Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* memcontrol.c - Memory Controller
0003  *
0004  * Copyright IBM Corporation, 2007
0005  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
0006  *
0007  * Copyright 2007 OpenVZ SWsoft Inc
0008  * Author: Pavel Emelianov <xemul@openvz.org>
0009  *
0010  * Memory thresholds
0011  * Copyright (C) 2009 Nokia Corporation
0012  * Author: Kirill A. Shutemov
0013  *
0014  * Kernel Memory Controller
0015  * Copyright (C) 2012 Parallels Inc. and Google Inc.
0016  * Authors: Glauber Costa and Suleiman Souhlal
0017  *
0018  * Native page reclaim
0019  * Charge lifetime sanitation
0020  * Lockless page tracking & accounting
0021  * Unified hierarchy configuration model
0022  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
0023  *
0024  * Per memcg lru locking
0025  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
0026  */
0027 
0028 #include <linux/page_counter.h>
0029 #include <linux/memcontrol.h>
0030 #include <linux/cgroup.h>
0031 #include <linux/pagewalk.h>
0032 #include <linux/sched/mm.h>
0033 #include <linux/shmem_fs.h>
0034 #include <linux/hugetlb.h>
0035 #include <linux/pagemap.h>
0036 #include <linux/vm_event_item.h>
0037 #include <linux/smp.h>
0038 #include <linux/page-flags.h>
0039 #include <linux/backing-dev.h>
0040 #include <linux/bit_spinlock.h>
0041 #include <linux/rcupdate.h>
0042 #include <linux/limits.h>
0043 #include <linux/export.h>
0044 #include <linux/mutex.h>
0045 #include <linux/rbtree.h>
0046 #include <linux/slab.h>
0047 #include <linux/swap.h>
0048 #include <linux/swapops.h>
0049 #include <linux/spinlock.h>
0050 #include <linux/eventfd.h>
0051 #include <linux/poll.h>
0052 #include <linux/sort.h>
0053 #include <linux/fs.h>
0054 #include <linux/seq_file.h>
0055 #include <linux/vmpressure.h>
0056 #include <linux/memremap.h>
0057 #include <linux/mm_inline.h>
0058 #include <linux/swap_cgroup.h>
0059 #include <linux/cpu.h>
0060 #include <linux/oom.h>
0061 #include <linux/lockdep.h>
0062 #include <linux/file.h>
0063 #include <linux/resume_user_mode.h>
0064 #include <linux/psi.h>
0065 #include <linux/seq_buf.h>
0066 #include "internal.h"
0067 #include <net/sock.h>
0068 #include <net/ip.h>
0069 #include "slab.h"
0070 #include "swap.h"
0071 
0072 #include <linux/uaccess.h>
0073 
0074 #include <trace/events/vmscan.h>
0075 
0076 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
0077 EXPORT_SYMBOL(memory_cgrp_subsys);
0078 
0079 struct mem_cgroup *root_mem_cgroup __read_mostly;
0080 
0081 /* Active memory cgroup to use from an interrupt context */
0082 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
0083 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
0084 
0085 /* Socket memory accounting disabled? */
0086 static bool cgroup_memory_nosocket __ro_after_init;
0087 
0088 /* Kernel memory accounting disabled? */
0089 static bool cgroup_memory_nokmem __ro_after_init;
0090 
0091 /* Whether the swap controller is active */
0092 #ifdef CONFIG_MEMCG_SWAP
0093 static bool cgroup_memory_noswap __ro_after_init;
0094 #else
0095 #define cgroup_memory_noswap        1
0096 #endif
0097 
0098 #ifdef CONFIG_CGROUP_WRITEBACK
0099 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
0100 #endif
0101 
0102 /* Whether legacy memory+swap accounting is active */
0103 static bool do_memsw_account(void)
0104 {
0105     return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
0106 }
0107 
0108 #define THRESHOLDS_EVENTS_TARGET 128
0109 #define SOFTLIMIT_EVENTS_TARGET 1024
0110 
0111 /*
0112  * Cgroups above their limits are maintained in a RB-Tree, independent of
0113  * their hierarchy representation
0114  */
0115 
0116 struct mem_cgroup_tree_per_node {
0117     struct rb_root rb_root;
0118     struct rb_node *rb_rightmost;
0119     spinlock_t lock;
0120 };
0121 
0122 struct mem_cgroup_tree {
0123     struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
0124 };
0125 
0126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
0127 
0128 /* for OOM */
0129 struct mem_cgroup_eventfd_list {
0130     struct list_head list;
0131     struct eventfd_ctx *eventfd;
0132 };
0133 
0134 /*
0135  * cgroup_event represents events which userspace want to receive.
0136  */
0137 struct mem_cgroup_event {
0138     /*
0139      * memcg which the event belongs to.
0140      */
0141     struct mem_cgroup *memcg;
0142     /*
0143      * eventfd to signal userspace about the event.
0144      */
0145     struct eventfd_ctx *eventfd;
0146     /*
0147      * Each of these stored in a list by the cgroup.
0148      */
0149     struct list_head list;
0150     /*
0151      * register_event() callback will be used to add new userspace
0152      * waiter for changes related to this event.  Use eventfd_signal()
0153      * on eventfd to send notification to userspace.
0154      */
0155     int (*register_event)(struct mem_cgroup *memcg,
0156                   struct eventfd_ctx *eventfd, const char *args);
0157     /*
0158      * unregister_event() callback will be called when userspace closes
0159      * the eventfd or on cgroup removing.  This callback must be set,
0160      * if you want provide notification functionality.
0161      */
0162     void (*unregister_event)(struct mem_cgroup *memcg,
0163                  struct eventfd_ctx *eventfd);
0164     /*
0165      * All fields below needed to unregister event when
0166      * userspace closes eventfd.
0167      */
0168     poll_table pt;
0169     wait_queue_head_t *wqh;
0170     wait_queue_entry_t wait;
0171     struct work_struct remove;
0172 };
0173 
0174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
0175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
0176 
0177 /* Stuffs for move charges at task migration. */
0178 /*
0179  * Types of charges to be moved.
0180  */
0181 #define MOVE_ANON   0x1U
0182 #define MOVE_FILE   0x2U
0183 #define MOVE_MASK   (MOVE_ANON | MOVE_FILE)
0184 
0185 /* "mc" and its members are protected by cgroup_mutex */
0186 static struct move_charge_struct {
0187     spinlock_t    lock; /* for from, to */
0188     struct mm_struct  *mm;
0189     struct mem_cgroup *from;
0190     struct mem_cgroup *to;
0191     unsigned long flags;
0192     unsigned long precharge;
0193     unsigned long moved_charge;
0194     unsigned long moved_swap;
0195     struct task_struct *moving_task;    /* a task moving charges */
0196     wait_queue_head_t waitq;        /* a waitq for other context */
0197 } mc = {
0198     .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
0199     .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
0200 };
0201 
0202 /*
0203  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
0204  * limit reclaim to prevent infinite loops, if they ever occur.
0205  */
0206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS        100
0207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
0208 
0209 /* for encoding cft->private value on file */
0210 enum res_type {
0211     _MEM,
0212     _MEMSWAP,
0213     _KMEM,
0214     _TCP,
0215 };
0216 
0217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
0218 #define MEMFILE_TYPE(val)   ((val) >> 16 & 0xffff)
0219 #define MEMFILE_ATTR(val)   ((val) & 0xffff)
0220 
0221 /*
0222  * Iteration constructs for visiting all cgroups (under a tree).  If
0223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
0224  * be used for reference counting.
0225  */
0226 #define for_each_mem_cgroup_tree(iter, root)        \
0227     for (iter = mem_cgroup_iter(root, NULL, NULL);  \
0228          iter != NULL;              \
0229          iter = mem_cgroup_iter(root, iter, NULL))
0230 
0231 #define for_each_mem_cgroup(iter)           \
0232     for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
0233          iter != NULL;              \
0234          iter = mem_cgroup_iter(NULL, iter, NULL))
0235 
0236 static inline bool task_is_dying(void)
0237 {
0238     return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
0239         (current->flags & PF_EXITING);
0240 }
0241 
0242 /* Some nice accessors for the vmpressure. */
0243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
0244 {
0245     if (!memcg)
0246         memcg = root_mem_cgroup;
0247     return &memcg->vmpressure;
0248 }
0249 
0250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
0251 {
0252     return container_of(vmpr, struct mem_cgroup, vmpressure);
0253 }
0254 
0255 #ifdef CONFIG_MEMCG_KMEM
0256 static DEFINE_SPINLOCK(objcg_lock);
0257 
0258 bool mem_cgroup_kmem_disabled(void)
0259 {
0260     return cgroup_memory_nokmem;
0261 }
0262 
0263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
0264                       unsigned int nr_pages);
0265 
0266 static void obj_cgroup_release(struct percpu_ref *ref)
0267 {
0268     struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
0269     unsigned int nr_bytes;
0270     unsigned int nr_pages;
0271     unsigned long flags;
0272 
0273     /*
0274      * At this point all allocated objects are freed, and
0275      * objcg->nr_charged_bytes can't have an arbitrary byte value.
0276      * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
0277      *
0278      * The following sequence can lead to it:
0279      * 1) CPU0: objcg == stock->cached_objcg
0280      * 2) CPU1: we do a small allocation (e.g. 92 bytes),
0281      *          PAGE_SIZE bytes are charged
0282      * 3) CPU1: a process from another memcg is allocating something,
0283      *          the stock if flushed,
0284      *          objcg->nr_charged_bytes = PAGE_SIZE - 92
0285      * 5) CPU0: we do release this object,
0286      *          92 bytes are added to stock->nr_bytes
0287      * 6) CPU0: stock is flushed,
0288      *          92 bytes are added to objcg->nr_charged_bytes
0289      *
0290      * In the result, nr_charged_bytes == PAGE_SIZE.
0291      * This page will be uncharged in obj_cgroup_release().
0292      */
0293     nr_bytes = atomic_read(&objcg->nr_charged_bytes);
0294     WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
0295     nr_pages = nr_bytes >> PAGE_SHIFT;
0296 
0297     if (nr_pages)
0298         obj_cgroup_uncharge_pages(objcg, nr_pages);
0299 
0300     spin_lock_irqsave(&objcg_lock, flags);
0301     list_del(&objcg->list);
0302     spin_unlock_irqrestore(&objcg_lock, flags);
0303 
0304     percpu_ref_exit(ref);
0305     kfree_rcu(objcg, rcu);
0306 }
0307 
0308 static struct obj_cgroup *obj_cgroup_alloc(void)
0309 {
0310     struct obj_cgroup *objcg;
0311     int ret;
0312 
0313     objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
0314     if (!objcg)
0315         return NULL;
0316 
0317     ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
0318                   GFP_KERNEL);
0319     if (ret) {
0320         kfree(objcg);
0321         return NULL;
0322     }
0323     INIT_LIST_HEAD(&objcg->list);
0324     return objcg;
0325 }
0326 
0327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
0328                   struct mem_cgroup *parent)
0329 {
0330     struct obj_cgroup *objcg, *iter;
0331 
0332     objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
0333 
0334     spin_lock_irq(&objcg_lock);
0335 
0336     /* 1) Ready to reparent active objcg. */
0337     list_add(&objcg->list, &memcg->objcg_list);
0338     /* 2) Reparent active objcg and already reparented objcgs to parent. */
0339     list_for_each_entry(iter, &memcg->objcg_list, list)
0340         WRITE_ONCE(iter->memcg, parent);
0341     /* 3) Move already reparented objcgs to the parent's list */
0342     list_splice(&memcg->objcg_list, &parent->objcg_list);
0343 
0344     spin_unlock_irq(&objcg_lock);
0345 
0346     percpu_ref_kill(&objcg->refcnt);
0347 }
0348 
0349 /*
0350  * A lot of the calls to the cache allocation functions are expected to be
0351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
0352  * conditional to this static branch, we'll have to allow modules that does
0353  * kmem_cache_alloc and the such to see this symbol as well
0354  */
0355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
0356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
0357 #endif
0358 
0359 /**
0360  * mem_cgroup_css_from_page - css of the memcg associated with a page
0361  * @page: page of interest
0362  *
0363  * If memcg is bound to the default hierarchy, css of the memcg associated
0364  * with @page is returned.  The returned css remains associated with @page
0365  * until it is released.
0366  *
0367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
0368  * is returned.
0369  */
0370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
0371 {
0372     struct mem_cgroup *memcg;
0373 
0374     memcg = page_memcg(page);
0375 
0376     if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
0377         memcg = root_mem_cgroup;
0378 
0379     return &memcg->css;
0380 }
0381 
0382 /**
0383  * page_cgroup_ino - return inode number of the memcg a page is charged to
0384  * @page: the page
0385  *
0386  * Look up the closest online ancestor of the memory cgroup @page is charged to
0387  * and return its inode number or 0 if @page is not charged to any cgroup. It
0388  * is safe to call this function without holding a reference to @page.
0389  *
0390  * Note, this function is inherently racy, because there is nothing to prevent
0391  * the cgroup inode from getting torn down and potentially reallocated a moment
0392  * after page_cgroup_ino() returns, so it only should be used by callers that
0393  * do not care (such as procfs interfaces).
0394  */
0395 ino_t page_cgroup_ino(struct page *page)
0396 {
0397     struct mem_cgroup *memcg;
0398     unsigned long ino = 0;
0399 
0400     rcu_read_lock();
0401     memcg = page_memcg_check(page);
0402 
0403     while (memcg && !(memcg->css.flags & CSS_ONLINE))
0404         memcg = parent_mem_cgroup(memcg);
0405     if (memcg)
0406         ino = cgroup_ino(memcg->css.cgroup);
0407     rcu_read_unlock();
0408     return ino;
0409 }
0410 
0411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
0412                      struct mem_cgroup_tree_per_node *mctz,
0413                      unsigned long new_usage_in_excess)
0414 {
0415     struct rb_node **p = &mctz->rb_root.rb_node;
0416     struct rb_node *parent = NULL;
0417     struct mem_cgroup_per_node *mz_node;
0418     bool rightmost = true;
0419 
0420     if (mz->on_tree)
0421         return;
0422 
0423     mz->usage_in_excess = new_usage_in_excess;
0424     if (!mz->usage_in_excess)
0425         return;
0426     while (*p) {
0427         parent = *p;
0428         mz_node = rb_entry(parent, struct mem_cgroup_per_node,
0429                     tree_node);
0430         if (mz->usage_in_excess < mz_node->usage_in_excess) {
0431             p = &(*p)->rb_left;
0432             rightmost = false;
0433         } else {
0434             p = &(*p)->rb_right;
0435         }
0436     }
0437 
0438     if (rightmost)
0439         mctz->rb_rightmost = &mz->tree_node;
0440 
0441     rb_link_node(&mz->tree_node, parent, p);
0442     rb_insert_color(&mz->tree_node, &mctz->rb_root);
0443     mz->on_tree = true;
0444 }
0445 
0446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
0447                      struct mem_cgroup_tree_per_node *mctz)
0448 {
0449     if (!mz->on_tree)
0450         return;
0451 
0452     if (&mz->tree_node == mctz->rb_rightmost)
0453         mctz->rb_rightmost = rb_prev(&mz->tree_node);
0454 
0455     rb_erase(&mz->tree_node, &mctz->rb_root);
0456     mz->on_tree = false;
0457 }
0458 
0459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
0460                        struct mem_cgroup_tree_per_node *mctz)
0461 {
0462     unsigned long flags;
0463 
0464     spin_lock_irqsave(&mctz->lock, flags);
0465     __mem_cgroup_remove_exceeded(mz, mctz);
0466     spin_unlock_irqrestore(&mctz->lock, flags);
0467 }
0468 
0469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
0470 {
0471     unsigned long nr_pages = page_counter_read(&memcg->memory);
0472     unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
0473     unsigned long excess = 0;
0474 
0475     if (nr_pages > soft_limit)
0476         excess = nr_pages - soft_limit;
0477 
0478     return excess;
0479 }
0480 
0481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
0482 {
0483     unsigned long excess;
0484     struct mem_cgroup_per_node *mz;
0485     struct mem_cgroup_tree_per_node *mctz;
0486 
0487     mctz = soft_limit_tree.rb_tree_per_node[nid];
0488     if (!mctz)
0489         return;
0490     /*
0491      * Necessary to update all ancestors when hierarchy is used.
0492      * because their event counter is not touched.
0493      */
0494     for (; memcg; memcg = parent_mem_cgroup(memcg)) {
0495         mz = memcg->nodeinfo[nid];
0496         excess = soft_limit_excess(memcg);
0497         /*
0498          * We have to update the tree if mz is on RB-tree or
0499          * mem is over its softlimit.
0500          */
0501         if (excess || mz->on_tree) {
0502             unsigned long flags;
0503 
0504             spin_lock_irqsave(&mctz->lock, flags);
0505             /* if on-tree, remove it */
0506             if (mz->on_tree)
0507                 __mem_cgroup_remove_exceeded(mz, mctz);
0508             /*
0509              * Insert again. mz->usage_in_excess will be updated.
0510              * If excess is 0, no tree ops.
0511              */
0512             __mem_cgroup_insert_exceeded(mz, mctz, excess);
0513             spin_unlock_irqrestore(&mctz->lock, flags);
0514         }
0515     }
0516 }
0517 
0518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
0519 {
0520     struct mem_cgroup_tree_per_node *mctz;
0521     struct mem_cgroup_per_node *mz;
0522     int nid;
0523 
0524     for_each_node(nid) {
0525         mz = memcg->nodeinfo[nid];
0526         mctz = soft_limit_tree.rb_tree_per_node[nid];
0527         if (mctz)
0528             mem_cgroup_remove_exceeded(mz, mctz);
0529     }
0530 }
0531 
0532 static struct mem_cgroup_per_node *
0533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
0534 {
0535     struct mem_cgroup_per_node *mz;
0536 
0537 retry:
0538     mz = NULL;
0539     if (!mctz->rb_rightmost)
0540         goto done;      /* Nothing to reclaim from */
0541 
0542     mz = rb_entry(mctz->rb_rightmost,
0543               struct mem_cgroup_per_node, tree_node);
0544     /*
0545      * Remove the node now but someone else can add it back,
0546      * we will to add it back at the end of reclaim to its correct
0547      * position in the tree.
0548      */
0549     __mem_cgroup_remove_exceeded(mz, mctz);
0550     if (!soft_limit_excess(mz->memcg) ||
0551         !css_tryget(&mz->memcg->css))
0552         goto retry;
0553 done:
0554     return mz;
0555 }
0556 
0557 static struct mem_cgroup_per_node *
0558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
0559 {
0560     struct mem_cgroup_per_node *mz;
0561 
0562     spin_lock_irq(&mctz->lock);
0563     mz = __mem_cgroup_largest_soft_limit_node(mctz);
0564     spin_unlock_irq(&mctz->lock);
0565     return mz;
0566 }
0567 
0568 /*
0569  * memcg and lruvec stats flushing
0570  *
0571  * Many codepaths leading to stats update or read are performance sensitive and
0572  * adding stats flushing in such codepaths is not desirable. So, to optimize the
0573  * flushing the kernel does:
0574  *
0575  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
0576  *    rstat update tree grow unbounded.
0577  *
0578  * 2) Flush the stats synchronously on reader side only when there are more than
0579  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
0580  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
0581  *    only for 2 seconds due to (1).
0582  */
0583 static void flush_memcg_stats_dwork(struct work_struct *w);
0584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
0585 static DEFINE_SPINLOCK(stats_flush_lock);
0586 static DEFINE_PER_CPU(unsigned int, stats_updates);
0587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
0588 static u64 flush_next_time;
0589 
0590 #define FLUSH_TIME (2UL*HZ)
0591 
0592 /*
0593  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
0594  * not rely on this as part of an acquired spinlock_t lock. These functions are
0595  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
0596  * is sufficient.
0597  */
0598 static void memcg_stats_lock(void)
0599 {
0600 #ifdef CONFIG_PREEMPT_RT
0601       preempt_disable();
0602 #else
0603       VM_BUG_ON(!irqs_disabled());
0604 #endif
0605 }
0606 
0607 static void __memcg_stats_lock(void)
0608 {
0609 #ifdef CONFIG_PREEMPT_RT
0610       preempt_disable();
0611 #endif
0612 }
0613 
0614 static void memcg_stats_unlock(void)
0615 {
0616 #ifdef CONFIG_PREEMPT_RT
0617       preempt_enable();
0618 #endif
0619 }
0620 
0621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
0622 {
0623     unsigned int x;
0624 
0625     cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
0626 
0627     x = __this_cpu_add_return(stats_updates, abs(val));
0628     if (x > MEMCG_CHARGE_BATCH) {
0629         /*
0630          * If stats_flush_threshold exceeds the threshold
0631          * (>num_online_cpus()), cgroup stats update will be triggered
0632          * in __mem_cgroup_flush_stats(). Increasing this var further
0633          * is redundant and simply adds overhead in atomic update.
0634          */
0635         if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
0636             atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
0637         __this_cpu_write(stats_updates, 0);
0638     }
0639 }
0640 
0641 static void __mem_cgroup_flush_stats(void)
0642 {
0643     unsigned long flag;
0644 
0645     if (!spin_trylock_irqsave(&stats_flush_lock, flag))
0646         return;
0647 
0648     flush_next_time = jiffies_64 + 2*FLUSH_TIME;
0649     cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
0650     atomic_set(&stats_flush_threshold, 0);
0651     spin_unlock_irqrestore(&stats_flush_lock, flag);
0652 }
0653 
0654 void mem_cgroup_flush_stats(void)
0655 {
0656     if (atomic_read(&stats_flush_threshold) > num_online_cpus())
0657         __mem_cgroup_flush_stats();
0658 }
0659 
0660 void mem_cgroup_flush_stats_delayed(void)
0661 {
0662     if (time_after64(jiffies_64, flush_next_time))
0663         mem_cgroup_flush_stats();
0664 }
0665 
0666 static void flush_memcg_stats_dwork(struct work_struct *w)
0667 {
0668     __mem_cgroup_flush_stats();
0669     queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
0670 }
0671 
0672 /**
0673  * __mod_memcg_state - update cgroup memory statistics
0674  * @memcg: the memory cgroup
0675  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
0676  * @val: delta to add to the counter, can be negative
0677  */
0678 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
0679 {
0680     if (mem_cgroup_disabled())
0681         return;
0682 
0683     __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
0684     memcg_rstat_updated(memcg, val);
0685 }
0686 
0687 /* idx can be of type enum memcg_stat_item or node_stat_item. */
0688 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
0689 {
0690     long x = 0;
0691     int cpu;
0692 
0693     for_each_possible_cpu(cpu)
0694         x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
0695 #ifdef CONFIG_SMP
0696     if (x < 0)
0697         x = 0;
0698 #endif
0699     return x;
0700 }
0701 
0702 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
0703                   int val)
0704 {
0705     struct mem_cgroup_per_node *pn;
0706     struct mem_cgroup *memcg;
0707 
0708     pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
0709     memcg = pn->memcg;
0710 
0711     /*
0712      * The caller from rmap relay on disabled preemption becase they never
0713      * update their counter from in-interrupt context. For these two
0714      * counters we check that the update is never performed from an
0715      * interrupt context while other caller need to have disabled interrupt.
0716      */
0717     __memcg_stats_lock();
0718     if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
0719         switch (idx) {
0720         case NR_ANON_MAPPED:
0721         case NR_FILE_MAPPED:
0722         case NR_ANON_THPS:
0723         case NR_SHMEM_PMDMAPPED:
0724         case NR_FILE_PMDMAPPED:
0725             WARN_ON_ONCE(!in_task());
0726             break;
0727         default:
0728             WARN_ON_ONCE(!irqs_disabled());
0729         }
0730     }
0731 
0732     /* Update memcg */
0733     __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
0734 
0735     /* Update lruvec */
0736     __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
0737 
0738     memcg_rstat_updated(memcg, val);
0739     memcg_stats_unlock();
0740 }
0741 
0742 /**
0743  * __mod_lruvec_state - update lruvec memory statistics
0744  * @lruvec: the lruvec
0745  * @idx: the stat item
0746  * @val: delta to add to the counter, can be negative
0747  *
0748  * The lruvec is the intersection of the NUMA node and a cgroup. This
0749  * function updates the all three counters that are affected by a
0750  * change of state at this level: per-node, per-cgroup, per-lruvec.
0751  */
0752 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
0753             int val)
0754 {
0755     /* Update node */
0756     __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
0757 
0758     /* Update memcg and lruvec */
0759     if (!mem_cgroup_disabled())
0760         __mod_memcg_lruvec_state(lruvec, idx, val);
0761 }
0762 
0763 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
0764                  int val)
0765 {
0766     struct page *head = compound_head(page); /* rmap on tail pages */
0767     struct mem_cgroup *memcg;
0768     pg_data_t *pgdat = page_pgdat(page);
0769     struct lruvec *lruvec;
0770 
0771     rcu_read_lock();
0772     memcg = page_memcg(head);
0773     /* Untracked pages have no memcg, no lruvec. Update only the node */
0774     if (!memcg) {
0775         rcu_read_unlock();
0776         __mod_node_page_state(pgdat, idx, val);
0777         return;
0778     }
0779 
0780     lruvec = mem_cgroup_lruvec(memcg, pgdat);
0781     __mod_lruvec_state(lruvec, idx, val);
0782     rcu_read_unlock();
0783 }
0784 EXPORT_SYMBOL(__mod_lruvec_page_state);
0785 
0786 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
0787 {
0788     pg_data_t *pgdat = page_pgdat(virt_to_page(p));
0789     struct mem_cgroup *memcg;
0790     struct lruvec *lruvec;
0791 
0792     rcu_read_lock();
0793     memcg = mem_cgroup_from_slab_obj(p);
0794 
0795     /*
0796      * Untracked pages have no memcg, no lruvec. Update only the
0797      * node. If we reparent the slab objects to the root memcg,
0798      * when we free the slab object, we need to update the per-memcg
0799      * vmstats to keep it correct for the root memcg.
0800      */
0801     if (!memcg) {
0802         __mod_node_page_state(pgdat, idx, val);
0803     } else {
0804         lruvec = mem_cgroup_lruvec(memcg, pgdat);
0805         __mod_lruvec_state(lruvec, idx, val);
0806     }
0807     rcu_read_unlock();
0808 }
0809 
0810 /**
0811  * __count_memcg_events - account VM events in a cgroup
0812  * @memcg: the memory cgroup
0813  * @idx: the event item
0814  * @count: the number of events that occurred
0815  */
0816 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
0817               unsigned long count)
0818 {
0819     if (mem_cgroup_disabled())
0820         return;
0821 
0822     memcg_stats_lock();
0823     __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
0824     memcg_rstat_updated(memcg, count);
0825     memcg_stats_unlock();
0826 }
0827 
0828 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
0829 {
0830     return READ_ONCE(memcg->vmstats.events[event]);
0831 }
0832 
0833 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
0834 {
0835     long x = 0;
0836     int cpu;
0837 
0838     for_each_possible_cpu(cpu)
0839         x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
0840     return x;
0841 }
0842 
0843 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
0844                      int nr_pages)
0845 {
0846     /* pagein of a big page is an event. So, ignore page size */
0847     if (nr_pages > 0)
0848         __count_memcg_events(memcg, PGPGIN, 1);
0849     else {
0850         __count_memcg_events(memcg, PGPGOUT, 1);
0851         nr_pages = -nr_pages; /* for event */
0852     }
0853 
0854     __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
0855 }
0856 
0857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
0858                        enum mem_cgroup_events_target target)
0859 {
0860     unsigned long val, next;
0861 
0862     val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
0863     next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
0864     /* from time_after() in jiffies.h */
0865     if ((long)(next - val) < 0) {
0866         switch (target) {
0867         case MEM_CGROUP_TARGET_THRESH:
0868             next = val + THRESHOLDS_EVENTS_TARGET;
0869             break;
0870         case MEM_CGROUP_TARGET_SOFTLIMIT:
0871             next = val + SOFTLIMIT_EVENTS_TARGET;
0872             break;
0873         default:
0874             break;
0875         }
0876         __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
0877         return true;
0878     }
0879     return false;
0880 }
0881 
0882 /*
0883  * Check events in order.
0884  *
0885  */
0886 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
0887 {
0888     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0889         return;
0890 
0891     /* threshold event is triggered in finer grain than soft limit */
0892     if (unlikely(mem_cgroup_event_ratelimit(memcg,
0893                         MEM_CGROUP_TARGET_THRESH))) {
0894         bool do_softlimit;
0895 
0896         do_softlimit = mem_cgroup_event_ratelimit(memcg,
0897                         MEM_CGROUP_TARGET_SOFTLIMIT);
0898         mem_cgroup_threshold(memcg);
0899         if (unlikely(do_softlimit))
0900             mem_cgroup_update_tree(memcg, nid);
0901     }
0902 }
0903 
0904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
0905 {
0906     /*
0907      * mm_update_next_owner() may clear mm->owner to NULL
0908      * if it races with swapoff, page migration, etc.
0909      * So this can be called with p == NULL.
0910      */
0911     if (unlikely(!p))
0912         return NULL;
0913 
0914     return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
0915 }
0916 EXPORT_SYMBOL(mem_cgroup_from_task);
0917 
0918 static __always_inline struct mem_cgroup *active_memcg(void)
0919 {
0920     if (!in_task())
0921         return this_cpu_read(int_active_memcg);
0922     else
0923         return current->active_memcg;
0924 }
0925 
0926 /**
0927  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
0928  * @mm: mm from which memcg should be extracted. It can be NULL.
0929  *
0930  * Obtain a reference on mm->memcg and returns it if successful. If mm
0931  * is NULL, then the memcg is chosen as follows:
0932  * 1) The active memcg, if set.
0933  * 2) current->mm->memcg, if available
0934  * 3) root memcg
0935  * If mem_cgroup is disabled, NULL is returned.
0936  */
0937 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
0938 {
0939     struct mem_cgroup *memcg;
0940 
0941     if (mem_cgroup_disabled())
0942         return NULL;
0943 
0944     /*
0945      * Page cache insertions can happen without an
0946      * actual mm context, e.g. during disk probing
0947      * on boot, loopback IO, acct() writes etc.
0948      *
0949      * No need to css_get on root memcg as the reference
0950      * counting is disabled on the root level in the
0951      * cgroup core. See CSS_NO_REF.
0952      */
0953     if (unlikely(!mm)) {
0954         memcg = active_memcg();
0955         if (unlikely(memcg)) {
0956             /* remote memcg must hold a ref */
0957             css_get(&memcg->css);
0958             return memcg;
0959         }
0960         mm = current->mm;
0961         if (unlikely(!mm))
0962             return root_mem_cgroup;
0963     }
0964 
0965     rcu_read_lock();
0966     do {
0967         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
0968         if (unlikely(!memcg))
0969             memcg = root_mem_cgroup;
0970     } while (!css_tryget(&memcg->css));
0971     rcu_read_unlock();
0972     return memcg;
0973 }
0974 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
0975 
0976 static __always_inline bool memcg_kmem_bypass(void)
0977 {
0978     /* Allow remote memcg charging from any context. */
0979     if (unlikely(active_memcg()))
0980         return false;
0981 
0982     /* Memcg to charge can't be determined. */
0983     if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
0984         return true;
0985 
0986     return false;
0987 }
0988 
0989 /**
0990  * mem_cgroup_iter - iterate over memory cgroup hierarchy
0991  * @root: hierarchy root
0992  * @prev: previously returned memcg, NULL on first invocation
0993  * @reclaim: cookie for shared reclaim walks, NULL for full walks
0994  *
0995  * Returns references to children of the hierarchy below @root, or
0996  * @root itself, or %NULL after a full round-trip.
0997  *
0998  * Caller must pass the return value in @prev on subsequent
0999  * invocations for reference counting, or use mem_cgroup_iter_break()
1000  * to cancel a hierarchy walk before the round-trip is complete.
1001  *
1002  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003  * in the hierarchy among all concurrent reclaimers operating on the
1004  * same node.
1005  */
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007                    struct mem_cgroup *prev,
1008                    struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010     struct mem_cgroup_reclaim_iter *iter;
1011     struct cgroup_subsys_state *css = NULL;
1012     struct mem_cgroup *memcg = NULL;
1013     struct mem_cgroup *pos = NULL;
1014 
1015     if (mem_cgroup_disabled())
1016         return NULL;
1017 
1018     if (!root)
1019         root = root_mem_cgroup;
1020 
1021     rcu_read_lock();
1022 
1023     if (reclaim) {
1024         struct mem_cgroup_per_node *mz;
1025 
1026         mz = root->nodeinfo[reclaim->pgdat->node_id];
1027         iter = &mz->iter;
1028 
1029         /*
1030          * On start, join the current reclaim iteration cycle.
1031          * Exit when a concurrent walker completes it.
1032          */
1033         if (!prev)
1034             reclaim->generation = iter->generation;
1035         else if (reclaim->generation != iter->generation)
1036             goto out_unlock;
1037 
1038         while (1) {
1039             pos = READ_ONCE(iter->position);
1040             if (!pos || css_tryget(&pos->css))
1041                 break;
1042             /*
1043              * css reference reached zero, so iter->position will
1044              * be cleared by ->css_released. However, we should not
1045              * rely on this happening soon, because ->css_released
1046              * is called from a work queue, and by busy-waiting we
1047              * might block it. So we clear iter->position right
1048              * away.
1049              */
1050             (void)cmpxchg(&iter->position, pos, NULL);
1051         }
1052     } else if (prev) {
1053         pos = prev;
1054     }
1055 
1056     if (pos)
1057         css = &pos->css;
1058 
1059     for (;;) {
1060         css = css_next_descendant_pre(css, &root->css);
1061         if (!css) {
1062             /*
1063              * Reclaimers share the hierarchy walk, and a
1064              * new one might jump in right at the end of
1065              * the hierarchy - make sure they see at least
1066              * one group and restart from the beginning.
1067              */
1068             if (!prev)
1069                 continue;
1070             break;
1071         }
1072 
1073         /*
1074          * Verify the css and acquire a reference.  The root
1075          * is provided by the caller, so we know it's alive
1076          * and kicking, and don't take an extra reference.
1077          */
1078         if (css == &root->css || css_tryget(css)) {
1079             memcg = mem_cgroup_from_css(css);
1080             break;
1081         }
1082     }
1083 
1084     if (reclaim) {
1085         /*
1086          * The position could have already been updated by a competing
1087          * thread, so check that the value hasn't changed since we read
1088          * it to avoid reclaiming from the same cgroup twice.
1089          */
1090         (void)cmpxchg(&iter->position, pos, memcg);
1091 
1092         if (pos)
1093             css_put(&pos->css);
1094 
1095         if (!memcg)
1096             iter->generation++;
1097     }
1098 
1099 out_unlock:
1100     rcu_read_unlock();
1101     if (prev && prev != root)
1102         css_put(&prev->css);
1103 
1104     return memcg;
1105 }
1106 
1107 /**
1108  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109  * @root: hierarchy root
1110  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111  */
1112 void mem_cgroup_iter_break(struct mem_cgroup *root,
1113                struct mem_cgroup *prev)
1114 {
1115     if (!root)
1116         root = root_mem_cgroup;
1117     if (prev && prev != root)
1118         css_put(&prev->css);
1119 }
1120 
1121 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1122                     struct mem_cgroup *dead_memcg)
1123 {
1124     struct mem_cgroup_reclaim_iter *iter;
1125     struct mem_cgroup_per_node *mz;
1126     int nid;
1127 
1128     for_each_node(nid) {
1129         mz = from->nodeinfo[nid];
1130         iter = &mz->iter;
1131         cmpxchg(&iter->position, dead_memcg, NULL);
1132     }
1133 }
1134 
1135 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1136 {
1137     struct mem_cgroup *memcg = dead_memcg;
1138     struct mem_cgroup *last;
1139 
1140     do {
1141         __invalidate_reclaim_iterators(memcg, dead_memcg);
1142         last = memcg;
1143     } while ((memcg = parent_mem_cgroup(memcg)));
1144 
1145     /*
1146      * When cgruop1 non-hierarchy mode is used,
1147      * parent_mem_cgroup() does not walk all the way up to the
1148      * cgroup root (root_mem_cgroup). So we have to handle
1149      * dead_memcg from cgroup root separately.
1150      */
1151     if (last != root_mem_cgroup)
1152         __invalidate_reclaim_iterators(root_mem_cgroup,
1153                         dead_memcg);
1154 }
1155 
1156 /**
1157  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1158  * @memcg: hierarchy root
1159  * @fn: function to call for each task
1160  * @arg: argument passed to @fn
1161  *
1162  * This function iterates over tasks attached to @memcg or to any of its
1163  * descendants and calls @fn for each task. If @fn returns a non-zero
1164  * value, the function breaks the iteration loop and returns the value.
1165  * Otherwise, it will iterate over all tasks and return 0.
1166  *
1167  * This function must not be called for the root memory cgroup.
1168  */
1169 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1170               int (*fn)(struct task_struct *, void *), void *arg)
1171 {
1172     struct mem_cgroup *iter;
1173     int ret = 0;
1174 
1175     BUG_ON(memcg == root_mem_cgroup);
1176 
1177     for_each_mem_cgroup_tree(iter, memcg) {
1178         struct css_task_iter it;
1179         struct task_struct *task;
1180 
1181         css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1182         while (!ret && (task = css_task_iter_next(&it)))
1183             ret = fn(task, arg);
1184         css_task_iter_end(&it);
1185         if (ret) {
1186             mem_cgroup_iter_break(memcg, iter);
1187             break;
1188         }
1189     }
1190     return ret;
1191 }
1192 
1193 #ifdef CONFIG_DEBUG_VM
1194 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1195 {
1196     struct mem_cgroup *memcg;
1197 
1198     if (mem_cgroup_disabled())
1199         return;
1200 
1201     memcg = folio_memcg(folio);
1202 
1203     if (!memcg)
1204         VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1205     else
1206         VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1207 }
1208 #endif
1209 
1210 /**
1211  * folio_lruvec_lock - Lock the lruvec for a folio.
1212  * @folio: Pointer to the folio.
1213  *
1214  * These functions are safe to use under any of the following conditions:
1215  * - folio locked
1216  * - folio_test_lru false
1217  * - folio_memcg_lock()
1218  * - folio frozen (refcount of 0)
1219  *
1220  * Return: The lruvec this folio is on with its lock held.
1221  */
1222 struct lruvec *folio_lruvec_lock(struct folio *folio)
1223 {
1224     struct lruvec *lruvec = folio_lruvec(folio);
1225 
1226     spin_lock(&lruvec->lru_lock);
1227     lruvec_memcg_debug(lruvec, folio);
1228 
1229     return lruvec;
1230 }
1231 
1232 /**
1233  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1234  * @folio: Pointer to the folio.
1235  *
1236  * These functions are safe to use under any of the following conditions:
1237  * - folio locked
1238  * - folio_test_lru false
1239  * - folio_memcg_lock()
1240  * - folio frozen (refcount of 0)
1241  *
1242  * Return: The lruvec this folio is on with its lock held and interrupts
1243  * disabled.
1244  */
1245 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246 {
1247     struct lruvec *lruvec = folio_lruvec(folio);
1248 
1249     spin_lock_irq(&lruvec->lru_lock);
1250     lruvec_memcg_debug(lruvec, folio);
1251 
1252     return lruvec;
1253 }
1254 
1255 /**
1256  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1257  * @folio: Pointer to the folio.
1258  * @flags: Pointer to irqsave flags.
1259  *
1260  * These functions are safe to use under any of the following conditions:
1261  * - folio locked
1262  * - folio_test_lru false
1263  * - folio_memcg_lock()
1264  * - folio frozen (refcount of 0)
1265  *
1266  * Return: The lruvec this folio is on with its lock held and interrupts
1267  * disabled.
1268  */
1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1270         unsigned long *flags)
1271 {
1272     struct lruvec *lruvec = folio_lruvec(folio);
1273 
1274     spin_lock_irqsave(&lruvec->lru_lock, *flags);
1275     lruvec_memcg_debug(lruvec, folio);
1276 
1277     return lruvec;
1278 }
1279 
1280 /**
1281  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1282  * @lruvec: mem_cgroup per zone lru vector
1283  * @lru: index of lru list the page is sitting on
1284  * @zid: zone id of the accounted pages
1285  * @nr_pages: positive when adding or negative when removing
1286  *
1287  * This function must be called under lru_lock, just before a page is added
1288  * to or just after a page is removed from an lru list.
1289  */
1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291                 int zid, int nr_pages)
1292 {
1293     struct mem_cgroup_per_node *mz;
1294     unsigned long *lru_size;
1295     long size;
1296 
1297     if (mem_cgroup_disabled())
1298         return;
1299 
1300     mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301     lru_size = &mz->lru_zone_size[zid][lru];
1302 
1303     if (nr_pages < 0)
1304         *lru_size += nr_pages;
1305 
1306     size = *lru_size;
1307     if (WARN_ONCE(size < 0,
1308         "%s(%p, %d, %d): lru_size %ld\n",
1309         __func__, lruvec, lru, nr_pages, size)) {
1310         VM_BUG_ON(1);
1311         *lru_size = 0;
1312     }
1313 
1314     if (nr_pages > 0)
1315         *lru_size += nr_pages;
1316 }
1317 
1318 /**
1319  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1320  * @memcg: the memory cgroup
1321  *
1322  * Returns the maximum amount of memory @mem can be charged with, in
1323  * pages.
1324  */
1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326 {
1327     unsigned long margin = 0;
1328     unsigned long count;
1329     unsigned long limit;
1330 
1331     count = page_counter_read(&memcg->memory);
1332     limit = READ_ONCE(memcg->memory.max);
1333     if (count < limit)
1334         margin = limit - count;
1335 
1336     if (do_memsw_account()) {
1337         count = page_counter_read(&memcg->memsw);
1338         limit = READ_ONCE(memcg->memsw.max);
1339         if (count < limit)
1340             margin = min(margin, limit - count);
1341         else
1342             margin = 0;
1343     }
1344 
1345     return margin;
1346 }
1347 
1348 /*
1349  * A routine for checking "mem" is under move_account() or not.
1350  *
1351  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1352  * moving cgroups. This is for waiting at high-memory pressure
1353  * caused by "move".
1354  */
1355 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1356 {
1357     struct mem_cgroup *from;
1358     struct mem_cgroup *to;
1359     bool ret = false;
1360     /*
1361      * Unlike task_move routines, we access mc.to, mc.from not under
1362      * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1363      */
1364     spin_lock(&mc.lock);
1365     from = mc.from;
1366     to = mc.to;
1367     if (!from)
1368         goto unlock;
1369 
1370     ret = mem_cgroup_is_descendant(from, memcg) ||
1371         mem_cgroup_is_descendant(to, memcg);
1372 unlock:
1373     spin_unlock(&mc.lock);
1374     return ret;
1375 }
1376 
1377 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1378 {
1379     if (mc.moving_task && current != mc.moving_task) {
1380         if (mem_cgroup_under_move(memcg)) {
1381             DEFINE_WAIT(wait);
1382             prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1383             /* moving charge context might have finished. */
1384             if (mc.moving_task)
1385                 schedule();
1386             finish_wait(&mc.waitq, &wait);
1387             return true;
1388         }
1389     }
1390     return false;
1391 }
1392 
1393 struct memory_stat {
1394     const char *name;
1395     unsigned int idx;
1396 };
1397 
1398 static const struct memory_stat memory_stats[] = {
1399     { "anon",           NR_ANON_MAPPED          },
1400     { "file",           NR_FILE_PAGES           },
1401     { "kernel",         MEMCG_KMEM          },
1402     { "kernel_stack",       NR_KERNEL_STACK_KB      },
1403     { "pagetables",         NR_PAGETABLE            },
1404     { "percpu",         MEMCG_PERCPU_B          },
1405     { "sock",           MEMCG_SOCK          },
1406     { "vmalloc",            MEMCG_VMALLOC           },
1407     { "shmem",          NR_SHMEM            },
1408 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1409     { "zswap",          MEMCG_ZSWAP_B           },
1410     { "zswapped",           MEMCG_ZSWAPPED          },
1411 #endif
1412     { "file_mapped",        NR_FILE_MAPPED          },
1413     { "file_dirty",         NR_FILE_DIRTY           },
1414     { "file_writeback",     NR_WRITEBACK            },
1415 #ifdef CONFIG_SWAP
1416     { "swapcached",         NR_SWAPCACHE            },
1417 #endif
1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1419     { "anon_thp",           NR_ANON_THPS            },
1420     { "file_thp",           NR_FILE_THPS            },
1421     { "shmem_thp",          NR_SHMEM_THPS           },
1422 #endif
1423     { "inactive_anon",      NR_INACTIVE_ANON        },
1424     { "active_anon",        NR_ACTIVE_ANON          },
1425     { "inactive_file",      NR_INACTIVE_FILE        },
1426     { "active_file",        NR_ACTIVE_FILE          },
1427     { "unevictable",        NR_UNEVICTABLE          },
1428     { "slab_reclaimable",       NR_SLAB_RECLAIMABLE_B       },
1429     { "slab_unreclaimable",     NR_SLAB_UNRECLAIMABLE_B     },
1430 
1431     /* The memory events */
1432     { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON     },
1433     { "workingset_refault_file",    WORKINGSET_REFAULT_FILE     },
1434     { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON    },
1435     { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE    },
1436     { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON     },
1437     { "workingset_restore_file",    WORKINGSET_RESTORE_FILE     },
1438     { "workingset_nodereclaim", WORKINGSET_NODERECLAIM      },
1439 };
1440 
1441 /* Translate stat items to the correct unit for memory.stat output */
1442 static int memcg_page_state_unit(int item)
1443 {
1444     switch (item) {
1445     case MEMCG_PERCPU_B:
1446     case MEMCG_ZSWAP_B:
1447     case NR_SLAB_RECLAIMABLE_B:
1448     case NR_SLAB_UNRECLAIMABLE_B:
1449     case WORKINGSET_REFAULT_ANON:
1450     case WORKINGSET_REFAULT_FILE:
1451     case WORKINGSET_ACTIVATE_ANON:
1452     case WORKINGSET_ACTIVATE_FILE:
1453     case WORKINGSET_RESTORE_ANON:
1454     case WORKINGSET_RESTORE_FILE:
1455     case WORKINGSET_NODERECLAIM:
1456         return 1;
1457     case NR_KERNEL_STACK_KB:
1458         return SZ_1K;
1459     default:
1460         return PAGE_SIZE;
1461     }
1462 }
1463 
1464 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1465                             int item)
1466 {
1467     return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1468 }
1469 
1470 /* Subset of vm_event_item to report for memcg event stats */
1471 static const unsigned int memcg_vm_event_stat[] = {
1472     PGSCAN_KSWAPD,
1473     PGSCAN_DIRECT,
1474     PGSTEAL_KSWAPD,
1475     PGSTEAL_DIRECT,
1476     PGFAULT,
1477     PGMAJFAULT,
1478     PGREFILL,
1479     PGACTIVATE,
1480     PGDEACTIVATE,
1481     PGLAZYFREE,
1482     PGLAZYFREED,
1483 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1484     ZSWPIN,
1485     ZSWPOUT,
1486 #endif
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488     THP_FAULT_ALLOC,
1489     THP_COLLAPSE_ALLOC,
1490 #endif
1491 };
1492 
1493 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1494 {
1495     struct seq_buf s;
1496     int i;
1497 
1498     seq_buf_init(&s, buf, bufsize);
1499 
1500     /*
1501      * Provide statistics on the state of the memory subsystem as
1502      * well as cumulative event counters that show past behavior.
1503      *
1504      * This list is ordered following a combination of these gradients:
1505      * 1) generic big picture -> specifics and details
1506      * 2) reflecting userspace activity -> reflecting kernel heuristics
1507      *
1508      * Current memory state:
1509      */
1510     mem_cgroup_flush_stats();
1511 
1512     for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1513         u64 size;
1514 
1515         size = memcg_page_state_output(memcg, memory_stats[i].idx);
1516         seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1517 
1518         if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1519             size += memcg_page_state_output(memcg,
1520                             NR_SLAB_RECLAIMABLE_B);
1521             seq_buf_printf(&s, "slab %llu\n", size);
1522         }
1523     }
1524 
1525     /* Accumulated memory events */
1526     seq_buf_printf(&s, "pgscan %lu\n",
1527                memcg_events(memcg, PGSCAN_KSWAPD) +
1528                memcg_events(memcg, PGSCAN_DIRECT));
1529     seq_buf_printf(&s, "pgsteal %lu\n",
1530                memcg_events(memcg, PGSTEAL_KSWAPD) +
1531                memcg_events(memcg, PGSTEAL_DIRECT));
1532 
1533     for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1534         seq_buf_printf(&s, "%s %lu\n",
1535                    vm_event_name(memcg_vm_event_stat[i]),
1536                    memcg_events(memcg, memcg_vm_event_stat[i]));
1537 
1538     /* The above should easily fit into one page */
1539     WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1540 }
1541 
1542 #define K(x) ((x) << (PAGE_SHIFT-10))
1543 /**
1544  * mem_cgroup_print_oom_context: Print OOM information relevant to
1545  * memory controller.
1546  * @memcg: The memory cgroup that went over limit
1547  * @p: Task that is going to be killed
1548  *
1549  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550  * enabled
1551  */
1552 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1553 {
1554     rcu_read_lock();
1555 
1556     if (memcg) {
1557         pr_cont(",oom_memcg=");
1558         pr_cont_cgroup_path(memcg->css.cgroup);
1559     } else
1560         pr_cont(",global_oom");
1561     if (p) {
1562         pr_cont(",task_memcg=");
1563         pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1564     }
1565     rcu_read_unlock();
1566 }
1567 
1568 /**
1569  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1570  * memory controller.
1571  * @memcg: The memory cgroup that went over limit
1572  */
1573 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1574 {
1575     /* Use static buffer, for the caller is holding oom_lock. */
1576     static char buf[PAGE_SIZE];
1577 
1578     lockdep_assert_held(&oom_lock);
1579 
1580     pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1581         K((u64)page_counter_read(&memcg->memory)),
1582         K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1583     if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1584         pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585             K((u64)page_counter_read(&memcg->swap)),
1586             K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1587     else {
1588         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589             K((u64)page_counter_read(&memcg->memsw)),
1590             K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592             K((u64)page_counter_read(&memcg->kmem)),
1593             K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1594     }
1595 
1596     pr_info("Memory cgroup stats for ");
1597     pr_cont_cgroup_path(memcg->css.cgroup);
1598     pr_cont(":");
1599     memory_stat_format(memcg, buf, sizeof(buf));
1600     pr_info("%s", buf);
1601 }
1602 
1603 /*
1604  * Return the memory (and swap, if configured) limit for a memcg.
1605  */
1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1607 {
1608     unsigned long max = READ_ONCE(memcg->memory.max);
1609 
1610     if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1611         if (mem_cgroup_swappiness(memcg))
1612             max += min(READ_ONCE(memcg->swap.max),
1613                    (unsigned long)total_swap_pages);
1614     } else { /* v1 */
1615         if (mem_cgroup_swappiness(memcg)) {
1616             /* Calculate swap excess capacity from memsw limit */
1617             unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1618 
1619             max += min(swap, (unsigned long)total_swap_pages);
1620         }
1621     }
1622     return max;
1623 }
1624 
1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1626 {
1627     return page_counter_read(&memcg->memory);
1628 }
1629 
1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1631                      int order)
1632 {
1633     struct oom_control oc = {
1634         .zonelist = NULL,
1635         .nodemask = NULL,
1636         .memcg = memcg,
1637         .gfp_mask = gfp_mask,
1638         .order = order,
1639     };
1640     bool ret = true;
1641 
1642     if (mutex_lock_killable(&oom_lock))
1643         return true;
1644 
1645     if (mem_cgroup_margin(memcg) >= (1 << order))
1646         goto unlock;
1647 
1648     /*
1649      * A few threads which were not waiting at mutex_lock_killable() can
1650      * fail to bail out. Therefore, check again after holding oom_lock.
1651      */
1652     ret = task_is_dying() || out_of_memory(&oc);
1653 
1654 unlock:
1655     mutex_unlock(&oom_lock);
1656     return ret;
1657 }
1658 
1659 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1660                    pg_data_t *pgdat,
1661                    gfp_t gfp_mask,
1662                    unsigned long *total_scanned)
1663 {
1664     struct mem_cgroup *victim = NULL;
1665     int total = 0;
1666     int loop = 0;
1667     unsigned long excess;
1668     unsigned long nr_scanned;
1669     struct mem_cgroup_reclaim_cookie reclaim = {
1670         .pgdat = pgdat,
1671     };
1672 
1673     excess = soft_limit_excess(root_memcg);
1674 
1675     while (1) {
1676         victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1677         if (!victim) {
1678             loop++;
1679             if (loop >= 2) {
1680                 /*
1681                  * If we have not been able to reclaim
1682                  * anything, it might because there are
1683                  * no reclaimable pages under this hierarchy
1684                  */
1685                 if (!total)
1686                     break;
1687                 /*
1688                  * We want to do more targeted reclaim.
1689                  * excess >> 2 is not to excessive so as to
1690                  * reclaim too much, nor too less that we keep
1691                  * coming back to reclaim from this cgroup
1692                  */
1693                 if (total >= (excess >> 2) ||
1694                     (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1695                     break;
1696             }
1697             continue;
1698         }
1699         total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1700                     pgdat, &nr_scanned);
1701         *total_scanned += nr_scanned;
1702         if (!soft_limit_excess(root_memcg))
1703             break;
1704     }
1705     mem_cgroup_iter_break(root_memcg, victim);
1706     return total;
1707 }
1708 
1709 #ifdef CONFIG_LOCKDEP
1710 static struct lockdep_map memcg_oom_lock_dep_map = {
1711     .name = "memcg_oom_lock",
1712 };
1713 #endif
1714 
1715 static DEFINE_SPINLOCK(memcg_oom_lock);
1716 
1717 /*
1718  * Check OOM-Killer is already running under our hierarchy.
1719  * If someone is running, return false.
1720  */
1721 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1722 {
1723     struct mem_cgroup *iter, *failed = NULL;
1724 
1725     spin_lock(&memcg_oom_lock);
1726 
1727     for_each_mem_cgroup_tree(iter, memcg) {
1728         if (iter->oom_lock) {
1729             /*
1730              * this subtree of our hierarchy is already locked
1731              * so we cannot give a lock.
1732              */
1733             failed = iter;
1734             mem_cgroup_iter_break(memcg, iter);
1735             break;
1736         } else
1737             iter->oom_lock = true;
1738     }
1739 
1740     if (failed) {
1741         /*
1742          * OK, we failed to lock the whole subtree so we have
1743          * to clean up what we set up to the failing subtree
1744          */
1745         for_each_mem_cgroup_tree(iter, memcg) {
1746             if (iter == failed) {
1747                 mem_cgroup_iter_break(memcg, iter);
1748                 break;
1749             }
1750             iter->oom_lock = false;
1751         }
1752     } else
1753         mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1754 
1755     spin_unlock(&memcg_oom_lock);
1756 
1757     return !failed;
1758 }
1759 
1760 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1761 {
1762     struct mem_cgroup *iter;
1763 
1764     spin_lock(&memcg_oom_lock);
1765     mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1766     for_each_mem_cgroup_tree(iter, memcg)
1767         iter->oom_lock = false;
1768     spin_unlock(&memcg_oom_lock);
1769 }
1770 
1771 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1772 {
1773     struct mem_cgroup *iter;
1774 
1775     spin_lock(&memcg_oom_lock);
1776     for_each_mem_cgroup_tree(iter, memcg)
1777         iter->under_oom++;
1778     spin_unlock(&memcg_oom_lock);
1779 }
1780 
1781 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1782 {
1783     struct mem_cgroup *iter;
1784 
1785     /*
1786      * Be careful about under_oom underflows because a child memcg
1787      * could have been added after mem_cgroup_mark_under_oom.
1788      */
1789     spin_lock(&memcg_oom_lock);
1790     for_each_mem_cgroup_tree(iter, memcg)
1791         if (iter->under_oom > 0)
1792             iter->under_oom--;
1793     spin_unlock(&memcg_oom_lock);
1794 }
1795 
1796 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1797 
1798 struct oom_wait_info {
1799     struct mem_cgroup *memcg;
1800     wait_queue_entry_t  wait;
1801 };
1802 
1803 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1804     unsigned mode, int sync, void *arg)
1805 {
1806     struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1807     struct mem_cgroup *oom_wait_memcg;
1808     struct oom_wait_info *oom_wait_info;
1809 
1810     oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1811     oom_wait_memcg = oom_wait_info->memcg;
1812 
1813     if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1814         !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1815         return 0;
1816     return autoremove_wake_function(wait, mode, sync, arg);
1817 }
1818 
1819 static void memcg_oom_recover(struct mem_cgroup *memcg)
1820 {
1821     /*
1822      * For the following lockless ->under_oom test, the only required
1823      * guarantee is that it must see the state asserted by an OOM when
1824      * this function is called as a result of userland actions
1825      * triggered by the notification of the OOM.  This is trivially
1826      * achieved by invoking mem_cgroup_mark_under_oom() before
1827      * triggering notification.
1828      */
1829     if (memcg && memcg->under_oom)
1830         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1831 }
1832 
1833 /*
1834  * Returns true if successfully killed one or more processes. Though in some
1835  * corner cases it can return true even without killing any process.
1836  */
1837 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1838 {
1839     bool locked, ret;
1840 
1841     if (order > PAGE_ALLOC_COSTLY_ORDER)
1842         return false;
1843 
1844     memcg_memory_event(memcg, MEMCG_OOM);
1845 
1846     /*
1847      * We are in the middle of the charge context here, so we
1848      * don't want to block when potentially sitting on a callstack
1849      * that holds all kinds of filesystem and mm locks.
1850      *
1851      * cgroup1 allows disabling the OOM killer and waiting for outside
1852      * handling until the charge can succeed; remember the context and put
1853      * the task to sleep at the end of the page fault when all locks are
1854      * released.
1855      *
1856      * On the other hand, in-kernel OOM killer allows for an async victim
1857      * memory reclaim (oom_reaper) and that means that we are not solely
1858      * relying on the oom victim to make a forward progress and we can
1859      * invoke the oom killer here.
1860      *
1861      * Please note that mem_cgroup_out_of_memory might fail to find a
1862      * victim and then we have to bail out from the charge path.
1863      */
1864     if (memcg->oom_kill_disable) {
1865         if (current->in_user_fault) {
1866             css_get(&memcg->css);
1867             current->memcg_in_oom = memcg;
1868             current->memcg_oom_gfp_mask = mask;
1869             current->memcg_oom_order = order;
1870         }
1871         return false;
1872     }
1873 
1874     mem_cgroup_mark_under_oom(memcg);
1875 
1876     locked = mem_cgroup_oom_trylock(memcg);
1877 
1878     if (locked)
1879         mem_cgroup_oom_notify(memcg);
1880 
1881     mem_cgroup_unmark_under_oom(memcg);
1882     ret = mem_cgroup_out_of_memory(memcg, mask, order);
1883 
1884     if (locked)
1885         mem_cgroup_oom_unlock(memcg);
1886 
1887     return ret;
1888 }
1889 
1890 /**
1891  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1892  * @handle: actually kill/wait or just clean up the OOM state
1893  *
1894  * This has to be called at the end of a page fault if the memcg OOM
1895  * handler was enabled.
1896  *
1897  * Memcg supports userspace OOM handling where failed allocations must
1898  * sleep on a waitqueue until the userspace task resolves the
1899  * situation.  Sleeping directly in the charge context with all kinds
1900  * of locks held is not a good idea, instead we remember an OOM state
1901  * in the task and mem_cgroup_oom_synchronize() has to be called at
1902  * the end of the page fault to complete the OOM handling.
1903  *
1904  * Returns %true if an ongoing memcg OOM situation was detected and
1905  * completed, %false otherwise.
1906  */
1907 bool mem_cgroup_oom_synchronize(bool handle)
1908 {
1909     struct mem_cgroup *memcg = current->memcg_in_oom;
1910     struct oom_wait_info owait;
1911     bool locked;
1912 
1913     /* OOM is global, do not handle */
1914     if (!memcg)
1915         return false;
1916 
1917     if (!handle)
1918         goto cleanup;
1919 
1920     owait.memcg = memcg;
1921     owait.wait.flags = 0;
1922     owait.wait.func = memcg_oom_wake_function;
1923     owait.wait.private = current;
1924     INIT_LIST_HEAD(&owait.wait.entry);
1925 
1926     prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1927     mem_cgroup_mark_under_oom(memcg);
1928 
1929     locked = mem_cgroup_oom_trylock(memcg);
1930 
1931     if (locked)
1932         mem_cgroup_oom_notify(memcg);
1933 
1934     if (locked && !memcg->oom_kill_disable) {
1935         mem_cgroup_unmark_under_oom(memcg);
1936         finish_wait(&memcg_oom_waitq, &owait.wait);
1937         mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1938                      current->memcg_oom_order);
1939     } else {
1940         schedule();
1941         mem_cgroup_unmark_under_oom(memcg);
1942         finish_wait(&memcg_oom_waitq, &owait.wait);
1943     }
1944 
1945     if (locked) {
1946         mem_cgroup_oom_unlock(memcg);
1947         /*
1948          * There is no guarantee that an OOM-lock contender
1949          * sees the wakeups triggered by the OOM kill
1950          * uncharges.  Wake any sleepers explicitly.
1951          */
1952         memcg_oom_recover(memcg);
1953     }
1954 cleanup:
1955     current->memcg_in_oom = NULL;
1956     css_put(&memcg->css);
1957     return true;
1958 }
1959 
1960 /**
1961  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1962  * @victim: task to be killed by the OOM killer
1963  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1964  *
1965  * Returns a pointer to a memory cgroup, which has to be cleaned up
1966  * by killing all belonging OOM-killable tasks.
1967  *
1968  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1969  */
1970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1971                         struct mem_cgroup *oom_domain)
1972 {
1973     struct mem_cgroup *oom_group = NULL;
1974     struct mem_cgroup *memcg;
1975 
1976     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1977         return NULL;
1978 
1979     if (!oom_domain)
1980         oom_domain = root_mem_cgroup;
1981 
1982     rcu_read_lock();
1983 
1984     memcg = mem_cgroup_from_task(victim);
1985     if (memcg == root_mem_cgroup)
1986         goto out;
1987 
1988     /*
1989      * If the victim task has been asynchronously moved to a different
1990      * memory cgroup, we might end up killing tasks outside oom_domain.
1991      * In this case it's better to ignore memory.group.oom.
1992      */
1993     if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1994         goto out;
1995 
1996     /*
1997      * Traverse the memory cgroup hierarchy from the victim task's
1998      * cgroup up to the OOMing cgroup (or root) to find the
1999      * highest-level memory cgroup with oom.group set.
2000      */
2001     for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2002         if (memcg->oom_group)
2003             oom_group = memcg;
2004 
2005         if (memcg == oom_domain)
2006             break;
2007     }
2008 
2009     if (oom_group)
2010         css_get(&oom_group->css);
2011 out:
2012     rcu_read_unlock();
2013 
2014     return oom_group;
2015 }
2016 
2017 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2018 {
2019     pr_info("Tasks in ");
2020     pr_cont_cgroup_path(memcg->css.cgroup);
2021     pr_cont(" are going to be killed due to memory.oom.group set\n");
2022 }
2023 
2024 /**
2025  * folio_memcg_lock - Bind a folio to its memcg.
2026  * @folio: The folio.
2027  *
2028  * This function prevents unlocked LRU folios from being moved to
2029  * another cgroup.
2030  *
2031  * It ensures lifetime of the bound memcg.  The caller is responsible
2032  * for the lifetime of the folio.
2033  */
2034 void folio_memcg_lock(struct folio *folio)
2035 {
2036     struct mem_cgroup *memcg;
2037     unsigned long flags;
2038 
2039     /*
2040      * The RCU lock is held throughout the transaction.  The fast
2041      * path can get away without acquiring the memcg->move_lock
2042      * because page moving starts with an RCU grace period.
2043          */
2044     rcu_read_lock();
2045 
2046     if (mem_cgroup_disabled())
2047         return;
2048 again:
2049     memcg = folio_memcg(folio);
2050     if (unlikely(!memcg))
2051         return;
2052 
2053 #ifdef CONFIG_PROVE_LOCKING
2054     local_irq_save(flags);
2055     might_lock(&memcg->move_lock);
2056     local_irq_restore(flags);
2057 #endif
2058 
2059     if (atomic_read(&memcg->moving_account) <= 0)
2060         return;
2061 
2062     spin_lock_irqsave(&memcg->move_lock, flags);
2063     if (memcg != folio_memcg(folio)) {
2064         spin_unlock_irqrestore(&memcg->move_lock, flags);
2065         goto again;
2066     }
2067 
2068     /*
2069      * When charge migration first begins, we can have multiple
2070      * critical sections holding the fast-path RCU lock and one
2071      * holding the slowpath move_lock. Track the task who has the
2072      * move_lock for unlock_page_memcg().
2073      */
2074     memcg->move_lock_task = current;
2075     memcg->move_lock_flags = flags;
2076 }
2077 
2078 void lock_page_memcg(struct page *page)
2079 {
2080     folio_memcg_lock(page_folio(page));
2081 }
2082 
2083 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2084 {
2085     if (memcg && memcg->move_lock_task == current) {
2086         unsigned long flags = memcg->move_lock_flags;
2087 
2088         memcg->move_lock_task = NULL;
2089         memcg->move_lock_flags = 0;
2090 
2091         spin_unlock_irqrestore(&memcg->move_lock, flags);
2092     }
2093 
2094     rcu_read_unlock();
2095 }
2096 
2097 /**
2098  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2099  * @folio: The folio.
2100  *
2101  * This releases the binding created by folio_memcg_lock().  This does
2102  * not change the accounting of this folio to its memcg, but it does
2103  * permit others to change it.
2104  */
2105 void folio_memcg_unlock(struct folio *folio)
2106 {
2107     __folio_memcg_unlock(folio_memcg(folio));
2108 }
2109 
2110 void unlock_page_memcg(struct page *page)
2111 {
2112     folio_memcg_unlock(page_folio(page));
2113 }
2114 
2115 struct memcg_stock_pcp {
2116     local_lock_t stock_lock;
2117     struct mem_cgroup *cached; /* this never be root cgroup */
2118     unsigned int nr_pages;
2119 
2120 #ifdef CONFIG_MEMCG_KMEM
2121     struct obj_cgroup *cached_objcg;
2122     struct pglist_data *cached_pgdat;
2123     unsigned int nr_bytes;
2124     int nr_slab_reclaimable_b;
2125     int nr_slab_unreclaimable_b;
2126 #endif
2127 
2128     struct work_struct work;
2129     unsigned long flags;
2130 #define FLUSHING_CACHED_CHARGE  0
2131 };
2132 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2133     .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2134 };
2135 static DEFINE_MUTEX(percpu_charge_mutex);
2136 
2137 #ifdef CONFIG_MEMCG_KMEM
2138 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2139 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2140                      struct mem_cgroup *root_memcg);
2141 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2142 
2143 #else
2144 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2145 {
2146     return NULL;
2147 }
2148 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2149                      struct mem_cgroup *root_memcg)
2150 {
2151     return false;
2152 }
2153 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2154 {
2155 }
2156 #endif
2157 
2158 /**
2159  * consume_stock: Try to consume stocked charge on this cpu.
2160  * @memcg: memcg to consume from.
2161  * @nr_pages: how many pages to charge.
2162  *
2163  * The charges will only happen if @memcg matches the current cpu's memcg
2164  * stock, and at least @nr_pages are available in that stock.  Failure to
2165  * service an allocation will refill the stock.
2166  *
2167  * returns true if successful, false otherwise.
2168  */
2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171     struct memcg_stock_pcp *stock;
2172     unsigned long flags;
2173     bool ret = false;
2174 
2175     if (nr_pages > MEMCG_CHARGE_BATCH)
2176         return ret;
2177 
2178     local_lock_irqsave(&memcg_stock.stock_lock, flags);
2179 
2180     stock = this_cpu_ptr(&memcg_stock);
2181     if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182         stock->nr_pages -= nr_pages;
2183         ret = true;
2184     }
2185 
2186     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2187 
2188     return ret;
2189 }
2190 
2191 /*
2192  * Returns stocks cached in percpu and reset cached information.
2193  */
2194 static void drain_stock(struct memcg_stock_pcp *stock)
2195 {
2196     struct mem_cgroup *old = stock->cached;
2197 
2198     if (!old)
2199         return;
2200 
2201     if (stock->nr_pages) {
2202         page_counter_uncharge(&old->memory, stock->nr_pages);
2203         if (do_memsw_account())
2204             page_counter_uncharge(&old->memsw, stock->nr_pages);
2205         stock->nr_pages = 0;
2206     }
2207 
2208     css_put(&old->css);
2209     stock->cached = NULL;
2210 }
2211 
2212 static void drain_local_stock(struct work_struct *dummy)
2213 {
2214     struct memcg_stock_pcp *stock;
2215     struct obj_cgroup *old = NULL;
2216     unsigned long flags;
2217 
2218     /*
2219      * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2220      * drain_stock races is that we always operate on local CPU stock
2221      * here with IRQ disabled
2222      */
2223     local_lock_irqsave(&memcg_stock.stock_lock, flags);
2224 
2225     stock = this_cpu_ptr(&memcg_stock);
2226     old = drain_obj_stock(stock);
2227     drain_stock(stock);
2228     clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2229 
2230     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2231     if (old)
2232         obj_cgroup_put(old);
2233 }
2234 
2235 /*
2236  * Cache charges(val) to local per_cpu area.
2237  * This will be consumed by consume_stock() function, later.
2238  */
2239 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2240 {
2241     struct memcg_stock_pcp *stock;
2242 
2243     stock = this_cpu_ptr(&memcg_stock);
2244     if (stock->cached != memcg) { /* reset if necessary */
2245         drain_stock(stock);
2246         css_get(&memcg->css);
2247         stock->cached = memcg;
2248     }
2249     stock->nr_pages += nr_pages;
2250 
2251     if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2252         drain_stock(stock);
2253 }
2254 
2255 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 {
2257     unsigned long flags;
2258 
2259     local_lock_irqsave(&memcg_stock.stock_lock, flags);
2260     __refill_stock(memcg, nr_pages);
2261     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2262 }
2263 
2264 /*
2265  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2266  * of the hierarchy under it.
2267  */
2268 static void drain_all_stock(struct mem_cgroup *root_memcg)
2269 {
2270     int cpu, curcpu;
2271 
2272     /* If someone's already draining, avoid adding running more workers. */
2273     if (!mutex_trylock(&percpu_charge_mutex))
2274         return;
2275     /*
2276      * Notify other cpus that system-wide "drain" is running
2277      * We do not care about races with the cpu hotplug because cpu down
2278      * as well as workers from this path always operate on the local
2279      * per-cpu data. CPU up doesn't touch memcg_stock at all.
2280      */
2281     migrate_disable();
2282     curcpu = smp_processor_id();
2283     for_each_online_cpu(cpu) {
2284         struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2285         struct mem_cgroup *memcg;
2286         bool flush = false;
2287 
2288         rcu_read_lock();
2289         memcg = stock->cached;
2290         if (memcg && stock->nr_pages &&
2291             mem_cgroup_is_descendant(memcg, root_memcg))
2292             flush = true;
2293         else if (obj_stock_flush_required(stock, root_memcg))
2294             flush = true;
2295         rcu_read_unlock();
2296 
2297         if (flush &&
2298             !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2299             if (cpu == curcpu)
2300                 drain_local_stock(&stock->work);
2301             else
2302                 schedule_work_on(cpu, &stock->work);
2303         }
2304     }
2305     migrate_enable();
2306     mutex_unlock(&percpu_charge_mutex);
2307 }
2308 
2309 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2310 {
2311     struct memcg_stock_pcp *stock;
2312 
2313     stock = &per_cpu(memcg_stock, cpu);
2314     drain_stock(stock);
2315 
2316     return 0;
2317 }
2318 
2319 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2320                   unsigned int nr_pages,
2321                   gfp_t gfp_mask)
2322 {
2323     unsigned long nr_reclaimed = 0;
2324 
2325     do {
2326         unsigned long pflags;
2327 
2328         if (page_counter_read(&memcg->memory) <=
2329             READ_ONCE(memcg->memory.high))
2330             continue;
2331 
2332         memcg_memory_event(memcg, MEMCG_HIGH);
2333 
2334         psi_memstall_enter(&pflags);
2335         nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2336                             gfp_mask,
2337                             MEMCG_RECLAIM_MAY_SWAP);
2338         psi_memstall_leave(&pflags);
2339     } while ((memcg = parent_mem_cgroup(memcg)) &&
2340          !mem_cgroup_is_root(memcg));
2341 
2342     return nr_reclaimed;
2343 }
2344 
2345 static void high_work_func(struct work_struct *work)
2346 {
2347     struct mem_cgroup *memcg;
2348 
2349     memcg = container_of(work, struct mem_cgroup, high_work);
2350     reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2351 }
2352 
2353 /*
2354  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2355  * enough to still cause a significant slowdown in most cases, while still
2356  * allowing diagnostics and tracing to proceed without becoming stuck.
2357  */
2358 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359 
2360 /*
2361  * When calculating the delay, we use these either side of the exponentiation to
2362  * maintain precision and scale to a reasonable number of jiffies (see the table
2363  * below.
2364  *
2365  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2366  *   overage ratio to a delay.
2367  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2368  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2369  *   to produce a reasonable delay curve.
2370  *
2371  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2372  * reasonable delay curve compared to precision-adjusted overage, not
2373  * penalising heavily at first, but still making sure that growth beyond the
2374  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2375  * example, with a high of 100 megabytes:
2376  *
2377  *  +-------+------------------------+
2378  *  | usage | time to allocate in ms |
2379  *  +-------+------------------------+
2380  *  | 100M  |                      0 |
2381  *  | 101M  |                      6 |
2382  *  | 102M  |                     25 |
2383  *  | 103M  |                     57 |
2384  *  | 104M  |                    102 |
2385  *  | 105M  |                    159 |
2386  *  | 106M  |                    230 |
2387  *  | 107M  |                    313 |
2388  *  | 108M  |                    409 |
2389  *  | 109M  |                    518 |
2390  *  | 110M  |                    639 |
2391  *  | 111M  |                    774 |
2392  *  | 112M  |                    921 |
2393  *  | 113M  |                   1081 |
2394  *  | 114M  |                   1254 |
2395  *  | 115M  |                   1439 |
2396  *  | 116M  |                   1638 |
2397  *  | 117M  |                   1849 |
2398  *  | 118M  |                   2000 |
2399  *  | 119M  |                   2000 |
2400  *  | 120M  |                   2000 |
2401  *  +-------+------------------------+
2402  */
2403  #define MEMCG_DELAY_PRECISION_SHIFT 20
2404  #define MEMCG_DELAY_SCALING_SHIFT 14
2405 
2406 static u64 calculate_overage(unsigned long usage, unsigned long high)
2407 {
2408     u64 overage;
2409 
2410     if (usage <= high)
2411         return 0;
2412 
2413     /*
2414      * Prevent division by 0 in overage calculation by acting as if
2415      * it was a threshold of 1 page
2416      */
2417     high = max(high, 1UL);
2418 
2419     overage = usage - high;
2420     overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2421     return div64_u64(overage, high);
2422 }
2423 
2424 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2425 {
2426     u64 overage, max_overage = 0;
2427 
2428     do {
2429         overage = calculate_overage(page_counter_read(&memcg->memory),
2430                         READ_ONCE(memcg->memory.high));
2431         max_overage = max(overage, max_overage);
2432     } while ((memcg = parent_mem_cgroup(memcg)) &&
2433          !mem_cgroup_is_root(memcg));
2434 
2435     return max_overage;
2436 }
2437 
2438 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2439 {
2440     u64 overage, max_overage = 0;
2441 
2442     do {
2443         overage = calculate_overage(page_counter_read(&memcg->swap),
2444                         READ_ONCE(memcg->swap.high));
2445         if (overage)
2446             memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2447         max_overage = max(overage, max_overage);
2448     } while ((memcg = parent_mem_cgroup(memcg)) &&
2449          !mem_cgroup_is_root(memcg));
2450 
2451     return max_overage;
2452 }
2453 
2454 /*
2455  * Get the number of jiffies that we should penalise a mischievous cgroup which
2456  * is exceeding its memory.high by checking both it and its ancestors.
2457  */
2458 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2459                       unsigned int nr_pages,
2460                       u64 max_overage)
2461 {
2462     unsigned long penalty_jiffies;
2463 
2464     if (!max_overage)
2465         return 0;
2466 
2467     /*
2468      * We use overage compared to memory.high to calculate the number of
2469      * jiffies to sleep (penalty_jiffies). Ideally this value should be
2470      * fairly lenient on small overages, and increasingly harsh when the
2471      * memcg in question makes it clear that it has no intention of stopping
2472      * its crazy behaviour, so we exponentially increase the delay based on
2473      * overage amount.
2474      */
2475     penalty_jiffies = max_overage * max_overage * HZ;
2476     penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2477     penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2478 
2479     /*
2480      * Factor in the task's own contribution to the overage, such that four
2481      * N-sized allocations are throttled approximately the same as one
2482      * 4N-sized allocation.
2483      *
2484      * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2485      * larger the current charge patch is than that.
2486      */
2487     return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2488 }
2489 
2490 /*
2491  * Scheduled by try_charge() to be executed from the userland return path
2492  * and reclaims memory over the high limit.
2493  */
2494 void mem_cgroup_handle_over_high(void)
2495 {
2496     unsigned long penalty_jiffies;
2497     unsigned long pflags;
2498     unsigned long nr_reclaimed;
2499     unsigned int nr_pages = current->memcg_nr_pages_over_high;
2500     int nr_retries = MAX_RECLAIM_RETRIES;
2501     struct mem_cgroup *memcg;
2502     bool in_retry = false;
2503 
2504     if (likely(!nr_pages))
2505         return;
2506 
2507     memcg = get_mem_cgroup_from_mm(current->mm);
2508     current->memcg_nr_pages_over_high = 0;
2509 
2510 retry_reclaim:
2511     /*
2512      * The allocating task should reclaim at least the batch size, but for
2513      * subsequent retries we only want to do what's necessary to prevent oom
2514      * or breaching resource isolation.
2515      *
2516      * This is distinct from memory.max or page allocator behaviour because
2517      * memory.high is currently batched, whereas memory.max and the page
2518      * allocator run every time an allocation is made.
2519      */
2520     nr_reclaimed = reclaim_high(memcg,
2521                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2522                     GFP_KERNEL);
2523 
2524     /*
2525      * memory.high is breached and reclaim is unable to keep up. Throttle
2526      * allocators proactively to slow down excessive growth.
2527      */
2528     penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2529                            mem_find_max_overage(memcg));
2530 
2531     penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2532                         swap_find_max_overage(memcg));
2533 
2534     /*
2535      * Clamp the max delay per usermode return so as to still keep the
2536      * application moving forwards and also permit diagnostics, albeit
2537      * extremely slowly.
2538      */
2539     penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540 
2541     /*
2542      * Don't sleep if the amount of jiffies this memcg owes us is so low
2543      * that it's not even worth doing, in an attempt to be nice to those who
2544      * go only a small amount over their memory.high value and maybe haven't
2545      * been aggressively reclaimed enough yet.
2546      */
2547     if (penalty_jiffies <= HZ / 100)
2548         goto out;
2549 
2550     /*
2551      * If reclaim is making forward progress but we're still over
2552      * memory.high, we want to encourage that rather than doing allocator
2553      * throttling.
2554      */
2555     if (nr_reclaimed || nr_retries--) {
2556         in_retry = true;
2557         goto retry_reclaim;
2558     }
2559 
2560     /*
2561      * If we exit early, we're guaranteed to die (since
2562      * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2563      * need to account for any ill-begotten jiffies to pay them off later.
2564      */
2565     psi_memstall_enter(&pflags);
2566     schedule_timeout_killable(penalty_jiffies);
2567     psi_memstall_leave(&pflags);
2568 
2569 out:
2570     css_put(&memcg->css);
2571 }
2572 
2573 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2574             unsigned int nr_pages)
2575 {
2576     unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2577     int nr_retries = MAX_RECLAIM_RETRIES;
2578     struct mem_cgroup *mem_over_limit;
2579     struct page_counter *counter;
2580     unsigned long nr_reclaimed;
2581     bool passed_oom = false;
2582     unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2583     bool drained = false;
2584     bool raised_max_event = false;
2585     unsigned long pflags;
2586 
2587 retry:
2588     if (consume_stock(memcg, nr_pages))
2589         return 0;
2590 
2591     if (!do_memsw_account() ||
2592         page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2593         if (page_counter_try_charge(&memcg->memory, batch, &counter))
2594             goto done_restock;
2595         if (do_memsw_account())
2596             page_counter_uncharge(&memcg->memsw, batch);
2597         mem_over_limit = mem_cgroup_from_counter(counter, memory);
2598     } else {
2599         mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2600         reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2601     }
2602 
2603     if (batch > nr_pages) {
2604         batch = nr_pages;
2605         goto retry;
2606     }
2607 
2608     /*
2609      * Prevent unbounded recursion when reclaim operations need to
2610      * allocate memory. This might exceed the limits temporarily,
2611      * but we prefer facilitating memory reclaim and getting back
2612      * under the limit over triggering OOM kills in these cases.
2613      */
2614     if (unlikely(current->flags & PF_MEMALLOC))
2615         goto force;
2616 
2617     if (unlikely(task_in_memcg_oom(current)))
2618         goto nomem;
2619 
2620     if (!gfpflags_allow_blocking(gfp_mask))
2621         goto nomem;
2622 
2623     memcg_memory_event(mem_over_limit, MEMCG_MAX);
2624     raised_max_event = true;
2625 
2626     psi_memstall_enter(&pflags);
2627     nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2628                             gfp_mask, reclaim_options);
2629     psi_memstall_leave(&pflags);
2630 
2631     if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2632         goto retry;
2633 
2634     if (!drained) {
2635         drain_all_stock(mem_over_limit);
2636         drained = true;
2637         goto retry;
2638     }
2639 
2640     if (gfp_mask & __GFP_NORETRY)
2641         goto nomem;
2642     /*
2643      * Even though the limit is exceeded at this point, reclaim
2644      * may have been able to free some pages.  Retry the charge
2645      * before killing the task.
2646      *
2647      * Only for regular pages, though: huge pages are rather
2648      * unlikely to succeed so close to the limit, and we fall back
2649      * to regular pages anyway in case of failure.
2650      */
2651     if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2652         goto retry;
2653     /*
2654      * At task move, charge accounts can be doubly counted. So, it's
2655      * better to wait until the end of task_move if something is going on.
2656      */
2657     if (mem_cgroup_wait_acct_move(mem_over_limit))
2658         goto retry;
2659 
2660     if (nr_retries--)
2661         goto retry;
2662 
2663     if (gfp_mask & __GFP_RETRY_MAYFAIL)
2664         goto nomem;
2665 
2666     /* Avoid endless loop for tasks bypassed by the oom killer */
2667     if (passed_oom && task_is_dying())
2668         goto nomem;
2669 
2670     /*
2671      * keep retrying as long as the memcg oom killer is able to make
2672      * a forward progress or bypass the charge if the oom killer
2673      * couldn't make any progress.
2674      */
2675     if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2676                get_order(nr_pages * PAGE_SIZE))) {
2677         passed_oom = true;
2678         nr_retries = MAX_RECLAIM_RETRIES;
2679         goto retry;
2680     }
2681 nomem:
2682     /*
2683      * Memcg doesn't have a dedicated reserve for atomic
2684      * allocations. But like the global atomic pool, we need to
2685      * put the burden of reclaim on regular allocation requests
2686      * and let these go through as privileged allocations.
2687      */
2688     if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2689         return -ENOMEM;
2690 force:
2691     /*
2692      * If the allocation has to be enforced, don't forget to raise
2693      * a MEMCG_MAX event.
2694      */
2695     if (!raised_max_event)
2696         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2697 
2698     /*
2699      * The allocation either can't fail or will lead to more memory
2700      * being freed very soon.  Allow memory usage go over the limit
2701      * temporarily by force charging it.
2702      */
2703     page_counter_charge(&memcg->memory, nr_pages);
2704     if (do_memsw_account())
2705         page_counter_charge(&memcg->memsw, nr_pages);
2706 
2707     return 0;
2708 
2709 done_restock:
2710     if (batch > nr_pages)
2711         refill_stock(memcg, batch - nr_pages);
2712 
2713     /*
2714      * If the hierarchy is above the normal consumption range, schedule
2715      * reclaim on returning to userland.  We can perform reclaim here
2716      * if __GFP_RECLAIM but let's always punt for simplicity and so that
2717      * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2718      * not recorded as it most likely matches current's and won't
2719      * change in the meantime.  As high limit is checked again before
2720      * reclaim, the cost of mismatch is negligible.
2721      */
2722     do {
2723         bool mem_high, swap_high;
2724 
2725         mem_high = page_counter_read(&memcg->memory) >
2726             READ_ONCE(memcg->memory.high);
2727         swap_high = page_counter_read(&memcg->swap) >
2728             READ_ONCE(memcg->swap.high);
2729 
2730         /* Don't bother a random interrupted task */
2731         if (!in_task()) {
2732             if (mem_high) {
2733                 schedule_work(&memcg->high_work);
2734                 break;
2735             }
2736             continue;
2737         }
2738 
2739         if (mem_high || swap_high) {
2740             /*
2741              * The allocating tasks in this cgroup will need to do
2742              * reclaim or be throttled to prevent further growth
2743              * of the memory or swap footprints.
2744              *
2745              * Target some best-effort fairness between the tasks,
2746              * and distribute reclaim work and delay penalties
2747              * based on how much each task is actually allocating.
2748              */
2749             current->memcg_nr_pages_over_high += batch;
2750             set_notify_resume(current);
2751             break;
2752         }
2753     } while ((memcg = parent_mem_cgroup(memcg)));
2754 
2755     if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2756         !(current->flags & PF_MEMALLOC) &&
2757         gfpflags_allow_blocking(gfp_mask)) {
2758         mem_cgroup_handle_over_high();
2759     }
2760     return 0;
2761 }
2762 
2763 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2764                  unsigned int nr_pages)
2765 {
2766     if (mem_cgroup_is_root(memcg))
2767         return 0;
2768 
2769     return try_charge_memcg(memcg, gfp_mask, nr_pages);
2770 }
2771 
2772 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2773 {
2774     if (mem_cgroup_is_root(memcg))
2775         return;
2776 
2777     page_counter_uncharge(&memcg->memory, nr_pages);
2778     if (do_memsw_account())
2779         page_counter_uncharge(&memcg->memsw, nr_pages);
2780 }
2781 
2782 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2783 {
2784     VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2785     /*
2786      * Any of the following ensures page's memcg stability:
2787      *
2788      * - the page lock
2789      * - LRU isolation
2790      * - lock_page_memcg()
2791      * - exclusive reference
2792      */
2793     folio->memcg_data = (unsigned long)memcg;
2794 }
2795 
2796 #ifdef CONFIG_MEMCG_KMEM
2797 /*
2798  * The allocated objcg pointers array is not accounted directly.
2799  * Moreover, it should not come from DMA buffer and is not readily
2800  * reclaimable. So those GFP bits should be masked off.
2801  */
2802 #define OBJCGS_CLEAR_MASK   (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2803 
2804 /*
2805  * mod_objcg_mlstate() may be called with irq enabled, so
2806  * mod_memcg_lruvec_state() should be used.
2807  */
2808 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2809                      struct pglist_data *pgdat,
2810                      enum node_stat_item idx, int nr)
2811 {
2812     struct mem_cgroup *memcg;
2813     struct lruvec *lruvec;
2814 
2815     rcu_read_lock();
2816     memcg = obj_cgroup_memcg(objcg);
2817     lruvec = mem_cgroup_lruvec(memcg, pgdat);
2818     mod_memcg_lruvec_state(lruvec, idx, nr);
2819     rcu_read_unlock();
2820 }
2821 
2822 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2823                  gfp_t gfp, bool new_slab)
2824 {
2825     unsigned int objects = objs_per_slab(s, slab);
2826     unsigned long memcg_data;
2827     void *vec;
2828 
2829     gfp &= ~OBJCGS_CLEAR_MASK;
2830     vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2831                slab_nid(slab));
2832     if (!vec)
2833         return -ENOMEM;
2834 
2835     memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2836     if (new_slab) {
2837         /*
2838          * If the slab is brand new and nobody can yet access its
2839          * memcg_data, no synchronization is required and memcg_data can
2840          * be simply assigned.
2841          */
2842         slab->memcg_data = memcg_data;
2843     } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2844         /*
2845          * If the slab is already in use, somebody can allocate and
2846          * assign obj_cgroups in parallel. In this case the existing
2847          * objcg vector should be reused.
2848          */
2849         kfree(vec);
2850         return 0;
2851     }
2852 
2853     kmemleak_not_leak(vec);
2854     return 0;
2855 }
2856 
2857 static __always_inline
2858 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2859 {
2860     /*
2861      * Slab objects are accounted individually, not per-page.
2862      * Memcg membership data for each individual object is saved in
2863      * slab->memcg_data.
2864      */
2865     if (folio_test_slab(folio)) {
2866         struct obj_cgroup **objcgs;
2867         struct slab *slab;
2868         unsigned int off;
2869 
2870         slab = folio_slab(folio);
2871         objcgs = slab_objcgs(slab);
2872         if (!objcgs)
2873             return NULL;
2874 
2875         off = obj_to_index(slab->slab_cache, slab, p);
2876         if (objcgs[off])
2877             return obj_cgroup_memcg(objcgs[off]);
2878 
2879         return NULL;
2880     }
2881 
2882     /*
2883      * page_memcg_check() is used here, because in theory we can encounter
2884      * a folio where the slab flag has been cleared already, but
2885      * slab->memcg_data has not been freed yet
2886      * page_memcg_check(page) will guarantee that a proper memory
2887      * cgroup pointer or NULL will be returned.
2888      */
2889     return page_memcg_check(folio_page(folio, 0));
2890 }
2891 
2892 /*
2893  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2894  *
2895  * A passed kernel object can be a slab object, vmalloc object or a generic
2896  * kernel page, so different mechanisms for getting the memory cgroup pointer
2897  * should be used.
2898  *
2899  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2900  * can not know for sure how the kernel object is implemented.
2901  * mem_cgroup_from_obj() can be safely used in such cases.
2902  *
2903  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2904  * cgroup_mutex, etc.
2905  */
2906 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2907 {
2908     struct folio *folio;
2909 
2910     if (mem_cgroup_disabled())
2911         return NULL;
2912 
2913     if (unlikely(is_vmalloc_addr(p)))
2914         folio = page_folio(vmalloc_to_page(p));
2915     else
2916         folio = virt_to_folio(p);
2917 
2918     return mem_cgroup_from_obj_folio(folio, p);
2919 }
2920 
2921 /*
2922  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2923  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2924  * allocated using vmalloc().
2925  *
2926  * A passed kernel object must be a slab object or a generic kernel page.
2927  *
2928  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929  * cgroup_mutex, etc.
2930  */
2931 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2932 {
2933     if (mem_cgroup_disabled())
2934         return NULL;
2935 
2936     return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2937 }
2938 
2939 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2940 {
2941     struct obj_cgroup *objcg = NULL;
2942 
2943     for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2944         objcg = rcu_dereference(memcg->objcg);
2945         if (objcg && obj_cgroup_tryget(objcg))
2946             break;
2947         objcg = NULL;
2948     }
2949     return objcg;
2950 }
2951 
2952 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2953 {
2954     struct obj_cgroup *objcg = NULL;
2955     struct mem_cgroup *memcg;
2956 
2957     if (memcg_kmem_bypass())
2958         return NULL;
2959 
2960     rcu_read_lock();
2961     if (unlikely(active_memcg()))
2962         memcg = active_memcg();
2963     else
2964         memcg = mem_cgroup_from_task(current);
2965     objcg = __get_obj_cgroup_from_memcg(memcg);
2966     rcu_read_unlock();
2967     return objcg;
2968 }
2969 
2970 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2971 {
2972     struct obj_cgroup *objcg;
2973 
2974     if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2975         return NULL;
2976 
2977     if (PageMemcgKmem(page)) {
2978         objcg = __folio_objcg(page_folio(page));
2979         obj_cgroup_get(objcg);
2980     } else {
2981         struct mem_cgroup *memcg;
2982 
2983         rcu_read_lock();
2984         memcg = __folio_memcg(page_folio(page));
2985         if (memcg)
2986             objcg = __get_obj_cgroup_from_memcg(memcg);
2987         else
2988             objcg = NULL;
2989         rcu_read_unlock();
2990     }
2991     return objcg;
2992 }
2993 
2994 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2995 {
2996     mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2997     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2998         if (nr_pages > 0)
2999             page_counter_charge(&memcg->kmem, nr_pages);
3000         else
3001             page_counter_uncharge(&memcg->kmem, -nr_pages);
3002     }
3003 }
3004 
3005 
3006 /*
3007  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3008  * @objcg: object cgroup to uncharge
3009  * @nr_pages: number of pages to uncharge
3010  */
3011 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3012                       unsigned int nr_pages)
3013 {
3014     struct mem_cgroup *memcg;
3015 
3016     memcg = get_mem_cgroup_from_objcg(objcg);
3017 
3018     memcg_account_kmem(memcg, -nr_pages);
3019     refill_stock(memcg, nr_pages);
3020 
3021     css_put(&memcg->css);
3022 }
3023 
3024 /*
3025  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3026  * @objcg: object cgroup to charge
3027  * @gfp: reclaim mode
3028  * @nr_pages: number of pages to charge
3029  *
3030  * Returns 0 on success, an error code on failure.
3031  */
3032 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3033                    unsigned int nr_pages)
3034 {
3035     struct mem_cgroup *memcg;
3036     int ret;
3037 
3038     memcg = get_mem_cgroup_from_objcg(objcg);
3039 
3040     ret = try_charge_memcg(memcg, gfp, nr_pages);
3041     if (ret)
3042         goto out;
3043 
3044     memcg_account_kmem(memcg, nr_pages);
3045 out:
3046     css_put(&memcg->css);
3047 
3048     return ret;
3049 }
3050 
3051 /**
3052  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3053  * @page: page to charge
3054  * @gfp: reclaim mode
3055  * @order: allocation order
3056  *
3057  * Returns 0 on success, an error code on failure.
3058  */
3059 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3060 {
3061     struct obj_cgroup *objcg;
3062     int ret = 0;
3063 
3064     objcg = get_obj_cgroup_from_current();
3065     if (objcg) {
3066         ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3067         if (!ret) {
3068             page->memcg_data = (unsigned long)objcg |
3069                 MEMCG_DATA_KMEM;
3070             return 0;
3071         }
3072         obj_cgroup_put(objcg);
3073     }
3074     return ret;
3075 }
3076 
3077 /**
3078  * __memcg_kmem_uncharge_page: uncharge a kmem page
3079  * @page: page to uncharge
3080  * @order: allocation order
3081  */
3082 void __memcg_kmem_uncharge_page(struct page *page, int order)
3083 {
3084     struct folio *folio = page_folio(page);
3085     struct obj_cgroup *objcg;
3086     unsigned int nr_pages = 1 << order;
3087 
3088     if (!folio_memcg_kmem(folio))
3089         return;
3090 
3091     objcg = __folio_objcg(folio);
3092     obj_cgroup_uncharge_pages(objcg, nr_pages);
3093     folio->memcg_data = 0;
3094     obj_cgroup_put(objcg);
3095 }
3096 
3097 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3098              enum node_stat_item idx, int nr)
3099 {
3100     struct memcg_stock_pcp *stock;
3101     struct obj_cgroup *old = NULL;
3102     unsigned long flags;
3103     int *bytes;
3104 
3105     local_lock_irqsave(&memcg_stock.stock_lock, flags);
3106     stock = this_cpu_ptr(&memcg_stock);
3107 
3108     /*
3109      * Save vmstat data in stock and skip vmstat array update unless
3110      * accumulating over a page of vmstat data or when pgdat or idx
3111      * changes.
3112      */
3113     if (stock->cached_objcg != objcg) {
3114         old = drain_obj_stock(stock);
3115         obj_cgroup_get(objcg);
3116         stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3117                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3118         stock->cached_objcg = objcg;
3119         stock->cached_pgdat = pgdat;
3120     } else if (stock->cached_pgdat != pgdat) {
3121         /* Flush the existing cached vmstat data */
3122         struct pglist_data *oldpg = stock->cached_pgdat;
3123 
3124         if (stock->nr_slab_reclaimable_b) {
3125             mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3126                       stock->nr_slab_reclaimable_b);
3127             stock->nr_slab_reclaimable_b = 0;
3128         }
3129         if (stock->nr_slab_unreclaimable_b) {
3130             mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3131                       stock->nr_slab_unreclaimable_b);
3132             stock->nr_slab_unreclaimable_b = 0;
3133         }
3134         stock->cached_pgdat = pgdat;
3135     }
3136 
3137     bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3138                            : &stock->nr_slab_unreclaimable_b;
3139     /*
3140      * Even for large object >= PAGE_SIZE, the vmstat data will still be
3141      * cached locally at least once before pushing it out.
3142      */
3143     if (!*bytes) {
3144         *bytes = nr;
3145         nr = 0;
3146     } else {
3147         *bytes += nr;
3148         if (abs(*bytes) > PAGE_SIZE) {
3149             nr = *bytes;
3150             *bytes = 0;
3151         } else {
3152             nr = 0;
3153         }
3154     }
3155     if (nr)
3156         mod_objcg_mlstate(objcg, pgdat, idx, nr);
3157 
3158     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3159     if (old)
3160         obj_cgroup_put(old);
3161 }
3162 
3163 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3164 {
3165     struct memcg_stock_pcp *stock;
3166     unsigned long flags;
3167     bool ret = false;
3168 
3169     local_lock_irqsave(&memcg_stock.stock_lock, flags);
3170 
3171     stock = this_cpu_ptr(&memcg_stock);
3172     if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3173         stock->nr_bytes -= nr_bytes;
3174         ret = true;
3175     }
3176 
3177     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3178 
3179     return ret;
3180 }
3181 
3182 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3183 {
3184     struct obj_cgroup *old = stock->cached_objcg;
3185 
3186     if (!old)
3187         return NULL;
3188 
3189     if (stock->nr_bytes) {
3190         unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3191         unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3192 
3193         if (nr_pages) {
3194             struct mem_cgroup *memcg;
3195 
3196             memcg = get_mem_cgroup_from_objcg(old);
3197 
3198             memcg_account_kmem(memcg, -nr_pages);
3199             __refill_stock(memcg, nr_pages);
3200 
3201             css_put(&memcg->css);
3202         }
3203 
3204         /*
3205          * The leftover is flushed to the centralized per-memcg value.
3206          * On the next attempt to refill obj stock it will be moved
3207          * to a per-cpu stock (probably, on an other CPU), see
3208          * refill_obj_stock().
3209          *
3210          * How often it's flushed is a trade-off between the memory
3211          * limit enforcement accuracy and potential CPU contention,
3212          * so it might be changed in the future.
3213          */
3214         atomic_add(nr_bytes, &old->nr_charged_bytes);
3215         stock->nr_bytes = 0;
3216     }
3217 
3218     /*
3219      * Flush the vmstat data in current stock
3220      */
3221     if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3222         if (stock->nr_slab_reclaimable_b) {
3223             mod_objcg_mlstate(old, stock->cached_pgdat,
3224                       NR_SLAB_RECLAIMABLE_B,
3225                       stock->nr_slab_reclaimable_b);
3226             stock->nr_slab_reclaimable_b = 0;
3227         }
3228         if (stock->nr_slab_unreclaimable_b) {
3229             mod_objcg_mlstate(old, stock->cached_pgdat,
3230                       NR_SLAB_UNRECLAIMABLE_B,
3231                       stock->nr_slab_unreclaimable_b);
3232             stock->nr_slab_unreclaimable_b = 0;
3233         }
3234         stock->cached_pgdat = NULL;
3235     }
3236 
3237     stock->cached_objcg = NULL;
3238     /*
3239      * The `old' objects needs to be released by the caller via
3240      * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3241      */
3242     return old;
3243 }
3244 
3245 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3246                      struct mem_cgroup *root_memcg)
3247 {
3248     struct mem_cgroup *memcg;
3249 
3250     if (stock->cached_objcg) {
3251         memcg = obj_cgroup_memcg(stock->cached_objcg);
3252         if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3253             return true;
3254     }
3255 
3256     return false;
3257 }
3258 
3259 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3260                  bool allow_uncharge)
3261 {
3262     struct memcg_stock_pcp *stock;
3263     struct obj_cgroup *old = NULL;
3264     unsigned long flags;
3265     unsigned int nr_pages = 0;
3266 
3267     local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268 
3269     stock = this_cpu_ptr(&memcg_stock);
3270     if (stock->cached_objcg != objcg) { /* reset if necessary */
3271         old = drain_obj_stock(stock);
3272         obj_cgroup_get(objcg);
3273         stock->cached_objcg = objcg;
3274         stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3275                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3276         allow_uncharge = true;  /* Allow uncharge when objcg changes */
3277     }
3278     stock->nr_bytes += nr_bytes;
3279 
3280     if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3281         nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3282         stock->nr_bytes &= (PAGE_SIZE - 1);
3283     }
3284 
3285     local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3286     if (old)
3287         obj_cgroup_put(old);
3288 
3289     if (nr_pages)
3290         obj_cgroup_uncharge_pages(objcg, nr_pages);
3291 }
3292 
3293 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3294 {
3295     unsigned int nr_pages, nr_bytes;
3296     int ret;
3297 
3298     if (consume_obj_stock(objcg, size))
3299         return 0;
3300 
3301     /*
3302      * In theory, objcg->nr_charged_bytes can have enough
3303      * pre-charged bytes to satisfy the allocation. However,
3304      * flushing objcg->nr_charged_bytes requires two atomic
3305      * operations, and objcg->nr_charged_bytes can't be big.
3306      * The shared objcg->nr_charged_bytes can also become a
3307      * performance bottleneck if all tasks of the same memcg are
3308      * trying to update it. So it's better to ignore it and try
3309      * grab some new pages. The stock's nr_bytes will be flushed to
3310      * objcg->nr_charged_bytes later on when objcg changes.
3311      *
3312      * The stock's nr_bytes may contain enough pre-charged bytes
3313      * to allow one less page from being charged, but we can't rely
3314      * on the pre-charged bytes not being changed outside of
3315      * consume_obj_stock() or refill_obj_stock(). So ignore those
3316      * pre-charged bytes as well when charging pages. To avoid a
3317      * page uncharge right after a page charge, we set the
3318      * allow_uncharge flag to false when calling refill_obj_stock()
3319      * to temporarily allow the pre-charged bytes to exceed the page
3320      * size limit. The maximum reachable value of the pre-charged
3321      * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3322      * race.
3323      */
3324     nr_pages = size >> PAGE_SHIFT;
3325     nr_bytes = size & (PAGE_SIZE - 1);
3326 
3327     if (nr_bytes)
3328         nr_pages += 1;
3329 
3330     ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3331     if (!ret && nr_bytes)
3332         refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3333 
3334     return ret;
3335 }
3336 
3337 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3338 {
3339     refill_obj_stock(objcg, size, true);
3340 }
3341 
3342 #endif /* CONFIG_MEMCG_KMEM */
3343 
3344 /*
3345  * Because page_memcg(head) is not set on tails, set it now.
3346  */
3347 void split_page_memcg(struct page *head, unsigned int nr)
3348 {
3349     struct folio *folio = page_folio(head);
3350     struct mem_cgroup *memcg = folio_memcg(folio);
3351     int i;
3352 
3353     if (mem_cgroup_disabled() || !memcg)
3354         return;
3355 
3356     for (i = 1; i < nr; i++)
3357         folio_page(folio, i)->memcg_data = folio->memcg_data;
3358 
3359     if (folio_memcg_kmem(folio))
3360         obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3361     else
3362         css_get_many(&memcg->css, nr - 1);
3363 }
3364 
3365 #ifdef CONFIG_MEMCG_SWAP
3366 /**
3367  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3368  * @entry: swap entry to be moved
3369  * @from:  mem_cgroup which the entry is moved from
3370  * @to:  mem_cgroup which the entry is moved to
3371  *
3372  * It succeeds only when the swap_cgroup's record for this entry is the same
3373  * as the mem_cgroup's id of @from.
3374  *
3375  * Returns 0 on success, -EINVAL on failure.
3376  *
3377  * The caller must have charged to @to, IOW, called page_counter_charge() about
3378  * both res and memsw, and called css_get().
3379  */
3380 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3381                 struct mem_cgroup *from, struct mem_cgroup *to)
3382 {
3383     unsigned short old_id, new_id;
3384 
3385     old_id = mem_cgroup_id(from);
3386     new_id = mem_cgroup_id(to);
3387 
3388     if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3389         mod_memcg_state(from, MEMCG_SWAP, -1);
3390         mod_memcg_state(to, MEMCG_SWAP, 1);
3391         return 0;
3392     }
3393     return -EINVAL;
3394 }
3395 #else
3396 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3397                 struct mem_cgroup *from, struct mem_cgroup *to)
3398 {
3399     return -EINVAL;
3400 }
3401 #endif
3402 
3403 static DEFINE_MUTEX(memcg_max_mutex);
3404 
3405 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3406                  unsigned long max, bool memsw)
3407 {
3408     bool enlarge = false;
3409     bool drained = false;
3410     int ret;
3411     bool limits_invariant;
3412     struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3413 
3414     do {
3415         if (signal_pending(current)) {
3416             ret = -EINTR;
3417             break;
3418         }
3419 
3420         mutex_lock(&memcg_max_mutex);
3421         /*
3422          * Make sure that the new limit (memsw or memory limit) doesn't
3423          * break our basic invariant rule memory.max <= memsw.max.
3424          */
3425         limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3426                        max <= memcg->memsw.max;
3427         if (!limits_invariant) {
3428             mutex_unlock(&memcg_max_mutex);
3429             ret = -EINVAL;
3430             break;
3431         }
3432         if (max > counter->max)
3433             enlarge = true;
3434         ret = page_counter_set_max(counter, max);
3435         mutex_unlock(&memcg_max_mutex);
3436 
3437         if (!ret)
3438             break;
3439 
3440         if (!drained) {
3441             drain_all_stock(memcg);
3442             drained = true;
3443             continue;
3444         }
3445 
3446         if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3447                     memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3448             ret = -EBUSY;
3449             break;
3450         }
3451     } while (true);
3452 
3453     if (!ret && enlarge)
3454         memcg_oom_recover(memcg);
3455 
3456     return ret;
3457 }
3458 
3459 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3460                         gfp_t gfp_mask,
3461                         unsigned long *total_scanned)
3462 {
3463     unsigned long nr_reclaimed = 0;
3464     struct mem_cgroup_per_node *mz, *next_mz = NULL;
3465     unsigned long reclaimed;
3466     int loop = 0;
3467     struct mem_cgroup_tree_per_node *mctz;
3468     unsigned long excess;
3469 
3470     if (order > 0)
3471         return 0;
3472 
3473     mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3474 
3475     /*
3476      * Do not even bother to check the largest node if the root
3477      * is empty. Do it lockless to prevent lock bouncing. Races
3478      * are acceptable as soft limit is best effort anyway.
3479      */
3480     if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3481         return 0;
3482 
3483     /*
3484      * This loop can run a while, specially if mem_cgroup's continuously
3485      * keep exceeding their soft limit and putting the system under
3486      * pressure
3487      */
3488     do {
3489         if (next_mz)
3490             mz = next_mz;
3491         else
3492             mz = mem_cgroup_largest_soft_limit_node(mctz);
3493         if (!mz)
3494             break;
3495 
3496         reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3497                             gfp_mask, total_scanned);
3498         nr_reclaimed += reclaimed;
3499         spin_lock_irq(&mctz->lock);
3500 
3501         /*
3502          * If we failed to reclaim anything from this memory cgroup
3503          * it is time to move on to the next cgroup
3504          */
3505         next_mz = NULL;
3506         if (!reclaimed)
3507             next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3508 
3509         excess = soft_limit_excess(mz->memcg);
3510         /*
3511          * One school of thought says that we should not add
3512          * back the node to the tree if reclaim returns 0.
3513          * But our reclaim could return 0, simply because due
3514          * to priority we are exposing a smaller subset of
3515          * memory to reclaim from. Consider this as a longer
3516          * term TODO.
3517          */
3518         /* If excess == 0, no tree ops */
3519         __mem_cgroup_insert_exceeded(mz, mctz, excess);
3520         spin_unlock_irq(&mctz->lock);
3521         css_put(&mz->memcg->css);
3522         loop++;
3523         /*
3524          * Could not reclaim anything and there are no more
3525          * mem cgroups to try or we seem to be looping without
3526          * reclaiming anything.
3527          */
3528         if (!nr_reclaimed &&
3529             (next_mz == NULL ||
3530             loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3531             break;
3532     } while (!nr_reclaimed);
3533     if (next_mz)
3534         css_put(&next_mz->memcg->css);
3535     return nr_reclaimed;
3536 }
3537 
3538 /*
3539  * Reclaims as many pages from the given memcg as possible.
3540  *
3541  * Caller is responsible for holding css reference for memcg.
3542  */
3543 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3544 {
3545     int nr_retries = MAX_RECLAIM_RETRIES;
3546 
3547     /* we call try-to-free pages for make this cgroup empty */
3548     lru_add_drain_all();
3549 
3550     drain_all_stock(memcg);
3551 
3552     /* try to free all pages in this cgroup */
3553     while (nr_retries && page_counter_read(&memcg->memory)) {
3554         if (signal_pending(current))
3555             return -EINTR;
3556 
3557         if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3558                           MEMCG_RECLAIM_MAY_SWAP))
3559             nr_retries--;
3560     }
3561 
3562     return 0;
3563 }
3564 
3565 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3566                         char *buf, size_t nbytes,
3567                         loff_t off)
3568 {
3569     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570 
3571     if (mem_cgroup_is_root(memcg))
3572         return -EINVAL;
3573     return mem_cgroup_force_empty(memcg) ?: nbytes;
3574 }
3575 
3576 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3577                      struct cftype *cft)
3578 {
3579     return 1;
3580 }
3581 
3582 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3583                       struct cftype *cft, u64 val)
3584 {
3585     if (val == 1)
3586         return 0;
3587 
3588     pr_warn_once("Non-hierarchical mode is deprecated. "
3589              "Please report your usecase to linux-mm@kvack.org if you "
3590              "depend on this functionality.\n");
3591 
3592     return -EINVAL;
3593 }
3594 
3595 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3596 {
3597     unsigned long val;
3598 
3599     if (mem_cgroup_is_root(memcg)) {
3600         mem_cgroup_flush_stats();
3601         val = memcg_page_state(memcg, NR_FILE_PAGES) +
3602             memcg_page_state(memcg, NR_ANON_MAPPED);
3603         if (swap)
3604             val += memcg_page_state(memcg, MEMCG_SWAP);
3605     } else {
3606         if (!swap)
3607             val = page_counter_read(&memcg->memory);
3608         else
3609             val = page_counter_read(&memcg->memsw);
3610     }
3611     return val;
3612 }
3613 
3614 enum {
3615     RES_USAGE,
3616     RES_LIMIT,
3617     RES_MAX_USAGE,
3618     RES_FAILCNT,
3619     RES_SOFT_LIMIT,
3620 };
3621 
3622 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3623                    struct cftype *cft)
3624 {
3625     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626     struct page_counter *counter;
3627 
3628     switch (MEMFILE_TYPE(cft->private)) {
3629     case _MEM:
3630         counter = &memcg->memory;
3631         break;
3632     case _MEMSWAP:
3633         counter = &memcg->memsw;
3634         break;
3635     case _KMEM:
3636         counter = &memcg->kmem;
3637         break;
3638     case _TCP:
3639         counter = &memcg->tcpmem;
3640         break;
3641     default:
3642         BUG();
3643     }
3644 
3645     switch (MEMFILE_ATTR(cft->private)) {
3646     case RES_USAGE:
3647         if (counter == &memcg->memory)
3648             return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3649         if (counter == &memcg->memsw)
3650             return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3651         return (u64)page_counter_read(counter) * PAGE_SIZE;
3652     case RES_LIMIT:
3653         return (u64)counter->max * PAGE_SIZE;
3654     case RES_MAX_USAGE:
3655         return (u64)counter->watermark * PAGE_SIZE;
3656     case RES_FAILCNT:
3657         return counter->failcnt;
3658     case RES_SOFT_LIMIT:
3659         return (u64)memcg->soft_limit * PAGE_SIZE;
3660     default:
3661         BUG();
3662     }
3663 }
3664 
3665 #ifdef CONFIG_MEMCG_KMEM
3666 static int memcg_online_kmem(struct mem_cgroup *memcg)
3667 {
3668     struct obj_cgroup *objcg;
3669 
3670     if (mem_cgroup_kmem_disabled())
3671         return 0;
3672 
3673     if (unlikely(mem_cgroup_is_root(memcg)))
3674         return 0;
3675 
3676     objcg = obj_cgroup_alloc();
3677     if (!objcg)
3678         return -ENOMEM;
3679 
3680     objcg->memcg = memcg;
3681     rcu_assign_pointer(memcg->objcg, objcg);
3682 
3683     static_branch_enable(&memcg_kmem_enabled_key);
3684 
3685     memcg->kmemcg_id = memcg->id.id;
3686 
3687     return 0;
3688 }
3689 
3690 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3691 {
3692     struct mem_cgroup *parent;
3693 
3694     if (mem_cgroup_kmem_disabled())
3695         return;
3696 
3697     if (unlikely(mem_cgroup_is_root(memcg)))
3698         return;
3699 
3700     parent = parent_mem_cgroup(memcg);
3701     if (!parent)
3702         parent = root_mem_cgroup;
3703 
3704     memcg_reparent_objcgs(memcg, parent);
3705 
3706     /*
3707      * After we have finished memcg_reparent_objcgs(), all list_lrus
3708      * corresponding to this cgroup are guaranteed to remain empty.
3709      * The ordering is imposed by list_lru_node->lock taken by
3710      * memcg_reparent_list_lrus().
3711      */
3712     memcg_reparent_list_lrus(memcg, parent);
3713 }
3714 #else
3715 static int memcg_online_kmem(struct mem_cgroup *memcg)
3716 {
3717     return 0;
3718 }
3719 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3720 {
3721 }
3722 #endif /* CONFIG_MEMCG_KMEM */
3723 
3724 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3725 {
3726     int ret;
3727 
3728     mutex_lock(&memcg_max_mutex);
3729 
3730     ret = page_counter_set_max(&memcg->tcpmem, max);
3731     if (ret)
3732         goto out;
3733 
3734     if (!memcg->tcpmem_active) {
3735         /*
3736          * The active flag needs to be written after the static_key
3737          * update. This is what guarantees that the socket activation
3738          * function is the last one to run. See mem_cgroup_sk_alloc()
3739          * for details, and note that we don't mark any socket as
3740          * belonging to this memcg until that flag is up.
3741          *
3742          * We need to do this, because static_keys will span multiple
3743          * sites, but we can't control their order. If we mark a socket
3744          * as accounted, but the accounting functions are not patched in
3745          * yet, we'll lose accounting.
3746          *
3747          * We never race with the readers in mem_cgroup_sk_alloc(),
3748          * because when this value change, the code to process it is not
3749          * patched in yet.
3750          */
3751         static_branch_inc(&memcg_sockets_enabled_key);
3752         memcg->tcpmem_active = true;
3753     }
3754 out:
3755     mutex_unlock(&memcg_max_mutex);
3756     return ret;
3757 }
3758 
3759 /*
3760  * The user of this function is...
3761  * RES_LIMIT.
3762  */
3763 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3764                 char *buf, size_t nbytes, loff_t off)
3765 {
3766     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3767     unsigned long nr_pages;
3768     int ret;
3769 
3770     buf = strstrip(buf);
3771     ret = page_counter_memparse(buf, "-1", &nr_pages);
3772     if (ret)
3773         return ret;
3774 
3775     switch (MEMFILE_ATTR(of_cft(of)->private)) {
3776     case RES_LIMIT:
3777         if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3778             ret = -EINVAL;
3779             break;
3780         }
3781         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3782         case _MEM:
3783             ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3784             break;
3785         case _MEMSWAP:
3786             ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3787             break;
3788         case _KMEM:
3789             /* kmem.limit_in_bytes is deprecated. */
3790             ret = -EOPNOTSUPP;
3791             break;
3792         case _TCP:
3793             ret = memcg_update_tcp_max(memcg, nr_pages);
3794             break;
3795         }
3796         break;
3797     case RES_SOFT_LIMIT:
3798         if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3799             ret = -EOPNOTSUPP;
3800         } else {
3801             memcg->soft_limit = nr_pages;
3802             ret = 0;
3803         }
3804         break;
3805     }
3806     return ret ?: nbytes;
3807 }
3808 
3809 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3810                 size_t nbytes, loff_t off)
3811 {
3812     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3813     struct page_counter *counter;
3814 
3815     switch (MEMFILE_TYPE(of_cft(of)->private)) {
3816     case _MEM:
3817         counter = &memcg->memory;
3818         break;
3819     case _MEMSWAP:
3820         counter = &memcg->memsw;
3821         break;
3822     case _KMEM:
3823         counter = &memcg->kmem;
3824         break;
3825     case _TCP:
3826         counter = &memcg->tcpmem;
3827         break;
3828     default:
3829         BUG();
3830     }
3831 
3832     switch (MEMFILE_ATTR(of_cft(of)->private)) {
3833     case RES_MAX_USAGE:
3834         page_counter_reset_watermark(counter);
3835         break;
3836     case RES_FAILCNT:
3837         counter->failcnt = 0;
3838         break;
3839     default:
3840         BUG();
3841     }
3842 
3843     return nbytes;
3844 }
3845 
3846 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3847                     struct cftype *cft)
3848 {
3849     return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3850 }
3851 
3852 #ifdef CONFIG_MMU
3853 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3854                     struct cftype *cft, u64 val)
3855 {
3856     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857 
3858     if (val & ~MOVE_MASK)
3859         return -EINVAL;
3860 
3861     /*
3862      * No kind of locking is needed in here, because ->can_attach() will
3863      * check this value once in the beginning of the process, and then carry
3864      * on with stale data. This means that changes to this value will only
3865      * affect task migrations starting after the change.
3866      */
3867     memcg->move_charge_at_immigrate = val;
3868     return 0;
3869 }
3870 #else
3871 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3872                     struct cftype *cft, u64 val)
3873 {
3874     return -ENOSYS;
3875 }
3876 #endif
3877 
3878 #ifdef CONFIG_NUMA
3879 
3880 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3881 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3882 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3883 
3884 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3885                 int nid, unsigned int lru_mask, bool tree)
3886 {
3887     struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3888     unsigned long nr = 0;
3889     enum lru_list lru;
3890 
3891     VM_BUG_ON((unsigned)nid >= nr_node_ids);
3892 
3893     for_each_lru(lru) {
3894         if (!(BIT(lru) & lru_mask))
3895             continue;
3896         if (tree)
3897             nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3898         else
3899             nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3900     }
3901     return nr;
3902 }
3903 
3904 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3905                          unsigned int lru_mask,
3906                          bool tree)
3907 {
3908     unsigned long nr = 0;
3909     enum lru_list lru;
3910 
3911     for_each_lru(lru) {
3912         if (!(BIT(lru) & lru_mask))
3913             continue;
3914         if (tree)
3915             nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3916         else
3917             nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3918     }
3919     return nr;
3920 }
3921 
3922 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3923 {
3924     struct numa_stat {
3925         const char *name;
3926         unsigned int lru_mask;
3927     };
3928 
3929     static const struct numa_stat stats[] = {
3930         { "total", LRU_ALL },
3931         { "file", LRU_ALL_FILE },
3932         { "anon", LRU_ALL_ANON },
3933         { "unevictable", BIT(LRU_UNEVICTABLE) },
3934     };
3935     const struct numa_stat *stat;
3936     int nid;
3937     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3938 
3939     mem_cgroup_flush_stats();
3940 
3941     for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3942         seq_printf(m, "%s=%lu", stat->name,
3943                mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3944                            false));
3945         for_each_node_state(nid, N_MEMORY)
3946             seq_printf(m, " N%d=%lu", nid,
3947                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3948                             stat->lru_mask, false));
3949         seq_putc(m, '\n');
3950     }
3951 
3952     for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3953 
3954         seq_printf(m, "hierarchical_%s=%lu", stat->name,
3955                mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3956                            true));
3957         for_each_node_state(nid, N_MEMORY)
3958             seq_printf(m, " N%d=%lu", nid,
3959                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3960                             stat->lru_mask, true));
3961         seq_putc(m, '\n');
3962     }
3963 
3964     return 0;
3965 }
3966 #endif /* CONFIG_NUMA */
3967 
3968 static const unsigned int memcg1_stats[] = {
3969     NR_FILE_PAGES,
3970     NR_ANON_MAPPED,
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972     NR_ANON_THPS,
3973 #endif
3974     NR_SHMEM,
3975     NR_FILE_MAPPED,
3976     NR_FILE_DIRTY,
3977     NR_WRITEBACK,
3978     MEMCG_SWAP,
3979 };
3980 
3981 static const char *const memcg1_stat_names[] = {
3982     "cache",
3983     "rss",
3984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3985     "rss_huge",
3986 #endif
3987     "shmem",
3988     "mapped_file",
3989     "dirty",
3990     "writeback",
3991     "swap",
3992 };
3993 
3994 /* Universal VM events cgroup1 shows, original sort order */
3995 static const unsigned int memcg1_events[] = {
3996     PGPGIN,
3997     PGPGOUT,
3998     PGFAULT,
3999     PGMAJFAULT,
4000 };
4001 
4002 static int memcg_stat_show(struct seq_file *m, void *v)
4003 {
4004     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4005     unsigned long memory, memsw;
4006     struct mem_cgroup *mi;
4007     unsigned int i;
4008 
4009     BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4010 
4011     mem_cgroup_flush_stats();
4012 
4013     for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4014         unsigned long nr;
4015 
4016         if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4017             continue;
4018         nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4019         seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4020     }
4021 
4022     for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4023         seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4024                memcg_events_local(memcg, memcg1_events[i]));
4025 
4026     for (i = 0; i < NR_LRU_LISTS; i++)
4027         seq_printf(m, "%s %lu\n", lru_list_name(i),
4028                memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4029                PAGE_SIZE);
4030 
4031     /* Hierarchical information */
4032     memory = memsw = PAGE_COUNTER_MAX;
4033     for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4034         memory = min(memory, READ_ONCE(mi->memory.max));
4035         memsw = min(memsw, READ_ONCE(mi->memsw.max));
4036     }
4037     seq_printf(m, "hierarchical_memory_limit %llu\n",
4038            (u64)memory * PAGE_SIZE);
4039     if (do_memsw_account())
4040         seq_printf(m, "hierarchical_memsw_limit %llu\n",
4041                (u64)memsw * PAGE_SIZE);
4042 
4043     for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4044         unsigned long nr;
4045 
4046         if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4047             continue;
4048         nr = memcg_page_state(memcg, memcg1_stats[i]);
4049         seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4050                         (u64)nr * PAGE_SIZE);
4051     }
4052 
4053     for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4054         seq_printf(m, "total_%s %llu\n",
4055                vm_event_name(memcg1_events[i]),
4056                (u64)memcg_events(memcg, memcg1_events[i]));
4057 
4058     for (i = 0; i < NR_LRU_LISTS; i++)
4059         seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4060                (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4061                PAGE_SIZE);
4062 
4063 #ifdef CONFIG_DEBUG_VM
4064     {
4065         pg_data_t *pgdat;
4066         struct mem_cgroup_per_node *mz;
4067         unsigned long anon_cost = 0;
4068         unsigned long file_cost = 0;
4069 
4070         for_each_online_pgdat(pgdat) {
4071             mz = memcg->nodeinfo[pgdat->node_id];
4072 
4073             anon_cost += mz->lruvec.anon_cost;
4074             file_cost += mz->lruvec.file_cost;
4075         }
4076         seq_printf(m, "anon_cost %lu\n", anon_cost);
4077         seq_printf(m, "file_cost %lu\n", file_cost);
4078     }
4079 #endif
4080 
4081     return 0;
4082 }
4083 
4084 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4085                       struct cftype *cft)
4086 {
4087     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4088 
4089     return mem_cgroup_swappiness(memcg);
4090 }
4091 
4092 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4093                        struct cftype *cft, u64 val)
4094 {
4095     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4096 
4097     if (val > 200)
4098         return -EINVAL;
4099 
4100     if (!mem_cgroup_is_root(memcg))
4101         memcg->swappiness = val;
4102     else
4103         vm_swappiness = val;
4104 
4105     return 0;
4106 }
4107 
4108 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4109 {
4110     struct mem_cgroup_threshold_ary *t;
4111     unsigned long usage;
4112     int i;
4113 
4114     rcu_read_lock();
4115     if (!swap)
4116         t = rcu_dereference(memcg->thresholds.primary);
4117     else
4118         t = rcu_dereference(memcg->memsw_thresholds.primary);
4119 
4120     if (!t)
4121         goto unlock;
4122 
4123     usage = mem_cgroup_usage(memcg, swap);
4124 
4125     /*
4126      * current_threshold points to threshold just below or equal to usage.
4127      * If it's not true, a threshold was crossed after last
4128      * call of __mem_cgroup_threshold().
4129      */
4130     i = t->current_threshold;
4131 
4132     /*
4133      * Iterate backward over array of thresholds starting from
4134      * current_threshold and check if a threshold is crossed.
4135      * If none of thresholds below usage is crossed, we read
4136      * only one element of the array here.
4137      */
4138     for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4139         eventfd_signal(t->entries[i].eventfd, 1);
4140 
4141     /* i = current_threshold + 1 */
4142     i++;
4143 
4144     /*
4145      * Iterate forward over array of thresholds starting from
4146      * current_threshold+1 and check if a threshold is crossed.
4147      * If none of thresholds above usage is crossed, we read
4148      * only one element of the array here.
4149      */
4150     for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4151         eventfd_signal(t->entries[i].eventfd, 1);
4152 
4153     /* Update current_threshold */
4154     t->current_threshold = i - 1;
4155 unlock:
4156     rcu_read_unlock();
4157 }
4158 
4159 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4160 {
4161     while (memcg) {
4162         __mem_cgroup_threshold(memcg, false);
4163         if (do_memsw_account())
4164             __mem_cgroup_threshold(memcg, true);
4165 
4166         memcg = parent_mem_cgroup(memcg);
4167     }
4168 }
4169 
4170 static int compare_thresholds(const void *a, const void *b)
4171 {
4172     const struct mem_cgroup_threshold *_a = a;
4173     const struct mem_cgroup_threshold *_b = b;
4174 
4175     if (_a->threshold > _b->threshold)
4176         return 1;
4177 
4178     if (_a->threshold < _b->threshold)
4179         return -1;
4180 
4181     return 0;
4182 }
4183 
4184 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4185 {
4186     struct mem_cgroup_eventfd_list *ev;
4187 
4188     spin_lock(&memcg_oom_lock);
4189 
4190     list_for_each_entry(ev, &memcg->oom_notify, list)
4191         eventfd_signal(ev->eventfd, 1);
4192 
4193     spin_unlock(&memcg_oom_lock);
4194     return 0;
4195 }
4196 
4197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4198 {
4199     struct mem_cgroup *iter;
4200 
4201     for_each_mem_cgroup_tree(iter, memcg)
4202         mem_cgroup_oom_notify_cb(iter);
4203 }
4204 
4205 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4206     struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4207 {
4208     struct mem_cgroup_thresholds *thresholds;
4209     struct mem_cgroup_threshold_ary *new;
4210     unsigned long threshold;
4211     unsigned long usage;
4212     int i, size, ret;
4213 
4214     ret = page_counter_memparse(args, "-1", &threshold);
4215     if (ret)
4216         return ret;
4217 
4218     mutex_lock(&memcg->thresholds_lock);
4219 
4220     if (type == _MEM) {
4221         thresholds = &memcg->thresholds;
4222         usage = mem_cgroup_usage(memcg, false);
4223     } else if (type == _MEMSWAP) {
4224         thresholds = &memcg->memsw_thresholds;
4225         usage = mem_cgroup_usage(memcg, true);
4226     } else
4227         BUG();
4228 
4229     /* Check if a threshold crossed before adding a new one */
4230     if (thresholds->primary)
4231         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4232 
4233     size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4234 
4235     /* Allocate memory for new array of thresholds */
4236     new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4237     if (!new) {
4238         ret = -ENOMEM;
4239         goto unlock;
4240     }
4241     new->size = size;
4242 
4243     /* Copy thresholds (if any) to new array */
4244     if (thresholds->primary)
4245         memcpy(new->entries, thresholds->primary->entries,
4246                flex_array_size(new, entries, size - 1));
4247 
4248     /* Add new threshold */
4249     new->entries[size - 1].eventfd = eventfd;
4250     new->entries[size - 1].threshold = threshold;
4251 
4252     /* Sort thresholds. Registering of new threshold isn't time-critical */
4253     sort(new->entries, size, sizeof(*new->entries),
4254             compare_thresholds, NULL);
4255 
4256     /* Find current threshold */
4257     new->current_threshold = -1;
4258     for (i = 0; i < size; i++) {
4259         if (new->entries[i].threshold <= usage) {
4260             /*
4261              * new->current_threshold will not be used until
4262              * rcu_assign_pointer(), so it's safe to increment
4263              * it here.
4264              */
4265             ++new->current_threshold;
4266         } else
4267             break;
4268     }
4269 
4270     /* Free old spare buffer and save old primary buffer as spare */
4271     kfree(thresholds->spare);
4272     thresholds->spare = thresholds->primary;
4273 
4274     rcu_assign_pointer(thresholds->primary, new);
4275 
4276     /* To be sure that nobody uses thresholds */
4277     synchronize_rcu();
4278 
4279 unlock:
4280     mutex_unlock(&memcg->thresholds_lock);
4281 
4282     return ret;
4283 }
4284 
4285 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4286     struct eventfd_ctx *eventfd, const char *args)
4287 {
4288     return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4289 }
4290 
4291 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4292     struct eventfd_ctx *eventfd, const char *args)
4293 {
4294     return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4295 }
4296 
4297 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4298     struct eventfd_ctx *eventfd, enum res_type type)
4299 {
4300     struct mem_cgroup_thresholds *thresholds;
4301     struct mem_cgroup_threshold_ary *new;
4302     unsigned long usage;
4303     int i, j, size, entries;
4304 
4305     mutex_lock(&memcg->thresholds_lock);
4306 
4307     if (type == _MEM) {
4308         thresholds = &memcg->thresholds;
4309         usage = mem_cgroup_usage(memcg, false);
4310     } else if (type == _MEMSWAP) {
4311         thresholds = &memcg->memsw_thresholds;
4312         usage = mem_cgroup_usage(memcg, true);
4313     } else
4314         BUG();
4315 
4316     if (!thresholds->primary)
4317         goto unlock;
4318 
4319     /* Check if a threshold crossed before removing */
4320     __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4321 
4322     /* Calculate new number of threshold */
4323     size = entries = 0;
4324     for (i = 0; i < thresholds->primary->size; i++) {
4325         if (thresholds->primary->entries[i].eventfd != eventfd)
4326             size++;
4327         else
4328             entries++;
4329     }
4330 
4331     new = thresholds->spare;
4332 
4333     /* If no items related to eventfd have been cleared, nothing to do */
4334     if (!entries)
4335         goto unlock;
4336 
4337     /* Set thresholds array to NULL if we don't have thresholds */
4338     if (!size) {
4339         kfree(new);
4340         new = NULL;
4341         goto swap_buffers;
4342     }
4343 
4344     new->size = size;
4345 
4346     /* Copy thresholds and find current threshold */
4347     new->current_threshold = -1;
4348     for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4349         if (thresholds->primary->entries[i].eventfd == eventfd)
4350             continue;
4351 
4352         new->entries[j] = thresholds->primary->entries[i];
4353         if (new->entries[j].threshold <= usage) {
4354             /*
4355              * new->current_threshold will not be used
4356              * until rcu_assign_pointer(), so it's safe to increment
4357              * it here.
4358              */
4359             ++new->current_threshold;
4360         }
4361         j++;
4362     }
4363 
4364 swap_buffers:
4365     /* Swap primary and spare array */
4366     thresholds->spare = thresholds->primary;
4367 
4368     rcu_assign_pointer(thresholds->primary, new);
4369 
4370     /* To be sure that nobody uses thresholds */
4371     synchronize_rcu();
4372 
4373     /* If all events are unregistered, free the spare array */
4374     if (!new) {
4375         kfree(thresholds->spare);
4376         thresholds->spare = NULL;
4377     }
4378 unlock:
4379     mutex_unlock(&memcg->thresholds_lock);
4380 }
4381 
4382 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4383     struct eventfd_ctx *eventfd)
4384 {
4385     return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4386 }
4387 
4388 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4389     struct eventfd_ctx *eventfd)
4390 {
4391     return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4392 }
4393 
4394 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4395     struct eventfd_ctx *eventfd, const char *args)
4396 {
4397     struct mem_cgroup_eventfd_list *event;
4398 
4399     event = kmalloc(sizeof(*event), GFP_KERNEL);
4400     if (!event)
4401         return -ENOMEM;
4402 
4403     spin_lock(&memcg_oom_lock);
4404 
4405     event->eventfd = eventfd;
4406     list_add(&event->list, &memcg->oom_notify);
4407 
4408     /* already in OOM ? */
4409     if (memcg->under_oom)
4410         eventfd_signal(eventfd, 1);
4411     spin_unlock(&memcg_oom_lock);
4412 
4413     return 0;
4414 }
4415 
4416 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4417     struct eventfd_ctx *eventfd)
4418 {
4419     struct mem_cgroup_eventfd_list *ev, *tmp;
4420 
4421     spin_lock(&memcg_oom_lock);
4422 
4423     list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4424         if (ev->eventfd == eventfd) {
4425             list_del(&ev->list);
4426             kfree(ev);
4427         }
4428     }
4429 
4430     spin_unlock(&memcg_oom_lock);
4431 }
4432 
4433 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4434 {
4435     struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4436 
4437     seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4438     seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4439     seq_printf(sf, "oom_kill %lu\n",
4440            atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4441     return 0;
4442 }
4443 
4444 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4445     struct cftype *cft, u64 val)
4446 {
4447     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4448 
4449     /* cannot set to root cgroup and only 0 and 1 are allowed */
4450     if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4451         return -EINVAL;
4452 
4453     memcg->oom_kill_disable = val;
4454     if (!val)
4455         memcg_oom_recover(memcg);
4456 
4457     return 0;
4458 }
4459 
4460 #ifdef CONFIG_CGROUP_WRITEBACK
4461 
4462 #include <trace/events/writeback.h>
4463 
4464 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4465 {
4466     return wb_domain_init(&memcg->cgwb_domain, gfp);
4467 }
4468 
4469 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4470 {
4471     wb_domain_exit(&memcg->cgwb_domain);
4472 }
4473 
4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475 {
4476     wb_domain_size_changed(&memcg->cgwb_domain);
4477 }
4478 
4479 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4480 {
4481     struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4482 
4483     if (!memcg->css.parent)
4484         return NULL;
4485 
4486     return &memcg->cgwb_domain;
4487 }
4488 
4489 /**
4490  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4491  * @wb: bdi_writeback in question
4492  * @pfilepages: out parameter for number of file pages
4493  * @pheadroom: out parameter for number of allocatable pages according to memcg
4494  * @pdirty: out parameter for number of dirty pages
4495  * @pwriteback: out parameter for number of pages under writeback
4496  *
4497  * Determine the numbers of file, headroom, dirty, and writeback pages in
4498  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4499  * is a bit more involved.
4500  *
4501  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4502  * headroom is calculated as the lowest headroom of itself and the
4503  * ancestors.  Note that this doesn't consider the actual amount of
4504  * available memory in the system.  The caller should further cap
4505  * *@pheadroom accordingly.
4506  */
4507 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4508              unsigned long *pheadroom, unsigned long *pdirty,
4509              unsigned long *pwriteback)
4510 {
4511     struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4512     struct mem_cgroup *parent;
4513 
4514     mem_cgroup_flush_stats();
4515 
4516     *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4517     *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4518     *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4519             memcg_page_state(memcg, NR_ACTIVE_FILE);
4520 
4521     *pheadroom = PAGE_COUNTER_MAX;
4522     while ((parent = parent_mem_cgroup(memcg))) {
4523         unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4524                         READ_ONCE(memcg->memory.high));
4525         unsigned long used = page_counter_read(&memcg->memory);
4526 
4527         *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4528         memcg = parent;
4529     }
4530 }
4531 
4532 /*
4533  * Foreign dirty flushing
4534  *
4535  * There's an inherent mismatch between memcg and writeback.  The former
4536  * tracks ownership per-page while the latter per-inode.  This was a
4537  * deliberate design decision because honoring per-page ownership in the
4538  * writeback path is complicated, may lead to higher CPU and IO overheads
4539  * and deemed unnecessary given that write-sharing an inode across
4540  * different cgroups isn't a common use-case.
4541  *
4542  * Combined with inode majority-writer ownership switching, this works well
4543  * enough in most cases but there are some pathological cases.  For
4544  * example, let's say there are two cgroups A and B which keep writing to
4545  * different but confined parts of the same inode.  B owns the inode and
4546  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4547  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4548  * triggering background writeback.  A will be slowed down without a way to
4549  * make writeback of the dirty pages happen.
4550  *
4551  * Conditions like the above can lead to a cgroup getting repeatedly and
4552  * severely throttled after making some progress after each
4553  * dirty_expire_interval while the underlying IO device is almost
4554  * completely idle.
4555  *
4556  * Solving this problem completely requires matching the ownership tracking
4557  * granularities between memcg and writeback in either direction.  However,
4558  * the more egregious behaviors can be avoided by simply remembering the
4559  * most recent foreign dirtying events and initiating remote flushes on
4560  * them when local writeback isn't enough to keep the memory clean enough.
4561  *
4562  * The following two functions implement such mechanism.  When a foreign
4563  * page - a page whose memcg and writeback ownerships don't match - is
4564  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4565  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4566  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4567  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4568  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4569  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4570  * limited to MEMCG_CGWB_FRN_CNT.
4571  *
4572  * The mechanism only remembers IDs and doesn't hold any object references.
4573  * As being wrong occasionally doesn't matter, updates and accesses to the
4574  * records are lockless and racy.
4575  */
4576 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4577                          struct bdi_writeback *wb)
4578 {
4579     struct mem_cgroup *memcg = folio_memcg(folio);
4580     struct memcg_cgwb_frn *frn;
4581     u64 now = get_jiffies_64();
4582     u64 oldest_at = now;
4583     int oldest = -1;
4584     int i;
4585 
4586     trace_track_foreign_dirty(folio, wb);
4587 
4588     /*
4589      * Pick the slot to use.  If there is already a slot for @wb, keep
4590      * using it.  If not replace the oldest one which isn't being
4591      * written out.
4592      */
4593     for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4594         frn = &memcg->cgwb_frn[i];
4595         if (frn->bdi_id == wb->bdi->id &&
4596             frn->memcg_id == wb->memcg_css->id)
4597             break;
4598         if (time_before64(frn->at, oldest_at) &&
4599             atomic_read(&frn->done.cnt) == 1) {
4600             oldest = i;
4601             oldest_at = frn->at;
4602         }
4603     }
4604 
4605     if (i < MEMCG_CGWB_FRN_CNT) {
4606         /*
4607          * Re-using an existing one.  Update timestamp lazily to
4608          * avoid making the cacheline hot.  We want them to be
4609          * reasonably up-to-date and significantly shorter than
4610          * dirty_expire_interval as that's what expires the record.
4611          * Use the shorter of 1s and dirty_expire_interval / 8.
4612          */
4613         unsigned long update_intv =
4614             min_t(unsigned long, HZ,
4615                   msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4616 
4617         if (time_before64(frn->at, now - update_intv))
4618             frn->at = now;
4619     } else if (oldest >= 0) {
4620         /* replace the oldest free one */
4621         frn = &memcg->cgwb_frn[oldest];
4622         frn->bdi_id = wb->bdi->id;
4623         frn->memcg_id = wb->memcg_css->id;
4624         frn->at = now;
4625     }
4626 }
4627 
4628 /* issue foreign writeback flushes for recorded foreign dirtying events */
4629 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4630 {
4631     struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4632     unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4633     u64 now = jiffies_64;
4634     int i;
4635 
4636     for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4637         struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4638 
4639         /*
4640          * If the record is older than dirty_expire_interval,
4641          * writeback on it has already started.  No need to kick it
4642          * off again.  Also, don't start a new one if there's
4643          * already one in flight.
4644          */
4645         if (time_after64(frn->at, now - intv) &&
4646             atomic_read(&frn->done.cnt) == 1) {
4647             frn->at = 0;
4648             trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4649             cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4650                            WB_REASON_FOREIGN_FLUSH,
4651                            &frn->done);
4652         }
4653     }
4654 }
4655 
4656 #else   /* CONFIG_CGROUP_WRITEBACK */
4657 
4658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4659 {
4660     return 0;
4661 }
4662 
4663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4664 {
4665 }
4666 
4667 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4668 {
4669 }
4670 
4671 #endif  /* CONFIG_CGROUP_WRITEBACK */
4672 
4673 /*
4674  * DO NOT USE IN NEW FILES.
4675  *
4676  * "cgroup.event_control" implementation.
4677  *
4678  * This is way over-engineered.  It tries to support fully configurable
4679  * events for each user.  Such level of flexibility is completely
4680  * unnecessary especially in the light of the planned unified hierarchy.
4681  *
4682  * Please deprecate this and replace with something simpler if at all
4683  * possible.
4684  */
4685 
4686 /*
4687  * Unregister event and free resources.
4688  *
4689  * Gets called from workqueue.
4690  */
4691 static void memcg_event_remove(struct work_struct *work)
4692 {
4693     struct mem_cgroup_event *event =
4694         container_of(work, struct mem_cgroup_event, remove);
4695     struct mem_cgroup *memcg = event->memcg;
4696 
4697     remove_wait_queue(event->wqh, &event->wait);
4698 
4699     event->unregister_event(memcg, event->eventfd);
4700 
4701     /* Notify userspace the event is going away. */
4702     eventfd_signal(event->eventfd, 1);
4703 
4704     eventfd_ctx_put(event->eventfd);
4705     kfree(event);
4706     css_put(&memcg->css);
4707 }
4708 
4709 /*
4710  * Gets called on EPOLLHUP on eventfd when user closes it.
4711  *
4712  * Called with wqh->lock held and interrupts disabled.
4713  */
4714 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4715                 int sync, void *key)
4716 {
4717     struct mem_cgroup_event *event =
4718         container_of(wait, struct mem_cgroup_event, wait);
4719     struct mem_cgroup *memcg = event->memcg;
4720     __poll_t flags = key_to_poll(key);
4721 
4722     if (flags & EPOLLHUP) {
4723         /*
4724          * If the event has been detached at cgroup removal, we
4725          * can simply return knowing the other side will cleanup
4726          * for us.
4727          *
4728          * We can't race against event freeing since the other
4729          * side will require wqh->lock via remove_wait_queue(),
4730          * which we hold.
4731          */
4732         spin_lock(&memcg->event_list_lock);
4733         if (!list_empty(&event->list)) {
4734             list_del_init(&event->list);
4735             /*
4736              * We are in atomic context, but cgroup_event_remove()
4737              * may sleep, so we have to call it in workqueue.
4738              */
4739             schedule_work(&event->remove);
4740         }
4741         spin_unlock(&memcg->event_list_lock);
4742     }
4743 
4744     return 0;
4745 }
4746 
4747 static void memcg_event_ptable_queue_proc(struct file *file,
4748         wait_queue_head_t *wqh, poll_table *pt)
4749 {
4750     struct mem_cgroup_event *event =
4751         container_of(pt, struct mem_cgroup_event, pt);
4752 
4753     event->wqh = wqh;
4754     add_wait_queue(wqh, &event->wait);
4755 }
4756 
4757 /*
4758  * DO NOT USE IN NEW FILES.
4759  *
4760  * Parse input and register new cgroup event handler.
4761  *
4762  * Input must be in format '<event_fd> <control_fd> <args>'.
4763  * Interpretation of args is defined by control file implementation.
4764  */
4765 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4766                      char *buf, size_t nbytes, loff_t off)
4767 {
4768     struct cgroup_subsys_state *css = of_css(of);
4769     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4770     struct mem_cgroup_event *event;
4771     struct cgroup_subsys_state *cfile_css;
4772     unsigned int efd, cfd;
4773     struct fd efile;
4774     struct fd cfile;
4775     const char *name;
4776     char *endp;
4777     int ret;
4778 
4779     if (IS_ENABLED(CONFIG_PREEMPT_RT))
4780         return -EOPNOTSUPP;
4781 
4782     buf = strstrip(buf);
4783 
4784     efd = simple_strtoul(buf, &endp, 10);
4785     if (*endp != ' ')
4786         return -EINVAL;
4787     buf = endp + 1;
4788 
4789     cfd = simple_strtoul(buf, &endp, 10);
4790     if ((*endp != ' ') && (*endp != '\0'))
4791         return -EINVAL;
4792     buf = endp + 1;
4793 
4794     event = kzalloc(sizeof(*event), GFP_KERNEL);
4795     if (!event)
4796         return -ENOMEM;
4797 
4798     event->memcg = memcg;
4799     INIT_LIST_HEAD(&event->list);
4800     init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4801     init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4802     INIT_WORK(&event->remove, memcg_event_remove);
4803 
4804     efile = fdget(efd);
4805     if (!efile.file) {
4806         ret = -EBADF;
4807         goto out_kfree;
4808     }
4809 
4810     event->eventfd = eventfd_ctx_fileget(efile.file);
4811     if (IS_ERR(event->eventfd)) {
4812         ret = PTR_ERR(event->eventfd);
4813         goto out_put_efile;
4814     }
4815 
4816     cfile = fdget(cfd);
4817     if (!cfile.file) {
4818         ret = -EBADF;
4819         goto out_put_eventfd;
4820     }
4821 
4822     /* the process need read permission on control file */
4823     /* AV: shouldn't we check that it's been opened for read instead? */
4824     ret = file_permission(cfile.file, MAY_READ);
4825     if (ret < 0)
4826         goto out_put_cfile;
4827 
4828     /*
4829      * Determine the event callbacks and set them in @event.  This used
4830      * to be done via struct cftype but cgroup core no longer knows
4831      * about these events.  The following is crude but the whole thing
4832      * is for compatibility anyway.
4833      *
4834      * DO NOT ADD NEW FILES.
4835      */
4836     name = cfile.file->f_path.dentry->d_name.name;
4837 
4838     if (!strcmp(name, "memory.usage_in_bytes")) {
4839         event->register_event = mem_cgroup_usage_register_event;
4840         event->unregister_event = mem_cgroup_usage_unregister_event;
4841     } else if (!strcmp(name, "memory.oom_control")) {
4842         event->register_event = mem_cgroup_oom_register_event;
4843         event->unregister_event = mem_cgroup_oom_unregister_event;
4844     } else if (!strcmp(name, "memory.pressure_level")) {
4845         event->register_event = vmpressure_register_event;
4846         event->unregister_event = vmpressure_unregister_event;
4847     } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4848         event->register_event = memsw_cgroup_usage_register_event;
4849         event->unregister_event = memsw_cgroup_usage_unregister_event;
4850     } else {
4851         ret = -EINVAL;
4852         goto out_put_cfile;
4853     }
4854 
4855     /*
4856      * Verify @cfile should belong to @css.  Also, remaining events are
4857      * automatically removed on cgroup destruction but the removal is
4858      * asynchronous, so take an extra ref on @css.
4859      */
4860     cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4861                            &memory_cgrp_subsys);
4862     ret = -EINVAL;
4863     if (IS_ERR(cfile_css))
4864         goto out_put_cfile;
4865     if (cfile_css != css) {
4866         css_put(cfile_css);
4867         goto out_put_cfile;
4868     }
4869 
4870     ret = event->register_event(memcg, event->eventfd, buf);
4871     if (ret)
4872         goto out_put_css;
4873 
4874     vfs_poll(efile.file, &event->pt);
4875 
4876     spin_lock_irq(&memcg->event_list_lock);
4877     list_add(&event->list, &memcg->event_list);
4878     spin_unlock_irq(&memcg->event_list_lock);
4879 
4880     fdput(cfile);
4881     fdput(efile);
4882 
4883     return nbytes;
4884 
4885 out_put_css:
4886     css_put(css);
4887 out_put_cfile:
4888     fdput(cfile);
4889 out_put_eventfd:
4890     eventfd_ctx_put(event->eventfd);
4891 out_put_efile:
4892     fdput(efile);
4893 out_kfree:
4894     kfree(event);
4895 
4896     return ret;
4897 }
4898 
4899 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4900 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4901 {
4902     /*
4903      * Deprecated.
4904      * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4905      */
4906     return 0;
4907 }
4908 #endif
4909 
4910 static struct cftype mem_cgroup_legacy_files[] = {
4911     {
4912         .name = "usage_in_bytes",
4913         .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4914         .read_u64 = mem_cgroup_read_u64,
4915     },
4916     {
4917         .name = "max_usage_in_bytes",
4918         .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4919         .write = mem_cgroup_reset,
4920         .read_u64 = mem_cgroup_read_u64,
4921     },
4922     {
4923         .name = "limit_in_bytes",
4924         .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4925         .write = mem_cgroup_write,
4926         .read_u64 = mem_cgroup_read_u64,
4927     },
4928     {
4929         .name = "soft_limit_in_bytes",
4930         .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4931         .write = mem_cgroup_write,
4932         .read_u64 = mem_cgroup_read_u64,
4933     },
4934     {
4935         .name = "failcnt",
4936         .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4937         .write = mem_cgroup_reset,
4938         .read_u64 = mem_cgroup_read_u64,
4939     },
4940     {
4941         .name = "stat",
4942         .seq_show = memcg_stat_show,
4943     },
4944     {
4945         .name = "force_empty",
4946         .write = mem_cgroup_force_empty_write,
4947     },
4948     {
4949         .name = "use_hierarchy",
4950         .write_u64 = mem_cgroup_hierarchy_write,
4951         .read_u64 = mem_cgroup_hierarchy_read,
4952     },
4953     {
4954         .name = "cgroup.event_control",     /* XXX: for compat */
4955         .write = memcg_write_event_control,
4956         .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4957     },
4958     {
4959         .name = "swappiness",
4960         .read_u64 = mem_cgroup_swappiness_read,
4961         .write_u64 = mem_cgroup_swappiness_write,
4962     },
4963     {
4964         .name = "move_charge_at_immigrate",
4965         .read_u64 = mem_cgroup_move_charge_read,
4966         .write_u64 = mem_cgroup_move_charge_write,
4967     },
4968     {
4969         .name = "oom_control",
4970         .seq_show = mem_cgroup_oom_control_read,
4971         .write_u64 = mem_cgroup_oom_control_write,
4972     },
4973     {
4974         .name = "pressure_level",
4975     },
4976 #ifdef CONFIG_NUMA
4977     {
4978         .name = "numa_stat",
4979         .seq_show = memcg_numa_stat_show,
4980     },
4981 #endif
4982     {
4983         .name = "kmem.limit_in_bytes",
4984         .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985         .write = mem_cgroup_write,
4986         .read_u64 = mem_cgroup_read_u64,
4987     },
4988     {
4989         .name = "kmem.usage_in_bytes",
4990         .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991         .read_u64 = mem_cgroup_read_u64,
4992     },
4993     {
4994         .name = "kmem.failcnt",
4995         .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996         .write = mem_cgroup_reset,
4997         .read_u64 = mem_cgroup_read_u64,
4998     },
4999     {
5000         .name = "kmem.max_usage_in_bytes",
5001         .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002         .write = mem_cgroup_reset,
5003         .read_u64 = mem_cgroup_read_u64,
5004     },
5005 #if defined(CONFIG_MEMCG_KMEM) && \
5006     (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007     {
5008         .name = "kmem.slabinfo",
5009         .seq_show = mem_cgroup_slab_show,
5010     },
5011 #endif
5012     {
5013         .name = "kmem.tcp.limit_in_bytes",
5014         .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015         .write = mem_cgroup_write,
5016         .read_u64 = mem_cgroup_read_u64,
5017     },
5018     {
5019         .name = "kmem.tcp.usage_in_bytes",
5020         .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021         .read_u64 = mem_cgroup_read_u64,
5022     },
5023     {
5024         .name = "kmem.tcp.failcnt",
5025         .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026         .write = mem_cgroup_reset,
5027         .read_u64 = mem_cgroup_read_u64,
5028     },
5029     {
5030         .name = "kmem.tcp.max_usage_in_bytes",
5031         .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032         .write = mem_cgroup_reset,
5033         .read_u64 = mem_cgroup_read_u64,
5034     },
5035     { },    /* terminate */
5036 };
5037 
5038 /*
5039  * Private memory cgroup IDR
5040  *
5041  * Swap-out records and page cache shadow entries need to store memcg
5042  * references in constrained space, so we maintain an ID space that is
5043  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044  * memory-controlled cgroups to 64k.
5045  *
5046  * However, there usually are many references to the offline CSS after
5047  * the cgroup has been destroyed, such as page cache or reclaimable
5048  * slab objects, that don't need to hang on to the ID. We want to keep
5049  * those dead CSS from occupying IDs, or we might quickly exhaust the
5050  * relatively small ID space and prevent the creation of new cgroups
5051  * even when there are much fewer than 64k cgroups - possibly none.
5052  *
5053  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054  * be freed and recycled when it's no longer needed, which is usually
5055  * when the CSS is offlined.
5056  *
5057  * The only exception to that are records of swapped out tmpfs/shmem
5058  * pages that need to be attributed to live ancestors on swapin. But
5059  * those references are manageable from userspace.
5060  */
5061 
5062 static DEFINE_IDR(mem_cgroup_idr);
5063 
5064 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065 {
5066     if (memcg->id.id > 0) {
5067         idr_remove(&mem_cgroup_idr, memcg->id.id);
5068         memcg->id.id = 0;
5069     }
5070 }
5071 
5072 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073                           unsigned int n)
5074 {
5075     refcount_add(n, &memcg->id.ref);
5076 }
5077 
5078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079 {
5080     if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081         mem_cgroup_id_remove(memcg);
5082 
5083         /* Memcg ID pins CSS */
5084         css_put(&memcg->css);
5085     }
5086 }
5087 
5088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089 {
5090     mem_cgroup_id_put_many(memcg, 1);
5091 }
5092 
5093 /**
5094  * mem_cgroup_from_id - look up a memcg from a memcg id
5095  * @id: the memcg id to look up
5096  *
5097  * Caller must hold rcu_read_lock().
5098  */
5099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100 {
5101     WARN_ON_ONCE(!rcu_read_lock_held());
5102     return idr_find(&mem_cgroup_idr, id);
5103 }
5104 
5105 #ifdef CONFIG_SHRINKER_DEBUG
5106 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5107 {
5108     struct cgroup *cgrp;
5109     struct cgroup_subsys_state *css;
5110     struct mem_cgroup *memcg;
5111 
5112     cgrp = cgroup_get_from_id(ino);
5113     if (!cgrp)
5114         return ERR_PTR(-ENOENT);
5115 
5116     css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5117     if (css)
5118         memcg = container_of(css, struct mem_cgroup, css);
5119     else
5120         memcg = ERR_PTR(-ENOENT);
5121 
5122     cgroup_put(cgrp);
5123 
5124     return memcg;
5125 }
5126 #endif
5127 
5128 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5129 {
5130     struct mem_cgroup_per_node *pn;
5131 
5132     pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5133     if (!pn)
5134         return 1;
5135 
5136     pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5137                            GFP_KERNEL_ACCOUNT);
5138     if (!pn->lruvec_stats_percpu) {
5139         kfree(pn);
5140         return 1;
5141     }
5142 
5143     lruvec_init(&pn->lruvec);
5144     pn->memcg = memcg;
5145 
5146     memcg->nodeinfo[node] = pn;
5147     return 0;
5148 }
5149 
5150 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5151 {
5152     struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5153 
5154     if (!pn)
5155         return;
5156 
5157     free_percpu(pn->lruvec_stats_percpu);
5158     kfree(pn);
5159 }
5160 
5161 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5162 {
5163     int node;
5164 
5165     for_each_node(node)
5166         free_mem_cgroup_per_node_info(memcg, node);
5167     free_percpu(memcg->vmstats_percpu);
5168     kfree(memcg);
5169 }
5170 
5171 static void mem_cgroup_free(struct mem_cgroup *memcg)
5172 {
5173     memcg_wb_domain_exit(memcg);
5174     __mem_cgroup_free(memcg);
5175 }
5176 
5177 static struct mem_cgroup *mem_cgroup_alloc(void)
5178 {
5179     struct mem_cgroup *memcg;
5180     int node;
5181     int __maybe_unused i;
5182     long error = -ENOMEM;
5183 
5184     memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5185     if (!memcg)
5186         return ERR_PTR(error);
5187 
5188     memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5189                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5190     if (memcg->id.id < 0) {
5191         error = memcg->id.id;
5192         goto fail;
5193     }
5194 
5195     memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5196                          GFP_KERNEL_ACCOUNT);
5197     if (!memcg->vmstats_percpu)
5198         goto fail;
5199 
5200     for_each_node(node)
5201         if (alloc_mem_cgroup_per_node_info(memcg, node))
5202             goto fail;
5203 
5204     if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5205         goto fail;
5206 
5207     INIT_WORK(&memcg->high_work, high_work_func);
5208     INIT_LIST_HEAD(&memcg->oom_notify);
5209     mutex_init(&memcg->thresholds_lock);
5210     spin_lock_init(&memcg->move_lock);
5211     vmpressure_init(&memcg->vmpressure);
5212     INIT_LIST_HEAD(&memcg->event_list);
5213     spin_lock_init(&memcg->event_list_lock);
5214     memcg->socket_pressure = jiffies;
5215 #ifdef CONFIG_MEMCG_KMEM
5216     memcg->kmemcg_id = -1;
5217     INIT_LIST_HEAD(&memcg->objcg_list);
5218 #endif
5219 #ifdef CONFIG_CGROUP_WRITEBACK
5220     INIT_LIST_HEAD(&memcg->cgwb_list);
5221     for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5222         memcg->cgwb_frn[i].done =
5223             __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5224 #endif
5225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226     spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5227     INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5228     memcg->deferred_split_queue.split_queue_len = 0;
5229 #endif
5230     idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5231     return memcg;
5232 fail:
5233     mem_cgroup_id_remove(memcg);
5234     __mem_cgroup_free(memcg);
5235     return ERR_PTR(error);
5236 }
5237 
5238 static struct cgroup_subsys_state * __ref
5239 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5240 {
5241     struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5242     struct mem_cgroup *memcg, *old_memcg;
5243 
5244     old_memcg = set_active_memcg(parent);
5245     memcg = mem_cgroup_alloc();
5246     set_active_memcg(old_memcg);
5247     if (IS_ERR(memcg))
5248         return ERR_CAST(memcg);
5249 
5250     page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5251     memcg->soft_limit = PAGE_COUNTER_MAX;
5252 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5253     memcg->zswap_max = PAGE_COUNTER_MAX;
5254 #endif
5255     page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5256     if (parent) {
5257         memcg->swappiness = mem_cgroup_swappiness(parent);
5258         memcg->oom_kill_disable = parent->oom_kill_disable;
5259 
5260         page_counter_init(&memcg->memory, &parent->memory);
5261         page_counter_init(&memcg->swap, &parent->swap);
5262         page_counter_init(&memcg->kmem, &parent->kmem);
5263         page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5264     } else {
5265         page_counter_init(&memcg->memory, NULL);
5266         page_counter_init(&memcg->swap, NULL);
5267         page_counter_init(&memcg->kmem, NULL);
5268         page_counter_init(&memcg->tcpmem, NULL);
5269 
5270         root_mem_cgroup = memcg;
5271         return &memcg->css;
5272     }
5273 
5274     if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5275         static_branch_inc(&memcg_sockets_enabled_key);
5276 
5277     return &memcg->css;
5278 }
5279 
5280 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5281 {
5282     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 
5284     if (memcg_online_kmem(memcg))
5285         goto remove_id;
5286 
5287     /*
5288      * A memcg must be visible for expand_shrinker_info()
5289      * by the time the maps are allocated. So, we allocate maps
5290      * here, when for_each_mem_cgroup() can't skip it.
5291      */
5292     if (alloc_shrinker_info(memcg))
5293         goto offline_kmem;
5294 
5295     /* Online state pins memcg ID, memcg ID pins CSS */
5296     refcount_set(&memcg->id.ref, 1);
5297     css_get(css);
5298 
5299     if (unlikely(mem_cgroup_is_root(memcg)))
5300         queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5301                    2UL*HZ);
5302     return 0;
5303 offline_kmem:
5304     memcg_offline_kmem(memcg);
5305 remove_id:
5306     mem_cgroup_id_remove(memcg);
5307     return -ENOMEM;
5308 }
5309 
5310 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5311 {
5312     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5313     struct mem_cgroup_event *event, *tmp;
5314 
5315     /*
5316      * Unregister events and notify userspace.
5317      * Notify userspace about cgroup removing only after rmdir of cgroup
5318      * directory to avoid race between userspace and kernelspace.
5319      */
5320     spin_lock_irq(&memcg->event_list_lock);
5321     list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5322         list_del_init(&event->list);
5323         schedule_work(&event->remove);
5324     }
5325     spin_unlock_irq(&memcg->event_list_lock);
5326 
5327     page_counter_set_min(&memcg->memory, 0);
5328     page_counter_set_low(&memcg->memory, 0);
5329 
5330     memcg_offline_kmem(memcg);
5331     reparent_shrinker_deferred(memcg);
5332     wb_memcg_offline(memcg);
5333 
5334     drain_all_stock(memcg);
5335 
5336     mem_cgroup_id_put(memcg);
5337 }
5338 
5339 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5340 {
5341     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342 
5343     invalidate_reclaim_iterators(memcg);
5344 }
5345 
5346 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5347 {
5348     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349     int __maybe_unused i;
5350 
5351 #ifdef CONFIG_CGROUP_WRITEBACK
5352     for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5353         wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5354 #endif
5355     if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5356         static_branch_dec(&memcg_sockets_enabled_key);
5357 
5358     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5359         static_branch_dec(&memcg_sockets_enabled_key);
5360 
5361     vmpressure_cleanup(&memcg->vmpressure);
5362     cancel_work_sync(&memcg->high_work);
5363     mem_cgroup_remove_from_trees(memcg);
5364     free_shrinker_info(memcg);
5365     mem_cgroup_free(memcg);
5366 }
5367 
5368 /**
5369  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5370  * @css: the target css
5371  *
5372  * Reset the states of the mem_cgroup associated with @css.  This is
5373  * invoked when the userland requests disabling on the default hierarchy
5374  * but the memcg is pinned through dependency.  The memcg should stop
5375  * applying policies and should revert to the vanilla state as it may be
5376  * made visible again.
5377  *
5378  * The current implementation only resets the essential configurations.
5379  * This needs to be expanded to cover all the visible parts.
5380  */
5381 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5382 {
5383     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5384 
5385     page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5386     page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5387     page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5388     page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5389     page_counter_set_min(&memcg->memory, 0);
5390     page_counter_set_low(&memcg->memory, 0);
5391     page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5392     memcg->soft_limit = PAGE_COUNTER_MAX;
5393     page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5394     memcg_wb_domain_size_changed(memcg);
5395 }
5396 
5397 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5398 {
5399     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400     struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5401     struct memcg_vmstats_percpu *statc;
5402     long delta, v;
5403     int i, nid;
5404 
5405     statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5406 
5407     for (i = 0; i < MEMCG_NR_STAT; i++) {
5408         /*
5409          * Collect the aggregated propagation counts of groups
5410          * below us. We're in a per-cpu loop here and this is
5411          * a global counter, so the first cycle will get them.
5412          */
5413         delta = memcg->vmstats.state_pending[i];
5414         if (delta)
5415             memcg->vmstats.state_pending[i] = 0;
5416 
5417         /* Add CPU changes on this level since the last flush */
5418         v = READ_ONCE(statc->state[i]);
5419         if (v != statc->state_prev[i]) {
5420             delta += v - statc->state_prev[i];
5421             statc->state_prev[i] = v;
5422         }
5423 
5424         if (!delta)
5425             continue;
5426 
5427         /* Aggregate counts on this level and propagate upwards */
5428         memcg->vmstats.state[i] += delta;
5429         if (parent)
5430             parent->vmstats.state_pending[i] += delta;
5431     }
5432 
5433     for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5434         delta = memcg->vmstats.events_pending[i];
5435         if (delta)
5436             memcg->vmstats.events_pending[i] = 0;
5437 
5438         v = READ_ONCE(statc->events[i]);
5439         if (v != statc->events_prev[i]) {
5440             delta += v - statc->events_prev[i];
5441             statc->events_prev[i] = v;
5442         }
5443 
5444         if (!delta)
5445             continue;
5446 
5447         memcg->vmstats.events[i] += delta;
5448         if (parent)
5449             parent->vmstats.events_pending[i] += delta;
5450     }
5451 
5452     for_each_node_state(nid, N_MEMORY) {
5453         struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5454         struct mem_cgroup_per_node *ppn = NULL;
5455         struct lruvec_stats_percpu *lstatc;
5456 
5457         if (parent)
5458             ppn = parent->nodeinfo[nid];
5459 
5460         lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5461 
5462         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5463             delta = pn->lruvec_stats.state_pending[i];
5464             if (delta)
5465                 pn->lruvec_stats.state_pending[i] = 0;
5466 
5467             v = READ_ONCE(lstatc->state[i]);
5468             if (v != lstatc->state_prev[i]) {
5469                 delta += v - lstatc->state_prev[i];
5470                 lstatc->state_prev[i] = v;
5471             }
5472 
5473             if (!delta)
5474                 continue;
5475 
5476             pn->lruvec_stats.state[i] += delta;
5477             if (ppn)
5478                 ppn->lruvec_stats.state_pending[i] += delta;
5479         }
5480     }
5481 }
5482 
5483 #ifdef CONFIG_MMU
5484 /* Handlers for move charge at task migration. */
5485 static int mem_cgroup_do_precharge(unsigned long count)
5486 {
5487     int ret;
5488 
5489     /* Try a single bulk charge without reclaim first, kswapd may wake */
5490     ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5491     if (!ret) {
5492         mc.precharge += count;
5493         return ret;
5494     }
5495 
5496     /* Try charges one by one with reclaim, but do not retry */
5497     while (count--) {
5498         ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5499         if (ret)
5500             return ret;
5501         mc.precharge++;
5502         cond_resched();
5503     }
5504     return 0;
5505 }
5506 
5507 union mc_target {
5508     struct page *page;
5509     swp_entry_t ent;
5510 };
5511 
5512 enum mc_target_type {
5513     MC_TARGET_NONE = 0,
5514     MC_TARGET_PAGE,
5515     MC_TARGET_SWAP,
5516     MC_TARGET_DEVICE,
5517 };
5518 
5519 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5520                         unsigned long addr, pte_t ptent)
5521 {
5522     struct page *page = vm_normal_page(vma, addr, ptent);
5523 
5524     if (!page || !page_mapped(page))
5525         return NULL;
5526     if (PageAnon(page)) {
5527         if (!(mc.flags & MOVE_ANON))
5528             return NULL;
5529     } else {
5530         if (!(mc.flags & MOVE_FILE))
5531             return NULL;
5532     }
5533     if (!get_page_unless_zero(page))
5534         return NULL;
5535 
5536     return page;
5537 }
5538 
5539 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541             pte_t ptent, swp_entry_t *entry)
5542 {
5543     struct page *page = NULL;
5544     swp_entry_t ent = pte_to_swp_entry(ptent);
5545 
5546     if (!(mc.flags & MOVE_ANON))
5547         return NULL;
5548 
5549     /*
5550      * Handle device private pages that are not accessible by the CPU, but
5551      * stored as special swap entries in the page table.
5552      */
5553     if (is_device_private_entry(ent)) {
5554         page = pfn_swap_entry_to_page(ent);
5555         if (!get_page_unless_zero(page))
5556             return NULL;
5557         return page;
5558     }
5559 
5560     if (non_swap_entry(ent))
5561         return NULL;
5562 
5563     /*
5564      * Because lookup_swap_cache() updates some statistics counter,
5565      * we call find_get_page() with swapper_space directly.
5566      */
5567     page = find_get_page(swap_address_space(ent), swp_offset(ent));
5568     entry->val = ent.val;
5569 
5570     return page;
5571 }
5572 #else
5573 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5574             pte_t ptent, swp_entry_t *entry)
5575 {
5576     return NULL;
5577 }
5578 #endif
5579 
5580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5581             unsigned long addr, pte_t ptent)
5582 {
5583     if (!vma->vm_file) /* anonymous vma */
5584         return NULL;
5585     if (!(mc.flags & MOVE_FILE))
5586         return NULL;
5587 
5588     /* page is moved even if it's not RSS of this task(page-faulted). */
5589     /* shmem/tmpfs may report page out on swap: account for that too. */
5590     return find_get_incore_page(vma->vm_file->f_mapping,
5591             linear_page_index(vma, addr));
5592 }
5593 
5594 /**
5595  * mem_cgroup_move_account - move account of the page
5596  * @page: the page
5597  * @compound: charge the page as compound or small page
5598  * @from: mem_cgroup which the page is moved from.
5599  * @to: mem_cgroup which the page is moved to. @from != @to.
5600  *
5601  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5602  *
5603  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5604  * from old cgroup.
5605  */
5606 static int mem_cgroup_move_account(struct page *page,
5607                    bool compound,
5608                    struct mem_cgroup *from,
5609                    struct mem_cgroup *to)
5610 {
5611     struct folio *folio = page_folio(page);
5612     struct lruvec *from_vec, *to_vec;
5613     struct pglist_data *pgdat;
5614     unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5615     int nid, ret;
5616 
5617     VM_BUG_ON(from == to);
5618     VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5619     VM_BUG_ON(compound && !folio_test_large(folio));
5620 
5621     /*
5622      * Prevent mem_cgroup_migrate() from looking at
5623      * page's memory cgroup of its source page while we change it.
5624      */
5625     ret = -EBUSY;
5626     if (!folio_trylock(folio))
5627         goto out;
5628 
5629     ret = -EINVAL;
5630     if (folio_memcg(folio) != from)
5631         goto out_unlock;
5632 
5633     pgdat = folio_pgdat(folio);
5634     from_vec = mem_cgroup_lruvec(from, pgdat);
5635     to_vec = mem_cgroup_lruvec(to, pgdat);
5636 
5637     folio_memcg_lock(folio);
5638 
5639     if (folio_test_anon(folio)) {
5640         if (folio_mapped(folio)) {
5641             __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5642             __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5643             if (folio_test_transhuge(folio)) {
5644                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5645                            -nr_pages);
5646                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5647                            nr_pages);
5648             }
5649         }
5650     } else {
5651         __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5652         __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5653 
5654         if (folio_test_swapbacked(folio)) {
5655             __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5656             __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5657         }
5658 
5659         if (folio_mapped(folio)) {
5660             __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5661             __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5662         }
5663 
5664         if (folio_test_dirty(folio)) {
5665             struct address_space *mapping = folio_mapping(folio);
5666 
5667             if (mapping_can_writeback(mapping)) {
5668                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5669                            -nr_pages);
5670                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5671                            nr_pages);
5672             }
5673         }
5674     }
5675 
5676     if (folio_test_writeback(folio)) {
5677         __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5678         __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5679     }
5680 
5681     /*
5682      * All state has been migrated, let's switch to the new memcg.
5683      *
5684      * It is safe to change page's memcg here because the page
5685      * is referenced, charged, isolated, and locked: we can't race
5686      * with (un)charging, migration, LRU putback, or anything else
5687      * that would rely on a stable page's memory cgroup.
5688      *
5689      * Note that lock_page_memcg is a memcg lock, not a page lock,
5690      * to save space. As soon as we switch page's memory cgroup to a
5691      * new memcg that isn't locked, the above state can change
5692      * concurrently again. Make sure we're truly done with it.
5693      */
5694     smp_mb();
5695 
5696     css_get(&to->css);
5697     css_put(&from->css);
5698 
5699     folio->memcg_data = (unsigned long)to;
5700 
5701     __folio_memcg_unlock(from);
5702 
5703     ret = 0;
5704     nid = folio_nid(folio);
5705 
5706     local_irq_disable();
5707     mem_cgroup_charge_statistics(to, nr_pages);
5708     memcg_check_events(to, nid);
5709     mem_cgroup_charge_statistics(from, -nr_pages);
5710     memcg_check_events(from, nid);
5711     local_irq_enable();
5712 out_unlock:
5713     folio_unlock(folio);
5714 out:
5715     return ret;
5716 }
5717 
5718 /**
5719  * get_mctgt_type - get target type of moving charge
5720  * @vma: the vma the pte to be checked belongs
5721  * @addr: the address corresponding to the pte to be checked
5722  * @ptent: the pte to be checked
5723  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5724  *
5725  * Returns
5726  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5727  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5728  *     move charge. if @target is not NULL, the page is stored in target->page
5729  *     with extra refcnt got(Callers should handle it).
5730  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5731  *     target for charge migration. if @target is not NULL, the entry is stored
5732  *     in target->ent.
5733  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5734  *   thus not on the lru.
5735  *     For now we such page is charge like a regular page would be as for all
5736  *     intent and purposes it is just special memory taking the place of a
5737  *     regular page.
5738  *
5739  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5740  *
5741  * Called with pte lock held.
5742  */
5743 
5744 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5745         unsigned long addr, pte_t ptent, union mc_target *target)
5746 {
5747     struct page *page = NULL;
5748     enum mc_target_type ret = MC_TARGET_NONE;
5749     swp_entry_t ent = { .val = 0 };
5750 
5751     if (pte_present(ptent))
5752         page = mc_handle_present_pte(vma, addr, ptent);
5753     else if (pte_none_mostly(ptent))
5754         /*
5755          * PTE markers should be treated as a none pte here, separated
5756          * from other swap handling below.
5757          */
5758         page = mc_handle_file_pte(vma, addr, ptent);
5759     else if (is_swap_pte(ptent))
5760         page = mc_handle_swap_pte(vma, ptent, &ent);
5761 
5762     if (!page && !ent.val)
5763         return ret;
5764     if (page) {
5765         /*
5766          * Do only loose check w/o serialization.
5767          * mem_cgroup_move_account() checks the page is valid or
5768          * not under LRU exclusion.
5769          */
5770         if (page_memcg(page) == mc.from) {
5771             ret = MC_TARGET_PAGE;
5772             if (is_device_private_page(page) ||
5773                 is_device_coherent_page(page))
5774                 ret = MC_TARGET_DEVICE;
5775             if (target)
5776                 target->page = page;
5777         }
5778         if (!ret || !target)
5779             put_page(page);
5780     }
5781     /*
5782      * There is a swap entry and a page doesn't exist or isn't charged.
5783      * But we cannot move a tail-page in a THP.
5784      */
5785     if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5786         mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5787         ret = MC_TARGET_SWAP;
5788         if (target)
5789             target->ent = ent;
5790     }
5791     return ret;
5792 }
5793 
5794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5795 /*
5796  * We don't consider PMD mapped swapping or file mapped pages because THP does
5797  * not support them for now.
5798  * Caller should make sure that pmd_trans_huge(pmd) is true.
5799  */
5800 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5801         unsigned long addr, pmd_t pmd, union mc_target *target)
5802 {
5803     struct page *page = NULL;
5804     enum mc_target_type ret = MC_TARGET_NONE;
5805 
5806     if (unlikely(is_swap_pmd(pmd))) {
5807         VM_BUG_ON(thp_migration_supported() &&
5808                   !is_pmd_migration_entry(pmd));
5809         return ret;
5810     }
5811     page = pmd_page(pmd);
5812     VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5813     if (!(mc.flags & MOVE_ANON))
5814         return ret;
5815     if (page_memcg(page) == mc.from) {
5816         ret = MC_TARGET_PAGE;
5817         if (target) {
5818             get_page(page);
5819             target->page = page;
5820         }
5821     }
5822     return ret;
5823 }
5824 #else
5825 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5826         unsigned long addr, pmd_t pmd, union mc_target *target)
5827 {
5828     return MC_TARGET_NONE;
5829 }
5830 #endif
5831 
5832 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5833                     unsigned long addr, unsigned long end,
5834                     struct mm_walk *walk)
5835 {
5836     struct vm_area_struct *vma = walk->vma;
5837     pte_t *pte;
5838     spinlock_t *ptl;
5839 
5840     ptl = pmd_trans_huge_lock(pmd, vma);
5841     if (ptl) {
5842         /*
5843          * Note their can not be MC_TARGET_DEVICE for now as we do not
5844          * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5845          * this might change.
5846          */
5847         if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5848             mc.precharge += HPAGE_PMD_NR;
5849         spin_unlock(ptl);
5850         return 0;
5851     }
5852 
5853     if (pmd_trans_unstable(pmd))
5854         return 0;
5855     pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5856     for (; addr != end; pte++, addr += PAGE_SIZE)
5857         if (get_mctgt_type(vma, addr, *pte, NULL))
5858             mc.precharge++; /* increment precharge temporarily */
5859     pte_unmap_unlock(pte - 1, ptl);
5860     cond_resched();
5861 
5862     return 0;
5863 }
5864 
5865 static const struct mm_walk_ops precharge_walk_ops = {
5866     .pmd_entry  = mem_cgroup_count_precharge_pte_range,
5867 };
5868 
5869 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5870 {
5871     unsigned long precharge;
5872 
5873     mmap_read_lock(mm);
5874     walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5875     mmap_read_unlock(mm);
5876 
5877     precharge = mc.precharge;
5878     mc.precharge = 0;
5879 
5880     return precharge;
5881 }
5882 
5883 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5884 {
5885     unsigned long precharge = mem_cgroup_count_precharge(mm);
5886 
5887     VM_BUG_ON(mc.moving_task);
5888     mc.moving_task = current;
5889     return mem_cgroup_do_precharge(precharge);
5890 }
5891 
5892 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5893 static void __mem_cgroup_clear_mc(void)
5894 {
5895     struct mem_cgroup *from = mc.from;
5896     struct mem_cgroup *to = mc.to;
5897 
5898     /* we must uncharge all the leftover precharges from mc.to */
5899     if (mc.precharge) {
5900         cancel_charge(mc.to, mc.precharge);
5901         mc.precharge = 0;
5902     }
5903     /*
5904      * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5905      * we must uncharge here.
5906      */
5907     if (mc.moved_charge) {
5908         cancel_charge(mc.from, mc.moved_charge);
5909         mc.moved_charge = 0;
5910     }
5911     /* we must fixup refcnts and charges */
5912     if (mc.moved_swap) {
5913         /* uncharge swap account from the old cgroup */
5914         if (!mem_cgroup_is_root(mc.from))
5915             page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5916 
5917         mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5918 
5919         /*
5920          * we charged both to->memory and to->memsw, so we
5921          * should uncharge to->memory.
5922          */
5923         if (!mem_cgroup_is_root(mc.to))
5924             page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5925 
5926         mc.moved_swap = 0;
5927     }
5928     memcg_oom_recover(from);
5929     memcg_oom_recover(to);
5930     wake_up_all(&mc.waitq);
5931 }
5932 
5933 static void mem_cgroup_clear_mc(void)
5934 {
5935     struct mm_struct *mm = mc.mm;
5936 
5937     /*
5938      * we must clear moving_task before waking up waiters at the end of
5939      * task migration.
5940      */
5941     mc.moving_task = NULL;
5942     __mem_cgroup_clear_mc();
5943     spin_lock(&mc.lock);
5944     mc.from = NULL;
5945     mc.to = NULL;
5946     mc.mm = NULL;
5947     spin_unlock(&mc.lock);
5948 
5949     mmput(mm);
5950 }
5951 
5952 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5953 {
5954     struct cgroup_subsys_state *css;
5955     struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5956     struct mem_cgroup *from;
5957     struct task_struct *leader, *p;
5958     struct mm_struct *mm;
5959     unsigned long move_flags;
5960     int ret = 0;
5961 
5962     /* charge immigration isn't supported on the default hierarchy */
5963     if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964         return 0;
5965 
5966     /*
5967      * Multi-process migrations only happen on the default hierarchy
5968      * where charge immigration is not used.  Perform charge
5969      * immigration if @tset contains a leader and whine if there are
5970      * multiple.
5971      */
5972     p = NULL;
5973     cgroup_taskset_for_each_leader(leader, css, tset) {
5974         WARN_ON_ONCE(p);
5975         p = leader;
5976         memcg = mem_cgroup_from_css(css);
5977     }
5978     if (!p)
5979         return 0;
5980 
5981     /*
5982      * We are now committed to this value whatever it is. Changes in this
5983      * tunable will only affect upcoming migrations, not the current one.
5984      * So we need to save it, and keep it going.
5985      */
5986     move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5987     if (!move_flags)
5988         return 0;
5989 
5990     from = mem_cgroup_from_task(p);
5991 
5992     VM_BUG_ON(from == memcg);
5993 
5994     mm = get_task_mm(p);
5995     if (!mm)
5996         return 0;
5997     /* We move charges only when we move a owner of the mm */
5998     if (mm->owner == p) {
5999         VM_BUG_ON(mc.from);
6000         VM_BUG_ON(mc.to);
6001         VM_BUG_ON(mc.precharge);
6002         VM_BUG_ON(mc.moved_charge);
6003         VM_BUG_ON(mc.moved_swap);
6004 
6005         spin_lock(&mc.lock);
6006         mc.mm = mm;
6007         mc.from = from;
6008         mc.to = memcg;
6009         mc.flags = move_flags;
6010         spin_unlock(&mc.lock);
6011         /* We set mc.moving_task later */
6012 
6013         ret = mem_cgroup_precharge_mc(mm);
6014         if (ret)
6015             mem_cgroup_clear_mc();
6016     } else {
6017         mmput(mm);
6018     }
6019     return ret;
6020 }
6021 
6022 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6023 {
6024     if (mc.to)
6025         mem_cgroup_clear_mc();
6026 }
6027 
6028 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6029                 unsigned long addr, unsigned long end,
6030                 struct mm_walk *walk)
6031 {
6032     int ret = 0;
6033     struct vm_area_struct *vma = walk->vma;
6034     pte_t *pte;
6035     spinlock_t *ptl;
6036     enum mc_target_type target_type;
6037     union mc_target target;
6038     struct page *page;
6039 
6040     ptl = pmd_trans_huge_lock(pmd, vma);
6041     if (ptl) {
6042         if (mc.precharge < HPAGE_PMD_NR) {
6043             spin_unlock(ptl);
6044             return 0;
6045         }
6046         target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6047         if (target_type == MC_TARGET_PAGE) {
6048             page = target.page;
6049             if (!isolate_lru_page(page)) {
6050                 if (!mem_cgroup_move_account(page, true,
6051                                  mc.from, mc.to)) {
6052                     mc.precharge -= HPAGE_PMD_NR;
6053                     mc.moved_charge += HPAGE_PMD_NR;
6054                 }
6055                 putback_lru_page(page);
6056             }
6057             put_page(page);
6058         } else if (target_type == MC_TARGET_DEVICE) {
6059             page = target.page;
6060             if (!mem_cgroup_move_account(page, true,
6061                              mc.from, mc.to)) {
6062                 mc.precharge -= HPAGE_PMD_NR;
6063                 mc.moved_charge += HPAGE_PMD_NR;
6064             }
6065             put_page(page);
6066         }
6067         spin_unlock(ptl);
6068         return 0;
6069     }
6070 
6071     if (pmd_trans_unstable(pmd))
6072         return 0;
6073 retry:
6074     pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6075     for (; addr != end; addr += PAGE_SIZE) {
6076         pte_t ptent = *(pte++);
6077         bool device = false;
6078         swp_entry_t ent;
6079 
6080         if (!mc.precharge)
6081             break;
6082 
6083         switch (get_mctgt_type(vma, addr, ptent, &target)) {
6084         case MC_TARGET_DEVICE:
6085             device = true;
6086             fallthrough;
6087         case MC_TARGET_PAGE:
6088             page = target.page;
6089             /*
6090              * We can have a part of the split pmd here. Moving it
6091              * can be done but it would be too convoluted so simply
6092              * ignore such a partial THP and keep it in original
6093              * memcg. There should be somebody mapping the head.
6094              */
6095             if (PageTransCompound(page))
6096                 goto put;
6097             if (!device && isolate_lru_page(page))
6098                 goto put;
6099             if (!mem_cgroup_move_account(page, false,
6100                         mc.from, mc.to)) {
6101                 mc.precharge--;
6102                 /* we uncharge from mc.from later. */
6103                 mc.moved_charge++;
6104             }
6105             if (!device)
6106                 putback_lru_page(page);
6107 put:            /* get_mctgt_type() gets the page */
6108             put_page(page);
6109             break;
6110         case MC_TARGET_SWAP:
6111             ent = target.ent;
6112             if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6113                 mc.precharge--;
6114                 mem_cgroup_id_get_many(mc.to, 1);
6115                 /* we fixup other refcnts and charges later. */
6116                 mc.moved_swap++;
6117             }
6118             break;
6119         default:
6120             break;
6121         }
6122     }
6123     pte_unmap_unlock(pte - 1, ptl);
6124     cond_resched();
6125 
6126     if (addr != end) {
6127         /*
6128          * We have consumed all precharges we got in can_attach().
6129          * We try charge one by one, but don't do any additional
6130          * charges to mc.to if we have failed in charge once in attach()
6131          * phase.
6132          */
6133         ret = mem_cgroup_do_precharge(1);
6134         if (!ret)
6135             goto retry;
6136     }
6137 
6138     return ret;
6139 }
6140 
6141 static const struct mm_walk_ops charge_walk_ops = {
6142     .pmd_entry  = mem_cgroup_move_charge_pte_range,
6143 };
6144 
6145 static void mem_cgroup_move_charge(void)
6146 {
6147     lru_add_drain_all();
6148     /*
6149      * Signal lock_page_memcg() to take the memcg's move_lock
6150      * while we're moving its pages to another memcg. Then wait
6151      * for already started RCU-only updates to finish.
6152      */
6153     atomic_inc(&mc.from->moving_account);
6154     synchronize_rcu();
6155 retry:
6156     if (unlikely(!mmap_read_trylock(mc.mm))) {
6157         /*
6158          * Someone who are holding the mmap_lock might be waiting in
6159          * waitq. So we cancel all extra charges, wake up all waiters,
6160          * and retry. Because we cancel precharges, we might not be able
6161          * to move enough charges, but moving charge is a best-effort
6162          * feature anyway, so it wouldn't be a big problem.
6163          */
6164         __mem_cgroup_clear_mc();
6165         cond_resched();
6166         goto retry;
6167     }
6168     /*
6169      * When we have consumed all precharges and failed in doing
6170      * additional charge, the page walk just aborts.
6171      */
6172     walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6173             NULL);
6174 
6175     mmap_read_unlock(mc.mm);
6176     atomic_dec(&mc.from->moving_account);
6177 }
6178 
6179 static void mem_cgroup_move_task(void)
6180 {
6181     if (mc.to) {
6182         mem_cgroup_move_charge();
6183         mem_cgroup_clear_mc();
6184     }
6185 }
6186 #else   /* !CONFIG_MMU */
6187 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6188 {
6189     return 0;
6190 }
6191 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6192 {
6193 }
6194 static void mem_cgroup_move_task(void)
6195 {
6196 }
6197 #endif
6198 
6199 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6200 {
6201     if (value == PAGE_COUNTER_MAX)
6202         seq_puts(m, "max\n");
6203     else
6204         seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6205 
6206     return 0;
6207 }
6208 
6209 static u64 memory_current_read(struct cgroup_subsys_state *css,
6210                    struct cftype *cft)
6211 {
6212     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6213 
6214     return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6215 }
6216 
6217 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6218                 struct cftype *cft)
6219 {
6220     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6221 
6222     return (u64)memcg->memory.watermark * PAGE_SIZE;
6223 }
6224 
6225 static int memory_min_show(struct seq_file *m, void *v)
6226 {
6227     return seq_puts_memcg_tunable(m,
6228         READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6229 }
6230 
6231 static ssize_t memory_min_write(struct kernfs_open_file *of,
6232                 char *buf, size_t nbytes, loff_t off)
6233 {
6234     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6235     unsigned long min;
6236     int err;
6237 
6238     buf = strstrip(buf);
6239     err = page_counter_memparse(buf, "max", &min);
6240     if (err)
6241         return err;
6242 
6243     page_counter_set_min(&memcg->memory, min);
6244 
6245     return nbytes;
6246 }
6247 
6248 static int memory_low_show(struct seq_file *m, void *v)
6249 {
6250     return seq_puts_memcg_tunable(m,
6251         READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6252 }
6253 
6254 static ssize_t memory_low_write(struct kernfs_open_file *of,
6255                 char *buf, size_t nbytes, loff_t off)
6256 {
6257     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6258     unsigned long low;
6259     int err;
6260 
6261     buf = strstrip(buf);
6262     err = page_counter_memparse(buf, "max", &low);
6263     if (err)
6264         return err;
6265 
6266     page_counter_set_low(&memcg->memory, low);
6267 
6268     return nbytes;
6269 }
6270 
6271 static int memory_high_show(struct seq_file *m, void *v)
6272 {
6273     return seq_puts_memcg_tunable(m,
6274         READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6275 }
6276 
6277 static ssize_t memory_high_write(struct kernfs_open_file *of,
6278                  char *buf, size_t nbytes, loff_t off)
6279 {
6280     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6281     unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6282     bool drained = false;
6283     unsigned long high;
6284     int err;
6285 
6286     buf = strstrip(buf);
6287     err = page_counter_memparse(buf, "max", &high);
6288     if (err)
6289         return err;
6290 
6291     page_counter_set_high(&memcg->memory, high);
6292 
6293     for (;;) {
6294         unsigned long nr_pages = page_counter_read(&memcg->memory);
6295         unsigned long reclaimed;
6296 
6297         if (nr_pages <= high)
6298             break;
6299 
6300         if (signal_pending(current))
6301             break;
6302 
6303         if (!drained) {
6304             drain_all_stock(memcg);
6305             drained = true;
6306             continue;
6307         }
6308 
6309         reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6310                     GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6311 
6312         if (!reclaimed && !nr_retries--)
6313             break;
6314     }
6315 
6316     memcg_wb_domain_size_changed(memcg);
6317     return nbytes;
6318 }
6319 
6320 static int memory_max_show(struct seq_file *m, void *v)
6321 {
6322     return seq_puts_memcg_tunable(m,
6323         READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6324 }
6325 
6326 static ssize_t memory_max_write(struct kernfs_open_file *of,
6327                 char *buf, size_t nbytes, loff_t off)
6328 {
6329     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6330     unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6331     bool drained = false;
6332     unsigned long max;
6333     int err;
6334 
6335     buf = strstrip(buf);
6336     err = page_counter_memparse(buf, "max", &max);
6337     if (err)
6338         return err;
6339 
6340     xchg(&memcg->memory.max, max);
6341 
6342     for (;;) {
6343         unsigned long nr_pages = page_counter_read(&memcg->memory);
6344 
6345         if (nr_pages <= max)
6346             break;
6347 
6348         if (signal_pending(current))
6349             break;
6350 
6351         if (!drained) {
6352             drain_all_stock(memcg);
6353             drained = true;
6354             continue;
6355         }
6356 
6357         if (nr_reclaims) {
6358             if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6359                     GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6360                 nr_reclaims--;
6361             continue;
6362         }
6363 
6364         memcg_memory_event(memcg, MEMCG_OOM);
6365         if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6366             break;
6367     }
6368 
6369     memcg_wb_domain_size_changed(memcg);
6370     return nbytes;
6371 }
6372 
6373 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6374 {
6375     seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6376     seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6377     seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6378     seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6379     seq_printf(m, "oom_kill %lu\n",
6380            atomic_long_read(&events[MEMCG_OOM_KILL]));
6381     seq_printf(m, "oom_group_kill %lu\n",
6382            atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6383 }
6384 
6385 static int memory_events_show(struct seq_file *m, void *v)
6386 {
6387     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 
6389     __memory_events_show(m, memcg->memory_events);
6390     return 0;
6391 }
6392 
6393 static int memory_events_local_show(struct seq_file *m, void *v)
6394 {
6395     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6396 
6397     __memory_events_show(m, memcg->memory_events_local);
6398     return 0;
6399 }
6400 
6401 static int memory_stat_show(struct seq_file *m, void *v)
6402 {
6403     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404     char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6405 
6406     if (!buf)
6407         return -ENOMEM;
6408     memory_stat_format(memcg, buf, PAGE_SIZE);
6409     seq_puts(m, buf);
6410     kfree(buf);
6411     return 0;
6412 }
6413 
6414 #ifdef CONFIG_NUMA
6415 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6416                              int item)
6417 {
6418     return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6419 }
6420 
6421 static int memory_numa_stat_show(struct seq_file *m, void *v)
6422 {
6423     int i;
6424     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425 
6426     mem_cgroup_flush_stats();
6427 
6428     for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6429         int nid;
6430 
6431         if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6432             continue;
6433 
6434         seq_printf(m, "%s", memory_stats[i].name);
6435         for_each_node_state(nid, N_MEMORY) {
6436             u64 size;
6437             struct lruvec *lruvec;
6438 
6439             lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6440             size = lruvec_page_state_output(lruvec,
6441                             memory_stats[i].idx);
6442             seq_printf(m, " N%d=%llu", nid, size);
6443         }
6444         seq_putc(m, '\n');
6445     }
6446 
6447     return 0;
6448 }
6449 #endif
6450 
6451 static int memory_oom_group_show(struct seq_file *m, void *v)
6452 {
6453     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6454 
6455     seq_printf(m, "%d\n", memcg->oom_group);
6456 
6457     return 0;
6458 }
6459 
6460 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6461                       char *buf, size_t nbytes, loff_t off)
6462 {
6463     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6464     int ret, oom_group;
6465 
6466     buf = strstrip(buf);
6467     if (!buf)
6468         return -EINVAL;
6469 
6470     ret = kstrtoint(buf, 0, &oom_group);
6471     if (ret)
6472         return ret;
6473 
6474     if (oom_group != 0 && oom_group != 1)
6475         return -EINVAL;
6476 
6477     memcg->oom_group = oom_group;
6478 
6479     return nbytes;
6480 }
6481 
6482 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6483                   size_t nbytes, loff_t off)
6484 {
6485     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486     unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487     unsigned long nr_to_reclaim, nr_reclaimed = 0;
6488     unsigned int reclaim_options;
6489     int err;
6490 
6491     buf = strstrip(buf);
6492     err = page_counter_memparse(buf, "", &nr_to_reclaim);
6493     if (err)
6494         return err;
6495 
6496     reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6497     while (nr_reclaimed < nr_to_reclaim) {
6498         unsigned long reclaimed;
6499 
6500         if (signal_pending(current))
6501             return -EINTR;
6502 
6503         /*
6504          * This is the final attempt, drain percpu lru caches in the
6505          * hope of introducing more evictable pages for
6506          * try_to_free_mem_cgroup_pages().
6507          */
6508         if (!nr_retries)
6509             lru_add_drain_all();
6510 
6511         reclaimed = try_to_free_mem_cgroup_pages(memcg,
6512                         nr_to_reclaim - nr_reclaimed,
6513                         GFP_KERNEL, reclaim_options);
6514 
6515         if (!reclaimed && !nr_retries--)
6516             return -EAGAIN;
6517 
6518         nr_reclaimed += reclaimed;
6519     }
6520 
6521     return nbytes;
6522 }
6523 
6524 static struct cftype memory_files[] = {
6525     {
6526         .name = "current",
6527         .flags = CFTYPE_NOT_ON_ROOT,
6528         .read_u64 = memory_current_read,
6529     },
6530     {
6531         .name = "peak",
6532         .flags = CFTYPE_NOT_ON_ROOT,
6533         .read_u64 = memory_peak_read,
6534     },
6535     {
6536         .name = "min",
6537         .flags = CFTYPE_NOT_ON_ROOT,
6538         .seq_show = memory_min_show,
6539         .write = memory_min_write,
6540     },
6541     {
6542         .name = "low",
6543         .flags = CFTYPE_NOT_ON_ROOT,
6544         .seq_show = memory_low_show,
6545         .write = memory_low_write,
6546     },
6547     {
6548         .name = "high",
6549         .flags = CFTYPE_NOT_ON_ROOT,
6550         .seq_show = memory_high_show,
6551         .write = memory_high_write,
6552     },
6553     {
6554         .name = "max",
6555         .flags = CFTYPE_NOT_ON_ROOT,
6556         .seq_show = memory_max_show,
6557         .write = memory_max_write,
6558     },
6559     {
6560         .name = "events",
6561         .flags = CFTYPE_NOT_ON_ROOT,
6562         .file_offset = offsetof(struct mem_cgroup, events_file),
6563         .seq_show = memory_events_show,
6564     },
6565     {
6566         .name = "events.local",
6567         .flags = CFTYPE_NOT_ON_ROOT,
6568         .file_offset = offsetof(struct mem_cgroup, events_local_file),
6569         .seq_show = memory_events_local_show,
6570     },
6571     {
6572         .name = "stat",
6573         .seq_show = memory_stat_show,
6574     },
6575 #ifdef CONFIG_NUMA
6576     {
6577         .name = "numa_stat",
6578         .seq_show = memory_numa_stat_show,
6579     },
6580 #endif
6581     {
6582         .name = "oom.group",
6583         .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6584         .seq_show = memory_oom_group_show,
6585         .write = memory_oom_group_write,
6586     },
6587     {
6588         .name = "reclaim",
6589         .flags = CFTYPE_NS_DELEGATABLE,
6590         .write = memory_reclaim,
6591     },
6592     { } /* terminate */
6593 };
6594 
6595 struct cgroup_subsys memory_cgrp_subsys = {
6596     .css_alloc = mem_cgroup_css_alloc,
6597     .css_online = mem_cgroup_css_online,
6598     .css_offline = mem_cgroup_css_offline,
6599     .css_released = mem_cgroup_css_released,
6600     .css_free = mem_cgroup_css_free,
6601     .css_reset = mem_cgroup_css_reset,
6602     .css_rstat_flush = mem_cgroup_css_rstat_flush,
6603     .can_attach = mem_cgroup_can_attach,
6604     .cancel_attach = mem_cgroup_cancel_attach,
6605     .post_attach = mem_cgroup_move_task,
6606     .dfl_cftypes = memory_files,
6607     .legacy_cftypes = mem_cgroup_legacy_files,
6608     .early_init = 0,
6609 };
6610 
6611 /*
6612  * This function calculates an individual cgroup's effective
6613  * protection which is derived from its own memory.min/low, its
6614  * parent's and siblings' settings, as well as the actual memory
6615  * distribution in the tree.
6616  *
6617  * The following rules apply to the effective protection values:
6618  *
6619  * 1. At the first level of reclaim, effective protection is equal to
6620  *    the declared protection in memory.min and memory.low.
6621  *
6622  * 2. To enable safe delegation of the protection configuration, at
6623  *    subsequent levels the effective protection is capped to the
6624  *    parent's effective protection.
6625  *
6626  * 3. To make complex and dynamic subtrees easier to configure, the
6627  *    user is allowed to overcommit the declared protection at a given
6628  *    level. If that is the case, the parent's effective protection is
6629  *    distributed to the children in proportion to how much protection
6630  *    they have declared and how much of it they are utilizing.
6631  *
6632  *    This makes distribution proportional, but also work-conserving:
6633  *    if one cgroup claims much more protection than it uses memory,
6634  *    the unused remainder is available to its siblings.
6635  *
6636  * 4. Conversely, when the declared protection is undercommitted at a
6637  *    given level, the distribution of the larger parental protection
6638  *    budget is NOT proportional. A cgroup's protection from a sibling
6639  *    is capped to its own memory.min/low setting.
6640  *
6641  * 5. However, to allow protecting recursive subtrees from each other
6642  *    without having to declare each individual cgroup's fixed share
6643  *    of the ancestor's claim to protection, any unutilized -
6644  *    "floating" - protection from up the tree is distributed in
6645  *    proportion to each cgroup's *usage*. This makes the protection
6646  *    neutral wrt sibling cgroups and lets them compete freely over
6647  *    the shared parental protection budget, but it protects the
6648  *    subtree as a whole from neighboring subtrees.
6649  *
6650  * Note that 4. and 5. are not in conflict: 4. is about protecting
6651  * against immediate siblings whereas 5. is about protecting against
6652  * neighboring subtrees.
6653  */
6654 static unsigned long effective_protection(unsigned long usage,
6655                       unsigned long parent_usage,
6656                       unsigned long setting,
6657                       unsigned long parent_effective,
6658                       unsigned long siblings_protected)
6659 {
6660     unsigned long protected;
6661     unsigned long ep;
6662 
6663     protected = min(usage, setting);
6664     /*
6665      * If all cgroups at this level combined claim and use more
6666      * protection then what the parent affords them, distribute
6667      * shares in proportion to utilization.
6668      *
6669      * We are using actual utilization rather than the statically
6670      * claimed protection in order to be work-conserving: claimed
6671      * but unused protection is available to siblings that would
6672      * otherwise get a smaller chunk than what they claimed.
6673      */
6674     if (siblings_protected > parent_effective)
6675         return protected * parent_effective / siblings_protected;
6676 
6677     /*
6678      * Ok, utilized protection of all children is within what the
6679      * parent affords them, so we know whatever this child claims
6680      * and utilizes is effectively protected.
6681      *
6682      * If there is unprotected usage beyond this value, reclaim
6683      * will apply pressure in proportion to that amount.
6684      *
6685      * If there is unutilized protection, the cgroup will be fully
6686      * shielded from reclaim, but we do return a smaller value for
6687      * protection than what the group could enjoy in theory. This
6688      * is okay. With the overcommit distribution above, effective
6689      * protection is always dependent on how memory is actually
6690      * consumed among the siblings anyway.
6691      */
6692     ep = protected;
6693 
6694     /*
6695      * If the children aren't claiming (all of) the protection
6696      * afforded to them by the parent, distribute the remainder in
6697      * proportion to the (unprotected) memory of each cgroup. That
6698      * way, cgroups that aren't explicitly prioritized wrt each
6699      * other compete freely over the allowance, but they are
6700      * collectively protected from neighboring trees.
6701      *
6702      * We're using unprotected memory for the weight so that if
6703      * some cgroups DO claim explicit protection, we don't protect
6704      * the same bytes twice.
6705      *
6706      * Check both usage and parent_usage against the respective
6707      * protected values. One should imply the other, but they
6708      * aren't read atomically - make sure the division is sane.
6709      */
6710     if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6711         return ep;
6712     if (parent_effective > siblings_protected &&
6713         parent_usage > siblings_protected &&
6714         usage > protected) {
6715         unsigned long unclaimed;
6716 
6717         unclaimed = parent_effective - siblings_protected;
6718         unclaimed *= usage - protected;
6719         unclaimed /= parent_usage - siblings_protected;
6720 
6721         ep += unclaimed;
6722     }
6723 
6724     return ep;
6725 }
6726 
6727 /**
6728  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6729  * @root: the top ancestor of the sub-tree being checked
6730  * @memcg: the memory cgroup to check
6731  *
6732  * WARNING: This function is not stateless! It can only be used as part
6733  *          of a top-down tree iteration, not for isolated queries.
6734  */
6735 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6736                      struct mem_cgroup *memcg)
6737 {
6738     unsigned long usage, parent_usage;
6739     struct mem_cgroup *parent;
6740 
6741     if (mem_cgroup_disabled())
6742         return;
6743 
6744     if (!root)
6745         root = root_mem_cgroup;
6746 
6747     /*
6748      * Effective values of the reclaim targets are ignored so they
6749      * can be stale. Have a look at mem_cgroup_protection for more
6750      * details.
6751      * TODO: calculation should be more robust so that we do not need
6752      * that special casing.
6753      */
6754     if (memcg == root)
6755         return;
6756 
6757     usage = page_counter_read(&memcg->memory);
6758     if (!usage)
6759         return;
6760 
6761     parent = parent_mem_cgroup(memcg);
6762 
6763     if (parent == root) {
6764         memcg->memory.emin = READ_ONCE(memcg->memory.min);
6765         memcg->memory.elow = READ_ONCE(memcg->memory.low);
6766         return;
6767     }
6768 
6769     parent_usage = page_counter_read(&parent->memory);
6770 
6771     WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6772             READ_ONCE(memcg->memory.min),
6773             READ_ONCE(parent->memory.emin),
6774             atomic_long_read(&parent->memory.children_min_usage)));
6775 
6776     WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6777             READ_ONCE(memcg->memory.low),
6778             READ_ONCE(parent->memory.elow),
6779             atomic_long_read(&parent->memory.children_low_usage)));
6780 }
6781 
6782 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6783             gfp_t gfp)
6784 {
6785     long nr_pages = folio_nr_pages(folio);
6786     int ret;
6787 
6788     ret = try_charge(memcg, gfp, nr_pages);
6789     if (ret)
6790         goto out;
6791 
6792     css_get(&memcg->css);
6793     commit_charge(folio, memcg);
6794 
6795     local_irq_disable();
6796     mem_cgroup_charge_statistics(memcg, nr_pages);
6797     memcg_check_events(memcg, folio_nid(folio));
6798     local_irq_enable();
6799 out:
6800     return ret;
6801 }
6802 
6803 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6804 {
6805     struct mem_cgroup *memcg;
6806     int ret;
6807 
6808     memcg = get_mem_cgroup_from_mm(mm);
6809     ret = charge_memcg(folio, memcg, gfp);
6810     css_put(&memcg->css);
6811 
6812     return ret;
6813 }
6814 
6815 /**
6816  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6817  * @page: page to charge
6818  * @mm: mm context of the victim
6819  * @gfp: reclaim mode
6820  * @entry: swap entry for which the page is allocated
6821  *
6822  * This function charges a page allocated for swapin. Please call this before
6823  * adding the page to the swapcache.
6824  *
6825  * Returns 0 on success. Otherwise, an error code is returned.
6826  */
6827 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6828                   gfp_t gfp, swp_entry_t entry)
6829 {
6830     struct folio *folio = page_folio(page);
6831     struct mem_cgroup *memcg;
6832     unsigned short id;
6833     int ret;
6834 
6835     if (mem_cgroup_disabled())
6836         return 0;
6837 
6838     id = lookup_swap_cgroup_id(entry);
6839     rcu_read_lock();
6840     memcg = mem_cgroup_from_id(id);
6841     if (!memcg || !css_tryget_online(&memcg->css))
6842         memcg = get_mem_cgroup_from_mm(mm);
6843     rcu_read_unlock();
6844 
6845     ret = charge_memcg(folio, memcg, gfp);
6846 
6847     css_put(&memcg->css);
6848     return ret;
6849 }
6850 
6851 /*
6852  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6853  * @entry: swap entry for which the page is charged
6854  *
6855  * Call this function after successfully adding the charged page to swapcache.
6856  *
6857  * Note: This function assumes the page for which swap slot is being uncharged
6858  * is order 0 page.
6859  */
6860 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6861 {
6862     /*
6863      * Cgroup1's unified memory+swap counter has been charged with the
6864      * new swapcache page, finish the transfer by uncharging the swap
6865      * slot. The swap slot would also get uncharged when it dies, but
6866      * it can stick around indefinitely and we'd count the page twice
6867      * the entire time.
6868      *
6869      * Cgroup2 has separate resource counters for memory and swap,
6870      * so this is a non-issue here. Memory and swap charge lifetimes
6871      * correspond 1:1 to page and swap slot lifetimes: we charge the
6872      * page to memory here, and uncharge swap when the slot is freed.
6873      */
6874     if (!mem_cgroup_disabled() && do_memsw_account()) {
6875         /*
6876          * The swap entry might not get freed for a long time,
6877          * let's not wait for it.  The page already received a
6878          * memory+swap charge, drop the swap entry duplicate.
6879          */
6880         mem_cgroup_uncharge_swap(entry, 1);
6881     }
6882 }
6883 
6884 struct uncharge_gather {
6885     struct mem_cgroup *memcg;
6886     unsigned long nr_memory;
6887     unsigned long pgpgout;
6888     unsigned long nr_kmem;
6889     int nid;
6890 };
6891 
6892 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6893 {
6894     memset(ug, 0, sizeof(*ug));
6895 }
6896 
6897 static void uncharge_batch(const struct uncharge_gather *ug)
6898 {
6899     unsigned long flags;
6900 
6901     if (ug->nr_memory) {
6902         page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6903         if (do_memsw_account())
6904             page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6905         if (ug->nr_kmem)
6906             memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6907         memcg_oom_recover(ug->memcg);
6908     }
6909 
6910     local_irq_save(flags);
6911     __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6912     __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6913     memcg_check_events(ug->memcg, ug->nid);
6914     local_irq_restore(flags);
6915 
6916     /* drop reference from uncharge_folio */
6917     css_put(&ug->memcg->css);
6918 }
6919 
6920 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6921 {
6922     long nr_pages;
6923     struct mem_cgroup *memcg;
6924     struct obj_cgroup *objcg;
6925 
6926     VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6927 
6928     /*
6929      * Nobody should be changing or seriously looking at
6930      * folio memcg or objcg at this point, we have fully
6931      * exclusive access to the folio.
6932      */
6933     if (folio_memcg_kmem(folio)) {
6934         objcg = __folio_objcg(folio);
6935         /*
6936          * This get matches the put at the end of the function and
6937          * kmem pages do not hold memcg references anymore.
6938          */
6939         memcg = get_mem_cgroup_from_objcg(objcg);
6940     } else {
6941         memcg = __folio_memcg(folio);
6942     }
6943 
6944     if (!memcg)
6945         return;
6946 
6947     if (ug->memcg != memcg) {
6948         if (ug->memcg) {
6949             uncharge_batch(ug);
6950             uncharge_gather_clear(ug);
6951         }
6952         ug->memcg = memcg;
6953         ug->nid = folio_nid(folio);
6954 
6955         /* pairs with css_put in uncharge_batch */
6956         css_get(&memcg->css);
6957     }
6958 
6959     nr_pages = folio_nr_pages(folio);
6960 
6961     if (folio_memcg_kmem(folio)) {
6962         ug->nr_memory += nr_pages;
6963         ug->nr_kmem += nr_pages;
6964 
6965         folio->memcg_data = 0;
6966         obj_cgroup_put(objcg);
6967     } else {
6968         /* LRU pages aren't accounted at the root level */
6969         if (!mem_cgroup_is_root(memcg))
6970             ug->nr_memory += nr_pages;
6971         ug->pgpgout++;
6972 
6973         folio->memcg_data = 0;
6974     }
6975 
6976     css_put(&memcg->css);
6977 }
6978 
6979 void __mem_cgroup_uncharge(struct folio *folio)
6980 {
6981     struct uncharge_gather ug;
6982 
6983     /* Don't touch folio->lru of any random page, pre-check: */
6984     if (!folio_memcg(folio))
6985         return;
6986 
6987     uncharge_gather_clear(&ug);
6988     uncharge_folio(folio, &ug);
6989     uncharge_batch(&ug);
6990 }
6991 
6992 /**
6993  * __mem_cgroup_uncharge_list - uncharge a list of page
6994  * @page_list: list of pages to uncharge
6995  *
6996  * Uncharge a list of pages previously charged with
6997  * __mem_cgroup_charge().
6998  */
6999 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7000 {
7001     struct uncharge_gather ug;
7002     struct folio *folio;
7003 
7004     uncharge_gather_clear(&ug);
7005     list_for_each_entry(folio, page_list, lru)
7006         uncharge_folio(folio, &ug);
7007     if (ug.memcg)
7008         uncharge_batch(&ug);
7009 }
7010 
7011 /**
7012  * mem_cgroup_migrate - Charge a folio's replacement.
7013  * @old: Currently circulating folio.
7014  * @new: Replacement folio.
7015  *
7016  * Charge @new as a replacement folio for @old. @old will
7017  * be uncharged upon free.
7018  *
7019  * Both folios must be locked, @new->mapping must be set up.
7020  */
7021 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7022 {
7023     struct mem_cgroup *memcg;
7024     long nr_pages = folio_nr_pages(new);
7025     unsigned long flags;
7026 
7027     VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7028     VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7029     VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7030     VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7031 
7032     if (mem_cgroup_disabled())
7033         return;
7034 
7035     /* Page cache replacement: new folio already charged? */
7036     if (folio_memcg(new))
7037         return;
7038 
7039     memcg = folio_memcg(old);
7040     VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7041     if (!memcg)
7042         return;
7043 
7044     /* Force-charge the new page. The old one will be freed soon */
7045     if (!mem_cgroup_is_root(memcg)) {
7046         page_counter_charge(&memcg->memory, nr_pages);
7047         if (do_memsw_account())
7048             page_counter_charge(&memcg->memsw, nr_pages);
7049     }
7050 
7051     css_get(&memcg->css);
7052     commit_charge(new, memcg);
7053 
7054     local_irq_save(flags);
7055     mem_cgroup_charge_statistics(memcg, nr_pages);
7056     memcg_check_events(memcg, folio_nid(new));
7057     local_irq_restore(flags);
7058 }
7059 
7060 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7061 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7062 
7063 void mem_cgroup_sk_alloc(struct sock *sk)
7064 {
7065     struct mem_cgroup *memcg;
7066 
7067     if (!mem_cgroup_sockets_enabled)
7068         return;
7069 
7070     /* Do not associate the sock with unrelated interrupted task's memcg. */
7071     if (!in_task())
7072         return;
7073 
7074     rcu_read_lock();
7075     memcg = mem_cgroup_from_task(current);
7076     if (memcg == root_mem_cgroup)
7077         goto out;
7078     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7079         goto out;
7080     if (css_tryget(&memcg->css))
7081         sk->sk_memcg = memcg;
7082 out:
7083     rcu_read_unlock();
7084 }
7085 
7086 void mem_cgroup_sk_free(struct sock *sk)
7087 {
7088     if (sk->sk_memcg)
7089         css_put(&sk->sk_memcg->css);
7090 }
7091 
7092 /**
7093  * mem_cgroup_charge_skmem - charge socket memory
7094  * @memcg: memcg to charge
7095  * @nr_pages: number of pages to charge
7096  * @gfp_mask: reclaim mode
7097  *
7098  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7099  * @memcg's configured limit, %false if it doesn't.
7100  */
7101 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7102                  gfp_t gfp_mask)
7103 {
7104     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7105         struct page_counter *fail;
7106 
7107         if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7108             memcg->tcpmem_pressure = 0;
7109             return true;
7110         }
7111         memcg->tcpmem_pressure = 1;
7112         if (gfp_mask & __GFP_NOFAIL) {
7113             page_counter_charge(&memcg->tcpmem, nr_pages);
7114             return true;
7115         }
7116         return false;
7117     }
7118 
7119     if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7120         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7121         return true;
7122     }
7123 
7124     return false;
7125 }
7126 
7127 /**
7128  * mem_cgroup_uncharge_skmem - uncharge socket memory
7129  * @memcg: memcg to uncharge
7130  * @nr_pages: number of pages to uncharge
7131  */
7132 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7133 {
7134     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7135         page_counter_uncharge(&memcg->tcpmem, nr_pages);
7136         return;
7137     }
7138 
7139     mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7140 
7141     refill_stock(memcg, nr_pages);
7142 }
7143 
7144 static int __init cgroup_memory(char *s)
7145 {
7146     char *token;
7147 
7148     while ((token = strsep(&s, ",")) != NULL) {
7149         if (!*token)
7150             continue;
7151         if (!strcmp(token, "nosocket"))
7152             cgroup_memory_nosocket = true;
7153         if (!strcmp(token, "nokmem"))
7154             cgroup_memory_nokmem = true;
7155     }
7156     return 1;
7157 }
7158 __setup("cgroup.memory=", cgroup_memory);
7159 
7160 /*
7161  * subsys_initcall() for memory controller.
7162  *
7163  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7164  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7165  * basically everything that doesn't depend on a specific mem_cgroup structure
7166  * should be initialized from here.
7167  */
7168 static int __init mem_cgroup_init(void)
7169 {
7170     int cpu, node;
7171 
7172     /*
7173      * Currently s32 type (can refer to struct batched_lruvec_stat) is
7174      * used for per-memcg-per-cpu caching of per-node statistics. In order
7175      * to work fine, we should make sure that the overfill threshold can't
7176      * exceed S32_MAX / PAGE_SIZE.
7177      */
7178     BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7179 
7180     cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7181                   memcg_hotplug_cpu_dead);
7182 
7183     for_each_possible_cpu(cpu)
7184         INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7185               drain_local_stock);
7186 
7187     for_each_node(node) {
7188         struct mem_cgroup_tree_per_node *rtpn;
7189 
7190         rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7191                     node_online(node) ? node : NUMA_NO_NODE);
7192 
7193         rtpn->rb_root = RB_ROOT;
7194         rtpn->rb_rightmost = NULL;
7195         spin_lock_init(&rtpn->lock);
7196         soft_limit_tree.rb_tree_per_node[node] = rtpn;
7197     }
7198 
7199     return 0;
7200 }
7201 subsys_initcall(mem_cgroup_init);
7202 
7203 #ifdef CONFIG_MEMCG_SWAP
7204 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7205 {
7206     while (!refcount_inc_not_zero(&memcg->id.ref)) {
7207         /*
7208          * The root cgroup cannot be destroyed, so it's refcount must
7209          * always be >= 1.
7210          */
7211         if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7212             VM_BUG_ON(1);
7213             break;
7214         }
7215         memcg = parent_mem_cgroup(memcg);
7216         if (!memcg)
7217             memcg = root_mem_cgroup;
7218     }
7219     return memcg;
7220 }
7221 
7222 /**
7223  * mem_cgroup_swapout - transfer a memsw charge to swap
7224  * @folio: folio whose memsw charge to transfer
7225  * @entry: swap entry to move the charge to
7226  *
7227  * Transfer the memsw charge of @folio to @entry.
7228  */
7229 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7230 {
7231     struct mem_cgroup *memcg, *swap_memcg;
7232     unsigned int nr_entries;
7233     unsigned short oldid;
7234 
7235     VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7236     VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7237 
7238     if (mem_cgroup_disabled())
7239         return;
7240 
7241     if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7242         return;
7243 
7244     memcg = folio_memcg(folio);
7245 
7246     VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7247     if (!memcg)
7248         return;
7249 
7250     /*
7251      * In case the memcg owning these pages has been offlined and doesn't
7252      * have an ID allocated to it anymore, charge the closest online
7253      * ancestor for the swap instead and transfer the memory+swap charge.
7254      */
7255     swap_memcg = mem_cgroup_id_get_online(memcg);
7256     nr_entries = folio_nr_pages(folio);
7257     /* Get references for the tail pages, too */
7258     if (nr_entries > 1)
7259         mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7260     oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7261                    nr_entries);
7262     VM_BUG_ON_FOLIO(oldid, folio);
7263     mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7264 
7265     folio->memcg_data = 0;
7266 
7267     if (!mem_cgroup_is_root(memcg))
7268         page_counter_uncharge(&memcg->memory, nr_entries);
7269 
7270     if (!cgroup_memory_noswap && memcg != swap_memcg) {
7271         if (!mem_cgroup_is_root(swap_memcg))
7272             page_counter_charge(&swap_memcg->memsw, nr_entries);
7273         page_counter_uncharge(&memcg->memsw, nr_entries);
7274     }
7275 
7276     /*
7277      * Interrupts should be disabled here because the caller holds the
7278      * i_pages lock which is taken with interrupts-off. It is
7279      * important here to have the interrupts disabled because it is the
7280      * only synchronisation we have for updating the per-CPU variables.
7281      */
7282     memcg_stats_lock();
7283     mem_cgroup_charge_statistics(memcg, -nr_entries);
7284     memcg_stats_unlock();
7285     memcg_check_events(memcg, folio_nid(folio));
7286 
7287     css_put(&memcg->css);
7288 }
7289 
7290 /**
7291  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7292  * @folio: folio being added to swap
7293  * @entry: swap entry to charge
7294  *
7295  * Try to charge @folio's memcg for the swap space at @entry.
7296  *
7297  * Returns 0 on success, -ENOMEM on failure.
7298  */
7299 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7300 {
7301     unsigned int nr_pages = folio_nr_pages(folio);
7302     struct page_counter *counter;
7303     struct mem_cgroup *memcg;
7304     unsigned short oldid;
7305 
7306     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7307         return 0;
7308 
7309     memcg = folio_memcg(folio);
7310 
7311     VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7312     if (!memcg)
7313         return 0;
7314 
7315     if (!entry.val) {
7316         memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7317         return 0;
7318     }
7319 
7320     memcg = mem_cgroup_id_get_online(memcg);
7321 
7322     if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7323         !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7324         memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7325         memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7326         mem_cgroup_id_put(memcg);
7327         return -ENOMEM;
7328     }
7329 
7330     /* Get references for the tail pages, too */
7331     if (nr_pages > 1)
7332         mem_cgroup_id_get_many(memcg, nr_pages - 1);
7333     oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7334     VM_BUG_ON_FOLIO(oldid, folio);
7335     mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7336 
7337     return 0;
7338 }
7339 
7340 /**
7341  * __mem_cgroup_uncharge_swap - uncharge swap space
7342  * @entry: swap entry to uncharge
7343  * @nr_pages: the amount of swap space to uncharge
7344  */
7345 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7346 {
7347     struct mem_cgroup *memcg;
7348     unsigned short id;
7349 
7350     id = swap_cgroup_record(entry, 0, nr_pages);
7351     rcu_read_lock();
7352     memcg = mem_cgroup_from_id(id);
7353     if (memcg) {
7354         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7355             if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7356                 page_counter_uncharge(&memcg->swap, nr_pages);
7357             else
7358                 page_counter_uncharge(&memcg->memsw, nr_pages);
7359         }
7360         mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7361         mem_cgroup_id_put_many(memcg, nr_pages);
7362     }
7363     rcu_read_unlock();
7364 }
7365 
7366 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7367 {
7368     long nr_swap_pages = get_nr_swap_pages();
7369 
7370     if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7371         return nr_swap_pages;
7372     for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7373         nr_swap_pages = min_t(long, nr_swap_pages,
7374                       READ_ONCE(memcg->swap.max) -
7375                       page_counter_read(&memcg->swap));
7376     return nr_swap_pages;
7377 }
7378 
7379 bool mem_cgroup_swap_full(struct page *page)
7380 {
7381     struct mem_cgroup *memcg;
7382 
7383     VM_BUG_ON_PAGE(!PageLocked(page), page);
7384 
7385     if (vm_swap_full())
7386         return true;
7387     if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7388         return false;
7389 
7390     memcg = page_memcg(page);
7391     if (!memcg)
7392         return false;
7393 
7394     for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7395         unsigned long usage = page_counter_read(&memcg->swap);
7396 
7397         if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7398             usage * 2 >= READ_ONCE(memcg->swap.max))
7399             return true;
7400     }
7401 
7402     return false;
7403 }
7404 
7405 static int __init setup_swap_account(char *s)
7406 {
7407     if (!strcmp(s, "1"))
7408         cgroup_memory_noswap = false;
7409     else if (!strcmp(s, "0"))
7410         cgroup_memory_noswap = true;
7411     return 1;
7412 }
7413 __setup("swapaccount=", setup_swap_account);
7414 
7415 static u64 swap_current_read(struct cgroup_subsys_state *css,
7416                  struct cftype *cft)
7417 {
7418     struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7419 
7420     return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7421 }
7422 
7423 static int swap_high_show(struct seq_file *m, void *v)
7424 {
7425     return seq_puts_memcg_tunable(m,
7426         READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7427 }
7428 
7429 static ssize_t swap_high_write(struct kernfs_open_file *of,
7430                    char *buf, size_t nbytes, loff_t off)
7431 {
7432     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7433     unsigned long high;
7434     int err;
7435 
7436     buf = strstrip(buf);
7437     err = page_counter_memparse(buf, "max", &high);
7438     if (err)
7439         return err;
7440 
7441     page_counter_set_high(&memcg->swap, high);
7442 
7443     return nbytes;
7444 }
7445 
7446 static int swap_max_show(struct seq_file *m, void *v)
7447 {
7448     return seq_puts_memcg_tunable(m,
7449         READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7450 }
7451 
7452 static ssize_t swap_max_write(struct kernfs_open_file *of,
7453                   char *buf, size_t nbytes, loff_t off)
7454 {
7455     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7456     unsigned long max;
7457     int err;
7458 
7459     buf = strstrip(buf);
7460     err = page_counter_memparse(buf, "max", &max);
7461     if (err)
7462         return err;
7463 
7464     xchg(&memcg->swap.max, max);
7465 
7466     return nbytes;
7467 }
7468 
7469 static int swap_events_show(struct seq_file *m, void *v)
7470 {
7471     struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7472 
7473     seq_printf(m, "high %lu\n",
7474            atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7475     seq_printf(m, "max %lu\n",
7476            atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7477     seq_printf(m, "fail %lu\n",
7478            atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7479 
7480     return 0;
7481 }
7482 
7483 static struct cftype swap_files[] = {
7484     {
7485         .name = "swap.current",
7486         .flags = CFTYPE_NOT_ON_ROOT,
7487         .read_u64 = swap_current_read,
7488     },
7489     {
7490         .name = "swap.high",
7491         .flags = CFTYPE_NOT_ON_ROOT,
7492         .seq_show = swap_high_show,
7493         .write = swap_high_write,
7494     },
7495     {
7496         .name = "swap.max",
7497         .flags = CFTYPE_NOT_ON_ROOT,
7498         .seq_show = swap_max_show,
7499         .write = swap_max_write,
7500     },
7501     {
7502         .name = "swap.events",
7503         .flags = CFTYPE_NOT_ON_ROOT,
7504         .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7505         .seq_show = swap_events_show,
7506     },
7507     { } /* terminate */
7508 };
7509 
7510 static struct cftype memsw_files[] = {
7511     {
7512         .name = "memsw.usage_in_bytes",
7513         .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7514         .read_u64 = mem_cgroup_read_u64,
7515     },
7516     {
7517         .name = "memsw.max_usage_in_bytes",
7518         .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7519         .write = mem_cgroup_reset,
7520         .read_u64 = mem_cgroup_read_u64,
7521     },
7522     {
7523         .name = "memsw.limit_in_bytes",
7524         .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7525         .write = mem_cgroup_write,
7526         .read_u64 = mem_cgroup_read_u64,
7527     },
7528     {
7529         .name = "memsw.failcnt",
7530         .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7531         .write = mem_cgroup_reset,
7532         .read_u64 = mem_cgroup_read_u64,
7533     },
7534     { },    /* terminate */
7535 };
7536 
7537 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7538 /**
7539  * obj_cgroup_may_zswap - check if this cgroup can zswap
7540  * @objcg: the object cgroup
7541  *
7542  * Check if the hierarchical zswap limit has been reached.
7543  *
7544  * This doesn't check for specific headroom, and it is not atomic
7545  * either. But with zswap, the size of the allocation is only known
7546  * once compression has occured, and this optimistic pre-check avoids
7547  * spending cycles on compression when there is already no room left
7548  * or zswap is disabled altogether somewhere in the hierarchy.
7549  */
7550 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7551 {
7552     struct mem_cgroup *memcg, *original_memcg;
7553     bool ret = true;
7554 
7555     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7556         return true;
7557 
7558     original_memcg = get_mem_cgroup_from_objcg(objcg);
7559     for (memcg = original_memcg; memcg != root_mem_cgroup;
7560          memcg = parent_mem_cgroup(memcg)) {
7561         unsigned long max = READ_ONCE(memcg->zswap_max);
7562         unsigned long pages;
7563 
7564         if (max == PAGE_COUNTER_MAX)
7565             continue;
7566         if (max == 0) {
7567             ret = false;
7568             break;
7569         }
7570 
7571         cgroup_rstat_flush(memcg->css.cgroup);
7572         pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7573         if (pages < max)
7574             continue;
7575         ret = false;
7576         break;
7577     }
7578     mem_cgroup_put(original_memcg);
7579     return ret;
7580 }
7581 
7582 /**
7583  * obj_cgroup_charge_zswap - charge compression backend memory
7584  * @objcg: the object cgroup
7585  * @size: size of compressed object
7586  *
7587  * This forces the charge after obj_cgroup_may_swap() allowed
7588  * compression and storage in zwap for this cgroup to go ahead.
7589  */
7590 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7591 {
7592     struct mem_cgroup *memcg;
7593 
7594     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7595         return;
7596 
7597     VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7598 
7599     /* PF_MEMALLOC context, charging must succeed */
7600     if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7601         VM_WARN_ON_ONCE(1);
7602 
7603     rcu_read_lock();
7604     memcg = obj_cgroup_memcg(objcg);
7605     mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7606     mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7607     rcu_read_unlock();
7608 }
7609 
7610 /**
7611  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7612  * @objcg: the object cgroup
7613  * @size: size of compressed object
7614  *
7615  * Uncharges zswap memory on page in.
7616  */
7617 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7618 {
7619     struct mem_cgroup *memcg;
7620 
7621     if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7622         return;
7623 
7624     obj_cgroup_uncharge(objcg, size);
7625 
7626     rcu_read_lock();
7627     memcg = obj_cgroup_memcg(objcg);
7628     mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7629     mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7630     rcu_read_unlock();
7631 }
7632 
7633 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7634                   struct cftype *cft)
7635 {
7636     cgroup_rstat_flush(css->cgroup);
7637     return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7638 }
7639 
7640 static int zswap_max_show(struct seq_file *m, void *v)
7641 {
7642     return seq_puts_memcg_tunable(m,
7643         READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7644 }
7645 
7646 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7647                    char *buf, size_t nbytes, loff_t off)
7648 {
7649     struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7650     unsigned long max;
7651     int err;
7652 
7653     buf = strstrip(buf);
7654     err = page_counter_memparse(buf, "max", &max);
7655     if (err)
7656         return err;
7657 
7658     xchg(&memcg->zswap_max, max);
7659 
7660     return nbytes;
7661 }
7662 
7663 static struct cftype zswap_files[] = {
7664     {
7665         .name = "zswap.current",
7666         .flags = CFTYPE_NOT_ON_ROOT,
7667         .read_u64 = zswap_current_read,
7668     },
7669     {
7670         .name = "zswap.max",
7671         .flags = CFTYPE_NOT_ON_ROOT,
7672         .seq_show = zswap_max_show,
7673         .write = zswap_max_write,
7674     },
7675     { } /* terminate */
7676 };
7677 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7678 
7679 /*
7680  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7681  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7682  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7683  * boot parameter. This may result in premature OOPS inside
7684  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7685  */
7686 static int __init mem_cgroup_swap_init(void)
7687 {
7688     /* No memory control -> no swap control */
7689     if (mem_cgroup_disabled())
7690         cgroup_memory_noswap = true;
7691 
7692     if (cgroup_memory_noswap)
7693         return 0;
7694 
7695     WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7696     WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7697 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7698     WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7699 #endif
7700     return 0;
7701 }
7702 core_initcall(mem_cgroup_swap_init);
7703 
7704 #endif /* CONFIG_MEMCG_SWAP */