1928 
1929         pages += chunk_nr;
1930         status += chunk_nr;
1931         nr_pages -= chunk_nr;
1932     }
1933     return nr_pages ? -EFAULT : 0;
1934 }
1935 
1936 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1937 {
1938     struct task_struct *task;
1939     struct mm_struct *mm;
1940 
1941     /*
1942      * There is no need to check if current process has the right to modify
1943      * the specified process when they are same.
1944      */
1945     if (!pid) {
1946         mmget(current->mm);
1947         *mem_nodes = cpuset_mems_allowed(current);
1948         return current->mm;
1949     }
1950 
1951     /* Find the mm_struct */
1952     rcu_read_lock();
1953     task = find_task_by_vpid(pid);
1954     if (!task) {
1955         rcu_read_unlock();
1956         return ERR_PTR(-ESRCH);
1957     }
1958     get_task_struct(task);
1959 
1960     /*
1961      * Check if this process has the right to modify the specified
1962      * process. Use the regular "ptrace_may_access()" checks.
1963      */
1964     if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1965         rcu_read_unlock();
1966         mm = ERR_PTR(-EPERM);
1967         goto out;
1968     }
1969     rcu_read_unlock();
1970 
1971     mm = ERR_PTR(security_task_movememory(task));
1972     if (IS_ERR(mm))
1973         goto out;
1974     *mem_nodes = cpuset_mems_allowed(task);
1975     mm = get_task_mm(task);
1976 out:
1977     put_task_struct(task);
1978     if (!mm)
1979         mm = ERR_PTR(-EINVAL);
1980     return mm;
1981 }
1982 
1983 /*
1984  * Move a list of pages in the address space of the currently executing
1985  * process.
1986  */
1987 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1988                  const void __user * __user *pages,
1989                  const int __user *nodes,
1990                  int __user *status, int flags)
1991 {
1992     struct mm_struct *mm;
1993     int err;
1994     nodemask_t task_nodes;
1995 
1996     /* Check flags */
1997     if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1998         return -EINVAL;
1999 
2000     if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2001         return -EPERM;
2002 
2003     mm = find_mm_struct(pid, &task_nodes);
2004     if (IS_ERR(mm))
2005         return PTR_ERR(mm);
2006 
2007     if (nodes)
2008         err = do_pages_move(mm, task_nodes, nr_pages, pages,
2009                     nodes, status, flags);
2010     else
2011         err = do_pages_stat(mm, nr_pages, pages, status);
2012 
2013     mmput(mm);
2014     return err;
2015 }
2016 
2017 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2018         const void __user * __user *, pages,
2019         const int __user *, nodes,
2020         int __user *, status, int, flags)
2021 {
2022     return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2023 }
2024 
2025 #ifdef CONFIG_NUMA_BALANCING
2026 /*
2027  * Returns true if this is a safe migration target node for misplaced NUMA
2028  * pages. Currently it only checks the watermarks which is crude.
2029  */
2030 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2031                    unsigned long nr_migrate_pages)
2032 {
2033     int z;
2034 
2035     for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036         struct zone *zone = pgdat->node_zones + z;
2037 
2038         if (!managed_zone(zone))
2039             continue;
2040 
2041         /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2042         if (!zone_watermark_ok(zone, 0,
2043                        high_wmark_pages(zone) +
2044                        nr_migrate_pages,
2045                        ZONE_MOVABLE, 0))
2046             continue;
2047         return true;
2048     }
2049     return false;
2050 }
2051 
2052 static struct page *alloc_misplaced_dst_page(struct page *page,
2053                        unsigned long data)
2054 {
2055     int nid = (int) data;
2056     int order = compound_order(page);
2057     gfp_t gfp = __GFP_THISNODE;
2058     struct folio *new;
2059 
2060     if (order > 0)
2061         gfp |= GFP_TRANSHUGE_LIGHT;
2062     else {
2063         gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2064             __GFP_NOWARN;
2065         gfp &= ~__GFP_RECLAIM;
2066     }
2067     new = __folio_alloc_node(gfp, order, nid);
2068 
2069     return &new->page;
2070 }
2071 
2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2073 {
2074     int nr_pages = thp_nr_pages(page);
2075     int order = compound_order(page);
2076 
2077     VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2078 
2079     /* Do not migrate THP mapped by multiple processes */
2080     if (PageTransHuge(page) && total_mapcount(page) > 1)
2081         return 0;
2082 
2083     /* Avoid migrating to a node that is nearly full */
2084     if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2085         int z;
2086 
2087         if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2088             return 0;
2089         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2090             if (managed_zone(pgdat->node_zones + z))
2091                 break;
2092         }
2093         wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2094         return 0;
2095     }
2096 
2097     if (isolate_lru_page(page))
2098         return 0;
2099 
2100     mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2101                 nr_pages);
2102 
2103     /*
2104      * Isolating the page has taken another reference, so the
2105      * caller's reference can be safely dropped without the page
2106      * disappearing underneath us during migration.
2107      */
2108     put_page(page);
2109     return 1;
2110 }
2111 
2112 /*
2113  * Attempt to migrate a misplaced page to the specified destination
2114  * node. Caller is expected to have an elevated reference count on
2115  * the page that will be dropped by this function before returning.
2116  */
2117 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2118                int node)
2119 {
2120     pg_data_t *pgdat = NODE_DATA(node);
2121     int isolated;
2122     int nr_remaining;
2123     unsigned int nr_succeeded;
2124     LIST_HEAD(migratepages);
2125     int nr_pages = thp_nr_pages(page);
2126 
2127     /*
2128      * Don't migrate file pages that are mapped in multiple processes
2129      * with execute permissions as they are probably shared libraries.
2130      */
2131     if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2132         (vma->vm_flags & VM_EXEC))
2133         goto out;
2134 
2135     /*
2136      * Also do not migrate dirty pages as not all filesystems can move
2137      * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2138      */
2139     if (page_is_file_lru(page) && PageDirty(page))
2140         goto out;
2141 
2142     isolated = numamigrate_isolate_page(pgdat, page);
2143     if (!isolated)
2144         goto out;
2145 
2146     list_add(&page->lru, &migratepages);
2147     nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2148                      NULL, node, MIGRATE_ASYNC,
2149                      MR_NUMA_MISPLACED, &nr_succeeded);
2150     if (nr_remaining) {
2151         if (!list_empty(&migratepages)) {
2152             list_del(&page->lru);
2153             mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2154                     page_is_file_lru(page), -nr_pages);
2155             putback_lru_page(page);
2156         }
2157         isolated = 0;
2158     }
2159     if (nr_succeeded) {
2160         count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2161         if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2162             mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2163                         nr_succeeded);
2164     }
2165     BUG_ON(!list_empty(&migratepages));
2166     return isolated;
2167 
2168 out:
2169     put_page(page);
2170     return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 
2174 /*
2175  * node_demotion[] example:
2176  *
2177  * Consider a system with two sockets.  Each socket has
2178  * three classes of memory attached: fast, medium and slow.
2179  * Each memory class is placed in its own NUMA node.  The
2180  * CPUs are placed in the node with the "fast" memory.  The
2181  * 6 NUMA nodes (0-5) might be split among the sockets like
2182  * this:
2183  *
2184  *  Socket A: 0, 1, 2
2185  *  Socket B: 3, 4, 5
2186  *
2187  * When Node 0 fills up, its memory should be migrated to
2188  * Node 1.  When Node 1 fills up, it should be migrated to
2189  * Node 2.  The migration path start on the nodes with the
2190  * processors (since allocations default to this node) and
2191  * fast memory, progress through medium and end with the
2192  * slow memory:
2193  *
2194  *  0 -> 1 -> 2 -> stop
2195  *  3 -> 4 -> 5 -> stop
2196  *
2197  * This is represented in the node_demotion[] like this:
2198  *
2199  *  {  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2200  *  {  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2201  *  {  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2202  *  {  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2203  *  {  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2204  *  {  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2205  *
2206  * Moreover some systems may have multiple slow memory nodes.
2207  * Suppose a system has one socket with 3 memory nodes, node 0
2208  * is fast memory type, and node 1/2 both are slow memory
2209  * type, and the distance between fast memory node and slow
2210  * memory node is same. So the migration path should be:
2211  *
2212  *  0 -> 1/2 -> stop
2213  *
2214  * This is represented in the node_demotion[] like this:
2215  *  { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2216  *  { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2217  *  { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2218  */
2219 
2220 /*
2221  * Writes to this array occur without locking.  Cycles are
2222  * not allowed: Node X demotes to Y which demotes to X...
2223  *
2224  * If multiple reads are performed, a single rcu_read_lock()
2225  * must be held over all reads to ensure that no cycles are
2226  * observed.
2227  */
2228 #define DEFAULT_DEMOTION_TARGET_NODES 15
2229 
2230 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2231 #define DEMOTION_TARGET_NODES   (MAX_NUMNODES - 1)
2232 #else
2233 #define DEMOTION_TARGET_NODES   DEFAULT_DEMOTION_TARGET_NODES
2234 #endif
2235 
2236 struct demotion_nodes {
2237     unsigned short nr;
2238     short nodes[DEMOTION_TARGET_NODES];
2239 };
2240 
2241 static struct demotion_nodes *node_demotion __read_mostly;
2242 
2243 /**
2244  * next_demotion_node() - Get the next node in the demotion path
2245  * @node: The starting node to lookup the next node
2246  *
2247  * Return: node id for next memory node in the demotion path hierarchy
2248  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2249  * @node online or guarantee that it *continues* to be the next demotion
2250  * target.
2251  */
2252 int next_demotion_node(int node)
2253 {
2254     struct demotion_nodes *nd;
2255     unsigned short target_nr, index;
2256     int target;
2257 
2258     if (!node_demotion)
2259         return NUMA_NO_NODE;
2260 
2261     nd = &node_demotion[node];
2262 
2263     /*
2264      * node_demotion[] is updated without excluding this
2265      * function from running.  RCU doesn't provide any
2266      * compiler barriers, so the READ_ONCE() is required
2267      * to avoid compiler reordering or read merging.
2268      *
2269      * Make sure to use RCU over entire code blocks if
2270      * node_demotion[] reads need to be consistent.
2271      */
2272     rcu_read_lock();
2273     target_nr = READ_ONCE(nd->nr);
2274 
2275     switch (target_nr) {
2276     case 0:
2277         target = NUMA_NO_NODE;
2278         goto out;
2279     case 1:
2280         index = 0;
2281         break;
2282     default:
2283         /*
2284          * If there are multiple target nodes, just select one
2285          * target node randomly.
2286          *
2287          * In addition, we can also use round-robin to select
2288          * target node, but we should introduce another variable
2289          * for node_demotion[] to record last selected target node,
2290          * that may cause cache ping-pong due to the changing of
2291          * last target node. Or introducing per-cpu data to avoid
2292          * caching issue, which seems more complicated. So selecting
2293          * target node randomly seems better until now.
2294          */
2295         index = get_random_int() % target_nr;
2296         break;
2297     }
2298 
2299     target = READ_ONCE(nd->nodes[index]);
2300 
2301 out:
2302     rcu_read_unlock();
2303     return target;
2304 }
2305 
2306 /* Disable reclaim-based migration. */
2307 static void __disable_all_migrate_targets(void)
2308 {
2309     int node, i;
2310 
2311     if (!node_demotion)
2312         return;
2313 
2314     for_each_online_node(node) {
2315         node_demotion[node].nr = 0;
2316         for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2317             node_demotion[node].nodes[i] = NUMA_NO_NODE;
2318     }
2319 }
2320 
2321 static void disable_all_migrate_targets(void)
2322 {
2323     __disable_all_migrate_targets();
2324 
2325     /*
2326      * Ensure that the "disable" is visible across the system.
2327      * Readers will see either a combination of before+disable
2328      * state or disable+after.  They will never see before and
2329      * after state together.
2330      *
2331      * The before+after state together might have cycles and
2332      * could cause readers to do things like loop until this
2333      * function finishes.  This ensures they can only see a
2334      * single "bad" read and would, for instance, only loop
2335      * once.
2336      */
2337     synchronize_rcu();
2338 }
2339 
2340 /*
2341  * Find an automatic demotion target for 'node'.
2342  * Failing here is OK.  It might just indicate
2343  * being at the end of a chain.
2344  */
2345 static int establish_migrate_target(int node, nodemask_t *used,
2346                     int best_distance)
2347 {
2348     int migration_target, index, val;
2349     struct demotion_nodes *nd;
2350 
2351     if (!node_demotion)
2352         return NUMA_NO_NODE;
2353 
2354     nd = &node_demotion[node];
2355 
2356     migration_target = find_next_best_node(node, used);
2357     if (migration_target == NUMA_NO_NODE)
2358         return NUMA_NO_NODE;
2359 
2360     /*
2361      * If the node has been set a migration target node before,
2362      * which means it's the best distance between them. Still
2363      * check if this node can be demoted to other target nodes
2364      * if they have a same best distance.
2365      */
2366     if (best_distance != -1) {
2367         val = node_distance(node, migration_target);
2368         if (val > best_distance)
2369             goto out_clear;
2370     }
2371 
2372     index = nd->nr;
2373     if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2374               "Exceeds maximum demotion target nodes\n"))
2375         goto out_clear;
2376 
2377     nd->nodes[index] = migration_target;
2378     nd->nr++;
2379 
2380     return migration_target;
2381 out_clear:
2382     node_clear(migration_target, *used);
2383     return NUMA_NO_NODE;
2384 }
2385 
2386 /*
2387  * When memory fills up on a node, memory contents can be
2388  * automatically migrated to another node instead of
2389  * discarded at reclaim.
2390  *
2391  * Establish a "migration path" which will start at nodes
2392  * with CPUs and will follow the priorities used to build the
2393  * page allocator zonelists.
2394  *
2395  * The difference here is that cycles must be avoided.  If
2396  * node0 migrates to node1, then neither node1, nor anything
2397  * node1 migrates to can migrate to node0. Also one node can
2398  * be migrated to multiple nodes if the target nodes all have
2399  * a same best-distance against the source node.
2400  *
2401  * This function can run simultaneously with readers of
2402  * node_demotion[].  However, it can not run simultaneously
2403  * with itself.  Exclusion is provided by memory hotplug events
2404  * being single-threaded.
2405  */
2406 static void __set_migration_target_nodes(void)
2407 {
2408     nodemask_t next_pass;
2409     nodemask_t this_pass;
2410     nodemask_t used_targets = NODE_MASK_NONE;
2411     int node, best_distance;
2412 
2413     /*
2414      * Avoid any oddities like cycles that could occur
2415      * from changes in the topology.  This will leave
2416      * a momentary gap when migration is disabled.
2417      */
2418     disable_all_migrate_targets();
2419 
2420     /*
2421      * Allocations go close to CPUs, first.  Assume that
2422      * the migration path starts at the nodes with CPUs.
2423      */
2424     next_pass = node_states[N_CPU];
2425 again:
2426     this_pass = next_pass;
2427     next_pass = NODE_MASK_NONE;
2428     /*
2429      * To avoid cycles in the migration "graph", ensure
2430      * that migration sources are not future targets by
2431      * setting them in 'used_targets'.  Do this only
2432      * once per pass so that multiple source nodes can
2433      * share a target node.
2434      *
2435      * 'used_targets' will become unavailable in future
2436      * passes.  This limits some opportunities for
2437      * multiple source nodes to share a destination.
2438      */
2439     nodes_or(used_targets, used_targets, this_pass);
2440 
2441     for_each_node_mask(node, this_pass) {
2442         best_distance = -1;
2443 
2444         /*
2445          * Try to set up the migration path for the node, and the target
2446          * migration nodes can be multiple, so doing a loop to find all
2447          * the target nodes if they all have a best node distance.
2448          */
2449         do {
2450             int target_node =
2451                 establish_migrate_target(node, &used_targets,
2452                              best_distance);
2453 
2454             if (target_node == NUMA_NO_NODE)
2455                 break;
2456 
2457             if (best_distance == -1)
2458                 best_distance = node_distance(node, target_node);
2459 
2460             /*
2461              * Visit targets from this pass in the next pass.
2462              * Eventually, every node will have been part of
2463              * a pass, and will become set in 'used_targets'.
2464              */
2465             node_set(target_node, next_pass);
2466         } while (1);
2467     }
2468     /*
2469      * 'next_pass' contains nodes which became migration
2470      * targets in this pass.  Make additional passes until
2471      * no more migrations targets are available.
2472      */
2473     if (!nodes_empty(next_pass))
2474         goto again;
2475 }
2476 
2477 /*
2478  * For callers that do not hold get_online_mems() already.
2479  */
2480 void set_migration_target_nodes(void)
2481 {
2482     get_online_mems();
2483     __set_migration_target_nodes();
2484     put_online_mems();
2485 }
2486 
2487 /*
2488  * This leaves migrate-on-reclaim transiently disabled between
2489  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2490  * whether reclaim-based migration is enabled or not, which
2491  * ensures that the user can turn reclaim-based migration at
2492  * any time without needing to recalculate migration targets.
2493  *
2494  * These callbacks already hold get_online_mems().  That is why
2495  * __set_migration_target_nodes() can be used as opposed to
2496  * set_migration_target_nodes().
2497  */
2498 #ifdef CONFIG_MEMORY_HOTPLUG
2499 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2500                          unsigned long action, void *_arg)
2501 {
2502     struct memory_notify *arg = _arg;
2503 
2504     /*
2505      * Only update the node migration order when a node is
2506      * changing status, like online->offline.  This avoids
2507      * the overhead of synchronize_rcu() in most cases.
2508      */
2509     if (arg->status_change_nid < 0)
2510         return notifier_from_errno(0);
2511 
2512     switch (action) {
2513     case MEM_GOING_OFFLINE:
2514         /*
2515          * Make sure there are not transient states where
2516          * an offline node is a migration target.  This
2517          * will leave migration disabled until the offline
2518          * completes and the MEM_OFFLINE case below runs.
2519          */
2520         disable_all_migrate_targets();
2521         break;
2522     case MEM_OFFLINE:
2523     case MEM_ONLINE:
2524         /*
2525          * Recalculate the target nodes once the node
2526          * reaches its final state (online or offline).
2527          */
2528         __set_migration_target_nodes();
2529         break;
2530     case MEM_CANCEL_OFFLINE:
2531         /*
2532          * MEM_GOING_OFFLINE disabled all the migration
2533          * targets.  Reenable them.
2534          */
2535         __set_migration_target_nodes();
2536         break;
2537     case MEM_GOING_ONLINE:
2538     case MEM_CANCEL_ONLINE:
2539         break;
2540     }
2541 
2542     return notifier_from_errno(0);
2543 }
2544 #endif
2545 
2546 void __init migrate_on_reclaim_init(void)
2547 {
2548     node_demotion = kcalloc(nr_node_ids,
2549                 sizeof(struct demotion_nodes),
2550                 GFP_KERNEL);
2551     WARN_ON(!node_demotion);
2552 #ifdef CONFIG_MEMORY_HOTPLUG
2553     hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2554 #endif
2555     /*
2556      * At this point, all numa nodes with memory/CPus have their state
2557      * properly set, so we can build the demotion order now.
2558      * Let us hold the cpu_hotplug lock just, as we could possibily have
2559      * CPU hotplug events during boot.
2560      */
2561     cpus_read_lock();
2562     set_migration_target_nodes();
2563     cpus_read_unlock();
2564 }
2565 
2566 bool numa_demotion_enabled = false;
2567 
2568 #ifdef CONFIG_SYSFS
2569 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2570                       struct kobj_attribute *attr, char *buf)
2571 {
2572     return sysfs_emit(buf, "%s\n",
2573               numa_demotion_enabled ? "true" : "false");
2574 }
2575 
2576 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2577                        struct kobj_attribute *attr,
2578                        const char *buf, size_t count)
2579 {
2580     ssize_t ret;
2581 
2582     ret = kstrtobool(buf, &numa_demotion_enabled);
2583     if (ret)
2584         return ret;
2585 
2586     return count;
2587 }
2588 
2589 static struct kobj_attribute numa_demotion_enabled_attr =
2590     __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2591            numa_demotion_enabled_store);
2592 
2593 static struct attribute *numa_attrs[] = {
2594     &numa_demotion_enabled_attr.attr,
2595     NULL,
2596 };
2597 
2598 static const struct attribute_group numa_attr_group = {
2599     .attrs = numa_attrs,
2600 };
2601 
2602 static int __init numa_init_sysfs(void)
2603 {
2604     int err;
2605     struct kobject *numa_kobj;
2606 
2607     numa_kobj = kobject_create_and_add("numa", mm_kobj);
2608     if (!numa_kobj) {
2609         pr_err("failed to create numa kobject\n");
2610         return -ENOMEM;
2611     }
2612     err = sysfs_create_group(numa_kobj, &numa_attr_group);
2613     if (err) {
2614         pr_err("failed to register numa group\n");
2615         goto delete_obj;
2616     }
2617     return 0;
2618 
2619 delete_obj:
2620     kobject_put(numa_kobj);
2621     return err;
2622 }
2623 subsys_initcall(numa_init_sysfs);
2624 #endif /* CONFIG_SYSFS */
2625 #endif /* CONFIG_NUMA */