Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/mm/memory_hotplug.c
0004  *
0005  *  Copyright (C)
0006  */
0007 
0008 #include <linux/stddef.h>
0009 #include <linux/mm.h>
0010 #include <linux/sched/signal.h>
0011 #include <linux/swap.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/pagemap.h>
0014 #include <linux/compiler.h>
0015 #include <linux/export.h>
0016 #include <linux/pagevec.h>
0017 #include <linux/writeback.h>
0018 #include <linux/slab.h>
0019 #include <linux/sysctl.h>
0020 #include <linux/cpu.h>
0021 #include <linux/memory.h>
0022 #include <linux/memremap.h>
0023 #include <linux/memory_hotplug.h>
0024 #include <linux/vmalloc.h>
0025 #include <linux/ioport.h>
0026 #include <linux/delay.h>
0027 #include <linux/migrate.h>
0028 #include <linux/page-isolation.h>
0029 #include <linux/pfn.h>
0030 #include <linux/suspend.h>
0031 #include <linux/mm_inline.h>
0032 #include <linux/firmware-map.h>
0033 #include <linux/stop_machine.h>
0034 #include <linux/hugetlb.h>
0035 #include <linux/memblock.h>
0036 #include <linux/compaction.h>
0037 #include <linux/rmap.h>
0038 #include <linux/module.h>
0039 
0040 #include <asm/tlbflush.h>
0041 
0042 #include "internal.h"
0043 #include "shuffle.h"
0044 
0045 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
0046 /*
0047  * memory_hotplug.memmap_on_memory parameter
0048  */
0049 static bool memmap_on_memory __ro_after_init;
0050 module_param(memmap_on_memory, bool, 0444);
0051 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
0052 
0053 static inline bool mhp_memmap_on_memory(void)
0054 {
0055     return memmap_on_memory;
0056 }
0057 #else
0058 static inline bool mhp_memmap_on_memory(void)
0059 {
0060     return false;
0061 }
0062 #endif
0063 
0064 enum {
0065     ONLINE_POLICY_CONTIG_ZONES = 0,
0066     ONLINE_POLICY_AUTO_MOVABLE,
0067 };
0068 
0069 static const char * const online_policy_to_str[] = {
0070     [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
0071     [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
0072 };
0073 
0074 static int set_online_policy(const char *val, const struct kernel_param *kp)
0075 {
0076     int ret = sysfs_match_string(online_policy_to_str, val);
0077 
0078     if (ret < 0)
0079         return ret;
0080     *((int *)kp->arg) = ret;
0081     return 0;
0082 }
0083 
0084 static int get_online_policy(char *buffer, const struct kernel_param *kp)
0085 {
0086     return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
0087 }
0088 
0089 /*
0090  * memory_hotplug.online_policy: configure online behavior when onlining without
0091  * specifying a zone (MMOP_ONLINE)
0092  *
0093  * "contig-zones": keep zone contiguous
0094  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
0095  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
0096  */
0097 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
0098 static const struct kernel_param_ops online_policy_ops = {
0099     .set = set_online_policy,
0100     .get = get_online_policy,
0101 };
0102 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
0103 MODULE_PARM_DESC(online_policy,
0104         "Set the online policy (\"contig-zones\", \"auto-movable\") "
0105         "Default: \"contig-zones\"");
0106 
0107 /*
0108  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
0109  *
0110  * The ratio represent an upper limit and the kernel might decide to not
0111  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
0112  * doesn't allow for more MOVABLE memory.
0113  */
0114 static unsigned int auto_movable_ratio __read_mostly = 301;
0115 module_param(auto_movable_ratio, uint, 0644);
0116 MODULE_PARM_DESC(auto_movable_ratio,
0117         "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
0118         "in percent for \"auto-movable\" online policy. Default: 301");
0119 
0120 /*
0121  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
0122  */
0123 #ifdef CONFIG_NUMA
0124 static bool auto_movable_numa_aware __read_mostly = true;
0125 module_param(auto_movable_numa_aware, bool, 0644);
0126 MODULE_PARM_DESC(auto_movable_numa_aware,
0127         "Consider numa node stats in addition to global stats in "
0128         "\"auto-movable\" online policy. Default: true");
0129 #endif /* CONFIG_NUMA */
0130 
0131 /*
0132  * online_page_callback contains pointer to current page onlining function.
0133  * Initially it is generic_online_page(). If it is required it could be
0134  * changed by calling set_online_page_callback() for callback registration
0135  * and restore_online_page_callback() for generic callback restore.
0136  */
0137 
0138 static online_page_callback_t online_page_callback = generic_online_page;
0139 static DEFINE_MUTEX(online_page_callback_lock);
0140 
0141 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
0142 
0143 void get_online_mems(void)
0144 {
0145     percpu_down_read(&mem_hotplug_lock);
0146 }
0147 
0148 void put_online_mems(void)
0149 {
0150     percpu_up_read(&mem_hotplug_lock);
0151 }
0152 
0153 bool movable_node_enabled = false;
0154 
0155 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
0156 int mhp_default_online_type = MMOP_OFFLINE;
0157 #else
0158 int mhp_default_online_type = MMOP_ONLINE;
0159 #endif
0160 
0161 static int __init setup_memhp_default_state(char *str)
0162 {
0163     const int online_type = mhp_online_type_from_str(str);
0164 
0165     if (online_type >= 0)
0166         mhp_default_online_type = online_type;
0167 
0168     return 1;
0169 }
0170 __setup("memhp_default_state=", setup_memhp_default_state);
0171 
0172 void mem_hotplug_begin(void)
0173 {
0174     cpus_read_lock();
0175     percpu_down_write(&mem_hotplug_lock);
0176 }
0177 
0178 void mem_hotplug_done(void)
0179 {
0180     percpu_up_write(&mem_hotplug_lock);
0181     cpus_read_unlock();
0182 }
0183 
0184 u64 max_mem_size = U64_MAX;
0185 
0186 /* add this memory to iomem resource */
0187 static struct resource *register_memory_resource(u64 start, u64 size,
0188                          const char *resource_name)
0189 {
0190     struct resource *res;
0191     unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
0192 
0193     if (strcmp(resource_name, "System RAM"))
0194         flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
0195 
0196     if (!mhp_range_allowed(start, size, true))
0197         return ERR_PTR(-E2BIG);
0198 
0199     /*
0200      * Make sure value parsed from 'mem=' only restricts memory adding
0201      * while booting, so that memory hotplug won't be impacted. Please
0202      * refer to document of 'mem=' in kernel-parameters.txt for more
0203      * details.
0204      */
0205     if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
0206         return ERR_PTR(-E2BIG);
0207 
0208     /*
0209      * Request ownership of the new memory range.  This might be
0210      * a child of an existing resource that was present but
0211      * not marked as busy.
0212      */
0213     res = __request_region(&iomem_resource, start, size,
0214                    resource_name, flags);
0215 
0216     if (!res) {
0217         pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
0218                 start, start + size);
0219         return ERR_PTR(-EEXIST);
0220     }
0221     return res;
0222 }
0223 
0224 static void release_memory_resource(struct resource *res)
0225 {
0226     if (!res)
0227         return;
0228     release_resource(res);
0229     kfree(res);
0230 }
0231 
0232 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
0233 {
0234     /*
0235      * Disallow all operations smaller than a sub-section and only
0236      * allow operations smaller than a section for
0237      * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
0238      * enforces a larger memory_block_size_bytes() granularity for
0239      * memory that will be marked online, so this check should only
0240      * fire for direct arch_{add,remove}_memory() users outside of
0241      * add_memory_resource().
0242      */
0243     unsigned long min_align;
0244 
0245     if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
0246         min_align = PAGES_PER_SUBSECTION;
0247     else
0248         min_align = PAGES_PER_SECTION;
0249     if (!IS_ALIGNED(pfn | nr_pages, min_align))
0250         return -EINVAL;
0251     return 0;
0252 }
0253 
0254 /*
0255  * Return page for the valid pfn only if the page is online. All pfn
0256  * walkers which rely on the fully initialized page->flags and others
0257  * should use this rather than pfn_valid && pfn_to_page
0258  */
0259 struct page *pfn_to_online_page(unsigned long pfn)
0260 {
0261     unsigned long nr = pfn_to_section_nr(pfn);
0262     struct dev_pagemap *pgmap;
0263     struct mem_section *ms;
0264 
0265     if (nr >= NR_MEM_SECTIONS)
0266         return NULL;
0267 
0268     ms = __nr_to_section(nr);
0269     if (!online_section(ms))
0270         return NULL;
0271 
0272     /*
0273      * Save some code text when online_section() +
0274      * pfn_section_valid() are sufficient.
0275      */
0276     if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
0277         return NULL;
0278 
0279     if (!pfn_section_valid(ms, pfn))
0280         return NULL;
0281 
0282     if (!online_device_section(ms))
0283         return pfn_to_page(pfn);
0284 
0285     /*
0286      * Slowpath: when ZONE_DEVICE collides with
0287      * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
0288      * the section may be 'offline' but 'valid'. Only
0289      * get_dev_pagemap() can determine sub-section online status.
0290      */
0291     pgmap = get_dev_pagemap(pfn, NULL);
0292     put_dev_pagemap(pgmap);
0293 
0294     /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
0295     if (pgmap)
0296         return NULL;
0297 
0298     return pfn_to_page(pfn);
0299 }
0300 EXPORT_SYMBOL_GPL(pfn_to_online_page);
0301 
0302 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
0303         struct mhp_params *params)
0304 {
0305     const unsigned long end_pfn = pfn + nr_pages;
0306     unsigned long cur_nr_pages;
0307     int err;
0308     struct vmem_altmap *altmap = params->altmap;
0309 
0310     if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
0311         return -EINVAL;
0312 
0313     VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
0314 
0315     if (altmap) {
0316         /*
0317          * Validate altmap is within bounds of the total request
0318          */
0319         if (altmap->base_pfn != pfn
0320                 || vmem_altmap_offset(altmap) > nr_pages) {
0321             pr_warn_once("memory add fail, invalid altmap\n");
0322             return -EINVAL;
0323         }
0324         altmap->alloc = 0;
0325     }
0326 
0327     if (check_pfn_span(pfn, nr_pages)) {
0328         WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
0329         return -EINVAL;
0330     }
0331 
0332     for (; pfn < end_pfn; pfn += cur_nr_pages) {
0333         /* Select all remaining pages up to the next section boundary */
0334         cur_nr_pages = min(end_pfn - pfn,
0335                    SECTION_ALIGN_UP(pfn + 1) - pfn);
0336         err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
0337                      params->pgmap);
0338         if (err)
0339             break;
0340         cond_resched();
0341     }
0342     vmemmap_populate_print_last();
0343     return err;
0344 }
0345 
0346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
0347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
0348                      unsigned long start_pfn,
0349                      unsigned long end_pfn)
0350 {
0351     for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
0352         if (unlikely(!pfn_to_online_page(start_pfn)))
0353             continue;
0354 
0355         if (unlikely(pfn_to_nid(start_pfn) != nid))
0356             continue;
0357 
0358         if (zone != page_zone(pfn_to_page(start_pfn)))
0359             continue;
0360 
0361         return start_pfn;
0362     }
0363 
0364     return 0;
0365 }
0366 
0367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
0368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
0369                     unsigned long start_pfn,
0370                     unsigned long end_pfn)
0371 {
0372     unsigned long pfn;
0373 
0374     /* pfn is the end pfn of a memory section. */
0375     pfn = end_pfn - 1;
0376     for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
0377         if (unlikely(!pfn_to_online_page(pfn)))
0378             continue;
0379 
0380         if (unlikely(pfn_to_nid(pfn) != nid))
0381             continue;
0382 
0383         if (zone != page_zone(pfn_to_page(pfn)))
0384             continue;
0385 
0386         return pfn;
0387     }
0388 
0389     return 0;
0390 }
0391 
0392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
0393                  unsigned long end_pfn)
0394 {
0395     unsigned long pfn;
0396     int nid = zone_to_nid(zone);
0397 
0398     if (zone->zone_start_pfn == start_pfn) {
0399         /*
0400          * If the section is smallest section in the zone, it need
0401          * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
0402          * In this case, we find second smallest valid mem_section
0403          * for shrinking zone.
0404          */
0405         pfn = find_smallest_section_pfn(nid, zone, end_pfn,
0406                         zone_end_pfn(zone));
0407         if (pfn) {
0408             zone->spanned_pages = zone_end_pfn(zone) - pfn;
0409             zone->zone_start_pfn = pfn;
0410         } else {
0411             zone->zone_start_pfn = 0;
0412             zone->spanned_pages = 0;
0413         }
0414     } else if (zone_end_pfn(zone) == end_pfn) {
0415         /*
0416          * If the section is biggest section in the zone, it need
0417          * shrink zone->spanned_pages.
0418          * In this case, we find second biggest valid mem_section for
0419          * shrinking zone.
0420          */
0421         pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
0422                            start_pfn);
0423         if (pfn)
0424             zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
0425         else {
0426             zone->zone_start_pfn = 0;
0427             zone->spanned_pages = 0;
0428         }
0429     }
0430 }
0431 
0432 static void update_pgdat_span(struct pglist_data *pgdat)
0433 {
0434     unsigned long node_start_pfn = 0, node_end_pfn = 0;
0435     struct zone *zone;
0436 
0437     for (zone = pgdat->node_zones;
0438          zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
0439         unsigned long end_pfn = zone_end_pfn(zone);
0440 
0441         /* No need to lock the zones, they can't change. */
0442         if (!zone->spanned_pages)
0443             continue;
0444         if (!node_end_pfn) {
0445             node_start_pfn = zone->zone_start_pfn;
0446             node_end_pfn = end_pfn;
0447             continue;
0448         }
0449 
0450         if (end_pfn > node_end_pfn)
0451             node_end_pfn = end_pfn;
0452         if (zone->zone_start_pfn < node_start_pfn)
0453             node_start_pfn = zone->zone_start_pfn;
0454     }
0455 
0456     pgdat->node_start_pfn = node_start_pfn;
0457     pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
0458 }
0459 
0460 void __ref remove_pfn_range_from_zone(struct zone *zone,
0461                       unsigned long start_pfn,
0462                       unsigned long nr_pages)
0463 {
0464     const unsigned long end_pfn = start_pfn + nr_pages;
0465     struct pglist_data *pgdat = zone->zone_pgdat;
0466     unsigned long pfn, cur_nr_pages;
0467 
0468     /* Poison struct pages because they are now uninitialized again. */
0469     for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
0470         cond_resched();
0471 
0472         /* Select all remaining pages up to the next section boundary */
0473         cur_nr_pages =
0474             min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
0475         page_init_poison(pfn_to_page(pfn),
0476                  sizeof(struct page) * cur_nr_pages);
0477     }
0478 
0479     /*
0480      * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
0481      * we will not try to shrink the zones - which is okay as
0482      * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
0483      */
0484     if (zone_is_zone_device(zone))
0485         return;
0486 
0487     clear_zone_contiguous(zone);
0488 
0489     shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
0490     update_pgdat_span(pgdat);
0491 
0492     set_zone_contiguous(zone);
0493 }
0494 
0495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
0496                  unsigned long map_offset,
0497                  struct vmem_altmap *altmap)
0498 {
0499     struct mem_section *ms = __pfn_to_section(pfn);
0500 
0501     if (WARN_ON_ONCE(!valid_section(ms)))
0502         return;
0503 
0504     sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
0505 }
0506 
0507 /**
0508  * __remove_pages() - remove sections of pages
0509  * @pfn: starting pageframe (must be aligned to start of a section)
0510  * @nr_pages: number of pages to remove (must be multiple of section size)
0511  * @altmap: alternative device page map or %NULL if default memmap is used
0512  *
0513  * Generic helper function to remove section mappings and sysfs entries
0514  * for the section of the memory we are removing. Caller needs to make
0515  * sure that pages are marked reserved and zones are adjust properly by
0516  * calling offline_pages().
0517  */
0518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
0519             struct vmem_altmap *altmap)
0520 {
0521     const unsigned long end_pfn = pfn + nr_pages;
0522     unsigned long cur_nr_pages;
0523     unsigned long map_offset = 0;
0524 
0525     map_offset = vmem_altmap_offset(altmap);
0526 
0527     if (check_pfn_span(pfn, nr_pages)) {
0528         WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
0529         return;
0530     }
0531 
0532     for (; pfn < end_pfn; pfn += cur_nr_pages) {
0533         cond_resched();
0534         /* Select all remaining pages up to the next section boundary */
0535         cur_nr_pages = min(end_pfn - pfn,
0536                    SECTION_ALIGN_UP(pfn + 1) - pfn);
0537         __remove_section(pfn, cur_nr_pages, map_offset, altmap);
0538         map_offset = 0;
0539     }
0540 }
0541 
0542 int set_online_page_callback(online_page_callback_t callback)
0543 {
0544     int rc = -EINVAL;
0545 
0546     get_online_mems();
0547     mutex_lock(&online_page_callback_lock);
0548 
0549     if (online_page_callback == generic_online_page) {
0550         online_page_callback = callback;
0551         rc = 0;
0552     }
0553 
0554     mutex_unlock(&online_page_callback_lock);
0555     put_online_mems();
0556 
0557     return rc;
0558 }
0559 EXPORT_SYMBOL_GPL(set_online_page_callback);
0560 
0561 int restore_online_page_callback(online_page_callback_t callback)
0562 {
0563     int rc = -EINVAL;
0564 
0565     get_online_mems();
0566     mutex_lock(&online_page_callback_lock);
0567 
0568     if (online_page_callback == callback) {
0569         online_page_callback = generic_online_page;
0570         rc = 0;
0571     }
0572 
0573     mutex_unlock(&online_page_callback_lock);
0574     put_online_mems();
0575 
0576     return rc;
0577 }
0578 EXPORT_SYMBOL_GPL(restore_online_page_callback);
0579 
0580 void generic_online_page(struct page *page, unsigned int order)
0581 {
0582     /*
0583      * Freeing the page with debug_pagealloc enabled will try to unmap it,
0584      * so we should map it first. This is better than introducing a special
0585      * case in page freeing fast path.
0586      */
0587     debug_pagealloc_map_pages(page, 1 << order);
0588     __free_pages_core(page, order);
0589     totalram_pages_add(1UL << order);
0590 }
0591 EXPORT_SYMBOL_GPL(generic_online_page);
0592 
0593 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
0594 {
0595     const unsigned long end_pfn = start_pfn + nr_pages;
0596     unsigned long pfn;
0597 
0598     /*
0599      * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
0600      * decide to not expose all pages to the buddy (e.g., expose them
0601      * later). We account all pages as being online and belonging to this
0602      * zone ("present").
0603      * When using memmap_on_memory, the range might not be aligned to
0604      * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
0605      * this and the first chunk to online will be pageblock_nr_pages.
0606      */
0607     for (pfn = start_pfn; pfn < end_pfn;) {
0608         int order = min(MAX_ORDER - 1UL, __ffs(pfn));
0609 
0610         (*online_page_callback)(pfn_to_page(pfn), order);
0611         pfn += (1UL << order);
0612     }
0613 
0614     /* mark all involved sections as online */
0615     online_mem_sections(start_pfn, end_pfn);
0616 }
0617 
0618 /* check which state of node_states will be changed when online memory */
0619 static void node_states_check_changes_online(unsigned long nr_pages,
0620     struct zone *zone, struct memory_notify *arg)
0621 {
0622     int nid = zone_to_nid(zone);
0623 
0624     arg->status_change_nid = NUMA_NO_NODE;
0625     arg->status_change_nid_normal = NUMA_NO_NODE;
0626 
0627     if (!node_state(nid, N_MEMORY))
0628         arg->status_change_nid = nid;
0629     if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
0630         arg->status_change_nid_normal = nid;
0631 }
0632 
0633 static void node_states_set_node(int node, struct memory_notify *arg)
0634 {
0635     if (arg->status_change_nid_normal >= 0)
0636         node_set_state(node, N_NORMAL_MEMORY);
0637 
0638     if (arg->status_change_nid >= 0)
0639         node_set_state(node, N_MEMORY);
0640 }
0641 
0642 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
0643         unsigned long nr_pages)
0644 {
0645     unsigned long old_end_pfn = zone_end_pfn(zone);
0646 
0647     if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
0648         zone->zone_start_pfn = start_pfn;
0649 
0650     zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
0651 }
0652 
0653 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
0654                                      unsigned long nr_pages)
0655 {
0656     unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
0657 
0658     if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
0659         pgdat->node_start_pfn = start_pfn;
0660 
0661     pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
0662 
0663 }
0664 
0665 #ifdef CONFIG_ZONE_DEVICE
0666 static void section_taint_zone_device(unsigned long pfn)
0667 {
0668     struct mem_section *ms = __pfn_to_section(pfn);
0669 
0670     ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
0671 }
0672 #else
0673 static inline void section_taint_zone_device(unsigned long pfn)
0674 {
0675 }
0676 #endif
0677 
0678 /*
0679  * Associate the pfn range with the given zone, initializing the memmaps
0680  * and resizing the pgdat/zone data to span the added pages. After this
0681  * call, all affected pages are PG_reserved.
0682  *
0683  * All aligned pageblocks are initialized to the specified migratetype
0684  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
0685  * zone stats (e.g., nr_isolate_pageblock) are touched.
0686  */
0687 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
0688                   unsigned long nr_pages,
0689                   struct vmem_altmap *altmap, int migratetype)
0690 {
0691     struct pglist_data *pgdat = zone->zone_pgdat;
0692     int nid = pgdat->node_id;
0693 
0694     clear_zone_contiguous(zone);
0695 
0696     if (zone_is_empty(zone))
0697         init_currently_empty_zone(zone, start_pfn, nr_pages);
0698     resize_zone_range(zone, start_pfn, nr_pages);
0699     resize_pgdat_range(pgdat, start_pfn, nr_pages);
0700 
0701     /*
0702      * Subsection population requires care in pfn_to_online_page().
0703      * Set the taint to enable the slow path detection of
0704      * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
0705      * section.
0706      */
0707     if (zone_is_zone_device(zone)) {
0708         if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
0709             section_taint_zone_device(start_pfn);
0710         if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
0711             section_taint_zone_device(start_pfn + nr_pages);
0712     }
0713 
0714     /*
0715      * TODO now we have a visible range of pages which are not associated
0716      * with their zone properly. Not nice but set_pfnblock_flags_mask
0717      * expects the zone spans the pfn range. All the pages in the range
0718      * are reserved so nobody should be touching them so we should be safe
0719      */
0720     memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
0721              MEMINIT_HOTPLUG, altmap, migratetype);
0722 
0723     set_zone_contiguous(zone);
0724 }
0725 
0726 struct auto_movable_stats {
0727     unsigned long kernel_early_pages;
0728     unsigned long movable_pages;
0729 };
0730 
0731 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
0732                         struct zone *zone)
0733 {
0734     if (zone_idx(zone) == ZONE_MOVABLE) {
0735         stats->movable_pages += zone->present_pages;
0736     } else {
0737         stats->kernel_early_pages += zone->present_early_pages;
0738 #ifdef CONFIG_CMA
0739         /*
0740          * CMA pages (never on hotplugged memory) behave like
0741          * ZONE_MOVABLE.
0742          */
0743         stats->movable_pages += zone->cma_pages;
0744         stats->kernel_early_pages -= zone->cma_pages;
0745 #endif /* CONFIG_CMA */
0746     }
0747 }
0748 struct auto_movable_group_stats {
0749     unsigned long movable_pages;
0750     unsigned long req_kernel_early_pages;
0751 };
0752 
0753 static int auto_movable_stats_account_group(struct memory_group *group,
0754                        void *arg)
0755 {
0756     const int ratio = READ_ONCE(auto_movable_ratio);
0757     struct auto_movable_group_stats *stats = arg;
0758     long pages;
0759 
0760     /*
0761      * We don't support modifying the config while the auto-movable online
0762      * policy is already enabled. Just avoid the division by zero below.
0763      */
0764     if (!ratio)
0765         return 0;
0766 
0767     /*
0768      * Calculate how many early kernel pages this group requires to
0769      * satisfy the configured zone ratio.
0770      */
0771     pages = group->present_movable_pages * 100 / ratio;
0772     pages -= group->present_kernel_pages;
0773 
0774     if (pages > 0)
0775         stats->req_kernel_early_pages += pages;
0776     stats->movable_pages += group->present_movable_pages;
0777     return 0;
0778 }
0779 
0780 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
0781                         unsigned long nr_pages)
0782 {
0783     unsigned long kernel_early_pages, movable_pages;
0784     struct auto_movable_group_stats group_stats = {};
0785     struct auto_movable_stats stats = {};
0786     pg_data_t *pgdat = NODE_DATA(nid);
0787     struct zone *zone;
0788     int i;
0789 
0790     /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
0791     if (nid == NUMA_NO_NODE) {
0792         /* TODO: cache values */
0793         for_each_populated_zone(zone)
0794             auto_movable_stats_account_zone(&stats, zone);
0795     } else {
0796         for (i = 0; i < MAX_NR_ZONES; i++) {
0797             zone = pgdat->node_zones + i;
0798             if (populated_zone(zone))
0799                 auto_movable_stats_account_zone(&stats, zone);
0800         }
0801     }
0802 
0803     kernel_early_pages = stats.kernel_early_pages;
0804     movable_pages = stats.movable_pages;
0805 
0806     /*
0807      * Kernel memory inside dynamic memory group allows for more MOVABLE
0808      * memory within the same group. Remove the effect of all but the
0809      * current group from the stats.
0810      */
0811     walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
0812                    group, &group_stats);
0813     if (kernel_early_pages <= group_stats.req_kernel_early_pages)
0814         return false;
0815     kernel_early_pages -= group_stats.req_kernel_early_pages;
0816     movable_pages -= group_stats.movable_pages;
0817 
0818     if (group && group->is_dynamic)
0819         kernel_early_pages += group->present_kernel_pages;
0820 
0821     /*
0822      * Test if we could online the given number of pages to ZONE_MOVABLE
0823      * and still stay in the configured ratio.
0824      */
0825     movable_pages += nr_pages;
0826     return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
0827 }
0828 
0829 /*
0830  * Returns a default kernel memory zone for the given pfn range.
0831  * If no kernel zone covers this pfn range it will automatically go
0832  * to the ZONE_NORMAL.
0833  */
0834 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
0835         unsigned long nr_pages)
0836 {
0837     struct pglist_data *pgdat = NODE_DATA(nid);
0838     int zid;
0839 
0840     for (zid = 0; zid < ZONE_NORMAL; zid++) {
0841         struct zone *zone = &pgdat->node_zones[zid];
0842 
0843         if (zone_intersects(zone, start_pfn, nr_pages))
0844             return zone;
0845     }
0846 
0847     return &pgdat->node_zones[ZONE_NORMAL];
0848 }
0849 
0850 /*
0851  * Determine to which zone to online memory dynamically based on user
0852  * configuration and system stats. We care about the following ratio:
0853  *
0854  *   MOVABLE : KERNEL
0855  *
0856  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
0857  * one of the kernel zones. CMA pages inside one of the kernel zones really
0858  * behaves like ZONE_MOVABLE, so we treat them accordingly.
0859  *
0860  * We don't allow for hotplugged memory in a KERNEL zone to increase the
0861  * amount of MOVABLE memory we can have, so we end up with:
0862  *
0863  *   MOVABLE : KERNEL_EARLY
0864  *
0865  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
0866  * boot. We base our calculation on KERNEL_EARLY internally, because:
0867  *
0868  * a) Hotplugged memory in one of the kernel zones can sometimes still get
0869  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
0870  *    There is no coordination across memory devices, therefore "automatic"
0871  *    hotunplugging, as implemented in hypervisors, could result in zone
0872  *    imbalances.
0873  * b) Early/boot memory in one of the kernel zones can usually not get
0874  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
0875  *    with unmovable allocations). While there are corner cases where it might
0876  *    still work, it is barely relevant in practice.
0877  *
0878  * Exceptions are dynamic memory groups, which allow for more MOVABLE
0879  * memory within the same memory group -- because in that case, there is
0880  * coordination within the single memory device managed by a single driver.
0881  *
0882  * We rely on "present pages" instead of "managed pages", as the latter is
0883  * highly unreliable and dynamic in virtualized environments, and does not
0884  * consider boot time allocations. For example, memory ballooning adjusts the
0885  * managed pages when inflating/deflating the balloon, and balloon compaction
0886  * can even migrate inflated pages between zones.
0887  *
0888  * Using "present pages" is better but some things to keep in mind are:
0889  *
0890  * a) Some memblock allocations, such as for the crashkernel area, are
0891  *    effectively unused by the kernel, yet they account to "present pages".
0892  *    Fortunately, these allocations are comparatively small in relevant setups
0893  *    (e.g., fraction of system memory).
0894  * b) Some hotplugged memory blocks in virtualized environments, esecially
0895  *    hotplugged by virtio-mem, look like they are completely present, however,
0896  *    only parts of the memory block are actually currently usable.
0897  *    "present pages" is an upper limit that can get reached at runtime. As
0898  *    we base our calculations on KERNEL_EARLY, this is not an issue.
0899  */
0900 static struct zone *auto_movable_zone_for_pfn(int nid,
0901                           struct memory_group *group,
0902                           unsigned long pfn,
0903                           unsigned long nr_pages)
0904 {
0905     unsigned long online_pages = 0, max_pages, end_pfn;
0906     struct page *page;
0907 
0908     if (!auto_movable_ratio)
0909         goto kernel_zone;
0910 
0911     if (group && !group->is_dynamic) {
0912         max_pages = group->s.max_pages;
0913         online_pages = group->present_movable_pages;
0914 
0915         /* If anything is !MOVABLE online the rest !MOVABLE. */
0916         if (group->present_kernel_pages)
0917             goto kernel_zone;
0918     } else if (!group || group->d.unit_pages == nr_pages) {
0919         max_pages = nr_pages;
0920     } else {
0921         max_pages = group->d.unit_pages;
0922         /*
0923          * Take a look at all online sections in the current unit.
0924          * We can safely assume that all pages within a section belong
0925          * to the same zone, because dynamic memory groups only deal
0926          * with hotplugged memory.
0927          */
0928         pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
0929         end_pfn = pfn + group->d.unit_pages;
0930         for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
0931             page = pfn_to_online_page(pfn);
0932             if (!page)
0933                 continue;
0934             /* If anything is !MOVABLE online the rest !MOVABLE. */
0935             if (!is_zone_movable_page(page))
0936                 goto kernel_zone;
0937             online_pages += PAGES_PER_SECTION;
0938         }
0939     }
0940 
0941     /*
0942      * Online MOVABLE if we could *currently* online all remaining parts
0943      * MOVABLE. We expect to (add+) online them immediately next, so if
0944      * nobody interferes, all will be MOVABLE if possible.
0945      */
0946     nr_pages = max_pages - online_pages;
0947     if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
0948         goto kernel_zone;
0949 
0950 #ifdef CONFIG_NUMA
0951     if (auto_movable_numa_aware &&
0952         !auto_movable_can_online_movable(nid, group, nr_pages))
0953         goto kernel_zone;
0954 #endif /* CONFIG_NUMA */
0955 
0956     return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
0957 kernel_zone:
0958     return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
0959 }
0960 
0961 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
0962         unsigned long nr_pages)
0963 {
0964     struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
0965             nr_pages);
0966     struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
0967     bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
0968     bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
0969 
0970     /*
0971      * We inherit the existing zone in a simple case where zones do not
0972      * overlap in the given range
0973      */
0974     if (in_kernel ^ in_movable)
0975         return (in_kernel) ? kernel_zone : movable_zone;
0976 
0977     /*
0978      * If the range doesn't belong to any zone or two zones overlap in the
0979      * given range then we use movable zone only if movable_node is
0980      * enabled because we always online to a kernel zone by default.
0981      */
0982     return movable_node_enabled ? movable_zone : kernel_zone;
0983 }
0984 
0985 struct zone *zone_for_pfn_range(int online_type, int nid,
0986         struct memory_group *group, unsigned long start_pfn,
0987         unsigned long nr_pages)
0988 {
0989     if (online_type == MMOP_ONLINE_KERNEL)
0990         return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
0991 
0992     if (online_type == MMOP_ONLINE_MOVABLE)
0993         return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
0994 
0995     if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
0996         return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
0997 
0998     return default_zone_for_pfn(nid, start_pfn, nr_pages);
0999 }
1000 
1001 /*
1002  * This function should only be called by memory_block_{online,offline},
1003  * and {online,offline}_pages.
1004  */
1005 void adjust_present_page_count(struct page *page, struct memory_group *group,
1006                    long nr_pages)
1007 {
1008     struct zone *zone = page_zone(page);
1009     const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1010 
1011     /*
1012      * We only support onlining/offlining/adding/removing of complete
1013      * memory blocks; therefore, either all is either early or hotplugged.
1014      */
1015     if (early_section(__pfn_to_section(page_to_pfn(page))))
1016         zone->present_early_pages += nr_pages;
1017     zone->present_pages += nr_pages;
1018     zone->zone_pgdat->node_present_pages += nr_pages;
1019 
1020     if (group && movable)
1021         group->present_movable_pages += nr_pages;
1022     else if (group && !movable)
1023         group->present_kernel_pages += nr_pages;
1024 }
1025 
1026 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1027                   struct zone *zone)
1028 {
1029     unsigned long end_pfn = pfn + nr_pages;
1030     int ret, i;
1031 
1032     ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1033     if (ret)
1034         return ret;
1035 
1036     move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1037 
1038     for (i = 0; i < nr_pages; i++)
1039         SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1040 
1041     /*
1042      * It might be that the vmemmap_pages fully span sections. If that is
1043      * the case, mark those sections online here as otherwise they will be
1044      * left offline.
1045      */
1046     if (nr_pages >= PAGES_PER_SECTION)
1047             online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048 
1049     return ret;
1050 }
1051 
1052 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1053 {
1054     unsigned long end_pfn = pfn + nr_pages;
1055 
1056     /*
1057      * It might be that the vmemmap_pages fully span sections. If that is
1058      * the case, mark those sections offline here as otherwise they will be
1059      * left online.
1060      */
1061     if (nr_pages >= PAGES_PER_SECTION)
1062         offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1063 
1064         /*
1065      * The pages associated with this vmemmap have been offlined, so
1066      * we can reset its state here.
1067      */
1068     remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1069     kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1070 }
1071 
1072 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1073                struct zone *zone, struct memory_group *group)
1074 {
1075     unsigned long flags;
1076     int need_zonelists_rebuild = 0;
1077     const int nid = zone_to_nid(zone);
1078     int ret;
1079     struct memory_notify arg;
1080 
1081     /*
1082      * {on,off}lining is constrained to full memory sections (or more
1083      * precisely to memory blocks from the user space POV).
1084      * memmap_on_memory is an exception because it reserves initial part
1085      * of the physical memory space for vmemmaps. That space is pageblock
1086      * aligned.
1087      */
1088     if (WARN_ON_ONCE(!nr_pages ||
1089              !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1090              !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1091         return -EINVAL;
1092 
1093     mem_hotplug_begin();
1094 
1095     /* associate pfn range with the zone */
1096     move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1097 
1098     arg.start_pfn = pfn;
1099     arg.nr_pages = nr_pages;
1100     node_states_check_changes_online(nr_pages, zone, &arg);
1101 
1102     ret = memory_notify(MEM_GOING_ONLINE, &arg);
1103     ret = notifier_to_errno(ret);
1104     if (ret)
1105         goto failed_addition;
1106 
1107     /*
1108      * Fixup the number of isolated pageblocks before marking the sections
1109      * onlining, such that undo_isolate_page_range() works correctly.
1110      */
1111     spin_lock_irqsave(&zone->lock, flags);
1112     zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1113     spin_unlock_irqrestore(&zone->lock, flags);
1114 
1115     /*
1116      * If this zone is not populated, then it is not in zonelist.
1117      * This means the page allocator ignores this zone.
1118      * So, zonelist must be updated after online.
1119      */
1120     if (!populated_zone(zone)) {
1121         need_zonelists_rebuild = 1;
1122         setup_zone_pageset(zone);
1123     }
1124 
1125     online_pages_range(pfn, nr_pages);
1126     adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1127 
1128     node_states_set_node(nid, &arg);
1129     if (need_zonelists_rebuild)
1130         build_all_zonelists(NULL);
1131 
1132     /* Basic onlining is complete, allow allocation of onlined pages. */
1133     undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1134 
1135     /*
1136      * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1137      * the tail of the freelist when undoing isolation). Shuffle the whole
1138      * zone to make sure the just onlined pages are properly distributed
1139      * across the whole freelist - to create an initial shuffle.
1140      */
1141     shuffle_zone(zone);
1142 
1143     /* reinitialise watermarks and update pcp limits */
1144     init_per_zone_wmark_min();
1145 
1146     kswapd_run(nid);
1147     kcompactd_run(nid);
1148 
1149     writeback_set_ratelimit();
1150 
1151     memory_notify(MEM_ONLINE, &arg);
1152     mem_hotplug_done();
1153     return 0;
1154 
1155 failed_addition:
1156     pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1157          (unsigned long long) pfn << PAGE_SHIFT,
1158          (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1159     memory_notify(MEM_CANCEL_ONLINE, &arg);
1160     remove_pfn_range_from_zone(zone, pfn, nr_pages);
1161     mem_hotplug_done();
1162     return ret;
1163 }
1164 
1165 static void reset_node_present_pages(pg_data_t *pgdat)
1166 {
1167     struct zone *z;
1168 
1169     for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1170         z->present_pages = 0;
1171 
1172     pgdat->node_present_pages = 0;
1173 }
1174 
1175 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1176 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1177 {
1178     struct pglist_data *pgdat;
1179 
1180     /*
1181      * NODE_DATA is preallocated (free_area_init) but its internal
1182      * state is not allocated completely. Add missing pieces.
1183      * Completely offline nodes stay around and they just need
1184      * reintialization.
1185      */
1186     pgdat = NODE_DATA(nid);
1187 
1188     /* init node's zones as empty zones, we don't have any present pages.*/
1189     free_area_init_core_hotplug(pgdat);
1190 
1191     /*
1192      * The node we allocated has no zone fallback lists. For avoiding
1193      * to access not-initialized zonelist, build here.
1194      */
1195     build_all_zonelists(pgdat);
1196 
1197     /*
1198      * When memory is hot-added, all the memory is in offline state. So
1199      * clear all zones' present_pages because they will be updated in
1200      * online_pages() and offline_pages().
1201      * TODO: should be in free_area_init_core_hotplug?
1202      */
1203     reset_node_managed_pages(pgdat);
1204     reset_node_present_pages(pgdat);
1205 
1206     return pgdat;
1207 }
1208 
1209 /*
1210  * __try_online_node - online a node if offlined
1211  * @nid: the node ID
1212  * @set_node_online: Whether we want to online the node
1213  * called by cpu_up() to online a node without onlined memory.
1214  *
1215  * Returns:
1216  * 1 -> a new node has been allocated
1217  * 0 -> the node is already online
1218  * -ENOMEM -> the node could not be allocated
1219  */
1220 static int __try_online_node(int nid, bool set_node_online)
1221 {
1222     pg_data_t *pgdat;
1223     int ret = 1;
1224 
1225     if (node_online(nid))
1226         return 0;
1227 
1228     pgdat = hotadd_init_pgdat(nid);
1229     if (!pgdat) {
1230         pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1231         ret = -ENOMEM;
1232         goto out;
1233     }
1234 
1235     if (set_node_online) {
1236         node_set_online(nid);
1237         ret = register_one_node(nid);
1238         BUG_ON(ret);
1239     }
1240 out:
1241     return ret;
1242 }
1243 
1244 /*
1245  * Users of this function always want to online/register the node
1246  */
1247 int try_online_node(int nid)
1248 {
1249     int ret;
1250 
1251     mem_hotplug_begin();
1252     ret =  __try_online_node(nid, true);
1253     mem_hotplug_done();
1254     return ret;
1255 }
1256 
1257 static int check_hotplug_memory_range(u64 start, u64 size)
1258 {
1259     /* memory range must be block size aligned */
1260     if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1261         !IS_ALIGNED(size, memory_block_size_bytes())) {
1262         pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1263                memory_block_size_bytes(), start, size);
1264         return -EINVAL;
1265     }
1266 
1267     return 0;
1268 }
1269 
1270 static int online_memory_block(struct memory_block *mem, void *arg)
1271 {
1272     mem->online_type = mhp_default_online_type;
1273     return device_online(&mem->dev);
1274 }
1275 
1276 bool mhp_supports_memmap_on_memory(unsigned long size)
1277 {
1278     unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1279     unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1280     unsigned long remaining_size = size - vmemmap_size;
1281 
1282     /*
1283      * Besides having arch support and the feature enabled at runtime, we
1284      * need a few more assumptions to hold true:
1285      *
1286      * a) We span a single memory block: memory onlining/offlinin;g happens
1287      *    in memory block granularity. We don't want the vmemmap of online
1288      *    memory blocks to reside on offline memory blocks. In the future,
1289      *    we might want to support variable-sized memory blocks to make the
1290      *    feature more versatile.
1291      *
1292      * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1293      *    to populate memory from the altmap for unrelated parts (i.e.,
1294      *    other memory blocks)
1295      *
1296      * c) The vmemmap pages (and thereby the pages that will be exposed to
1297      *    the buddy) have to cover full pageblocks: memory onlining/offlining
1298      *    code requires applicable ranges to be page-aligned, for example, to
1299      *    set the migratetypes properly.
1300      *
1301      * TODO: Although we have a check here to make sure that vmemmap pages
1302      *       fully populate a PMD, it is not the right place to check for
1303      *       this. A much better solution involves improving vmemmap code
1304      *       to fallback to base pages when trying to populate vmemmap using
1305      *       altmap as an alternative source of memory, and we do not exactly
1306      *       populate a single PMD.
1307      */
1308     return mhp_memmap_on_memory() &&
1309            size == memory_block_size_bytes() &&
1310            IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1311            IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1312 }
1313 
1314 /*
1315  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1316  * and online/offline operations (triggered e.g. by sysfs).
1317  *
1318  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1319  */
1320 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1321 {
1322     struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1323     enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1324     struct vmem_altmap mhp_altmap = {};
1325     struct memory_group *group = NULL;
1326     u64 start, size;
1327     bool new_node = false;
1328     int ret;
1329 
1330     start = res->start;
1331     size = resource_size(res);
1332 
1333     ret = check_hotplug_memory_range(start, size);
1334     if (ret)
1335         return ret;
1336 
1337     if (mhp_flags & MHP_NID_IS_MGID) {
1338         group = memory_group_find_by_id(nid);
1339         if (!group)
1340             return -EINVAL;
1341         nid = group->nid;
1342     }
1343 
1344     if (!node_possible(nid)) {
1345         WARN(1, "node %d was absent from the node_possible_map\n", nid);
1346         return -EINVAL;
1347     }
1348 
1349     mem_hotplug_begin();
1350 
1351     if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1352         if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1353             memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1354         ret = memblock_add_node(start, size, nid, memblock_flags);
1355         if (ret)
1356             goto error_mem_hotplug_end;
1357     }
1358 
1359     ret = __try_online_node(nid, false);
1360     if (ret < 0)
1361         goto error;
1362     new_node = ret;
1363 
1364     /*
1365      * Self hosted memmap array
1366      */
1367     if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1368         if (!mhp_supports_memmap_on_memory(size)) {
1369             ret = -EINVAL;
1370             goto error;
1371         }
1372         mhp_altmap.free = PHYS_PFN(size);
1373         mhp_altmap.base_pfn = PHYS_PFN(start);
1374         params.altmap = &mhp_altmap;
1375     }
1376 
1377     /* call arch's memory hotadd */
1378     ret = arch_add_memory(nid, start, size, &params);
1379     if (ret < 0)
1380         goto error;
1381 
1382     /* create memory block devices after memory was added */
1383     ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1384                       group);
1385     if (ret) {
1386         arch_remove_memory(start, size, NULL);
1387         goto error;
1388     }
1389 
1390     if (new_node) {
1391         /* If sysfs file of new node can't be created, cpu on the node
1392          * can't be hot-added. There is no rollback way now.
1393          * So, check by BUG_ON() to catch it reluctantly..
1394          * We online node here. We can't roll back from here.
1395          */
1396         node_set_online(nid);
1397         ret = __register_one_node(nid);
1398         BUG_ON(ret);
1399     }
1400 
1401     register_memory_blocks_under_node(nid, PFN_DOWN(start),
1402                       PFN_UP(start + size - 1),
1403                       MEMINIT_HOTPLUG);
1404 
1405     /* create new memmap entry */
1406     if (!strcmp(res->name, "System RAM"))
1407         firmware_map_add_hotplug(start, start + size, "System RAM");
1408 
1409     /* device_online() will take the lock when calling online_pages() */
1410     mem_hotplug_done();
1411 
1412     /*
1413      * In case we're allowed to merge the resource, flag it and trigger
1414      * merging now that adding succeeded.
1415      */
1416     if (mhp_flags & MHP_MERGE_RESOURCE)
1417         merge_system_ram_resource(res);
1418 
1419     /* online pages if requested */
1420     if (mhp_default_online_type != MMOP_OFFLINE)
1421         walk_memory_blocks(start, size, NULL, online_memory_block);
1422 
1423     return ret;
1424 error:
1425     if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1426         memblock_remove(start, size);
1427 error_mem_hotplug_end:
1428     mem_hotplug_done();
1429     return ret;
1430 }
1431 
1432 /* requires device_hotplug_lock, see add_memory_resource() */
1433 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1434 {
1435     struct resource *res;
1436     int ret;
1437 
1438     res = register_memory_resource(start, size, "System RAM");
1439     if (IS_ERR(res))
1440         return PTR_ERR(res);
1441 
1442     ret = add_memory_resource(nid, res, mhp_flags);
1443     if (ret < 0)
1444         release_memory_resource(res);
1445     return ret;
1446 }
1447 
1448 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1449 {
1450     int rc;
1451 
1452     lock_device_hotplug();
1453     rc = __add_memory(nid, start, size, mhp_flags);
1454     unlock_device_hotplug();
1455 
1456     return rc;
1457 }
1458 EXPORT_SYMBOL_GPL(add_memory);
1459 
1460 /*
1461  * Add special, driver-managed memory to the system as system RAM. Such
1462  * memory is not exposed via the raw firmware-provided memmap as system
1463  * RAM, instead, it is detected and added by a driver - during cold boot,
1464  * after a reboot, and after kexec.
1465  *
1466  * Reasons why this memory should not be used for the initial memmap of a
1467  * kexec kernel or for placing kexec images:
1468  * - The booting kernel is in charge of determining how this memory will be
1469  *   used (e.g., use persistent memory as system RAM)
1470  * - Coordination with a hypervisor is required before this memory
1471  *   can be used (e.g., inaccessible parts).
1472  *
1473  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1474  * memory map") are created. Also, the created memory resource is flagged
1475  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1476  * this memory as well (esp., not place kexec images onto it).
1477  *
1478  * The resource_name (visible via /proc/iomem) has to have the format
1479  * "System RAM ($DRIVER)".
1480  */
1481 int add_memory_driver_managed(int nid, u64 start, u64 size,
1482                   const char *resource_name, mhp_t mhp_flags)
1483 {
1484     struct resource *res;
1485     int rc;
1486 
1487     if (!resource_name ||
1488         strstr(resource_name, "System RAM (") != resource_name ||
1489         resource_name[strlen(resource_name) - 1] != ')')
1490         return -EINVAL;
1491 
1492     lock_device_hotplug();
1493 
1494     res = register_memory_resource(start, size, resource_name);
1495     if (IS_ERR(res)) {
1496         rc = PTR_ERR(res);
1497         goto out_unlock;
1498     }
1499 
1500     rc = add_memory_resource(nid, res, mhp_flags);
1501     if (rc < 0)
1502         release_memory_resource(res);
1503 
1504 out_unlock:
1505     unlock_device_hotplug();
1506     return rc;
1507 }
1508 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1509 
1510 /*
1511  * Platforms should define arch_get_mappable_range() that provides
1512  * maximum possible addressable physical memory range for which the
1513  * linear mapping could be created. The platform returned address
1514  * range must adhere to these following semantics.
1515  *
1516  * - range.start <= range.end
1517  * - Range includes both end points [range.start..range.end]
1518  *
1519  * There is also a fallback definition provided here, allowing the
1520  * entire possible physical address range in case any platform does
1521  * not define arch_get_mappable_range().
1522  */
1523 struct range __weak arch_get_mappable_range(void)
1524 {
1525     struct range mhp_range = {
1526         .start = 0UL,
1527         .end = -1ULL,
1528     };
1529     return mhp_range;
1530 }
1531 
1532 struct range mhp_get_pluggable_range(bool need_mapping)
1533 {
1534     const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1535     struct range mhp_range;
1536 
1537     if (need_mapping) {
1538         mhp_range = arch_get_mappable_range();
1539         if (mhp_range.start > max_phys) {
1540             mhp_range.start = 0;
1541             mhp_range.end = 0;
1542         }
1543         mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1544     } else {
1545         mhp_range.start = 0;
1546         mhp_range.end = max_phys;
1547     }
1548     return mhp_range;
1549 }
1550 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1551 
1552 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1553 {
1554     struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1555     u64 end = start + size;
1556 
1557     if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1558         return true;
1559 
1560     pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1561         start, end, mhp_range.start, mhp_range.end);
1562     return false;
1563 }
1564 
1565 #ifdef CONFIG_MEMORY_HOTREMOVE
1566 /*
1567  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1568  * non-lru movable pages and hugepages). Will skip over most unmovable
1569  * pages (esp., pages that can be skipped when offlining), but bail out on
1570  * definitely unmovable pages.
1571  *
1572  * Returns:
1573  *  0 in case a movable page is found and movable_pfn was updated.
1574  *  -ENOENT in case no movable page was found.
1575  *  -EBUSY in case a definitely unmovable page was found.
1576  */
1577 static int scan_movable_pages(unsigned long start, unsigned long end,
1578                   unsigned long *movable_pfn)
1579 {
1580     unsigned long pfn;
1581 
1582     for (pfn = start; pfn < end; pfn++) {
1583         struct page *page, *head;
1584         unsigned long skip;
1585 
1586         if (!pfn_valid(pfn))
1587             continue;
1588         page = pfn_to_page(pfn);
1589         if (PageLRU(page))
1590             goto found;
1591         if (__PageMovable(page))
1592             goto found;
1593 
1594         /*
1595          * PageOffline() pages that are not marked __PageMovable() and
1596          * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1597          * definitely unmovable. If their reference count would be 0,
1598          * they could at least be skipped when offlining memory.
1599          */
1600         if (PageOffline(page) && page_count(page))
1601             return -EBUSY;
1602 
1603         if (!PageHuge(page))
1604             continue;
1605         head = compound_head(page);
1606         /*
1607          * This test is racy as we hold no reference or lock.  The
1608          * hugetlb page could have been free'ed and head is no longer
1609          * a hugetlb page before the following check.  In such unlikely
1610          * cases false positives and negatives are possible.  Calling
1611          * code must deal with these scenarios.
1612          */
1613         if (HPageMigratable(head))
1614             goto found;
1615         skip = compound_nr(head) - (page - head);
1616         pfn += skip - 1;
1617     }
1618     return -ENOENT;
1619 found:
1620     *movable_pfn = pfn;
1621     return 0;
1622 }
1623 
1624 static int
1625 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1626 {
1627     unsigned long pfn;
1628     struct page *page, *head;
1629     int ret = 0;
1630     LIST_HEAD(source);
1631     static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1632                       DEFAULT_RATELIMIT_BURST);
1633 
1634     for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1635         struct folio *folio;
1636 
1637         if (!pfn_valid(pfn))
1638             continue;
1639         page = pfn_to_page(pfn);
1640         folio = page_folio(page);
1641         head = &folio->page;
1642 
1643         if (PageHuge(page)) {
1644             pfn = page_to_pfn(head) + compound_nr(head) - 1;
1645             isolate_hugetlb(head, &source);
1646             continue;
1647         } else if (PageTransHuge(page))
1648             pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1649 
1650         /*
1651          * HWPoison pages have elevated reference counts so the migration would
1652          * fail on them. It also doesn't make any sense to migrate them in the
1653          * first place. Still try to unmap such a page in case it is still mapped
1654          * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1655          * the unmap as the catch all safety net).
1656          */
1657         if (PageHWPoison(page)) {
1658             if (WARN_ON(folio_test_lru(folio)))
1659                 folio_isolate_lru(folio);
1660             if (folio_mapped(folio))
1661                 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1662             continue;
1663         }
1664 
1665         if (!get_page_unless_zero(page))
1666             continue;
1667         /*
1668          * We can skip free pages. And we can deal with pages on
1669          * LRU and non-lru movable pages.
1670          */
1671         if (PageLRU(page))
1672             ret = isolate_lru_page(page);
1673         else
1674             ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1675         if (!ret) { /* Success */
1676             list_add_tail(&page->lru, &source);
1677             if (!__PageMovable(page))
1678                 inc_node_page_state(page, NR_ISOLATED_ANON +
1679                             page_is_file_lru(page));
1680 
1681         } else {
1682             if (__ratelimit(&migrate_rs)) {
1683                 pr_warn("failed to isolate pfn %lx\n", pfn);
1684                 dump_page(page, "isolation failed");
1685             }
1686         }
1687         put_page(page);
1688     }
1689     if (!list_empty(&source)) {
1690         nodemask_t nmask = node_states[N_MEMORY];
1691         struct migration_target_control mtc = {
1692             .nmask = &nmask,
1693             .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1694         };
1695 
1696         /*
1697          * We have checked that migration range is on a single zone so
1698          * we can use the nid of the first page to all the others.
1699          */
1700         mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1701 
1702         /*
1703          * try to allocate from a different node but reuse this node
1704          * if there are no other online nodes to be used (e.g. we are
1705          * offlining a part of the only existing node)
1706          */
1707         node_clear(mtc.nid, nmask);
1708         if (nodes_empty(nmask))
1709             node_set(mtc.nid, nmask);
1710         ret = migrate_pages(&source, alloc_migration_target, NULL,
1711             (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1712         if (ret) {
1713             list_for_each_entry(page, &source, lru) {
1714                 if (__ratelimit(&migrate_rs)) {
1715                     pr_warn("migrating pfn %lx failed ret:%d\n",
1716                         page_to_pfn(page), ret);
1717                     dump_page(page, "migration failure");
1718                 }
1719             }
1720             putback_movable_pages(&source);
1721         }
1722     }
1723 
1724     return ret;
1725 }
1726 
1727 static int __init cmdline_parse_movable_node(char *p)
1728 {
1729     movable_node_enabled = true;
1730     return 0;
1731 }
1732 early_param("movable_node", cmdline_parse_movable_node);
1733 
1734 /* check which state of node_states will be changed when offline memory */
1735 static void node_states_check_changes_offline(unsigned long nr_pages,
1736         struct zone *zone, struct memory_notify *arg)
1737 {
1738     struct pglist_data *pgdat = zone->zone_pgdat;
1739     unsigned long present_pages = 0;
1740     enum zone_type zt;
1741 
1742     arg->status_change_nid = NUMA_NO_NODE;
1743     arg->status_change_nid_normal = NUMA_NO_NODE;
1744 
1745     /*
1746      * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1747      * If the memory to be offline is within the range
1748      * [0..ZONE_NORMAL], and it is the last present memory there,
1749      * the zones in that range will become empty after the offlining,
1750      * thus we can determine that we need to clear the node from
1751      * node_states[N_NORMAL_MEMORY].
1752      */
1753     for (zt = 0; zt <= ZONE_NORMAL; zt++)
1754         present_pages += pgdat->node_zones[zt].present_pages;
1755     if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1756         arg->status_change_nid_normal = zone_to_nid(zone);
1757 
1758     /*
1759      * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1760      * does not apply as we don't support 32bit.
1761      * Here we count the possible pages from ZONE_MOVABLE.
1762      * If after having accounted all the pages, we see that the nr_pages
1763      * to be offlined is over or equal to the accounted pages,
1764      * we know that the node will become empty, and so, we can clear
1765      * it for N_MEMORY as well.
1766      */
1767     present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1768 
1769     if (nr_pages >= present_pages)
1770         arg->status_change_nid = zone_to_nid(zone);
1771 }
1772 
1773 static void node_states_clear_node(int node, struct memory_notify *arg)
1774 {
1775     if (arg->status_change_nid_normal >= 0)
1776         node_clear_state(node, N_NORMAL_MEMORY);
1777 
1778     if (arg->status_change_nid >= 0)
1779         node_clear_state(node, N_MEMORY);
1780 }
1781 
1782 static int count_system_ram_pages_cb(unsigned long start_pfn,
1783                      unsigned long nr_pages, void *data)
1784 {
1785     unsigned long *nr_system_ram_pages = data;
1786 
1787     *nr_system_ram_pages += nr_pages;
1788     return 0;
1789 }
1790 
1791 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1792             struct zone *zone, struct memory_group *group)
1793 {
1794     const unsigned long end_pfn = start_pfn + nr_pages;
1795     unsigned long pfn, system_ram_pages = 0;
1796     const int node = zone_to_nid(zone);
1797     unsigned long flags;
1798     struct memory_notify arg;
1799     char *reason;
1800     int ret;
1801 
1802     /*
1803      * {on,off}lining is constrained to full memory sections (or more
1804      * precisely to memory blocks from the user space POV).
1805      * memmap_on_memory is an exception because it reserves initial part
1806      * of the physical memory space for vmemmaps. That space is pageblock
1807      * aligned.
1808      */
1809     if (WARN_ON_ONCE(!nr_pages ||
1810              !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1811              !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1812         return -EINVAL;
1813 
1814     mem_hotplug_begin();
1815 
1816     /*
1817      * Don't allow to offline memory blocks that contain holes.
1818      * Consequently, memory blocks with holes can never get onlined
1819      * via the hotplug path - online_pages() - as hotplugged memory has
1820      * no holes. This way, we e.g., don't have to worry about marking
1821      * memory holes PG_reserved, don't need pfn_valid() checks, and can
1822      * avoid using walk_system_ram_range() later.
1823      */
1824     walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1825                   count_system_ram_pages_cb);
1826     if (system_ram_pages != nr_pages) {
1827         ret = -EINVAL;
1828         reason = "memory holes";
1829         goto failed_removal;
1830     }
1831 
1832     /*
1833      * We only support offlining of memory blocks managed by a single zone,
1834      * checked by calling code. This is just a sanity check that we might
1835      * want to remove in the future.
1836      */
1837     if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1838              page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1839         ret = -EINVAL;
1840         reason = "multizone range";
1841         goto failed_removal;
1842     }
1843 
1844     /*
1845      * Disable pcplists so that page isolation cannot race with freeing
1846      * in a way that pages from isolated pageblock are left on pcplists.
1847      */
1848     zone_pcp_disable(zone);
1849     lru_cache_disable();
1850 
1851     /* set above range as isolated */
1852     ret = start_isolate_page_range(start_pfn, end_pfn,
1853                        MIGRATE_MOVABLE,
1854                        MEMORY_OFFLINE | REPORT_FAILURE,
1855                        GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1856     if (ret) {
1857         reason = "failure to isolate range";
1858         goto failed_removal_pcplists_disabled;
1859     }
1860 
1861     arg.start_pfn = start_pfn;
1862     arg.nr_pages = nr_pages;
1863     node_states_check_changes_offline(nr_pages, zone, &arg);
1864 
1865     ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1866     ret = notifier_to_errno(ret);
1867     if (ret) {
1868         reason = "notifier failure";
1869         goto failed_removal_isolated;
1870     }
1871 
1872     do {
1873         pfn = start_pfn;
1874         do {
1875             if (signal_pending(current)) {
1876                 ret = -EINTR;
1877                 reason = "signal backoff";
1878                 goto failed_removal_isolated;
1879             }
1880 
1881             cond_resched();
1882 
1883             ret = scan_movable_pages(pfn, end_pfn, &pfn);
1884             if (!ret) {
1885                 /*
1886                  * TODO: fatal migration failures should bail
1887                  * out
1888                  */
1889                 do_migrate_range(pfn, end_pfn);
1890             }
1891         } while (!ret);
1892 
1893         if (ret != -ENOENT) {
1894             reason = "unmovable page";
1895             goto failed_removal_isolated;
1896         }
1897 
1898         /*
1899          * Dissolve free hugepages in the memory block before doing
1900          * offlining actually in order to make hugetlbfs's object
1901          * counting consistent.
1902          */
1903         ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1904         if (ret) {
1905             reason = "failure to dissolve huge pages";
1906             goto failed_removal_isolated;
1907         }
1908 
1909         ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1910 
1911     } while (ret);
1912 
1913     /* Mark all sections offline and remove free pages from the buddy. */
1914     __offline_isolated_pages(start_pfn, end_pfn);
1915     pr_debug("Offlined Pages %ld\n", nr_pages);
1916 
1917     /*
1918      * The memory sections are marked offline, and the pageblock flags
1919      * effectively stale; nobody should be touching them. Fixup the number
1920      * of isolated pageblocks, memory onlining will properly revert this.
1921      */
1922     spin_lock_irqsave(&zone->lock, flags);
1923     zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1924     spin_unlock_irqrestore(&zone->lock, flags);
1925 
1926     lru_cache_enable();
1927     zone_pcp_enable(zone);
1928 
1929     /* removal success */
1930     adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1931     adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1932 
1933     /* reinitialise watermarks and update pcp limits */
1934     init_per_zone_wmark_min();
1935 
1936     if (!populated_zone(zone)) {
1937         zone_pcp_reset(zone);
1938         build_all_zonelists(NULL);
1939     }
1940 
1941     node_states_clear_node(node, &arg);
1942     if (arg.status_change_nid >= 0) {
1943         kswapd_stop(node);
1944         kcompactd_stop(node);
1945     }
1946 
1947     writeback_set_ratelimit();
1948 
1949     memory_notify(MEM_OFFLINE, &arg);
1950     remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1951     mem_hotplug_done();
1952     return 0;
1953 
1954 failed_removal_isolated:
1955     /* pushback to free area */
1956     undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1957     memory_notify(MEM_CANCEL_OFFLINE, &arg);
1958 failed_removal_pcplists_disabled:
1959     lru_cache_enable();
1960     zone_pcp_enable(zone);
1961 failed_removal:
1962     pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1963          (unsigned long long) start_pfn << PAGE_SHIFT,
1964          ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1965          reason);
1966     mem_hotplug_done();
1967     return ret;
1968 }
1969 
1970 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1971 {
1972     int ret = !is_memblock_offlined(mem);
1973     int *nid = arg;
1974 
1975     *nid = mem->nid;
1976     if (unlikely(ret)) {
1977         phys_addr_t beginpa, endpa;
1978 
1979         beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1980         endpa = beginpa + memory_block_size_bytes() - 1;
1981         pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1982             &beginpa, &endpa);
1983 
1984         return -EBUSY;
1985     }
1986     return 0;
1987 }
1988 
1989 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1990 {
1991     /*
1992      * If not set, continue with the next block.
1993      */
1994     return mem->nr_vmemmap_pages;
1995 }
1996 
1997 static int check_cpu_on_node(int nid)
1998 {
1999     int cpu;
2000 
2001     for_each_present_cpu(cpu) {
2002         if (cpu_to_node(cpu) == nid)
2003             /*
2004              * the cpu on this node isn't removed, and we can't
2005              * offline this node.
2006              */
2007             return -EBUSY;
2008     }
2009 
2010     return 0;
2011 }
2012 
2013 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2014 {
2015     int nid = *(int *)arg;
2016 
2017     /*
2018      * If a memory block belongs to multiple nodes, the stored nid is not
2019      * reliable. However, such blocks are always online (e.g., cannot get
2020      * offlined) and, therefore, are still spanned by the node.
2021      */
2022     return mem->nid == nid ? -EEXIST : 0;
2023 }
2024 
2025 /**
2026  * try_offline_node
2027  * @nid: the node ID
2028  *
2029  * Offline a node if all memory sections and cpus of the node are removed.
2030  *
2031  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2032  * and online/offline operations before this call.
2033  */
2034 void try_offline_node(int nid)
2035 {
2036     int rc;
2037 
2038     /*
2039      * If the node still spans pages (especially ZONE_DEVICE), don't
2040      * offline it. A node spans memory after move_pfn_range_to_zone(),
2041      * e.g., after the memory block was onlined.
2042      */
2043     if (node_spanned_pages(nid))
2044         return;
2045 
2046     /*
2047      * Especially offline memory blocks might not be spanned by the
2048      * node. They will get spanned by the node once they get onlined.
2049      * However, they link to the node in sysfs and can get onlined later.
2050      */
2051     rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2052     if (rc)
2053         return;
2054 
2055     if (check_cpu_on_node(nid))
2056         return;
2057 
2058     /*
2059      * all memory/cpu of this node are removed, we can offline this
2060      * node now.
2061      */
2062     node_set_offline(nid);
2063     unregister_one_node(nid);
2064 }
2065 EXPORT_SYMBOL(try_offline_node);
2066 
2067 static int __ref try_remove_memory(u64 start, u64 size)
2068 {
2069     struct vmem_altmap mhp_altmap = {};
2070     struct vmem_altmap *altmap = NULL;
2071     unsigned long nr_vmemmap_pages;
2072     int rc = 0, nid = NUMA_NO_NODE;
2073 
2074     BUG_ON(check_hotplug_memory_range(start, size));
2075 
2076     /*
2077      * All memory blocks must be offlined before removing memory.  Check
2078      * whether all memory blocks in question are offline and return error
2079      * if this is not the case.
2080      *
2081      * While at it, determine the nid. Note that if we'd have mixed nodes,
2082      * we'd only try to offline the last determined one -- which is good
2083      * enough for the cases we care about.
2084      */
2085     rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2086     if (rc)
2087         return rc;
2088 
2089     /*
2090      * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2091      * the same granularity it was added - a single memory block.
2092      */
2093     if (mhp_memmap_on_memory()) {
2094         nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2095                               get_nr_vmemmap_pages_cb);
2096         if (nr_vmemmap_pages) {
2097             if (size != memory_block_size_bytes()) {
2098                 pr_warn("Refuse to remove %#llx - %#llx,"
2099                     "wrong granularity\n",
2100                     start, start + size);
2101                 return -EINVAL;
2102             }
2103 
2104             /*
2105              * Let remove_pmd_table->free_hugepage_table do the
2106              * right thing if we used vmem_altmap when hot-adding
2107              * the range.
2108              */
2109             mhp_altmap.alloc = nr_vmemmap_pages;
2110             altmap = &mhp_altmap;
2111         }
2112     }
2113 
2114     /* remove memmap entry */
2115     firmware_map_remove(start, start + size, "System RAM");
2116 
2117     /*
2118      * Memory block device removal under the device_hotplug_lock is
2119      * a barrier against racing online attempts.
2120      */
2121     remove_memory_block_devices(start, size);
2122 
2123     mem_hotplug_begin();
2124 
2125     arch_remove_memory(start, size, altmap);
2126 
2127     if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2128         memblock_phys_free(start, size);
2129         memblock_remove(start, size);
2130     }
2131 
2132     release_mem_region_adjustable(start, size);
2133 
2134     if (nid != NUMA_NO_NODE)
2135         try_offline_node(nid);
2136 
2137     mem_hotplug_done();
2138     return 0;
2139 }
2140 
2141 /**
2142  * __remove_memory - Remove memory if every memory block is offline
2143  * @start: physical address of the region to remove
2144  * @size: size of the region to remove
2145  *
2146  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2147  * and online/offline operations before this call, as required by
2148  * try_offline_node().
2149  */
2150 void __remove_memory(u64 start, u64 size)
2151 {
2152 
2153     /*
2154      * trigger BUG() if some memory is not offlined prior to calling this
2155      * function
2156      */
2157     if (try_remove_memory(start, size))
2158         BUG();
2159 }
2160 
2161 /*
2162  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2163  * some memory is not offline
2164  */
2165 int remove_memory(u64 start, u64 size)
2166 {
2167     int rc;
2168 
2169     lock_device_hotplug();
2170     rc = try_remove_memory(start, size);
2171     unlock_device_hotplug();
2172 
2173     return rc;
2174 }
2175 EXPORT_SYMBOL_GPL(remove_memory);
2176 
2177 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2178 {
2179     uint8_t online_type = MMOP_ONLINE_KERNEL;
2180     uint8_t **online_types = arg;
2181     struct page *page;
2182     int rc;
2183 
2184     /*
2185      * Sense the online_type via the zone of the memory block. Offlining
2186      * with multiple zones within one memory block will be rejected
2187      * by offlining code ... so we don't care about that.
2188      */
2189     page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2190     if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2191         online_type = MMOP_ONLINE_MOVABLE;
2192 
2193     rc = device_offline(&mem->dev);
2194     /*
2195      * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2196      * so try_reonline_memory_block() can do the right thing.
2197      */
2198     if (!rc)
2199         **online_types = online_type;
2200 
2201     (*online_types)++;
2202     /* Ignore if already offline. */
2203     return rc < 0 ? rc : 0;
2204 }
2205 
2206 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2207 {
2208     uint8_t **online_types = arg;
2209     int rc;
2210 
2211     if (**online_types != MMOP_OFFLINE) {
2212         mem->online_type = **online_types;
2213         rc = device_online(&mem->dev);
2214         if (rc < 0)
2215             pr_warn("%s: Failed to re-online memory: %d",
2216                 __func__, rc);
2217     }
2218 
2219     /* Continue processing all remaining memory blocks. */
2220     (*online_types)++;
2221     return 0;
2222 }
2223 
2224 /*
2225  * Try to offline and remove memory. Might take a long time to finish in case
2226  * memory is still in use. Primarily useful for memory devices that logically
2227  * unplugged all memory (so it's no longer in use) and want to offline + remove
2228  * that memory.
2229  */
2230 int offline_and_remove_memory(u64 start, u64 size)
2231 {
2232     const unsigned long mb_count = size / memory_block_size_bytes();
2233     uint8_t *online_types, *tmp;
2234     int rc;
2235 
2236     if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2237         !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2238         return -EINVAL;
2239 
2240     /*
2241      * We'll remember the old online type of each memory block, so we can
2242      * try to revert whatever we did when offlining one memory block fails
2243      * after offlining some others succeeded.
2244      */
2245     online_types = kmalloc_array(mb_count, sizeof(*online_types),
2246                      GFP_KERNEL);
2247     if (!online_types)
2248         return -ENOMEM;
2249     /*
2250      * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2251      * try_offline_memory_block(), we'll skip all unprocessed blocks in
2252      * try_reonline_memory_block().
2253      */
2254     memset(online_types, MMOP_OFFLINE, mb_count);
2255 
2256     lock_device_hotplug();
2257 
2258     tmp = online_types;
2259     rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2260 
2261     /*
2262      * In case we succeeded to offline all memory, remove it.
2263      * This cannot fail as it cannot get onlined in the meantime.
2264      */
2265     if (!rc) {
2266         rc = try_remove_memory(start, size);
2267         if (rc)
2268             pr_err("%s: Failed to remove memory: %d", __func__, rc);
2269     }
2270 
2271     /*
2272      * Rollback what we did. While memory onlining might theoretically fail
2273      * (nacked by a notifier), it barely ever happens.
2274      */
2275     if (rc) {
2276         tmp = online_types;
2277         walk_memory_blocks(start, size, &tmp,
2278                    try_reonline_memory_block);
2279     }
2280     unlock_device_hotplug();
2281 
2282     kfree(online_types);
2283     return rc;
2284 }
2285 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2286 #endif /* CONFIG_MEMORY_HOTREMOVE */