Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Simple NUMA memory policy for the Linux kernel.
0004  *
0005  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
0006  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
0007  *
0008  * NUMA policy allows the user to give hints in which node(s) memory should
0009  * be allocated.
0010  *
0011  * Support four policies per VMA and per process:
0012  *
0013  * The VMA policy has priority over the process policy for a page fault.
0014  *
0015  * interleave     Allocate memory interleaved over a set of nodes,
0016  *                with normal fallback if it fails.
0017  *                For VMA based allocations this interleaves based on the
0018  *                offset into the backing object or offset into the mapping
0019  *                for anonymous memory. For process policy an process counter
0020  *                is used.
0021  *
0022  * bind           Only allocate memory on a specific set of nodes,
0023  *                no fallback.
0024  *                FIXME: memory is allocated starting with the first node
0025  *                to the last. It would be better if bind would truly restrict
0026  *                the allocation to memory nodes instead
0027  *
0028  * preferred       Try a specific node first before normal fallback.
0029  *                As a special case NUMA_NO_NODE here means do the allocation
0030  *                on the local CPU. This is normally identical to default,
0031  *                but useful to set in a VMA when you have a non default
0032  *                process policy.
0033  *
0034  * preferred many Try a set of nodes first before normal fallback. This is
0035  *                similar to preferred without the special case.
0036  *
0037  * default        Allocate on the local node first, or when on a VMA
0038  *                use the process policy. This is what Linux always did
0039  *        in a NUMA aware kernel and still does by, ahem, default.
0040  *
0041  * The process policy is applied for most non interrupt memory allocations
0042  * in that process' context. Interrupts ignore the policies and always
0043  * try to allocate on the local CPU. The VMA policy is only applied for memory
0044  * allocations for a VMA in the VM.
0045  *
0046  * Currently there are a few corner cases in swapping where the policy
0047  * is not applied, but the majority should be handled. When process policy
0048  * is used it is not remembered over swap outs/swap ins.
0049  *
0050  * Only the highest zone in the zone hierarchy gets policied. Allocations
0051  * requesting a lower zone just use default policy. This implies that
0052  * on systems with highmem kernel lowmem allocation don't get policied.
0053  * Same with GFP_DMA allocations.
0054  *
0055  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
0056  * all users and remembered even when nobody has memory mapped.
0057  */
0058 
0059 /* Notebook:
0060    fix mmap readahead to honour policy and enable policy for any page cache
0061    object
0062    statistics for bigpages
0063    global policy for page cache? currently it uses process policy. Requires
0064    first item above.
0065    handle mremap for shared memory (currently ignored for the policy)
0066    grows down?
0067    make bind policy root only? It can trigger oom much faster and the
0068    kernel is not always grateful with that.
0069 */
0070 
0071 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0072 
0073 #include <linux/mempolicy.h>
0074 #include <linux/pagewalk.h>
0075 #include <linux/highmem.h>
0076 #include <linux/hugetlb.h>
0077 #include <linux/kernel.h>
0078 #include <linux/sched.h>
0079 #include <linux/sched/mm.h>
0080 #include <linux/sched/numa_balancing.h>
0081 #include <linux/sched/task.h>
0082 #include <linux/nodemask.h>
0083 #include <linux/cpuset.h>
0084 #include <linux/slab.h>
0085 #include <linux/string.h>
0086 #include <linux/export.h>
0087 #include <linux/nsproxy.h>
0088 #include <linux/interrupt.h>
0089 #include <linux/init.h>
0090 #include <linux/compat.h>
0091 #include <linux/ptrace.h>
0092 #include <linux/swap.h>
0093 #include <linux/seq_file.h>
0094 #include <linux/proc_fs.h>
0095 #include <linux/migrate.h>
0096 #include <linux/ksm.h>
0097 #include <linux/rmap.h>
0098 #include <linux/security.h>
0099 #include <linux/syscalls.h>
0100 #include <linux/ctype.h>
0101 #include <linux/mm_inline.h>
0102 #include <linux/mmu_notifier.h>
0103 #include <linux/printk.h>
0104 #include <linux/swapops.h>
0105 
0106 #include <asm/tlbflush.h>
0107 #include <asm/tlb.h>
0108 #include <linux/uaccess.h>
0109 
0110 #include "internal.h"
0111 
0112 /* Internal flags */
0113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
0114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)      /* Invert check for nodemask */
0115 
0116 static struct kmem_cache *policy_cache;
0117 static struct kmem_cache *sn_cache;
0118 
0119 /* Highest zone. An specific allocation for a zone below that is not
0120    policied. */
0121 enum zone_type policy_zone = 0;
0122 
0123 /*
0124  * run-time system-wide default policy => local allocation
0125  */
0126 static struct mempolicy default_policy = {
0127     .refcnt = ATOMIC_INIT(1), /* never free it */
0128     .mode = MPOL_LOCAL,
0129 };
0130 
0131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
0132 
0133 /**
0134  * numa_map_to_online_node - Find closest online node
0135  * @node: Node id to start the search
0136  *
0137  * Lookup the next closest node by distance if @nid is not online.
0138  *
0139  * Return: this @node if it is online, otherwise the closest node by distance
0140  */
0141 int numa_map_to_online_node(int node)
0142 {
0143     int min_dist = INT_MAX, dist, n, min_node;
0144 
0145     if (node == NUMA_NO_NODE || node_online(node))
0146         return node;
0147 
0148     min_node = node;
0149     for_each_online_node(n) {
0150         dist = node_distance(node, n);
0151         if (dist < min_dist) {
0152             min_dist = dist;
0153             min_node = n;
0154         }
0155     }
0156 
0157     return min_node;
0158 }
0159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
0160 
0161 struct mempolicy *get_task_policy(struct task_struct *p)
0162 {
0163     struct mempolicy *pol = p->mempolicy;
0164     int node;
0165 
0166     if (pol)
0167         return pol;
0168 
0169     node = numa_node_id();
0170     if (node != NUMA_NO_NODE) {
0171         pol = &preferred_node_policy[node];
0172         /* preferred_node_policy is not initialised early in boot */
0173         if (pol->mode)
0174             return pol;
0175     }
0176 
0177     return &default_policy;
0178 }
0179 
0180 static const struct mempolicy_operations {
0181     int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
0182     void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
0183 } mpol_ops[MPOL_MAX];
0184 
0185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
0186 {
0187     return pol->flags & MPOL_MODE_FLAGS;
0188 }
0189 
0190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
0191                    const nodemask_t *rel)
0192 {
0193     nodemask_t tmp;
0194     nodes_fold(tmp, *orig, nodes_weight(*rel));
0195     nodes_onto(*ret, tmp, *rel);
0196 }
0197 
0198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
0199 {
0200     if (nodes_empty(*nodes))
0201         return -EINVAL;
0202     pol->nodes = *nodes;
0203     return 0;
0204 }
0205 
0206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
0207 {
0208     if (nodes_empty(*nodes))
0209         return -EINVAL;
0210 
0211     nodes_clear(pol->nodes);
0212     node_set(first_node(*nodes), pol->nodes);
0213     return 0;
0214 }
0215 
0216 /*
0217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
0218  * any, for the new policy.  mpol_new() has already validated the nodes
0219  * parameter with respect to the policy mode and flags.
0220  *
0221  * Must be called holding task's alloc_lock to protect task's mems_allowed
0222  * and mempolicy.  May also be called holding the mmap_lock for write.
0223  */
0224 static int mpol_set_nodemask(struct mempolicy *pol,
0225              const nodemask_t *nodes, struct nodemask_scratch *nsc)
0226 {
0227     int ret;
0228 
0229     /*
0230      * Default (pol==NULL) resp. local memory policies are not a
0231      * subject of any remapping. They also do not need any special
0232      * constructor.
0233      */
0234     if (!pol || pol->mode == MPOL_LOCAL)
0235         return 0;
0236 
0237     /* Check N_MEMORY */
0238     nodes_and(nsc->mask1,
0239           cpuset_current_mems_allowed, node_states[N_MEMORY]);
0240 
0241     VM_BUG_ON(!nodes);
0242 
0243     if (pol->flags & MPOL_F_RELATIVE_NODES)
0244         mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
0245     else
0246         nodes_and(nsc->mask2, *nodes, nsc->mask1);
0247 
0248     if (mpol_store_user_nodemask(pol))
0249         pol->w.user_nodemask = *nodes;
0250     else
0251         pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
0252 
0253     ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
0254     return ret;
0255 }
0256 
0257 /*
0258  * This function just creates a new policy, does some check and simple
0259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
0260  */
0261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
0262                   nodemask_t *nodes)
0263 {
0264     struct mempolicy *policy;
0265 
0266     pr_debug("setting mode %d flags %d nodes[0] %lx\n",
0267          mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
0268 
0269     if (mode == MPOL_DEFAULT) {
0270         if (nodes && !nodes_empty(*nodes))
0271             return ERR_PTR(-EINVAL);
0272         return NULL;
0273     }
0274     VM_BUG_ON(!nodes);
0275 
0276     /*
0277      * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
0278      * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
0279      * All other modes require a valid pointer to a non-empty nodemask.
0280      */
0281     if (mode == MPOL_PREFERRED) {
0282         if (nodes_empty(*nodes)) {
0283             if (((flags & MPOL_F_STATIC_NODES) ||
0284                  (flags & MPOL_F_RELATIVE_NODES)))
0285                 return ERR_PTR(-EINVAL);
0286 
0287             mode = MPOL_LOCAL;
0288         }
0289     } else if (mode == MPOL_LOCAL) {
0290         if (!nodes_empty(*nodes) ||
0291             (flags & MPOL_F_STATIC_NODES) ||
0292             (flags & MPOL_F_RELATIVE_NODES))
0293             return ERR_PTR(-EINVAL);
0294     } else if (nodes_empty(*nodes))
0295         return ERR_PTR(-EINVAL);
0296     policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
0297     if (!policy)
0298         return ERR_PTR(-ENOMEM);
0299     atomic_set(&policy->refcnt, 1);
0300     policy->mode = mode;
0301     policy->flags = flags;
0302     policy->home_node = NUMA_NO_NODE;
0303 
0304     return policy;
0305 }
0306 
0307 /* Slow path of a mpol destructor. */
0308 void __mpol_put(struct mempolicy *p)
0309 {
0310     if (!atomic_dec_and_test(&p->refcnt))
0311         return;
0312     kmem_cache_free(policy_cache, p);
0313 }
0314 
0315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
0316 {
0317 }
0318 
0319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
0320 {
0321     nodemask_t tmp;
0322 
0323     if (pol->flags & MPOL_F_STATIC_NODES)
0324         nodes_and(tmp, pol->w.user_nodemask, *nodes);
0325     else if (pol->flags & MPOL_F_RELATIVE_NODES)
0326         mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
0327     else {
0328         nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
0329                                 *nodes);
0330         pol->w.cpuset_mems_allowed = *nodes;
0331     }
0332 
0333     if (nodes_empty(tmp))
0334         tmp = *nodes;
0335 
0336     pol->nodes = tmp;
0337 }
0338 
0339 static void mpol_rebind_preferred(struct mempolicy *pol,
0340                         const nodemask_t *nodes)
0341 {
0342     pol->w.cpuset_mems_allowed = *nodes;
0343 }
0344 
0345 /*
0346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
0347  *
0348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
0349  * policies are protected by task->mems_allowed_seq to prevent a premature
0350  * OOM/allocation failure due to parallel nodemask modification.
0351  */
0352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
0353 {
0354     if (!pol || pol->mode == MPOL_LOCAL)
0355         return;
0356     if (!mpol_store_user_nodemask(pol) &&
0357         nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
0358         return;
0359 
0360     mpol_ops[pol->mode].rebind(pol, newmask);
0361 }
0362 
0363 /*
0364  * Wrapper for mpol_rebind_policy() that just requires task
0365  * pointer, and updates task mempolicy.
0366  *
0367  * Called with task's alloc_lock held.
0368  */
0369 
0370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
0371 {
0372     mpol_rebind_policy(tsk->mempolicy, new);
0373 }
0374 
0375 /*
0376  * Rebind each vma in mm to new nodemask.
0377  *
0378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
0379  */
0380 
0381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
0382 {
0383     struct vm_area_struct *vma;
0384 
0385     mmap_write_lock(mm);
0386     for (vma = mm->mmap; vma; vma = vma->vm_next)
0387         mpol_rebind_policy(vma->vm_policy, new);
0388     mmap_write_unlock(mm);
0389 }
0390 
0391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
0392     [MPOL_DEFAULT] = {
0393         .rebind = mpol_rebind_default,
0394     },
0395     [MPOL_INTERLEAVE] = {
0396         .create = mpol_new_nodemask,
0397         .rebind = mpol_rebind_nodemask,
0398     },
0399     [MPOL_PREFERRED] = {
0400         .create = mpol_new_preferred,
0401         .rebind = mpol_rebind_preferred,
0402     },
0403     [MPOL_BIND] = {
0404         .create = mpol_new_nodemask,
0405         .rebind = mpol_rebind_nodemask,
0406     },
0407     [MPOL_LOCAL] = {
0408         .rebind = mpol_rebind_default,
0409     },
0410     [MPOL_PREFERRED_MANY] = {
0411         .create = mpol_new_nodemask,
0412         .rebind = mpol_rebind_preferred,
0413     },
0414 };
0415 
0416 static int migrate_page_add(struct page *page, struct list_head *pagelist,
0417                 unsigned long flags);
0418 
0419 struct queue_pages {
0420     struct list_head *pagelist;
0421     unsigned long flags;
0422     nodemask_t *nmask;
0423     unsigned long start;
0424     unsigned long end;
0425     struct vm_area_struct *first;
0426 };
0427 
0428 /*
0429  * Check if the page's nid is in qp->nmask.
0430  *
0431  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
0432  * in the invert of qp->nmask.
0433  */
0434 static inline bool queue_pages_required(struct page *page,
0435                     struct queue_pages *qp)
0436 {
0437     int nid = page_to_nid(page);
0438     unsigned long flags = qp->flags;
0439 
0440     return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
0441 }
0442 
0443 /*
0444  * queue_pages_pmd() has three possible return values:
0445  * 0 - pages are placed on the right node or queued successfully, or
0446  *     special page is met, i.e. huge zero page.
0447  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
0448  *     specified.
0449  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
0450  *        existing page was already on a node that does not follow the
0451  *        policy.
0452  */
0453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
0454                 unsigned long end, struct mm_walk *walk)
0455     __releases(ptl)
0456 {
0457     int ret = 0;
0458     struct page *page;
0459     struct queue_pages *qp = walk->private;
0460     unsigned long flags;
0461 
0462     if (unlikely(is_pmd_migration_entry(*pmd))) {
0463         ret = -EIO;
0464         goto unlock;
0465     }
0466     page = pmd_page(*pmd);
0467     if (is_huge_zero_page(page)) {
0468         walk->action = ACTION_CONTINUE;
0469         goto unlock;
0470     }
0471     if (!queue_pages_required(page, qp))
0472         goto unlock;
0473 
0474     flags = qp->flags;
0475     /* go to thp migration */
0476     if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
0477         if (!vma_migratable(walk->vma) ||
0478             migrate_page_add(page, qp->pagelist, flags)) {
0479             ret = 1;
0480             goto unlock;
0481         }
0482     } else
0483         ret = -EIO;
0484 unlock:
0485     spin_unlock(ptl);
0486     return ret;
0487 }
0488 
0489 /*
0490  * Scan through pages checking if pages follow certain conditions,
0491  * and move them to the pagelist if they do.
0492  *
0493  * queue_pages_pte_range() has three possible return values:
0494  * 0 - pages are placed on the right node or queued successfully, or
0495  *     special page is met, i.e. zero page.
0496  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
0497  *     specified.
0498  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
0499  *        on a node that does not follow the policy.
0500  */
0501 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
0502             unsigned long end, struct mm_walk *walk)
0503 {
0504     struct vm_area_struct *vma = walk->vma;
0505     struct page *page;
0506     struct queue_pages *qp = walk->private;
0507     unsigned long flags = qp->flags;
0508     bool has_unmovable = false;
0509     pte_t *pte, *mapped_pte;
0510     spinlock_t *ptl;
0511 
0512     ptl = pmd_trans_huge_lock(pmd, vma);
0513     if (ptl)
0514         return queue_pages_pmd(pmd, ptl, addr, end, walk);
0515 
0516     if (pmd_trans_unstable(pmd))
0517         return 0;
0518 
0519     mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
0520     for (; addr != end; pte++, addr += PAGE_SIZE) {
0521         if (!pte_present(*pte))
0522             continue;
0523         page = vm_normal_page(vma, addr, *pte);
0524         if (!page || is_zone_device_page(page))
0525             continue;
0526         /*
0527          * vm_normal_page() filters out zero pages, but there might
0528          * still be PageReserved pages to skip, perhaps in a VDSO.
0529          */
0530         if (PageReserved(page))
0531             continue;
0532         if (!queue_pages_required(page, qp))
0533             continue;
0534         if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
0535             /* MPOL_MF_STRICT must be specified if we get here */
0536             if (!vma_migratable(vma)) {
0537                 has_unmovable = true;
0538                 break;
0539             }
0540 
0541             /*
0542              * Do not abort immediately since there may be
0543              * temporary off LRU pages in the range.  Still
0544              * need migrate other LRU pages.
0545              */
0546             if (migrate_page_add(page, qp->pagelist, flags))
0547                 has_unmovable = true;
0548         } else
0549             break;
0550     }
0551     pte_unmap_unlock(mapped_pte, ptl);
0552     cond_resched();
0553 
0554     if (has_unmovable)
0555         return 1;
0556 
0557     return addr != end ? -EIO : 0;
0558 }
0559 
0560 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
0561                    unsigned long addr, unsigned long end,
0562                    struct mm_walk *walk)
0563 {
0564     int ret = 0;
0565 #ifdef CONFIG_HUGETLB_PAGE
0566     struct queue_pages *qp = walk->private;
0567     unsigned long flags = (qp->flags & MPOL_MF_VALID);
0568     struct page *page;
0569     spinlock_t *ptl;
0570     pte_t entry;
0571 
0572     ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
0573     entry = huge_ptep_get(pte);
0574     if (!pte_present(entry))
0575         goto unlock;
0576     page = pte_page(entry);
0577     if (!queue_pages_required(page, qp))
0578         goto unlock;
0579 
0580     if (flags == MPOL_MF_STRICT) {
0581         /*
0582          * STRICT alone means only detecting misplaced page and no
0583          * need to further check other vma.
0584          */
0585         ret = -EIO;
0586         goto unlock;
0587     }
0588 
0589     if (!vma_migratable(walk->vma)) {
0590         /*
0591          * Must be STRICT with MOVE*, otherwise .test_walk() have
0592          * stopped walking current vma.
0593          * Detecting misplaced page but allow migrating pages which
0594          * have been queued.
0595          */
0596         ret = 1;
0597         goto unlock;
0598     }
0599 
0600     /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
0601     if (flags & (MPOL_MF_MOVE_ALL) ||
0602         (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
0603         if (isolate_hugetlb(page, qp->pagelist) &&
0604             (flags & MPOL_MF_STRICT))
0605             /*
0606              * Failed to isolate page but allow migrating pages
0607              * which have been queued.
0608              */
0609             ret = 1;
0610     }
0611 unlock:
0612     spin_unlock(ptl);
0613 #else
0614     BUG();
0615 #endif
0616     return ret;
0617 }
0618 
0619 #ifdef CONFIG_NUMA_BALANCING
0620 /*
0621  * This is used to mark a range of virtual addresses to be inaccessible.
0622  * These are later cleared by a NUMA hinting fault. Depending on these
0623  * faults, pages may be migrated for better NUMA placement.
0624  *
0625  * This is assuming that NUMA faults are handled using PROT_NONE. If
0626  * an architecture makes a different choice, it will need further
0627  * changes to the core.
0628  */
0629 unsigned long change_prot_numa(struct vm_area_struct *vma,
0630             unsigned long addr, unsigned long end)
0631 {
0632     struct mmu_gather tlb;
0633     int nr_updated;
0634 
0635     tlb_gather_mmu(&tlb, vma->vm_mm);
0636 
0637     nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
0638                        MM_CP_PROT_NUMA);
0639     if (nr_updated)
0640         count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
0641 
0642     tlb_finish_mmu(&tlb);
0643 
0644     return nr_updated;
0645 }
0646 #else
0647 static unsigned long change_prot_numa(struct vm_area_struct *vma,
0648             unsigned long addr, unsigned long end)
0649 {
0650     return 0;
0651 }
0652 #endif /* CONFIG_NUMA_BALANCING */
0653 
0654 static int queue_pages_test_walk(unsigned long start, unsigned long end,
0655                 struct mm_walk *walk)
0656 {
0657     struct vm_area_struct *vma = walk->vma;
0658     struct queue_pages *qp = walk->private;
0659     unsigned long endvma = vma->vm_end;
0660     unsigned long flags = qp->flags;
0661 
0662     /* range check first */
0663     VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
0664 
0665     if (!qp->first) {
0666         qp->first = vma;
0667         if (!(flags & MPOL_MF_DISCONTIG_OK) &&
0668             (qp->start < vma->vm_start))
0669             /* hole at head side of range */
0670             return -EFAULT;
0671     }
0672     if (!(flags & MPOL_MF_DISCONTIG_OK) &&
0673         ((vma->vm_end < qp->end) &&
0674         (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
0675         /* hole at middle or tail of range */
0676         return -EFAULT;
0677 
0678     /*
0679      * Need check MPOL_MF_STRICT to return -EIO if possible
0680      * regardless of vma_migratable
0681      */
0682     if (!vma_migratable(vma) &&
0683         !(flags & MPOL_MF_STRICT))
0684         return 1;
0685 
0686     if (endvma > end)
0687         endvma = end;
0688 
0689     if (flags & MPOL_MF_LAZY) {
0690         /* Similar to task_numa_work, skip inaccessible VMAs */
0691         if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
0692             !(vma->vm_flags & VM_MIXEDMAP))
0693             change_prot_numa(vma, start, endvma);
0694         return 1;
0695     }
0696 
0697     /* queue pages from current vma */
0698     if (flags & MPOL_MF_VALID)
0699         return 0;
0700     return 1;
0701 }
0702 
0703 static const struct mm_walk_ops queue_pages_walk_ops = {
0704     .hugetlb_entry      = queue_pages_hugetlb,
0705     .pmd_entry      = queue_pages_pte_range,
0706     .test_walk      = queue_pages_test_walk,
0707 };
0708 
0709 /*
0710  * Walk through page tables and collect pages to be migrated.
0711  *
0712  * If pages found in a given range are on a set of nodes (determined by
0713  * @nodes and @flags,) it's isolated and queued to the pagelist which is
0714  * passed via @private.
0715  *
0716  * queue_pages_range() has three possible return values:
0717  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
0718  *     specified.
0719  * 0 - queue pages successfully or no misplaced page.
0720  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
0721  *         memory range specified by nodemask and maxnode points outside
0722  *         your accessible address space (-EFAULT)
0723  */
0724 static int
0725 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
0726         nodemask_t *nodes, unsigned long flags,
0727         struct list_head *pagelist)
0728 {
0729     int err;
0730     struct queue_pages qp = {
0731         .pagelist = pagelist,
0732         .flags = flags,
0733         .nmask = nodes,
0734         .start = start,
0735         .end = end,
0736         .first = NULL,
0737     };
0738 
0739     err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
0740 
0741     if (!qp.first)
0742         /* whole range in hole */
0743         err = -EFAULT;
0744 
0745     return err;
0746 }
0747 
0748 /*
0749  * Apply policy to a single VMA
0750  * This must be called with the mmap_lock held for writing.
0751  */
0752 static int vma_replace_policy(struct vm_area_struct *vma,
0753                         struct mempolicy *pol)
0754 {
0755     int err;
0756     struct mempolicy *old;
0757     struct mempolicy *new;
0758 
0759     pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
0760          vma->vm_start, vma->vm_end, vma->vm_pgoff,
0761          vma->vm_ops, vma->vm_file,
0762          vma->vm_ops ? vma->vm_ops->set_policy : NULL);
0763 
0764     new = mpol_dup(pol);
0765     if (IS_ERR(new))
0766         return PTR_ERR(new);
0767 
0768     if (vma->vm_ops && vma->vm_ops->set_policy) {
0769         err = vma->vm_ops->set_policy(vma, new);
0770         if (err)
0771             goto err_out;
0772     }
0773 
0774     old = vma->vm_policy;
0775     vma->vm_policy = new; /* protected by mmap_lock */
0776     mpol_put(old);
0777 
0778     return 0;
0779  err_out:
0780     mpol_put(new);
0781     return err;
0782 }
0783 
0784 /* Step 2: apply policy to a range and do splits. */
0785 static int mbind_range(struct mm_struct *mm, unsigned long start,
0786                unsigned long end, struct mempolicy *new_pol)
0787 {
0788     struct vm_area_struct *prev;
0789     struct vm_area_struct *vma;
0790     int err = 0;
0791     pgoff_t pgoff;
0792     unsigned long vmstart;
0793     unsigned long vmend;
0794 
0795     vma = find_vma(mm, start);
0796     VM_BUG_ON(!vma);
0797 
0798     prev = vma->vm_prev;
0799     if (start > vma->vm_start)
0800         prev = vma;
0801 
0802     for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
0803         vmstart = max(start, vma->vm_start);
0804         vmend   = min(end, vma->vm_end);
0805 
0806         if (mpol_equal(vma_policy(vma), new_pol))
0807             continue;
0808 
0809         pgoff = vma->vm_pgoff +
0810             ((vmstart - vma->vm_start) >> PAGE_SHIFT);
0811         prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
0812                  vma->anon_vma, vma->vm_file, pgoff,
0813                  new_pol, vma->vm_userfaultfd_ctx,
0814                  anon_vma_name(vma));
0815         if (prev) {
0816             vma = prev;
0817             goto replace;
0818         }
0819         if (vma->vm_start != vmstart) {
0820             err = split_vma(vma->vm_mm, vma, vmstart, 1);
0821             if (err)
0822                 goto out;
0823         }
0824         if (vma->vm_end != vmend) {
0825             err = split_vma(vma->vm_mm, vma, vmend, 0);
0826             if (err)
0827                 goto out;
0828         }
0829  replace:
0830         err = vma_replace_policy(vma, new_pol);
0831         if (err)
0832             goto out;
0833     }
0834 
0835  out:
0836     return err;
0837 }
0838 
0839 /* Set the process memory policy */
0840 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
0841                  nodemask_t *nodes)
0842 {
0843     struct mempolicy *new, *old;
0844     NODEMASK_SCRATCH(scratch);
0845     int ret;
0846 
0847     if (!scratch)
0848         return -ENOMEM;
0849 
0850     new = mpol_new(mode, flags, nodes);
0851     if (IS_ERR(new)) {
0852         ret = PTR_ERR(new);
0853         goto out;
0854     }
0855 
0856     ret = mpol_set_nodemask(new, nodes, scratch);
0857     if (ret) {
0858         mpol_put(new);
0859         goto out;
0860     }
0861     task_lock(current);
0862     old = current->mempolicy;
0863     current->mempolicy = new;
0864     if (new && new->mode == MPOL_INTERLEAVE)
0865         current->il_prev = MAX_NUMNODES-1;
0866     task_unlock(current);
0867     mpol_put(old);
0868     ret = 0;
0869 out:
0870     NODEMASK_SCRATCH_FREE(scratch);
0871     return ret;
0872 }
0873 
0874 /*
0875  * Return nodemask for policy for get_mempolicy() query
0876  *
0877  * Called with task's alloc_lock held
0878  */
0879 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
0880 {
0881     nodes_clear(*nodes);
0882     if (p == &default_policy)
0883         return;
0884 
0885     switch (p->mode) {
0886     case MPOL_BIND:
0887     case MPOL_INTERLEAVE:
0888     case MPOL_PREFERRED:
0889     case MPOL_PREFERRED_MANY:
0890         *nodes = p->nodes;
0891         break;
0892     case MPOL_LOCAL:
0893         /* return empty node mask for local allocation */
0894         break;
0895     default:
0896         BUG();
0897     }
0898 }
0899 
0900 static int lookup_node(struct mm_struct *mm, unsigned long addr)
0901 {
0902     struct page *p = NULL;
0903     int ret;
0904 
0905     ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
0906     if (ret > 0) {
0907         ret = page_to_nid(p);
0908         put_page(p);
0909     }
0910     return ret;
0911 }
0912 
0913 /* Retrieve NUMA policy */
0914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
0915                  unsigned long addr, unsigned long flags)
0916 {
0917     int err;
0918     struct mm_struct *mm = current->mm;
0919     struct vm_area_struct *vma = NULL;
0920     struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
0921 
0922     if (flags &
0923         ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
0924         return -EINVAL;
0925 
0926     if (flags & MPOL_F_MEMS_ALLOWED) {
0927         if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
0928             return -EINVAL;
0929         *policy = 0;    /* just so it's initialized */
0930         task_lock(current);
0931         *nmask  = cpuset_current_mems_allowed;
0932         task_unlock(current);
0933         return 0;
0934     }
0935 
0936     if (flags & MPOL_F_ADDR) {
0937         /*
0938          * Do NOT fall back to task policy if the
0939          * vma/shared policy at addr is NULL.  We
0940          * want to return MPOL_DEFAULT in this case.
0941          */
0942         mmap_read_lock(mm);
0943         vma = vma_lookup(mm, addr);
0944         if (!vma) {
0945             mmap_read_unlock(mm);
0946             return -EFAULT;
0947         }
0948         if (vma->vm_ops && vma->vm_ops->get_policy)
0949             pol = vma->vm_ops->get_policy(vma, addr);
0950         else
0951             pol = vma->vm_policy;
0952     } else if (addr)
0953         return -EINVAL;
0954 
0955     if (!pol)
0956         pol = &default_policy;  /* indicates default behavior */
0957 
0958     if (flags & MPOL_F_NODE) {
0959         if (flags & MPOL_F_ADDR) {
0960             /*
0961              * Take a refcount on the mpol, because we are about to
0962              * drop the mmap_lock, after which only "pol" remains
0963              * valid, "vma" is stale.
0964              */
0965             pol_refcount = pol;
0966             vma = NULL;
0967             mpol_get(pol);
0968             mmap_read_unlock(mm);
0969             err = lookup_node(mm, addr);
0970             if (err < 0)
0971                 goto out;
0972             *policy = err;
0973         } else if (pol == current->mempolicy &&
0974                 pol->mode == MPOL_INTERLEAVE) {
0975             *policy = next_node_in(current->il_prev, pol->nodes);
0976         } else {
0977             err = -EINVAL;
0978             goto out;
0979         }
0980     } else {
0981         *policy = pol == &default_policy ? MPOL_DEFAULT :
0982                         pol->mode;
0983         /*
0984          * Internal mempolicy flags must be masked off before exposing
0985          * the policy to userspace.
0986          */
0987         *policy |= (pol->flags & MPOL_MODE_FLAGS);
0988     }
0989 
0990     err = 0;
0991     if (nmask) {
0992         if (mpol_store_user_nodemask(pol)) {
0993             *nmask = pol->w.user_nodemask;
0994         } else {
0995             task_lock(current);
0996             get_policy_nodemask(pol, nmask);
0997             task_unlock(current);
0998         }
0999     }
1000 
1001  out:
1002     mpol_cond_put(pol);
1003     if (vma)
1004         mmap_read_unlock(mm);
1005     if (pol_refcount)
1006         mpol_put(pol_refcount);
1007     return err;
1008 }
1009 
1010 #ifdef CONFIG_MIGRATION
1011 /*
1012  * page migration, thp tail pages can be passed.
1013  */
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015                 unsigned long flags)
1016 {
1017     struct page *head = compound_head(page);
1018     /*
1019      * Avoid migrating a page that is shared with others.
1020      */
1021     if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022         if (!isolate_lru_page(head)) {
1023             list_add_tail(&head->lru, pagelist);
1024             mod_node_page_state(page_pgdat(head),
1025                 NR_ISOLATED_ANON + page_is_file_lru(head),
1026                 thp_nr_pages(head));
1027         } else if (flags & MPOL_MF_STRICT) {
1028             /*
1029              * Non-movable page may reach here.  And, there may be
1030              * temporary off LRU pages or non-LRU movable pages.
1031              * Treat them as unmovable pages since they can't be
1032              * isolated, so they can't be moved at the moment.  It
1033              * should return -EIO for this case too.
1034              */
1035             return -EIO;
1036         }
1037     }
1038 
1039     return 0;
1040 }
1041 
1042 /*
1043  * Migrate pages from one node to a target node.
1044  * Returns error or the number of pages not migrated.
1045  */
1046 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1047                int flags)
1048 {
1049     nodemask_t nmask;
1050     LIST_HEAD(pagelist);
1051     int err = 0;
1052     struct migration_target_control mtc = {
1053         .nid = dest,
1054         .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1055     };
1056 
1057     nodes_clear(nmask);
1058     node_set(source, nmask);
1059 
1060     /*
1061      * This does not "check" the range but isolates all pages that
1062      * need migration.  Between passing in the full user address
1063      * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1064      */
1065     VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1066     queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1067             flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1068 
1069     if (!list_empty(&pagelist)) {
1070         err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1071                 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1072         if (err)
1073             putback_movable_pages(&pagelist);
1074     }
1075 
1076     return err;
1077 }
1078 
1079 /*
1080  * Move pages between the two nodesets so as to preserve the physical
1081  * layout as much as possible.
1082  *
1083  * Returns the number of page that could not be moved.
1084  */
1085 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1086              const nodemask_t *to, int flags)
1087 {
1088     int busy = 0;
1089     int err = 0;
1090     nodemask_t tmp;
1091 
1092     lru_cache_disable();
1093 
1094     mmap_read_lock(mm);
1095 
1096     /*
1097      * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1098      * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1099      * bit in 'tmp', and return that <source, dest> pair for migration.
1100      * The pair of nodemasks 'to' and 'from' define the map.
1101      *
1102      * If no pair of bits is found that way, fallback to picking some
1103      * pair of 'source' and 'dest' bits that are not the same.  If the
1104      * 'source' and 'dest' bits are the same, this represents a node
1105      * that will be migrating to itself, so no pages need move.
1106      *
1107      * If no bits are left in 'tmp', or if all remaining bits left
1108      * in 'tmp' correspond to the same bit in 'to', return false
1109      * (nothing left to migrate).
1110      *
1111      * This lets us pick a pair of nodes to migrate between, such that
1112      * if possible the dest node is not already occupied by some other
1113      * source node, minimizing the risk of overloading the memory on a
1114      * node that would happen if we migrated incoming memory to a node
1115      * before migrating outgoing memory source that same node.
1116      *
1117      * A single scan of tmp is sufficient.  As we go, we remember the
1118      * most recent <s, d> pair that moved (s != d).  If we find a pair
1119      * that not only moved, but what's better, moved to an empty slot
1120      * (d is not set in tmp), then we break out then, with that pair.
1121      * Otherwise when we finish scanning from_tmp, we at least have the
1122      * most recent <s, d> pair that moved.  If we get all the way through
1123      * the scan of tmp without finding any node that moved, much less
1124      * moved to an empty node, then there is nothing left worth migrating.
1125      */
1126 
1127     tmp = *from;
1128     while (!nodes_empty(tmp)) {
1129         int s, d;
1130         int source = NUMA_NO_NODE;
1131         int dest = 0;
1132 
1133         for_each_node_mask(s, tmp) {
1134 
1135             /*
1136              * do_migrate_pages() tries to maintain the relative
1137              * node relationship of the pages established between
1138              * threads and memory areas.
1139                          *
1140              * However if the number of source nodes is not equal to
1141              * the number of destination nodes we can not preserve
1142              * this node relative relationship.  In that case, skip
1143              * copying memory from a node that is in the destination
1144              * mask.
1145              *
1146              * Example: [2,3,4] -> [3,4,5] moves everything.
1147              *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1148              */
1149 
1150             if ((nodes_weight(*from) != nodes_weight(*to)) &&
1151                         (node_isset(s, *to)))
1152                 continue;
1153 
1154             d = node_remap(s, *from, *to);
1155             if (s == d)
1156                 continue;
1157 
1158             source = s; /* Node moved. Memorize */
1159             dest = d;
1160 
1161             /* dest not in remaining from nodes? */
1162             if (!node_isset(dest, tmp))
1163                 break;
1164         }
1165         if (source == NUMA_NO_NODE)
1166             break;
1167 
1168         node_clear(source, tmp);
1169         err = migrate_to_node(mm, source, dest, flags);
1170         if (err > 0)
1171             busy += err;
1172         if (err < 0)
1173             break;
1174     }
1175     mmap_read_unlock(mm);
1176 
1177     lru_cache_enable();
1178     if (err < 0)
1179         return err;
1180     return busy;
1181 
1182 }
1183 
1184 /*
1185  * Allocate a new page for page migration based on vma policy.
1186  * Start by assuming the page is mapped by the same vma as contains @start.
1187  * Search forward from there, if not.  N.B., this assumes that the
1188  * list of pages handed to migrate_pages()--which is how we get here--
1189  * is in virtual address order.
1190  */
1191 static struct page *new_page(struct page *page, unsigned long start)
1192 {
1193     struct folio *dst, *src = page_folio(page);
1194     struct vm_area_struct *vma;
1195     unsigned long address;
1196     gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1197 
1198     vma = find_vma(current->mm, start);
1199     while (vma) {
1200         address = page_address_in_vma(page, vma);
1201         if (address != -EFAULT)
1202             break;
1203         vma = vma->vm_next;
1204     }
1205 
1206     if (folio_test_hugetlb(src))
1207         return alloc_huge_page_vma(page_hstate(&src->page),
1208                 vma, address);
1209 
1210     if (folio_test_large(src))
1211         gfp = GFP_TRANSHUGE;
1212 
1213     /*
1214      * if !vma, vma_alloc_folio() will use task or system default policy
1215      */
1216     dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1217             folio_test_large(src));
1218     return &dst->page;
1219 }
1220 #else
1221 
1222 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1223                 unsigned long flags)
1224 {
1225     return -EIO;
1226 }
1227 
1228 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1229              const nodemask_t *to, int flags)
1230 {
1231     return -ENOSYS;
1232 }
1233 
1234 static struct page *new_page(struct page *page, unsigned long start)
1235 {
1236     return NULL;
1237 }
1238 #endif
1239 
1240 static long do_mbind(unsigned long start, unsigned long len,
1241              unsigned short mode, unsigned short mode_flags,
1242              nodemask_t *nmask, unsigned long flags)
1243 {
1244     struct mm_struct *mm = current->mm;
1245     struct mempolicy *new;
1246     unsigned long end;
1247     int err;
1248     int ret;
1249     LIST_HEAD(pagelist);
1250 
1251     if (flags & ~(unsigned long)MPOL_MF_VALID)
1252         return -EINVAL;
1253     if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1254         return -EPERM;
1255 
1256     if (start & ~PAGE_MASK)
1257         return -EINVAL;
1258 
1259     if (mode == MPOL_DEFAULT)
1260         flags &= ~MPOL_MF_STRICT;
1261 
1262     len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1263     end = start + len;
1264 
1265     if (end < start)
1266         return -EINVAL;
1267     if (end == start)
1268         return 0;
1269 
1270     new = mpol_new(mode, mode_flags, nmask);
1271     if (IS_ERR(new))
1272         return PTR_ERR(new);
1273 
1274     if (flags & MPOL_MF_LAZY)
1275         new->flags |= MPOL_F_MOF;
1276 
1277     /*
1278      * If we are using the default policy then operation
1279      * on discontinuous address spaces is okay after all
1280      */
1281     if (!new)
1282         flags |= MPOL_MF_DISCONTIG_OK;
1283 
1284     pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1285          start, start + len, mode, mode_flags,
1286          nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1287 
1288     if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1289 
1290         lru_cache_disable();
1291     }
1292     {
1293         NODEMASK_SCRATCH(scratch);
1294         if (scratch) {
1295             mmap_write_lock(mm);
1296             err = mpol_set_nodemask(new, nmask, scratch);
1297             if (err)
1298                 mmap_write_unlock(mm);
1299         } else
1300             err = -ENOMEM;
1301         NODEMASK_SCRATCH_FREE(scratch);
1302     }
1303     if (err)
1304         goto mpol_out;
1305 
1306     ret = queue_pages_range(mm, start, end, nmask,
1307               flags | MPOL_MF_INVERT, &pagelist);
1308 
1309     if (ret < 0) {
1310         err = ret;
1311         goto up_out;
1312     }
1313 
1314     err = mbind_range(mm, start, end, new);
1315 
1316     if (!err) {
1317         int nr_failed = 0;
1318 
1319         if (!list_empty(&pagelist)) {
1320             WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1321             nr_failed = migrate_pages(&pagelist, new_page, NULL,
1322                 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1323             if (nr_failed)
1324                 putback_movable_pages(&pagelist);
1325         }
1326 
1327         if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1328             err = -EIO;
1329     } else {
1330 up_out:
1331         if (!list_empty(&pagelist))
1332             putback_movable_pages(&pagelist);
1333     }
1334 
1335     mmap_write_unlock(mm);
1336 mpol_out:
1337     mpol_put(new);
1338     if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1339         lru_cache_enable();
1340     return err;
1341 }
1342 
1343 /*
1344  * User space interface with variable sized bitmaps for nodelists.
1345  */
1346 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1347               unsigned long maxnode)
1348 {
1349     unsigned long nlongs = BITS_TO_LONGS(maxnode);
1350     int ret;
1351 
1352     if (in_compat_syscall())
1353         ret = compat_get_bitmap(mask,
1354                     (const compat_ulong_t __user *)nmask,
1355                     maxnode);
1356     else
1357         ret = copy_from_user(mask, nmask,
1358                      nlongs * sizeof(unsigned long));
1359 
1360     if (ret)
1361         return -EFAULT;
1362 
1363     if (maxnode % BITS_PER_LONG)
1364         mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1365 
1366     return 0;
1367 }
1368 
1369 /* Copy a node mask from user space. */
1370 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1371              unsigned long maxnode)
1372 {
1373     --maxnode;
1374     nodes_clear(*nodes);
1375     if (maxnode == 0 || !nmask)
1376         return 0;
1377     if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1378         return -EINVAL;
1379 
1380     /*
1381      * When the user specified more nodes than supported just check
1382      * if the non supported part is all zero, one word at a time,
1383      * starting at the end.
1384      */
1385     while (maxnode > MAX_NUMNODES) {
1386         unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1387         unsigned long t;
1388 
1389         if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1390             return -EFAULT;
1391 
1392         if (maxnode - bits >= MAX_NUMNODES) {
1393             maxnode -= bits;
1394         } else {
1395             maxnode = MAX_NUMNODES;
1396             t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1397         }
1398         if (t)
1399             return -EINVAL;
1400     }
1401 
1402     return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1403 }
1404 
1405 /* Copy a kernel node mask to user space */
1406 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1407                   nodemask_t *nodes)
1408 {
1409     unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1410     unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1411     bool compat = in_compat_syscall();
1412 
1413     if (compat)
1414         nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1415 
1416     if (copy > nbytes) {
1417         if (copy > PAGE_SIZE)
1418             return -EINVAL;
1419         if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1420             return -EFAULT;
1421         copy = nbytes;
1422         maxnode = nr_node_ids;
1423     }
1424 
1425     if (compat)
1426         return compat_put_bitmap((compat_ulong_t __user *)mask,
1427                      nodes_addr(*nodes), maxnode);
1428 
1429     return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1430 }
1431 
1432 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1433 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1434 {
1435     *flags = *mode & MPOL_MODE_FLAGS;
1436     *mode &= ~MPOL_MODE_FLAGS;
1437 
1438     if ((unsigned int)(*mode) >=  MPOL_MAX)
1439         return -EINVAL;
1440     if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1441         return -EINVAL;
1442     if (*flags & MPOL_F_NUMA_BALANCING) {
1443         if (*mode != MPOL_BIND)
1444             return -EINVAL;
1445         *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1446     }
1447     return 0;
1448 }
1449 
1450 static long kernel_mbind(unsigned long start, unsigned long len,
1451              unsigned long mode, const unsigned long __user *nmask,
1452              unsigned long maxnode, unsigned int flags)
1453 {
1454     unsigned short mode_flags;
1455     nodemask_t nodes;
1456     int lmode = mode;
1457     int err;
1458 
1459     start = untagged_addr(start);
1460     err = sanitize_mpol_flags(&lmode, &mode_flags);
1461     if (err)
1462         return err;
1463 
1464     err = get_nodes(&nodes, nmask, maxnode);
1465     if (err)
1466         return err;
1467 
1468     return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1469 }
1470 
1471 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1472         unsigned long, home_node, unsigned long, flags)
1473 {
1474     struct mm_struct *mm = current->mm;
1475     struct vm_area_struct *vma;
1476     struct mempolicy *new;
1477     unsigned long vmstart;
1478     unsigned long vmend;
1479     unsigned long end;
1480     int err = -ENOENT;
1481 
1482     start = untagged_addr(start);
1483     if (start & ~PAGE_MASK)
1484         return -EINVAL;
1485     /*
1486      * flags is used for future extension if any.
1487      */
1488     if (flags != 0)
1489         return -EINVAL;
1490 
1491     /*
1492      * Check home_node is online to avoid accessing uninitialized
1493      * NODE_DATA.
1494      */
1495     if (home_node >= MAX_NUMNODES || !node_online(home_node))
1496         return -EINVAL;
1497 
1498     len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1499     end = start + len;
1500 
1501     if (end < start)
1502         return -EINVAL;
1503     if (end == start)
1504         return 0;
1505     mmap_write_lock(mm);
1506     vma = find_vma(mm, start);
1507     for (; vma && vma->vm_start < end;  vma = vma->vm_next) {
1508 
1509         vmstart = max(start, vma->vm_start);
1510         vmend   = min(end, vma->vm_end);
1511         new = mpol_dup(vma_policy(vma));
1512         if (IS_ERR(new)) {
1513             err = PTR_ERR(new);
1514             break;
1515         }
1516         /*
1517          * Only update home node if there is an existing vma policy
1518          */
1519         if (!new)
1520             continue;
1521 
1522         /*
1523          * If any vma in the range got policy other than MPOL_BIND
1524          * or MPOL_PREFERRED_MANY we return error. We don't reset
1525          * the home node for vmas we already updated before.
1526          */
1527         if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1528             err = -EOPNOTSUPP;
1529             break;
1530         }
1531 
1532         new->home_node = home_node;
1533         err = mbind_range(mm, vmstart, vmend, new);
1534         mpol_put(new);
1535         if (err)
1536             break;
1537     }
1538     mmap_write_unlock(mm);
1539     return err;
1540 }
1541 
1542 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1543         unsigned long, mode, const unsigned long __user *, nmask,
1544         unsigned long, maxnode, unsigned int, flags)
1545 {
1546     return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1547 }
1548 
1549 /* Set the process memory policy */
1550 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1551                  unsigned long maxnode)
1552 {
1553     unsigned short mode_flags;
1554     nodemask_t nodes;
1555     int lmode = mode;
1556     int err;
1557 
1558     err = sanitize_mpol_flags(&lmode, &mode_flags);
1559     if (err)
1560         return err;
1561 
1562     err = get_nodes(&nodes, nmask, maxnode);
1563     if (err)
1564         return err;
1565 
1566     return do_set_mempolicy(lmode, mode_flags, &nodes);
1567 }
1568 
1569 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1570         unsigned long, maxnode)
1571 {
1572     return kernel_set_mempolicy(mode, nmask, maxnode);
1573 }
1574 
1575 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1576                 const unsigned long __user *old_nodes,
1577                 const unsigned long __user *new_nodes)
1578 {
1579     struct mm_struct *mm = NULL;
1580     struct task_struct *task;
1581     nodemask_t task_nodes;
1582     int err;
1583     nodemask_t *old;
1584     nodemask_t *new;
1585     NODEMASK_SCRATCH(scratch);
1586 
1587     if (!scratch)
1588         return -ENOMEM;
1589 
1590     old = &scratch->mask1;
1591     new = &scratch->mask2;
1592 
1593     err = get_nodes(old, old_nodes, maxnode);
1594     if (err)
1595         goto out;
1596 
1597     err = get_nodes(new, new_nodes, maxnode);
1598     if (err)
1599         goto out;
1600 
1601     /* Find the mm_struct */
1602     rcu_read_lock();
1603     task = pid ? find_task_by_vpid(pid) : current;
1604     if (!task) {
1605         rcu_read_unlock();
1606         err = -ESRCH;
1607         goto out;
1608     }
1609     get_task_struct(task);
1610 
1611     err = -EINVAL;
1612 
1613     /*
1614      * Check if this process has the right to modify the specified process.
1615      * Use the regular "ptrace_may_access()" checks.
1616      */
1617     if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1618         rcu_read_unlock();
1619         err = -EPERM;
1620         goto out_put;
1621     }
1622     rcu_read_unlock();
1623 
1624     task_nodes = cpuset_mems_allowed(task);
1625     /* Is the user allowed to access the target nodes? */
1626     if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1627         err = -EPERM;
1628         goto out_put;
1629     }
1630 
1631     task_nodes = cpuset_mems_allowed(current);
1632     nodes_and(*new, *new, task_nodes);
1633     if (nodes_empty(*new))
1634         goto out_put;
1635 
1636     err = security_task_movememory(task);
1637     if (err)
1638         goto out_put;
1639 
1640     mm = get_task_mm(task);
1641     put_task_struct(task);
1642 
1643     if (!mm) {
1644         err = -EINVAL;
1645         goto out;
1646     }
1647 
1648     err = do_migrate_pages(mm, old, new,
1649         capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1650 
1651     mmput(mm);
1652 out:
1653     NODEMASK_SCRATCH_FREE(scratch);
1654 
1655     return err;
1656 
1657 out_put:
1658     put_task_struct(task);
1659     goto out;
1660 
1661 }
1662 
1663 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1664         const unsigned long __user *, old_nodes,
1665         const unsigned long __user *, new_nodes)
1666 {
1667     return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1668 }
1669 
1670 
1671 /* Retrieve NUMA policy */
1672 static int kernel_get_mempolicy(int __user *policy,
1673                 unsigned long __user *nmask,
1674                 unsigned long maxnode,
1675                 unsigned long addr,
1676                 unsigned long flags)
1677 {
1678     int err;
1679     int pval;
1680     nodemask_t nodes;
1681 
1682     if (nmask != NULL && maxnode < nr_node_ids)
1683         return -EINVAL;
1684 
1685     addr = untagged_addr(addr);
1686 
1687     err = do_get_mempolicy(&pval, &nodes, addr, flags);
1688 
1689     if (err)
1690         return err;
1691 
1692     if (policy && put_user(pval, policy))
1693         return -EFAULT;
1694 
1695     if (nmask)
1696         err = copy_nodes_to_user(nmask, maxnode, &nodes);
1697 
1698     return err;
1699 }
1700 
1701 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1702         unsigned long __user *, nmask, unsigned long, maxnode,
1703         unsigned long, addr, unsigned long, flags)
1704 {
1705     return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1706 }
1707 
1708 bool vma_migratable(struct vm_area_struct *vma)
1709 {
1710     if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1711         return false;
1712 
1713     /*
1714      * DAX device mappings require predictable access latency, so avoid
1715      * incurring periodic faults.
1716      */
1717     if (vma_is_dax(vma))
1718         return false;
1719 
1720     if (is_vm_hugetlb_page(vma) &&
1721         !hugepage_migration_supported(hstate_vma(vma)))
1722         return false;
1723 
1724     /*
1725      * Migration allocates pages in the highest zone. If we cannot
1726      * do so then migration (at least from node to node) is not
1727      * possible.
1728      */
1729     if (vma->vm_file &&
1730         gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1731             < policy_zone)
1732         return false;
1733     return true;
1734 }
1735 
1736 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1737                         unsigned long addr)
1738 {
1739     struct mempolicy *pol = NULL;
1740 
1741     if (vma) {
1742         if (vma->vm_ops && vma->vm_ops->get_policy) {
1743             pol = vma->vm_ops->get_policy(vma, addr);
1744         } else if (vma->vm_policy) {
1745             pol = vma->vm_policy;
1746 
1747             /*
1748              * shmem_alloc_page() passes MPOL_F_SHARED policy with
1749              * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1750              * count on these policies which will be dropped by
1751              * mpol_cond_put() later
1752              */
1753             if (mpol_needs_cond_ref(pol))
1754                 mpol_get(pol);
1755         }
1756     }
1757 
1758     return pol;
1759 }
1760 
1761 /*
1762  * get_vma_policy(@vma, @addr)
1763  * @vma: virtual memory area whose policy is sought
1764  * @addr: address in @vma for shared policy lookup
1765  *
1766  * Returns effective policy for a VMA at specified address.
1767  * Falls back to current->mempolicy or system default policy, as necessary.
1768  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1769  * count--added by the get_policy() vm_op, as appropriate--to protect against
1770  * freeing by another task.  It is the caller's responsibility to free the
1771  * extra reference for shared policies.
1772  */
1773 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1774                         unsigned long addr)
1775 {
1776     struct mempolicy *pol = __get_vma_policy(vma, addr);
1777 
1778     if (!pol)
1779         pol = get_task_policy(current);
1780 
1781     return pol;
1782 }
1783 
1784 bool vma_policy_mof(struct vm_area_struct *vma)
1785 {
1786     struct mempolicy *pol;
1787 
1788     if (vma->vm_ops && vma->vm_ops->get_policy) {
1789         bool ret = false;
1790 
1791         pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1792         if (pol && (pol->flags & MPOL_F_MOF))
1793             ret = true;
1794         mpol_cond_put(pol);
1795 
1796         return ret;
1797     }
1798 
1799     pol = vma->vm_policy;
1800     if (!pol)
1801         pol = get_task_policy(current);
1802 
1803     return pol->flags & MPOL_F_MOF;
1804 }
1805 
1806 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1807 {
1808     enum zone_type dynamic_policy_zone = policy_zone;
1809 
1810     BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1811 
1812     /*
1813      * if policy->nodes has movable memory only,
1814      * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1815      *
1816      * policy->nodes is intersect with node_states[N_MEMORY].
1817      * so if the following test fails, it implies
1818      * policy->nodes has movable memory only.
1819      */
1820     if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1821         dynamic_policy_zone = ZONE_MOVABLE;
1822 
1823     return zone >= dynamic_policy_zone;
1824 }
1825 
1826 /*
1827  * Return a nodemask representing a mempolicy for filtering nodes for
1828  * page allocation
1829  */
1830 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1831 {
1832     int mode = policy->mode;
1833 
1834     /* Lower zones don't get a nodemask applied for MPOL_BIND */
1835     if (unlikely(mode == MPOL_BIND) &&
1836         apply_policy_zone(policy, gfp_zone(gfp)) &&
1837         cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1838         return &policy->nodes;
1839 
1840     if (mode == MPOL_PREFERRED_MANY)
1841         return &policy->nodes;
1842 
1843     return NULL;
1844 }
1845 
1846 /*
1847  * Return the  preferred node id for 'prefer' mempolicy, and return
1848  * the given id for all other policies.
1849  *
1850  * policy_node() is always coupled with policy_nodemask(), which
1851  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1852  */
1853 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1854 {
1855     if (policy->mode == MPOL_PREFERRED) {
1856         nd = first_node(policy->nodes);
1857     } else {
1858         /*
1859          * __GFP_THISNODE shouldn't even be used with the bind policy
1860          * because we might easily break the expectation to stay on the
1861          * requested node and not break the policy.
1862          */
1863         WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1864     }
1865 
1866     if ((policy->mode == MPOL_BIND ||
1867          policy->mode == MPOL_PREFERRED_MANY) &&
1868         policy->home_node != NUMA_NO_NODE)
1869         return policy->home_node;
1870 
1871     return nd;
1872 }
1873 
1874 /* Do dynamic interleaving for a process */
1875 static unsigned interleave_nodes(struct mempolicy *policy)
1876 {
1877     unsigned next;
1878     struct task_struct *me = current;
1879 
1880     next = next_node_in(me->il_prev, policy->nodes);
1881     if (next < MAX_NUMNODES)
1882         me->il_prev = next;
1883     return next;
1884 }
1885 
1886 /*
1887  * Depending on the memory policy provide a node from which to allocate the
1888  * next slab entry.
1889  */
1890 unsigned int mempolicy_slab_node(void)
1891 {
1892     struct mempolicy *policy;
1893     int node = numa_mem_id();
1894 
1895     if (!in_task())
1896         return node;
1897 
1898     policy = current->mempolicy;
1899     if (!policy)
1900         return node;
1901 
1902     switch (policy->mode) {
1903     case MPOL_PREFERRED:
1904         return first_node(policy->nodes);
1905 
1906     case MPOL_INTERLEAVE:
1907         return interleave_nodes(policy);
1908 
1909     case MPOL_BIND:
1910     case MPOL_PREFERRED_MANY:
1911     {
1912         struct zoneref *z;
1913 
1914         /*
1915          * Follow bind policy behavior and start allocation at the
1916          * first node.
1917          */
1918         struct zonelist *zonelist;
1919         enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1920         zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1921         z = first_zones_zonelist(zonelist, highest_zoneidx,
1922                             &policy->nodes);
1923         return z->zone ? zone_to_nid(z->zone) : node;
1924     }
1925     case MPOL_LOCAL:
1926         return node;
1927 
1928     default:
1929         BUG();
1930     }
1931 }
1932 
1933 /*
1934  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1935  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1936  * number of present nodes.
1937  */
1938 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1939 {
1940     nodemask_t nodemask = pol->nodes;
1941     unsigned int target, nnodes;
1942     int i;
1943     int nid;
1944     /*
1945      * The barrier will stabilize the nodemask in a register or on
1946      * the stack so that it will stop changing under the code.
1947      *
1948      * Between first_node() and next_node(), pol->nodes could be changed
1949      * by other threads. So we put pol->nodes in a local stack.
1950      */
1951     barrier();
1952 
1953     nnodes = nodes_weight(nodemask);
1954     if (!nnodes)
1955         return numa_node_id();
1956     target = (unsigned int)n % nnodes;
1957     nid = first_node(nodemask);
1958     for (i = 0; i < target; i++)
1959         nid = next_node(nid, nodemask);
1960     return nid;
1961 }
1962 
1963 /* Determine a node number for interleave */
1964 static inline unsigned interleave_nid(struct mempolicy *pol,
1965          struct vm_area_struct *vma, unsigned long addr, int shift)
1966 {
1967     if (vma) {
1968         unsigned long off;
1969 
1970         /*
1971          * for small pages, there is no difference between
1972          * shift and PAGE_SHIFT, so the bit-shift is safe.
1973          * for huge pages, since vm_pgoff is in units of small
1974          * pages, we need to shift off the always 0 bits to get
1975          * a useful offset.
1976          */
1977         BUG_ON(shift < PAGE_SHIFT);
1978         off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1979         off += (addr - vma->vm_start) >> shift;
1980         return offset_il_node(pol, off);
1981     } else
1982         return interleave_nodes(pol);
1983 }
1984 
1985 #ifdef CONFIG_HUGETLBFS
1986 /*
1987  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1988  * @vma: virtual memory area whose policy is sought
1989  * @addr: address in @vma for shared policy lookup and interleave policy
1990  * @gfp_flags: for requested zone
1991  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1992  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1993  *
1994  * Returns a nid suitable for a huge page allocation and a pointer
1995  * to the struct mempolicy for conditional unref after allocation.
1996  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1997  * to the mempolicy's @nodemask for filtering the zonelist.
1998  *
1999  * Must be protected by read_mems_allowed_begin()
2000  */
2001 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2002                 struct mempolicy **mpol, nodemask_t **nodemask)
2003 {
2004     int nid;
2005     int mode;
2006 
2007     *mpol = get_vma_policy(vma, addr);
2008     *nodemask = NULL;
2009     mode = (*mpol)->mode;
2010 
2011     if (unlikely(mode == MPOL_INTERLEAVE)) {
2012         nid = interleave_nid(*mpol, vma, addr,
2013                     huge_page_shift(hstate_vma(vma)));
2014     } else {
2015         nid = policy_node(gfp_flags, *mpol, numa_node_id());
2016         if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2017             *nodemask = &(*mpol)->nodes;
2018     }
2019     return nid;
2020 }
2021 
2022 /*
2023  * init_nodemask_of_mempolicy
2024  *
2025  * If the current task's mempolicy is "default" [NULL], return 'false'
2026  * to indicate default policy.  Otherwise, extract the policy nodemask
2027  * for 'bind' or 'interleave' policy into the argument nodemask, or
2028  * initialize the argument nodemask to contain the single node for
2029  * 'preferred' or 'local' policy and return 'true' to indicate presence
2030  * of non-default mempolicy.
2031  *
2032  * We don't bother with reference counting the mempolicy [mpol_get/put]
2033  * because the current task is examining it's own mempolicy and a task's
2034  * mempolicy is only ever changed by the task itself.
2035  *
2036  * N.B., it is the caller's responsibility to free a returned nodemask.
2037  */
2038 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2039 {
2040     struct mempolicy *mempolicy;
2041 
2042     if (!(mask && current->mempolicy))
2043         return false;
2044 
2045     task_lock(current);
2046     mempolicy = current->mempolicy;
2047     switch (mempolicy->mode) {
2048     case MPOL_PREFERRED:
2049     case MPOL_PREFERRED_MANY:
2050     case MPOL_BIND:
2051     case MPOL_INTERLEAVE:
2052         *mask = mempolicy->nodes;
2053         break;
2054 
2055     case MPOL_LOCAL:
2056         init_nodemask_of_node(mask, numa_node_id());
2057         break;
2058 
2059     default:
2060         BUG();
2061     }
2062     task_unlock(current);
2063 
2064     return true;
2065 }
2066 #endif
2067 
2068 /*
2069  * mempolicy_in_oom_domain
2070  *
2071  * If tsk's mempolicy is "bind", check for intersection between mask and
2072  * the policy nodemask. Otherwise, return true for all other policies
2073  * including "interleave", as a tsk with "interleave" policy may have
2074  * memory allocated from all nodes in system.
2075  *
2076  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2077  */
2078 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2079                     const nodemask_t *mask)
2080 {
2081     struct mempolicy *mempolicy;
2082     bool ret = true;
2083 
2084     if (!mask)
2085         return ret;
2086 
2087     task_lock(tsk);
2088     mempolicy = tsk->mempolicy;
2089     if (mempolicy && mempolicy->mode == MPOL_BIND)
2090         ret = nodes_intersects(mempolicy->nodes, *mask);
2091     task_unlock(tsk);
2092 
2093     return ret;
2094 }
2095 
2096 /* Allocate a page in interleaved policy.
2097    Own path because it needs to do special accounting. */
2098 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2099                     unsigned nid)
2100 {
2101     struct page *page;
2102 
2103     page = __alloc_pages(gfp, order, nid, NULL);
2104     /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2105     if (!static_branch_likely(&vm_numa_stat_key))
2106         return page;
2107     if (page && page_to_nid(page) == nid) {
2108         preempt_disable();
2109         __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2110         preempt_enable();
2111     }
2112     return page;
2113 }
2114 
2115 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2116                         int nid, struct mempolicy *pol)
2117 {
2118     struct page *page;
2119     gfp_t preferred_gfp;
2120 
2121     /*
2122      * This is a two pass approach. The first pass will only try the
2123      * preferred nodes but skip the direct reclaim and allow the
2124      * allocation to fail, while the second pass will try all the
2125      * nodes in system.
2126      */
2127     preferred_gfp = gfp | __GFP_NOWARN;
2128     preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2129     page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2130     if (!page)
2131         page = __alloc_pages(gfp, order, nid, NULL);
2132 
2133     return page;
2134 }
2135 
2136 /**
2137  * vma_alloc_folio - Allocate a folio for a VMA.
2138  * @gfp: GFP flags.
2139  * @order: Order of the folio.
2140  * @vma: Pointer to VMA or NULL if not available.
2141  * @addr: Virtual address of the allocation.  Must be inside @vma.
2142  * @hugepage: For hugepages try only the preferred node if possible.
2143  *
2144  * Allocate a folio for a specific address in @vma, using the appropriate
2145  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2146  * of the mm_struct of the VMA to prevent it from going away.  Should be
2147  * used for all allocations for folios that will be mapped into user space.
2148  *
2149  * Return: The folio on success or NULL if allocation fails.
2150  */
2151 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2152         unsigned long addr, bool hugepage)
2153 {
2154     struct mempolicy *pol;
2155     int node = numa_node_id();
2156     struct folio *folio;
2157     int preferred_nid;
2158     nodemask_t *nmask;
2159 
2160     pol = get_vma_policy(vma, addr);
2161 
2162     if (pol->mode == MPOL_INTERLEAVE) {
2163         struct page *page;
2164         unsigned nid;
2165 
2166         nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2167         mpol_cond_put(pol);
2168         gfp |= __GFP_COMP;
2169         page = alloc_page_interleave(gfp, order, nid);
2170         if (page && order > 1)
2171             prep_transhuge_page(page);
2172         folio = (struct folio *)page;
2173         goto out;
2174     }
2175 
2176     if (pol->mode == MPOL_PREFERRED_MANY) {
2177         struct page *page;
2178 
2179         node = policy_node(gfp, pol, node);
2180         gfp |= __GFP_COMP;
2181         page = alloc_pages_preferred_many(gfp, order, node, pol);
2182         mpol_cond_put(pol);
2183         if (page && order > 1)
2184             prep_transhuge_page(page);
2185         folio = (struct folio *)page;
2186         goto out;
2187     }
2188 
2189     if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2190         int hpage_node = node;
2191 
2192         /*
2193          * For hugepage allocation and non-interleave policy which
2194          * allows the current node (or other explicitly preferred
2195          * node) we only try to allocate from the current/preferred
2196          * node and don't fall back to other nodes, as the cost of
2197          * remote accesses would likely offset THP benefits.
2198          *
2199          * If the policy is interleave or does not allow the current
2200          * node in its nodemask, we allocate the standard way.
2201          */
2202         if (pol->mode == MPOL_PREFERRED)
2203             hpage_node = first_node(pol->nodes);
2204 
2205         nmask = policy_nodemask(gfp, pol);
2206         if (!nmask || node_isset(hpage_node, *nmask)) {
2207             mpol_cond_put(pol);
2208             /*
2209              * First, try to allocate THP only on local node, but
2210              * don't reclaim unnecessarily, just compact.
2211              */
2212             folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2213                     __GFP_NORETRY, order, hpage_node);
2214 
2215             /*
2216              * If hugepage allocations are configured to always
2217              * synchronous compact or the vma has been madvised
2218              * to prefer hugepage backing, retry allowing remote
2219              * memory with both reclaim and compact as well.
2220              */
2221             if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2222                 folio = __folio_alloc(gfp, order, hpage_node,
2223                               nmask);
2224 
2225             goto out;
2226         }
2227     }
2228 
2229     nmask = policy_nodemask(gfp, pol);
2230     preferred_nid = policy_node(gfp, pol, node);
2231     folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2232     mpol_cond_put(pol);
2233 out:
2234     return folio;
2235 }
2236 EXPORT_SYMBOL(vma_alloc_folio);
2237 
2238 /**
2239  * alloc_pages - Allocate pages.
2240  * @gfp: GFP flags.
2241  * @order: Power of two of number of pages to allocate.
2242  *
2243  * Allocate 1 << @order contiguous pages.  The physical address of the
2244  * first page is naturally aligned (eg an order-3 allocation will be aligned
2245  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2246  * process is honoured when in process context.
2247  *
2248  * Context: Can be called from any context, providing the appropriate GFP
2249  * flags are used.
2250  * Return: The page on success or NULL if allocation fails.
2251  */
2252 struct page *alloc_pages(gfp_t gfp, unsigned order)
2253 {
2254     struct mempolicy *pol = &default_policy;
2255     struct page *page;
2256 
2257     if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258         pol = get_task_policy(current);
2259 
2260     /*
2261      * No reference counting needed for current->mempolicy
2262      * nor system default_policy
2263      */
2264     if (pol->mode == MPOL_INTERLEAVE)
2265         page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266     else if (pol->mode == MPOL_PREFERRED_MANY)
2267         page = alloc_pages_preferred_many(gfp, order,
2268                   policy_node(gfp, pol, numa_node_id()), pol);
2269     else
2270         page = __alloc_pages(gfp, order,
2271                 policy_node(gfp, pol, numa_node_id()),
2272                 policy_nodemask(gfp, pol));
2273 
2274     return page;
2275 }
2276 EXPORT_SYMBOL(alloc_pages);
2277 
2278 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2279 {
2280     struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2281 
2282     if (page && order > 1)
2283         prep_transhuge_page(page);
2284     return (struct folio *)page;
2285 }
2286 EXPORT_SYMBOL(folio_alloc);
2287 
2288 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2289         struct mempolicy *pol, unsigned long nr_pages,
2290         struct page **page_array)
2291 {
2292     int nodes;
2293     unsigned long nr_pages_per_node;
2294     int delta;
2295     int i;
2296     unsigned long nr_allocated;
2297     unsigned long total_allocated = 0;
2298 
2299     nodes = nodes_weight(pol->nodes);
2300     nr_pages_per_node = nr_pages / nodes;
2301     delta = nr_pages - nodes * nr_pages_per_node;
2302 
2303     for (i = 0; i < nodes; i++) {
2304         if (delta) {
2305             nr_allocated = __alloc_pages_bulk(gfp,
2306                     interleave_nodes(pol), NULL,
2307                     nr_pages_per_node + 1, NULL,
2308                     page_array);
2309             delta--;
2310         } else {
2311             nr_allocated = __alloc_pages_bulk(gfp,
2312                     interleave_nodes(pol), NULL,
2313                     nr_pages_per_node, NULL, page_array);
2314         }
2315 
2316         page_array += nr_allocated;
2317         total_allocated += nr_allocated;
2318     }
2319 
2320     return total_allocated;
2321 }
2322 
2323 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2324         struct mempolicy *pol, unsigned long nr_pages,
2325         struct page **page_array)
2326 {
2327     gfp_t preferred_gfp;
2328     unsigned long nr_allocated = 0;
2329 
2330     preferred_gfp = gfp | __GFP_NOWARN;
2331     preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2332 
2333     nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2334                        nr_pages, NULL, page_array);
2335 
2336     if (nr_allocated < nr_pages)
2337         nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2338                 nr_pages - nr_allocated, NULL,
2339                 page_array + nr_allocated);
2340     return nr_allocated;
2341 }
2342 
2343 /* alloc pages bulk and mempolicy should be considered at the
2344  * same time in some situation such as vmalloc.
2345  *
2346  * It can accelerate memory allocation especially interleaving
2347  * allocate memory.
2348  */
2349 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2350         unsigned long nr_pages, struct page **page_array)
2351 {
2352     struct mempolicy *pol = &default_policy;
2353 
2354     if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2355         pol = get_task_policy(current);
2356 
2357     if (pol->mode == MPOL_INTERLEAVE)
2358         return alloc_pages_bulk_array_interleave(gfp, pol,
2359                              nr_pages, page_array);
2360 
2361     if (pol->mode == MPOL_PREFERRED_MANY)
2362         return alloc_pages_bulk_array_preferred_many(gfp,
2363                 numa_node_id(), pol, nr_pages, page_array);
2364 
2365     return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2366                   policy_nodemask(gfp, pol), nr_pages, NULL,
2367                   page_array);
2368 }
2369 
2370 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2371 {
2372     struct mempolicy *pol = mpol_dup(vma_policy(src));
2373 
2374     if (IS_ERR(pol))
2375         return PTR_ERR(pol);
2376     dst->vm_policy = pol;
2377     return 0;
2378 }
2379 
2380 /*
2381  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2382  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2383  * with the mems_allowed returned by cpuset_mems_allowed().  This
2384  * keeps mempolicies cpuset relative after its cpuset moves.  See
2385  * further kernel/cpuset.c update_nodemask().
2386  *
2387  * current's mempolicy may be rebinded by the other task(the task that changes
2388  * cpuset's mems), so we needn't do rebind work for current task.
2389  */
2390 
2391 /* Slow path of a mempolicy duplicate */
2392 struct mempolicy *__mpol_dup(struct mempolicy *old)
2393 {
2394     struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2395 
2396     if (!new)
2397         return ERR_PTR(-ENOMEM);
2398 
2399     /* task's mempolicy is protected by alloc_lock */
2400     if (old == current->mempolicy) {
2401         task_lock(current);
2402         *new = *old;
2403         task_unlock(current);
2404     } else
2405         *new = *old;
2406 
2407     if (current_cpuset_is_being_rebound()) {
2408         nodemask_t mems = cpuset_mems_allowed(current);
2409         mpol_rebind_policy(new, &mems);
2410     }
2411     atomic_set(&new->refcnt, 1);
2412     return new;
2413 }
2414 
2415 /* Slow path of a mempolicy comparison */
2416 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2417 {
2418     if (!a || !b)
2419         return false;
2420     if (a->mode != b->mode)
2421         return false;
2422     if (a->flags != b->flags)
2423         return false;
2424     if (a->home_node != b->home_node)
2425         return false;
2426     if (mpol_store_user_nodemask(a))
2427         if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2428             return false;
2429 
2430     switch (a->mode) {
2431     case MPOL_BIND:
2432     case MPOL_INTERLEAVE:
2433     case MPOL_PREFERRED:
2434     case MPOL_PREFERRED_MANY:
2435         return !!nodes_equal(a->nodes, b->nodes);
2436     case MPOL_LOCAL:
2437         return true;
2438     default:
2439         BUG();
2440         return false;
2441     }
2442 }
2443 
2444 /*
2445  * Shared memory backing store policy support.
2446  *
2447  * Remember policies even when nobody has shared memory mapped.
2448  * The policies are kept in Red-Black tree linked from the inode.
2449  * They are protected by the sp->lock rwlock, which should be held
2450  * for any accesses to the tree.
2451  */
2452 
2453 /*
2454  * lookup first element intersecting start-end.  Caller holds sp->lock for
2455  * reading or for writing
2456  */
2457 static struct sp_node *
2458 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2459 {
2460     struct rb_node *n = sp->root.rb_node;
2461 
2462     while (n) {
2463         struct sp_node *p = rb_entry(n, struct sp_node, nd);
2464 
2465         if (start >= p->end)
2466             n = n->rb_right;
2467         else if (end <= p->start)
2468             n = n->rb_left;
2469         else
2470             break;
2471     }
2472     if (!n)
2473         return NULL;
2474     for (;;) {
2475         struct sp_node *w = NULL;
2476         struct rb_node *prev = rb_prev(n);
2477         if (!prev)
2478             break;
2479         w = rb_entry(prev, struct sp_node, nd);
2480         if (w->end <= start)
2481             break;
2482         n = prev;
2483     }
2484     return rb_entry(n, struct sp_node, nd);
2485 }
2486 
2487 /*
2488  * Insert a new shared policy into the list.  Caller holds sp->lock for
2489  * writing.
2490  */
2491 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2492 {
2493     struct rb_node **p = &sp->root.rb_node;
2494     struct rb_node *parent = NULL;
2495     struct sp_node *nd;
2496 
2497     while (*p) {
2498         parent = *p;
2499         nd = rb_entry(parent, struct sp_node, nd);
2500         if (new->start < nd->start)
2501             p = &(*p)->rb_left;
2502         else if (new->end > nd->end)
2503             p = &(*p)->rb_right;
2504         else
2505             BUG();
2506     }
2507     rb_link_node(&new->nd, parent, p);
2508     rb_insert_color(&new->nd, &sp->root);
2509     pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2510          new->policy ? new->policy->mode : 0);
2511 }
2512 
2513 /* Find shared policy intersecting idx */
2514 struct mempolicy *
2515 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2516 {
2517     struct mempolicy *pol = NULL;
2518     struct sp_node *sn;
2519 
2520     if (!sp->root.rb_node)
2521         return NULL;
2522     read_lock(&sp->lock);
2523     sn = sp_lookup(sp, idx, idx+1);
2524     if (sn) {
2525         mpol_get(sn->policy);
2526         pol = sn->policy;
2527     }
2528     read_unlock(&sp->lock);
2529     return pol;
2530 }
2531 
2532 static void sp_free(struct sp_node *n)
2533 {
2534     mpol_put(n->policy);
2535     kmem_cache_free(sn_cache, n);
2536 }
2537 
2538 /**
2539  * mpol_misplaced - check whether current page node is valid in policy
2540  *
2541  * @page: page to be checked
2542  * @vma: vm area where page mapped
2543  * @addr: virtual address where page mapped
2544  *
2545  * Lookup current policy node id for vma,addr and "compare to" page's
2546  * node id.  Policy determination "mimics" alloc_page_vma().
2547  * Called from fault path where we know the vma and faulting address.
2548  *
2549  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2550  * policy, or a suitable node ID to allocate a replacement page from.
2551  */
2552 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2553 {
2554     struct mempolicy *pol;
2555     struct zoneref *z;
2556     int curnid = page_to_nid(page);
2557     unsigned long pgoff;
2558     int thiscpu = raw_smp_processor_id();
2559     int thisnid = cpu_to_node(thiscpu);
2560     int polnid = NUMA_NO_NODE;
2561     int ret = NUMA_NO_NODE;
2562 
2563     pol = get_vma_policy(vma, addr);
2564     if (!(pol->flags & MPOL_F_MOF))
2565         goto out;
2566 
2567     switch (pol->mode) {
2568     case MPOL_INTERLEAVE:
2569         pgoff = vma->vm_pgoff;
2570         pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2571         polnid = offset_il_node(pol, pgoff);
2572         break;
2573 
2574     case MPOL_PREFERRED:
2575         if (node_isset(curnid, pol->nodes))
2576             goto out;
2577         polnid = first_node(pol->nodes);
2578         break;
2579 
2580     case MPOL_LOCAL:
2581         polnid = numa_node_id();
2582         break;
2583 
2584     case MPOL_BIND:
2585         /* Optimize placement among multiple nodes via NUMA balancing */
2586         if (pol->flags & MPOL_F_MORON) {
2587             if (node_isset(thisnid, pol->nodes))
2588                 break;
2589             goto out;
2590         }
2591         fallthrough;
2592 
2593     case MPOL_PREFERRED_MANY:
2594         /*
2595          * use current page if in policy nodemask,
2596          * else select nearest allowed node, if any.
2597          * If no allowed nodes, use current [!misplaced].
2598          */
2599         if (node_isset(curnid, pol->nodes))
2600             goto out;
2601         z = first_zones_zonelist(
2602                 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2603                 gfp_zone(GFP_HIGHUSER),
2604                 &pol->nodes);
2605         polnid = zone_to_nid(z->zone);
2606         break;
2607 
2608     default:
2609         BUG();
2610     }
2611 
2612     /* Migrate the page towards the node whose CPU is referencing it */
2613     if (pol->flags & MPOL_F_MORON) {
2614         polnid = thisnid;
2615 
2616         if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2617             goto out;
2618     }
2619 
2620     if (curnid != polnid)
2621         ret = polnid;
2622 out:
2623     mpol_cond_put(pol);
2624 
2625     return ret;
2626 }
2627 
2628 /*
2629  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2630  * dropped after task->mempolicy is set to NULL so that any allocation done as
2631  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2632  * policy.
2633  */
2634 void mpol_put_task_policy(struct task_struct *task)
2635 {
2636     struct mempolicy *pol;
2637 
2638     task_lock(task);
2639     pol = task->mempolicy;
2640     task->mempolicy = NULL;
2641     task_unlock(task);
2642     mpol_put(pol);
2643 }
2644 
2645 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2646 {
2647     pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2648     rb_erase(&n->nd, &sp->root);
2649     sp_free(n);
2650 }
2651 
2652 static void sp_node_init(struct sp_node *node, unsigned long start,
2653             unsigned long end, struct mempolicy *pol)
2654 {
2655     node->start = start;
2656     node->end = end;
2657     node->policy = pol;
2658 }
2659 
2660 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2661                 struct mempolicy *pol)
2662 {
2663     struct sp_node *n;
2664     struct mempolicy *newpol;
2665 
2666     n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2667     if (!n)
2668         return NULL;
2669 
2670     newpol = mpol_dup(pol);
2671     if (IS_ERR(newpol)) {
2672         kmem_cache_free(sn_cache, n);
2673         return NULL;
2674     }
2675     newpol->flags |= MPOL_F_SHARED;
2676     sp_node_init(n, start, end, newpol);
2677 
2678     return n;
2679 }
2680 
2681 /* Replace a policy range. */
2682 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2683                  unsigned long end, struct sp_node *new)
2684 {
2685     struct sp_node *n;
2686     struct sp_node *n_new = NULL;
2687     struct mempolicy *mpol_new = NULL;
2688     int ret = 0;
2689 
2690 restart:
2691     write_lock(&sp->lock);
2692     n = sp_lookup(sp, start, end);
2693     /* Take care of old policies in the same range. */
2694     while (n && n->start < end) {
2695         struct rb_node *next = rb_next(&n->nd);
2696         if (n->start >= start) {
2697             if (n->end <= end)
2698                 sp_delete(sp, n);
2699             else
2700                 n->start = end;
2701         } else {
2702             /* Old policy spanning whole new range. */
2703             if (n->end > end) {
2704                 if (!n_new)
2705                     goto alloc_new;
2706 
2707                 *mpol_new = *n->policy;
2708                 atomic_set(&mpol_new->refcnt, 1);
2709                 sp_node_init(n_new, end, n->end, mpol_new);
2710                 n->end = start;
2711                 sp_insert(sp, n_new);
2712                 n_new = NULL;
2713                 mpol_new = NULL;
2714                 break;
2715             } else
2716                 n->end = start;
2717         }
2718         if (!next)
2719             break;
2720         n = rb_entry(next, struct sp_node, nd);
2721     }
2722     if (new)
2723         sp_insert(sp, new);
2724     write_unlock(&sp->lock);
2725     ret = 0;
2726 
2727 err_out:
2728     if (mpol_new)
2729         mpol_put(mpol_new);
2730     if (n_new)
2731         kmem_cache_free(sn_cache, n_new);
2732 
2733     return ret;
2734 
2735 alloc_new:
2736     write_unlock(&sp->lock);
2737     ret = -ENOMEM;
2738     n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2739     if (!n_new)
2740         goto err_out;
2741     mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2742     if (!mpol_new)
2743         goto err_out;
2744     atomic_set(&mpol_new->refcnt, 1);
2745     goto restart;
2746 }
2747 
2748 /**
2749  * mpol_shared_policy_init - initialize shared policy for inode
2750  * @sp: pointer to inode shared policy
2751  * @mpol:  struct mempolicy to install
2752  *
2753  * Install non-NULL @mpol in inode's shared policy rb-tree.
2754  * On entry, the current task has a reference on a non-NULL @mpol.
2755  * This must be released on exit.
2756  * This is called at get_inode() calls and we can use GFP_KERNEL.
2757  */
2758 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2759 {
2760     int ret;
2761 
2762     sp->root = RB_ROOT;     /* empty tree == default mempolicy */
2763     rwlock_init(&sp->lock);
2764 
2765     if (mpol) {
2766         struct vm_area_struct pvma;
2767         struct mempolicy *new;
2768         NODEMASK_SCRATCH(scratch);
2769 
2770         if (!scratch)
2771             goto put_mpol;
2772         /* contextualize the tmpfs mount point mempolicy */
2773         new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2774         if (IS_ERR(new))
2775             goto free_scratch; /* no valid nodemask intersection */
2776 
2777         task_lock(current);
2778         ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2779         task_unlock(current);
2780         if (ret)
2781             goto put_new;
2782 
2783         /* Create pseudo-vma that contains just the policy */
2784         vma_init(&pvma, NULL);
2785         pvma.vm_end = TASK_SIZE;    /* policy covers entire file */
2786         mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2787 
2788 put_new:
2789         mpol_put(new);          /* drop initial ref */
2790 free_scratch:
2791         NODEMASK_SCRATCH_FREE(scratch);
2792 put_mpol:
2793         mpol_put(mpol); /* drop our incoming ref on sb mpol */
2794     }
2795 }
2796 
2797 int mpol_set_shared_policy(struct shared_policy *info,
2798             struct vm_area_struct *vma, struct mempolicy *npol)
2799 {
2800     int err;
2801     struct sp_node *new = NULL;
2802     unsigned long sz = vma_pages(vma);
2803 
2804     pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2805          vma->vm_pgoff,
2806          sz, npol ? npol->mode : -1,
2807          npol ? npol->flags : -1,
2808          npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2809 
2810     if (npol) {
2811         new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2812         if (!new)
2813             return -ENOMEM;
2814     }
2815     err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2816     if (err && new)
2817         sp_free(new);
2818     return err;
2819 }
2820 
2821 /* Free a backing policy store on inode delete. */
2822 void mpol_free_shared_policy(struct shared_policy *p)
2823 {
2824     struct sp_node *n;
2825     struct rb_node *next;
2826 
2827     if (!p->root.rb_node)
2828         return;
2829     write_lock(&p->lock);
2830     next = rb_first(&p->root);
2831     while (next) {
2832         n = rb_entry(next, struct sp_node, nd);
2833         next = rb_next(&n->nd);
2834         sp_delete(p, n);
2835     }
2836     write_unlock(&p->lock);
2837 }
2838 
2839 #ifdef CONFIG_NUMA_BALANCING
2840 static int __initdata numabalancing_override;
2841 
2842 static void __init check_numabalancing_enable(void)
2843 {
2844     bool numabalancing_default = false;
2845 
2846     if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2847         numabalancing_default = true;
2848 
2849     /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2850     if (numabalancing_override)
2851         set_numabalancing_state(numabalancing_override == 1);
2852 
2853     if (num_online_nodes() > 1 && !numabalancing_override) {
2854         pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2855             numabalancing_default ? "Enabling" : "Disabling");
2856         set_numabalancing_state(numabalancing_default);
2857     }
2858 }
2859 
2860 static int __init setup_numabalancing(char *str)
2861 {
2862     int ret = 0;
2863     if (!str)
2864         goto out;
2865 
2866     if (!strcmp(str, "enable")) {
2867         numabalancing_override = 1;
2868         ret = 1;
2869     } else if (!strcmp(str, "disable")) {
2870         numabalancing_override = -1;
2871         ret = 1;
2872     }
2873 out:
2874     if (!ret)
2875         pr_warn("Unable to parse numa_balancing=\n");
2876 
2877     return ret;
2878 }
2879 __setup("numa_balancing=", setup_numabalancing);
2880 #else
2881 static inline void __init check_numabalancing_enable(void)
2882 {
2883 }
2884 #endif /* CONFIG_NUMA_BALANCING */
2885 
2886 /* assumes fs == KERNEL_DS */
2887 void __init numa_policy_init(void)
2888 {
2889     nodemask_t interleave_nodes;
2890     unsigned long largest = 0;
2891     int nid, prefer = 0;
2892 
2893     policy_cache = kmem_cache_create("numa_policy",
2894                      sizeof(struct mempolicy),
2895                      0, SLAB_PANIC, NULL);
2896 
2897     sn_cache = kmem_cache_create("shared_policy_node",
2898                      sizeof(struct sp_node),
2899                      0, SLAB_PANIC, NULL);
2900 
2901     for_each_node(nid) {
2902         preferred_node_policy[nid] = (struct mempolicy) {
2903             .refcnt = ATOMIC_INIT(1),
2904             .mode = MPOL_PREFERRED,
2905             .flags = MPOL_F_MOF | MPOL_F_MORON,
2906             .nodes = nodemask_of_node(nid),
2907         };
2908     }
2909 
2910     /*
2911      * Set interleaving policy for system init. Interleaving is only
2912      * enabled across suitably sized nodes (default is >= 16MB), or
2913      * fall back to the largest node if they're all smaller.
2914      */
2915     nodes_clear(interleave_nodes);
2916     for_each_node_state(nid, N_MEMORY) {
2917         unsigned long total_pages = node_present_pages(nid);
2918 
2919         /* Preserve the largest node */
2920         if (largest < total_pages) {
2921             largest = total_pages;
2922             prefer = nid;
2923         }
2924 
2925         /* Interleave this node? */
2926         if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2927             node_set(nid, interleave_nodes);
2928     }
2929 
2930     /* All too small, use the largest */
2931     if (unlikely(nodes_empty(interleave_nodes)))
2932         node_set(prefer, interleave_nodes);
2933 
2934     if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2935         pr_err("%s: interleaving failed\n", __func__);
2936 
2937     check_numabalancing_enable();
2938 }
2939 
2940 /* Reset policy of current process to default */
2941 void numa_default_policy(void)
2942 {
2943     do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2944 }
2945 
2946 /*
2947  * Parse and format mempolicy from/to strings
2948  */
2949 
2950 static const char * const policy_modes[] =
2951 {
2952     [MPOL_DEFAULT]    = "default",
2953     [MPOL_PREFERRED]  = "prefer",
2954     [MPOL_BIND]       = "bind",
2955     [MPOL_INTERLEAVE] = "interleave",
2956     [MPOL_LOCAL]      = "local",
2957     [MPOL_PREFERRED_MANY]  = "prefer (many)",
2958 };
2959 
2960 
2961 #ifdef CONFIG_TMPFS
2962 /**
2963  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2964  * @str:  string containing mempolicy to parse
2965  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2966  *
2967  * Format of input:
2968  *  <mode>[=<flags>][:<nodelist>]
2969  *
2970  * Return: %0 on success, else %1
2971  */
2972 int mpol_parse_str(char *str, struct mempolicy **mpol)
2973 {
2974     struct mempolicy *new = NULL;
2975     unsigned short mode_flags;
2976     nodemask_t nodes;
2977     char *nodelist = strchr(str, ':');
2978     char *flags = strchr(str, '=');
2979     int err = 1, mode;
2980 
2981     if (flags)
2982         *flags++ = '\0';    /* terminate mode string */
2983 
2984     if (nodelist) {
2985         /* NUL-terminate mode or flags string */
2986         *nodelist++ = '\0';
2987         if (nodelist_parse(nodelist, nodes))
2988             goto out;
2989         if (!nodes_subset(nodes, node_states[N_MEMORY]))
2990             goto out;
2991     } else
2992         nodes_clear(nodes);
2993 
2994     mode = match_string(policy_modes, MPOL_MAX, str);
2995     if (mode < 0)
2996         goto out;
2997 
2998     switch (mode) {
2999     case MPOL_PREFERRED:
3000         /*
3001          * Insist on a nodelist of one node only, although later
3002          * we use first_node(nodes) to grab a single node, so here
3003          * nodelist (or nodes) cannot be empty.
3004          */
3005         if (nodelist) {
3006             char *rest = nodelist;
3007             while (isdigit(*rest))
3008                 rest++;
3009             if (*rest)
3010                 goto out;
3011             if (nodes_empty(nodes))
3012                 goto out;
3013         }
3014         break;
3015     case MPOL_INTERLEAVE:
3016         /*
3017          * Default to online nodes with memory if no nodelist
3018          */
3019         if (!nodelist)
3020             nodes = node_states[N_MEMORY];
3021         break;
3022     case MPOL_LOCAL:
3023         /*
3024          * Don't allow a nodelist;  mpol_new() checks flags
3025          */
3026         if (nodelist)
3027             goto out;
3028         break;
3029     case MPOL_DEFAULT:
3030         /*
3031          * Insist on a empty nodelist
3032          */
3033         if (!nodelist)
3034             err = 0;
3035         goto out;
3036     case MPOL_PREFERRED_MANY:
3037     case MPOL_BIND:
3038         /*
3039          * Insist on a nodelist
3040          */
3041         if (!nodelist)
3042             goto out;
3043     }
3044 
3045     mode_flags = 0;
3046     if (flags) {
3047         /*
3048          * Currently, we only support two mutually exclusive
3049          * mode flags.
3050          */
3051         if (!strcmp(flags, "static"))
3052             mode_flags |= MPOL_F_STATIC_NODES;
3053         else if (!strcmp(flags, "relative"))
3054             mode_flags |= MPOL_F_RELATIVE_NODES;
3055         else
3056             goto out;
3057     }
3058 
3059     new = mpol_new(mode, mode_flags, &nodes);
3060     if (IS_ERR(new))
3061         goto out;
3062 
3063     /*
3064      * Save nodes for mpol_to_str() to show the tmpfs mount options
3065      * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3066      */
3067     if (mode != MPOL_PREFERRED) {
3068         new->nodes = nodes;
3069     } else if (nodelist) {
3070         nodes_clear(new->nodes);
3071         node_set(first_node(nodes), new->nodes);
3072     } else {
3073         new->mode = MPOL_LOCAL;
3074     }
3075 
3076     /*
3077      * Save nodes for contextualization: this will be used to "clone"
3078      * the mempolicy in a specific context [cpuset] at a later time.
3079      */
3080     new->w.user_nodemask = nodes;
3081 
3082     err = 0;
3083 
3084 out:
3085     /* Restore string for error message */
3086     if (nodelist)
3087         *--nodelist = ':';
3088     if (flags)
3089         *--flags = '=';
3090     if (!err)
3091         *mpol = new;
3092     return err;
3093 }
3094 #endif /* CONFIG_TMPFS */
3095 
3096 /**
3097  * mpol_to_str - format a mempolicy structure for printing
3098  * @buffer:  to contain formatted mempolicy string
3099  * @maxlen:  length of @buffer
3100  * @pol:  pointer to mempolicy to be formatted
3101  *
3102  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3103  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3104  * longest flag, "relative", and to display at least a few node ids.
3105  */
3106 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3107 {
3108     char *p = buffer;
3109     nodemask_t nodes = NODE_MASK_NONE;
3110     unsigned short mode = MPOL_DEFAULT;
3111     unsigned short flags = 0;
3112 
3113     if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3114         mode = pol->mode;
3115         flags = pol->flags;
3116     }
3117 
3118     switch (mode) {
3119     case MPOL_DEFAULT:
3120     case MPOL_LOCAL:
3121         break;
3122     case MPOL_PREFERRED:
3123     case MPOL_PREFERRED_MANY:
3124     case MPOL_BIND:
3125     case MPOL_INTERLEAVE:
3126         nodes = pol->nodes;
3127         break;
3128     default:
3129         WARN_ON_ONCE(1);
3130         snprintf(p, maxlen, "unknown");
3131         return;
3132     }
3133 
3134     p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3135 
3136     if (flags & MPOL_MODE_FLAGS) {
3137         p += snprintf(p, buffer + maxlen - p, "=");
3138 
3139         /*
3140          * Currently, the only defined flags are mutually exclusive
3141          */
3142         if (flags & MPOL_F_STATIC_NODES)
3143             p += snprintf(p, buffer + maxlen - p, "static");
3144         else if (flags & MPOL_F_RELATIVE_NODES)
3145             p += snprintf(p, buffer + maxlen - p, "relative");
3146     }
3147 
3148     if (!nodes_empty(nodes))
3149         p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3150                    nodemask_pr_args(&nodes));
3151 }