Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  Copyright (C) 2009  Red Hat, Inc.
0004  */
0005 
0006 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0007 
0008 #include <linux/mm.h>
0009 #include <linux/sched.h>
0010 #include <linux/sched/mm.h>
0011 #include <linux/sched/coredump.h>
0012 #include <linux/sched/numa_balancing.h>
0013 #include <linux/highmem.h>
0014 #include <linux/hugetlb.h>
0015 #include <linux/mmu_notifier.h>
0016 #include <linux/rmap.h>
0017 #include <linux/swap.h>
0018 #include <linux/shrinker.h>
0019 #include <linux/mm_inline.h>
0020 #include <linux/swapops.h>
0021 #include <linux/backing-dev.h>
0022 #include <linux/dax.h>
0023 #include <linux/khugepaged.h>
0024 #include <linux/freezer.h>
0025 #include <linux/pfn_t.h>
0026 #include <linux/mman.h>
0027 #include <linux/memremap.h>
0028 #include <linux/pagemap.h>
0029 #include <linux/debugfs.h>
0030 #include <linux/migrate.h>
0031 #include <linux/hashtable.h>
0032 #include <linux/userfaultfd_k.h>
0033 #include <linux/page_idle.h>
0034 #include <linux/shmem_fs.h>
0035 #include <linux/oom.h>
0036 #include <linux/numa.h>
0037 #include <linux/page_owner.h>
0038 #include <linux/sched/sysctl.h>
0039 
0040 #include <asm/tlb.h>
0041 #include <asm/pgalloc.h>
0042 #include "internal.h"
0043 #include "swap.h"
0044 
0045 #define CREATE_TRACE_POINTS
0046 #include <trace/events/thp.h>
0047 
0048 /*
0049  * By default, transparent hugepage support is disabled in order to avoid
0050  * risking an increased memory footprint for applications that are not
0051  * guaranteed to benefit from it. When transparent hugepage support is
0052  * enabled, it is for all mappings, and khugepaged scans all mappings.
0053  * Defrag is invoked by khugepaged hugepage allocations and by page faults
0054  * for all hugepage allocations.
0055  */
0056 unsigned long transparent_hugepage_flags __read_mostly =
0057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
0058     (1<<TRANSPARENT_HUGEPAGE_FLAG)|
0059 #endif
0060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
0061     (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
0062 #endif
0063     (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
0064     (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
0065     (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
0066 
0067 static struct shrinker deferred_split_shrinker;
0068 
0069 static atomic_t huge_zero_refcount;
0070 struct page *huge_zero_page __read_mostly;
0071 unsigned long huge_zero_pfn __read_mostly = ~0UL;
0072 
0073 bool hugepage_vma_check(struct vm_area_struct *vma,
0074             unsigned long vm_flags,
0075             bool smaps, bool in_pf)
0076 {
0077     if (!vma->vm_mm)        /* vdso */
0078         return false;
0079 
0080     /*
0081      * Explicitly disabled through madvise or prctl, or some
0082      * architectures may disable THP for some mappings, for
0083      * example, s390 kvm.
0084      * */
0085     if ((vm_flags & VM_NOHUGEPAGE) ||
0086         test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
0087         return false;
0088     /*
0089      * If the hardware/firmware marked hugepage support disabled.
0090      */
0091     if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
0092         return false;
0093 
0094     /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
0095     if (vma_is_dax(vma))
0096         return in_pf;
0097 
0098     /*
0099      * Special VMA and hugetlb VMA.
0100      * Must be checked after dax since some dax mappings may have
0101      * VM_MIXEDMAP set.
0102      */
0103     if (vm_flags & VM_NO_KHUGEPAGED)
0104         return false;
0105 
0106     /*
0107      * Check alignment for file vma and size for both file and anon vma.
0108      *
0109      * Skip the check for page fault. Huge fault does the check in fault
0110      * handlers. And this check is not suitable for huge PUD fault.
0111      */
0112     if (!in_pf &&
0113         !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
0114         return false;
0115 
0116     /*
0117      * Enabled via shmem mount options or sysfs settings.
0118      * Must be done before hugepage flags check since shmem has its
0119      * own flags.
0120      */
0121     if (!in_pf && shmem_file(vma->vm_file))
0122         return shmem_huge_enabled(vma);
0123 
0124     if (!hugepage_flags_enabled())
0125         return false;
0126 
0127     /* THP settings require madvise. */
0128     if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always())
0129         return false;
0130 
0131     /* Only regular file is valid */
0132     if (!in_pf && file_thp_enabled(vma))
0133         return true;
0134 
0135     if (!vma_is_anonymous(vma))
0136         return false;
0137 
0138     if (vma_is_temporary_stack(vma))
0139         return false;
0140 
0141     /*
0142      * THPeligible bit of smaps should show 1 for proper VMAs even
0143      * though anon_vma is not initialized yet.
0144      *
0145      * Allow page fault since anon_vma may be not initialized until
0146      * the first page fault.
0147      */
0148     if (!vma->anon_vma)
0149         return (smaps || in_pf);
0150 
0151     return true;
0152 }
0153 
0154 static bool get_huge_zero_page(void)
0155 {
0156     struct page *zero_page;
0157 retry:
0158     if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
0159         return true;
0160 
0161     zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
0162             HPAGE_PMD_ORDER);
0163     if (!zero_page) {
0164         count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
0165         return false;
0166     }
0167     count_vm_event(THP_ZERO_PAGE_ALLOC);
0168     preempt_disable();
0169     if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
0170         preempt_enable();
0171         __free_pages(zero_page, compound_order(zero_page));
0172         goto retry;
0173     }
0174     WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
0175 
0176     /* We take additional reference here. It will be put back by shrinker */
0177     atomic_set(&huge_zero_refcount, 2);
0178     preempt_enable();
0179     return true;
0180 }
0181 
0182 static void put_huge_zero_page(void)
0183 {
0184     /*
0185      * Counter should never go to zero here. Only shrinker can put
0186      * last reference.
0187      */
0188     BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
0189 }
0190 
0191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
0192 {
0193     if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
0194         return READ_ONCE(huge_zero_page);
0195 
0196     if (!get_huge_zero_page())
0197         return NULL;
0198 
0199     if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
0200         put_huge_zero_page();
0201 
0202     return READ_ONCE(huge_zero_page);
0203 }
0204 
0205 void mm_put_huge_zero_page(struct mm_struct *mm)
0206 {
0207     if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
0208         put_huge_zero_page();
0209 }
0210 
0211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
0212                     struct shrink_control *sc)
0213 {
0214     /* we can free zero page only if last reference remains */
0215     return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
0216 }
0217 
0218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
0219                        struct shrink_control *sc)
0220 {
0221     if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
0222         struct page *zero_page = xchg(&huge_zero_page, NULL);
0223         BUG_ON(zero_page == NULL);
0224         WRITE_ONCE(huge_zero_pfn, ~0UL);
0225         __free_pages(zero_page, compound_order(zero_page));
0226         return HPAGE_PMD_NR;
0227     }
0228 
0229     return 0;
0230 }
0231 
0232 static struct shrinker huge_zero_page_shrinker = {
0233     .count_objects = shrink_huge_zero_page_count,
0234     .scan_objects = shrink_huge_zero_page_scan,
0235     .seeks = DEFAULT_SEEKS,
0236 };
0237 
0238 #ifdef CONFIG_SYSFS
0239 static ssize_t enabled_show(struct kobject *kobj,
0240                 struct kobj_attribute *attr, char *buf)
0241 {
0242     const char *output;
0243 
0244     if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
0245         output = "[always] madvise never";
0246     else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
0247               &transparent_hugepage_flags))
0248         output = "always [madvise] never";
0249     else
0250         output = "always madvise [never]";
0251 
0252     return sysfs_emit(buf, "%s\n", output);
0253 }
0254 
0255 static ssize_t enabled_store(struct kobject *kobj,
0256                  struct kobj_attribute *attr,
0257                  const char *buf, size_t count)
0258 {
0259     ssize_t ret = count;
0260 
0261     if (sysfs_streq(buf, "always")) {
0262         clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
0263         set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
0264     } else if (sysfs_streq(buf, "madvise")) {
0265         clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
0266         set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
0267     } else if (sysfs_streq(buf, "never")) {
0268         clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
0269         clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
0270     } else
0271         ret = -EINVAL;
0272 
0273     if (ret > 0) {
0274         int err = start_stop_khugepaged();
0275         if (err)
0276             ret = err;
0277     }
0278     return ret;
0279 }
0280 
0281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
0282 
0283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
0284                   struct kobj_attribute *attr, char *buf,
0285                   enum transparent_hugepage_flag flag)
0286 {
0287     return sysfs_emit(buf, "%d\n",
0288               !!test_bit(flag, &transparent_hugepage_flags));
0289 }
0290 
0291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
0292                  struct kobj_attribute *attr,
0293                  const char *buf, size_t count,
0294                  enum transparent_hugepage_flag flag)
0295 {
0296     unsigned long value;
0297     int ret;
0298 
0299     ret = kstrtoul(buf, 10, &value);
0300     if (ret < 0)
0301         return ret;
0302     if (value > 1)
0303         return -EINVAL;
0304 
0305     if (value)
0306         set_bit(flag, &transparent_hugepage_flags);
0307     else
0308         clear_bit(flag, &transparent_hugepage_flags);
0309 
0310     return count;
0311 }
0312 
0313 static ssize_t defrag_show(struct kobject *kobj,
0314                struct kobj_attribute *attr, char *buf)
0315 {
0316     const char *output;
0317 
0318     if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
0319              &transparent_hugepage_flags))
0320         output = "[always] defer defer+madvise madvise never";
0321     else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
0322               &transparent_hugepage_flags))
0323         output = "always [defer] defer+madvise madvise never";
0324     else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
0325               &transparent_hugepage_flags))
0326         output = "always defer [defer+madvise] madvise never";
0327     else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
0328               &transparent_hugepage_flags))
0329         output = "always defer defer+madvise [madvise] never";
0330     else
0331         output = "always defer defer+madvise madvise [never]";
0332 
0333     return sysfs_emit(buf, "%s\n", output);
0334 }
0335 
0336 static ssize_t defrag_store(struct kobject *kobj,
0337                 struct kobj_attribute *attr,
0338                 const char *buf, size_t count)
0339 {
0340     if (sysfs_streq(buf, "always")) {
0341         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
0342         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
0343         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
0344         set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
0345     } else if (sysfs_streq(buf, "defer+madvise")) {
0346         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
0347         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
0348         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
0349         set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
0350     } else if (sysfs_streq(buf, "defer")) {
0351         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
0352         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
0353         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
0354         set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
0355     } else if (sysfs_streq(buf, "madvise")) {
0356         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
0357         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
0358         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
0359         set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
0360     } else if (sysfs_streq(buf, "never")) {
0361         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
0362         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
0363         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
0364         clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
0365     } else
0366         return -EINVAL;
0367 
0368     return count;
0369 }
0370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
0371 
0372 static ssize_t use_zero_page_show(struct kobject *kobj,
0373                   struct kobj_attribute *attr, char *buf)
0374 {
0375     return single_hugepage_flag_show(kobj, attr, buf,
0376                      TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
0377 }
0378 static ssize_t use_zero_page_store(struct kobject *kobj,
0379         struct kobj_attribute *attr, const char *buf, size_t count)
0380 {
0381     return single_hugepage_flag_store(kobj, attr, buf, count,
0382                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
0383 }
0384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
0385 
0386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
0387                    struct kobj_attribute *attr, char *buf)
0388 {
0389     return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
0390 }
0391 static struct kobj_attribute hpage_pmd_size_attr =
0392     __ATTR_RO(hpage_pmd_size);
0393 
0394 static struct attribute *hugepage_attr[] = {
0395     &enabled_attr.attr,
0396     &defrag_attr.attr,
0397     &use_zero_page_attr.attr,
0398     &hpage_pmd_size_attr.attr,
0399 #ifdef CONFIG_SHMEM
0400     &shmem_enabled_attr.attr,
0401 #endif
0402     NULL,
0403 };
0404 
0405 static const struct attribute_group hugepage_attr_group = {
0406     .attrs = hugepage_attr,
0407 };
0408 
0409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
0410 {
0411     int err;
0412 
0413     *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
0414     if (unlikely(!*hugepage_kobj)) {
0415         pr_err("failed to create transparent hugepage kobject\n");
0416         return -ENOMEM;
0417     }
0418 
0419     err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
0420     if (err) {
0421         pr_err("failed to register transparent hugepage group\n");
0422         goto delete_obj;
0423     }
0424 
0425     err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
0426     if (err) {
0427         pr_err("failed to register transparent hugepage group\n");
0428         goto remove_hp_group;
0429     }
0430 
0431     return 0;
0432 
0433 remove_hp_group:
0434     sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
0435 delete_obj:
0436     kobject_put(*hugepage_kobj);
0437     return err;
0438 }
0439 
0440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
0441 {
0442     sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
0443     sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
0444     kobject_put(hugepage_kobj);
0445 }
0446 #else
0447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
0448 {
0449     return 0;
0450 }
0451 
0452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
0453 {
0454 }
0455 #endif /* CONFIG_SYSFS */
0456 
0457 static int __init hugepage_init(void)
0458 {
0459     int err;
0460     struct kobject *hugepage_kobj;
0461 
0462     if (!has_transparent_hugepage()) {
0463         /*
0464          * Hardware doesn't support hugepages, hence disable
0465          * DAX PMD support.
0466          */
0467         transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
0468         return -EINVAL;
0469     }
0470 
0471     /*
0472      * hugepages can't be allocated by the buddy allocator
0473      */
0474     MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
0475     /*
0476      * we use page->mapping and page->index in second tail page
0477      * as list_head: assuming THP order >= 2
0478      */
0479     MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
0480 
0481     err = hugepage_init_sysfs(&hugepage_kobj);
0482     if (err)
0483         goto err_sysfs;
0484 
0485     err = khugepaged_init();
0486     if (err)
0487         goto err_slab;
0488 
0489     err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
0490     if (err)
0491         goto err_hzp_shrinker;
0492     err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
0493     if (err)
0494         goto err_split_shrinker;
0495 
0496     /*
0497      * By default disable transparent hugepages on smaller systems,
0498      * where the extra memory used could hurt more than TLB overhead
0499      * is likely to save.  The admin can still enable it through /sys.
0500      */
0501     if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
0502         transparent_hugepage_flags = 0;
0503         return 0;
0504     }
0505 
0506     err = start_stop_khugepaged();
0507     if (err)
0508         goto err_khugepaged;
0509 
0510     return 0;
0511 err_khugepaged:
0512     unregister_shrinker(&deferred_split_shrinker);
0513 err_split_shrinker:
0514     unregister_shrinker(&huge_zero_page_shrinker);
0515 err_hzp_shrinker:
0516     khugepaged_destroy();
0517 err_slab:
0518     hugepage_exit_sysfs(hugepage_kobj);
0519 err_sysfs:
0520     return err;
0521 }
0522 subsys_initcall(hugepage_init);
0523 
0524 static int __init setup_transparent_hugepage(char *str)
0525 {
0526     int ret = 0;
0527     if (!str)
0528         goto out;
0529     if (!strcmp(str, "always")) {
0530         set_bit(TRANSPARENT_HUGEPAGE_FLAG,
0531             &transparent_hugepage_flags);
0532         clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
0533               &transparent_hugepage_flags);
0534         ret = 1;
0535     } else if (!strcmp(str, "madvise")) {
0536         clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
0537               &transparent_hugepage_flags);
0538         set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
0539             &transparent_hugepage_flags);
0540         ret = 1;
0541     } else if (!strcmp(str, "never")) {
0542         clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
0543               &transparent_hugepage_flags);
0544         clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
0545               &transparent_hugepage_flags);
0546         ret = 1;
0547     }
0548 out:
0549     if (!ret)
0550         pr_warn("transparent_hugepage= cannot parse, ignored\n");
0551     return ret;
0552 }
0553 __setup("transparent_hugepage=", setup_transparent_hugepage);
0554 
0555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
0556 {
0557     if (likely(vma->vm_flags & VM_WRITE))
0558         pmd = pmd_mkwrite(pmd);
0559     return pmd;
0560 }
0561 
0562 #ifdef CONFIG_MEMCG
0563 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
0564 {
0565     struct mem_cgroup *memcg = page_memcg(compound_head(page));
0566     struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
0567 
0568     if (memcg)
0569         return &memcg->deferred_split_queue;
0570     else
0571         return &pgdat->deferred_split_queue;
0572 }
0573 #else
0574 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
0575 {
0576     struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
0577 
0578     return &pgdat->deferred_split_queue;
0579 }
0580 #endif
0581 
0582 void prep_transhuge_page(struct page *page)
0583 {
0584     /*
0585      * we use page->mapping and page->index in second tail page
0586      * as list_head: assuming THP order >= 2
0587      */
0588 
0589     INIT_LIST_HEAD(page_deferred_list(page));
0590     set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
0591 }
0592 
0593 static inline bool is_transparent_hugepage(struct page *page)
0594 {
0595     if (!PageCompound(page))
0596         return false;
0597 
0598     page = compound_head(page);
0599     return is_huge_zero_page(page) ||
0600            page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
0601 }
0602 
0603 static unsigned long __thp_get_unmapped_area(struct file *filp,
0604         unsigned long addr, unsigned long len,
0605         loff_t off, unsigned long flags, unsigned long size)
0606 {
0607     loff_t off_end = off + len;
0608     loff_t off_align = round_up(off, size);
0609     unsigned long len_pad, ret;
0610 
0611     if (off_end <= off_align || (off_end - off_align) < size)
0612         return 0;
0613 
0614     len_pad = len + size;
0615     if (len_pad < len || (off + len_pad) < off)
0616         return 0;
0617 
0618     ret = current->mm->get_unmapped_area(filp, addr, len_pad,
0619                           off >> PAGE_SHIFT, flags);
0620 
0621     /*
0622      * The failure might be due to length padding. The caller will retry
0623      * without the padding.
0624      */
0625     if (IS_ERR_VALUE(ret))
0626         return 0;
0627 
0628     /*
0629      * Do not try to align to THP boundary if allocation at the address
0630      * hint succeeds.
0631      */
0632     if (ret == addr)
0633         return addr;
0634 
0635     ret += (off - ret) & (size - 1);
0636     return ret;
0637 }
0638 
0639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
0640         unsigned long len, unsigned long pgoff, unsigned long flags)
0641 {
0642     unsigned long ret;
0643     loff_t off = (loff_t)pgoff << PAGE_SHIFT;
0644 
0645     ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
0646     if (ret)
0647         return ret;
0648 
0649     return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
0650 }
0651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
0652 
0653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
0654             struct page *page, gfp_t gfp)
0655 {
0656     struct vm_area_struct *vma = vmf->vma;
0657     pgtable_t pgtable;
0658     unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
0659     vm_fault_t ret = 0;
0660 
0661     VM_BUG_ON_PAGE(!PageCompound(page), page);
0662 
0663     if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
0664         put_page(page);
0665         count_vm_event(THP_FAULT_FALLBACK);
0666         count_vm_event(THP_FAULT_FALLBACK_CHARGE);
0667         return VM_FAULT_FALLBACK;
0668     }
0669     cgroup_throttle_swaprate(page, gfp);
0670 
0671     pgtable = pte_alloc_one(vma->vm_mm);
0672     if (unlikely(!pgtable)) {
0673         ret = VM_FAULT_OOM;
0674         goto release;
0675     }
0676 
0677     clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
0678     /*
0679      * The memory barrier inside __SetPageUptodate makes sure that
0680      * clear_huge_page writes become visible before the set_pmd_at()
0681      * write.
0682      */
0683     __SetPageUptodate(page);
0684 
0685     vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
0686     if (unlikely(!pmd_none(*vmf->pmd))) {
0687         goto unlock_release;
0688     } else {
0689         pmd_t entry;
0690 
0691         ret = check_stable_address_space(vma->vm_mm);
0692         if (ret)
0693             goto unlock_release;
0694 
0695         /* Deliver the page fault to userland */
0696         if (userfaultfd_missing(vma)) {
0697             spin_unlock(vmf->ptl);
0698             put_page(page);
0699             pte_free(vma->vm_mm, pgtable);
0700             ret = handle_userfault(vmf, VM_UFFD_MISSING);
0701             VM_BUG_ON(ret & VM_FAULT_FALLBACK);
0702             return ret;
0703         }
0704 
0705         entry = mk_huge_pmd(page, vma->vm_page_prot);
0706         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
0707         page_add_new_anon_rmap(page, vma, haddr);
0708         lru_cache_add_inactive_or_unevictable(page, vma);
0709         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
0710         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
0711         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
0712         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
0713         mm_inc_nr_ptes(vma->vm_mm);
0714         spin_unlock(vmf->ptl);
0715         count_vm_event(THP_FAULT_ALLOC);
0716         count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
0717     }
0718 
0719     return 0;
0720 unlock_release:
0721     spin_unlock(vmf->ptl);
0722 release:
0723     if (pgtable)
0724         pte_free(vma->vm_mm, pgtable);
0725     put_page(page);
0726     return ret;
0727 
0728 }
0729 
0730 /*
0731  * always: directly stall for all thp allocations
0732  * defer: wake kswapd and fail if not immediately available
0733  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
0734  *        fail if not immediately available
0735  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
0736  *      available
0737  * never: never stall for any thp allocation
0738  */
0739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
0740 {
0741     const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
0742 
0743     /* Always do synchronous compaction */
0744     if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
0745         return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
0746 
0747     /* Kick kcompactd and fail quickly */
0748     if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
0749         return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
0750 
0751     /* Synchronous compaction if madvised, otherwise kick kcompactd */
0752     if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
0753         return GFP_TRANSHUGE_LIGHT |
0754             (vma_madvised ? __GFP_DIRECT_RECLAIM :
0755                     __GFP_KSWAPD_RECLAIM);
0756 
0757     /* Only do synchronous compaction if madvised */
0758     if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
0759         return GFP_TRANSHUGE_LIGHT |
0760                (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
0761 
0762     return GFP_TRANSHUGE_LIGHT;
0763 }
0764 
0765 /* Caller must hold page table lock. */
0766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
0767         struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
0768         struct page *zero_page)
0769 {
0770     pmd_t entry;
0771     if (!pmd_none(*pmd))
0772         return;
0773     entry = mk_pmd(zero_page, vma->vm_page_prot);
0774     entry = pmd_mkhuge(entry);
0775     if (pgtable)
0776         pgtable_trans_huge_deposit(mm, pmd, pgtable);
0777     set_pmd_at(mm, haddr, pmd, entry);
0778     mm_inc_nr_ptes(mm);
0779 }
0780 
0781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
0782 {
0783     struct vm_area_struct *vma = vmf->vma;
0784     gfp_t gfp;
0785     struct folio *folio;
0786     unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
0787 
0788     if (!transhuge_vma_suitable(vma, haddr))
0789         return VM_FAULT_FALLBACK;
0790     if (unlikely(anon_vma_prepare(vma)))
0791         return VM_FAULT_OOM;
0792     khugepaged_enter_vma(vma, vma->vm_flags);
0793 
0794     if (!(vmf->flags & FAULT_FLAG_WRITE) &&
0795             !mm_forbids_zeropage(vma->vm_mm) &&
0796             transparent_hugepage_use_zero_page()) {
0797         pgtable_t pgtable;
0798         struct page *zero_page;
0799         vm_fault_t ret;
0800         pgtable = pte_alloc_one(vma->vm_mm);
0801         if (unlikely(!pgtable))
0802             return VM_FAULT_OOM;
0803         zero_page = mm_get_huge_zero_page(vma->vm_mm);
0804         if (unlikely(!zero_page)) {
0805             pte_free(vma->vm_mm, pgtable);
0806             count_vm_event(THP_FAULT_FALLBACK);
0807             return VM_FAULT_FALLBACK;
0808         }
0809         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
0810         ret = 0;
0811         if (pmd_none(*vmf->pmd)) {
0812             ret = check_stable_address_space(vma->vm_mm);
0813             if (ret) {
0814                 spin_unlock(vmf->ptl);
0815                 pte_free(vma->vm_mm, pgtable);
0816             } else if (userfaultfd_missing(vma)) {
0817                 spin_unlock(vmf->ptl);
0818                 pte_free(vma->vm_mm, pgtable);
0819                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
0820                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
0821             } else {
0822                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
0823                            haddr, vmf->pmd, zero_page);
0824                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
0825                 spin_unlock(vmf->ptl);
0826             }
0827         } else {
0828             spin_unlock(vmf->ptl);
0829             pte_free(vma->vm_mm, pgtable);
0830         }
0831         return ret;
0832     }
0833     gfp = vma_thp_gfp_mask(vma);
0834     folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
0835     if (unlikely(!folio)) {
0836         count_vm_event(THP_FAULT_FALLBACK);
0837         return VM_FAULT_FALLBACK;
0838     }
0839     return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
0840 }
0841 
0842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
0843         pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
0844         pgtable_t pgtable)
0845 {
0846     struct mm_struct *mm = vma->vm_mm;
0847     pmd_t entry;
0848     spinlock_t *ptl;
0849 
0850     ptl = pmd_lock(mm, pmd);
0851     if (!pmd_none(*pmd)) {
0852         if (write) {
0853             if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
0854                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
0855                 goto out_unlock;
0856             }
0857             entry = pmd_mkyoung(*pmd);
0858             entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
0859             if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
0860                 update_mmu_cache_pmd(vma, addr, pmd);
0861         }
0862 
0863         goto out_unlock;
0864     }
0865 
0866     entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
0867     if (pfn_t_devmap(pfn))
0868         entry = pmd_mkdevmap(entry);
0869     if (write) {
0870         entry = pmd_mkyoung(pmd_mkdirty(entry));
0871         entry = maybe_pmd_mkwrite(entry, vma);
0872     }
0873 
0874     if (pgtable) {
0875         pgtable_trans_huge_deposit(mm, pmd, pgtable);
0876         mm_inc_nr_ptes(mm);
0877         pgtable = NULL;
0878     }
0879 
0880     set_pmd_at(mm, addr, pmd, entry);
0881     update_mmu_cache_pmd(vma, addr, pmd);
0882 
0883 out_unlock:
0884     spin_unlock(ptl);
0885     if (pgtable)
0886         pte_free(mm, pgtable);
0887 }
0888 
0889 /**
0890  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
0891  * @vmf: Structure describing the fault
0892  * @pfn: pfn to insert
0893  * @pgprot: page protection to use
0894  * @write: whether it's a write fault
0895  *
0896  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
0897  * also consult the vmf_insert_mixed_prot() documentation when
0898  * @pgprot != @vmf->vma->vm_page_prot.
0899  *
0900  * Return: vm_fault_t value.
0901  */
0902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
0903                    pgprot_t pgprot, bool write)
0904 {
0905     unsigned long addr = vmf->address & PMD_MASK;
0906     struct vm_area_struct *vma = vmf->vma;
0907     pgtable_t pgtable = NULL;
0908 
0909     /*
0910      * If we had pmd_special, we could avoid all these restrictions,
0911      * but we need to be consistent with PTEs and architectures that
0912      * can't support a 'special' bit.
0913      */
0914     BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
0915             !pfn_t_devmap(pfn));
0916     BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
0917                         (VM_PFNMAP|VM_MIXEDMAP));
0918     BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
0919 
0920     if (addr < vma->vm_start || addr >= vma->vm_end)
0921         return VM_FAULT_SIGBUS;
0922 
0923     if (arch_needs_pgtable_deposit()) {
0924         pgtable = pte_alloc_one(vma->vm_mm);
0925         if (!pgtable)
0926             return VM_FAULT_OOM;
0927     }
0928 
0929     track_pfn_insert(vma, &pgprot, pfn);
0930 
0931     insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
0932     return VM_FAULT_NOPAGE;
0933 }
0934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
0935 
0936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
0937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
0938 {
0939     if (likely(vma->vm_flags & VM_WRITE))
0940         pud = pud_mkwrite(pud);
0941     return pud;
0942 }
0943 
0944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
0945         pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
0946 {
0947     struct mm_struct *mm = vma->vm_mm;
0948     pud_t entry;
0949     spinlock_t *ptl;
0950 
0951     ptl = pud_lock(mm, pud);
0952     if (!pud_none(*pud)) {
0953         if (write) {
0954             if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
0955                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
0956                 goto out_unlock;
0957             }
0958             entry = pud_mkyoung(*pud);
0959             entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
0960             if (pudp_set_access_flags(vma, addr, pud, entry, 1))
0961                 update_mmu_cache_pud(vma, addr, pud);
0962         }
0963         goto out_unlock;
0964     }
0965 
0966     entry = pud_mkhuge(pfn_t_pud(pfn, prot));
0967     if (pfn_t_devmap(pfn))
0968         entry = pud_mkdevmap(entry);
0969     if (write) {
0970         entry = pud_mkyoung(pud_mkdirty(entry));
0971         entry = maybe_pud_mkwrite(entry, vma);
0972     }
0973     set_pud_at(mm, addr, pud, entry);
0974     update_mmu_cache_pud(vma, addr, pud);
0975 
0976 out_unlock:
0977     spin_unlock(ptl);
0978 }
0979 
0980 /**
0981  * vmf_insert_pfn_pud_prot - insert a pud size pfn
0982  * @vmf: Structure describing the fault
0983  * @pfn: pfn to insert
0984  * @pgprot: page protection to use
0985  * @write: whether it's a write fault
0986  *
0987  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
0988  * also consult the vmf_insert_mixed_prot() documentation when
0989  * @pgprot != @vmf->vma->vm_page_prot.
0990  *
0991  * Return: vm_fault_t value.
0992  */
0993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
0994                    pgprot_t pgprot, bool write)
0995 {
0996     unsigned long addr = vmf->address & PUD_MASK;
0997     struct vm_area_struct *vma = vmf->vma;
0998 
0999     /*
1000      * If we had pud_special, we could avoid all these restrictions,
1001      * but we need to be consistent with PTEs and architectures that
1002      * can't support a 'special' bit.
1003      */
1004     BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1005             !pfn_t_devmap(pfn));
1006     BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1007                         (VM_PFNMAP|VM_MIXEDMAP));
1008     BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1009 
1010     if (addr < vma->vm_start || addr >= vma->vm_end)
1011         return VM_FAULT_SIGBUS;
1012 
1013     track_pfn_insert(vma, &pgprot, pfn);
1014 
1015     insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1016     return VM_FAULT_NOPAGE;
1017 }
1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1020 
1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1022               pmd_t *pmd, bool write)
1023 {
1024     pmd_t _pmd;
1025 
1026     _pmd = pmd_mkyoung(*pmd);
1027     if (write)
1028         _pmd = pmd_mkdirty(_pmd);
1029     if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1030                   pmd, _pmd, write))
1031         update_mmu_cache_pmd(vma, addr, pmd);
1032 }
1033 
1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1035         pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1036 {
1037     unsigned long pfn = pmd_pfn(*pmd);
1038     struct mm_struct *mm = vma->vm_mm;
1039     struct page *page;
1040 
1041     assert_spin_locked(pmd_lockptr(mm, pmd));
1042 
1043     /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1044     if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1045              (FOLL_PIN | FOLL_GET)))
1046         return NULL;
1047 
1048     if (flags & FOLL_WRITE && !pmd_write(*pmd))
1049         return NULL;
1050 
1051     if (pmd_present(*pmd) && pmd_devmap(*pmd))
1052         /* pass */;
1053     else
1054         return NULL;
1055 
1056     if (flags & FOLL_TOUCH)
1057         touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1058 
1059     /*
1060      * device mapped pages can only be returned if the
1061      * caller will manage the page reference count.
1062      */
1063     if (!(flags & (FOLL_GET | FOLL_PIN)))
1064         return ERR_PTR(-EEXIST);
1065 
1066     pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1067     *pgmap = get_dev_pagemap(pfn, *pgmap);
1068     if (!*pgmap)
1069         return ERR_PTR(-EFAULT);
1070     page = pfn_to_page(pfn);
1071     if (!try_grab_page(page, flags))
1072         page = ERR_PTR(-ENOMEM);
1073 
1074     return page;
1075 }
1076 
1077 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078           pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079           struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080 {
1081     spinlock_t *dst_ptl, *src_ptl;
1082     struct page *src_page;
1083     pmd_t pmd;
1084     pgtable_t pgtable = NULL;
1085     int ret = -ENOMEM;
1086 
1087     /* Skip if can be re-fill on fault */
1088     if (!vma_is_anonymous(dst_vma))
1089         return 0;
1090 
1091     pgtable = pte_alloc_one(dst_mm);
1092     if (unlikely(!pgtable))
1093         goto out;
1094 
1095     dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096     src_ptl = pmd_lockptr(src_mm, src_pmd);
1097     spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098 
1099     ret = -EAGAIN;
1100     pmd = *src_pmd;
1101 
1102 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103     if (unlikely(is_swap_pmd(pmd))) {
1104         swp_entry_t entry = pmd_to_swp_entry(pmd);
1105 
1106         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107         if (!is_readable_migration_entry(entry)) {
1108             entry = make_readable_migration_entry(
1109                             swp_offset(entry));
1110             pmd = swp_entry_to_pmd(entry);
1111             if (pmd_swp_soft_dirty(*src_pmd))
1112                 pmd = pmd_swp_mksoft_dirty(pmd);
1113             if (pmd_swp_uffd_wp(*src_pmd))
1114                 pmd = pmd_swp_mkuffd_wp(pmd);
1115             set_pmd_at(src_mm, addr, src_pmd, pmd);
1116         }
1117         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118         mm_inc_nr_ptes(dst_mm);
1119         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120         if (!userfaultfd_wp(dst_vma))
1121             pmd = pmd_swp_clear_uffd_wp(pmd);
1122         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123         ret = 0;
1124         goto out_unlock;
1125     }
1126 #endif
1127 
1128     if (unlikely(!pmd_trans_huge(pmd))) {
1129         pte_free(dst_mm, pgtable);
1130         goto out_unlock;
1131     }
1132     /*
1133      * When page table lock is held, the huge zero pmd should not be
1134      * under splitting since we don't split the page itself, only pmd to
1135      * a page table.
1136      */
1137     if (is_huge_zero_pmd(pmd)) {
1138         /*
1139          * get_huge_zero_page() will never allocate a new page here,
1140          * since we already have a zero page to copy. It just takes a
1141          * reference.
1142          */
1143         mm_get_huge_zero_page(dst_mm);
1144         goto out_zero_page;
1145     }
1146 
1147     src_page = pmd_page(pmd);
1148     VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149 
1150     get_page(src_page);
1151     if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152         /* Page maybe pinned: split and retry the fault on PTEs. */
1153         put_page(src_page);
1154         pte_free(dst_mm, pgtable);
1155         spin_unlock(src_ptl);
1156         spin_unlock(dst_ptl);
1157         __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158         return -EAGAIN;
1159     }
1160     add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161 out_zero_page:
1162     mm_inc_nr_ptes(dst_mm);
1163     pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164     pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165     if (!userfaultfd_wp(dst_vma))
1166         pmd = pmd_clear_uffd_wp(pmd);
1167     pmd = pmd_mkold(pmd_wrprotect(pmd));
1168     set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169 
1170     ret = 0;
1171 out_unlock:
1172     spin_unlock(src_ptl);
1173     spin_unlock(dst_ptl);
1174 out:
1175     return ret;
1176 }
1177 
1178 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180               pud_t *pud, bool write)
1181 {
1182     pud_t _pud;
1183 
1184     _pud = pud_mkyoung(*pud);
1185     if (write)
1186         _pud = pud_mkdirty(_pud);
1187     if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188                   pud, _pud, write))
1189         update_mmu_cache_pud(vma, addr, pud);
1190 }
1191 
1192 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193         pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194 {
1195     unsigned long pfn = pud_pfn(*pud);
1196     struct mm_struct *mm = vma->vm_mm;
1197     struct page *page;
1198 
1199     assert_spin_locked(pud_lockptr(mm, pud));
1200 
1201     if (flags & FOLL_WRITE && !pud_write(*pud))
1202         return NULL;
1203 
1204     /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1205     if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1206              (FOLL_PIN | FOLL_GET)))
1207         return NULL;
1208 
1209     if (pud_present(*pud) && pud_devmap(*pud))
1210         /* pass */;
1211     else
1212         return NULL;
1213 
1214     if (flags & FOLL_TOUCH)
1215         touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1216 
1217     /*
1218      * device mapped pages can only be returned if the
1219      * caller will manage the page reference count.
1220      *
1221      * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1222      */
1223     if (!(flags & (FOLL_GET | FOLL_PIN)))
1224         return ERR_PTR(-EEXIST);
1225 
1226     pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1227     *pgmap = get_dev_pagemap(pfn, *pgmap);
1228     if (!*pgmap)
1229         return ERR_PTR(-EFAULT);
1230     page = pfn_to_page(pfn);
1231     if (!try_grab_page(page, flags))
1232         page = ERR_PTR(-ENOMEM);
1233 
1234     return page;
1235 }
1236 
1237 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1238           pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1239           struct vm_area_struct *vma)
1240 {
1241     spinlock_t *dst_ptl, *src_ptl;
1242     pud_t pud;
1243     int ret;
1244 
1245     dst_ptl = pud_lock(dst_mm, dst_pud);
1246     src_ptl = pud_lockptr(src_mm, src_pud);
1247     spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1248 
1249     ret = -EAGAIN;
1250     pud = *src_pud;
1251     if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1252         goto out_unlock;
1253 
1254     /*
1255      * When page table lock is held, the huge zero pud should not be
1256      * under splitting since we don't split the page itself, only pud to
1257      * a page table.
1258      */
1259     if (is_huge_zero_pud(pud)) {
1260         /* No huge zero pud yet */
1261     }
1262 
1263     /*
1264      * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1265      * and split if duplicating fails.
1266      */
1267     pudp_set_wrprotect(src_mm, addr, src_pud);
1268     pud = pud_mkold(pud_wrprotect(pud));
1269     set_pud_at(dst_mm, addr, dst_pud, pud);
1270 
1271     ret = 0;
1272 out_unlock:
1273     spin_unlock(src_ptl);
1274     spin_unlock(dst_ptl);
1275     return ret;
1276 }
1277 
1278 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1279 {
1280     bool write = vmf->flags & FAULT_FLAG_WRITE;
1281 
1282     vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1283     if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1284         goto unlock;
1285 
1286     touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1287 unlock:
1288     spin_unlock(vmf->ptl);
1289 }
1290 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1291 
1292 void huge_pmd_set_accessed(struct vm_fault *vmf)
1293 {
1294     bool write = vmf->flags & FAULT_FLAG_WRITE;
1295 
1296     vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1297     if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1298         goto unlock;
1299 
1300     touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1301 
1302 unlock:
1303     spin_unlock(vmf->ptl);
1304 }
1305 
1306 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1307 {
1308     const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1309     struct vm_area_struct *vma = vmf->vma;
1310     struct page *page;
1311     unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1312     pmd_t orig_pmd = vmf->orig_pmd;
1313 
1314     vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1315     VM_BUG_ON_VMA(!vma->anon_vma, vma);
1316 
1317     VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1318     VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1319 
1320     if (is_huge_zero_pmd(orig_pmd))
1321         goto fallback;
1322 
1323     spin_lock(vmf->ptl);
1324 
1325     if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1326         spin_unlock(vmf->ptl);
1327         return 0;
1328     }
1329 
1330     page = pmd_page(orig_pmd);
1331     VM_BUG_ON_PAGE(!PageHead(page), page);
1332 
1333     /* Early check when only holding the PT lock. */
1334     if (PageAnonExclusive(page))
1335         goto reuse;
1336 
1337     if (!trylock_page(page)) {
1338         get_page(page);
1339         spin_unlock(vmf->ptl);
1340         lock_page(page);
1341         spin_lock(vmf->ptl);
1342         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343             spin_unlock(vmf->ptl);
1344             unlock_page(page);
1345             put_page(page);
1346             return 0;
1347         }
1348         put_page(page);
1349     }
1350 
1351     /* Recheck after temporarily dropping the PT lock. */
1352     if (PageAnonExclusive(page)) {
1353         unlock_page(page);
1354         goto reuse;
1355     }
1356 
1357     /*
1358      * See do_wp_page(): we can only reuse the page exclusively if there are
1359      * no additional references. Note that we always drain the LRU
1360      * pagevecs immediately after adding a THP.
1361      */
1362     if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1363         goto unlock_fallback;
1364     if (PageSwapCache(page))
1365         try_to_free_swap(page);
1366     if (page_count(page) == 1) {
1367         pmd_t entry;
1368 
1369         page_move_anon_rmap(page, vma);
1370         unlock_page(page);
1371 reuse:
1372         if (unlikely(unshare)) {
1373             spin_unlock(vmf->ptl);
1374             return 0;
1375         }
1376         entry = pmd_mkyoung(orig_pmd);
1377         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378         if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1379             update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1380         spin_unlock(vmf->ptl);
1381         return VM_FAULT_WRITE;
1382     }
1383 
1384 unlock_fallback:
1385     unlock_page(page);
1386     spin_unlock(vmf->ptl);
1387 fallback:
1388     __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1389     return VM_FAULT_FALLBACK;
1390 }
1391 
1392 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1393 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1394                     struct vm_area_struct *vma,
1395                     unsigned int flags)
1396 {
1397     /* If the pmd is writable, we can write to the page. */
1398     if (pmd_write(pmd))
1399         return true;
1400 
1401     /* Maybe FOLL_FORCE is set to override it? */
1402     if (!(flags & FOLL_FORCE))
1403         return false;
1404 
1405     /* But FOLL_FORCE has no effect on shared mappings */
1406     if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1407         return false;
1408 
1409     /* ... or read-only private ones */
1410     if (!(vma->vm_flags & VM_MAYWRITE))
1411         return false;
1412 
1413     /* ... or already writable ones that just need to take a write fault */
1414     if (vma->vm_flags & VM_WRITE)
1415         return false;
1416 
1417     /*
1418      * See can_change_pte_writable(): we broke COW and could map the page
1419      * writable if we have an exclusive anonymous page ...
1420      */
1421     if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1422         return false;
1423 
1424     /* ... and a write-fault isn't required for other reasons. */
1425     if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1426         return false;
1427     return !userfaultfd_huge_pmd_wp(vma, pmd);
1428 }
1429 
1430 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1431                    unsigned long addr,
1432                    pmd_t *pmd,
1433                    unsigned int flags)
1434 {
1435     struct mm_struct *mm = vma->vm_mm;
1436     struct page *page;
1437 
1438     assert_spin_locked(pmd_lockptr(mm, pmd));
1439 
1440     page = pmd_page(*pmd);
1441     VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1442 
1443     if ((flags & FOLL_WRITE) &&
1444         !can_follow_write_pmd(*pmd, page, vma, flags))
1445         return NULL;
1446 
1447     /* Avoid dumping huge zero page */
1448     if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1449         return ERR_PTR(-EFAULT);
1450 
1451     /* Full NUMA hinting faults to serialise migration in fault paths */
1452     if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1453         return NULL;
1454 
1455     if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1456         return ERR_PTR(-EMLINK);
1457 
1458     VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1459             !PageAnonExclusive(page), page);
1460 
1461     if (!try_grab_page(page, flags))
1462         return ERR_PTR(-ENOMEM);
1463 
1464     if (flags & FOLL_TOUCH)
1465         touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1466 
1467     page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1468     VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1469 
1470     return page;
1471 }
1472 
1473 /* NUMA hinting page fault entry point for trans huge pmds */
1474 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1475 {
1476     struct vm_area_struct *vma = vmf->vma;
1477     pmd_t oldpmd = vmf->orig_pmd;
1478     pmd_t pmd;
1479     struct page *page;
1480     unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1481     int page_nid = NUMA_NO_NODE;
1482     int target_nid, last_cpupid = -1;
1483     bool migrated = false;
1484     bool was_writable = pmd_savedwrite(oldpmd);
1485     int flags = 0;
1486 
1487     vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488     if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1489         spin_unlock(vmf->ptl);
1490         goto out;
1491     }
1492 
1493     pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1494     page = vm_normal_page_pmd(vma, haddr, pmd);
1495     if (!page)
1496         goto out_map;
1497 
1498     /* See similar comment in do_numa_page for explanation */
1499     if (!was_writable)
1500         flags |= TNF_NO_GROUP;
1501 
1502     page_nid = page_to_nid(page);
1503     last_cpupid = page_cpupid_last(page);
1504     target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1505                        &flags);
1506 
1507     if (target_nid == NUMA_NO_NODE) {
1508         put_page(page);
1509         goto out_map;
1510     }
1511 
1512     spin_unlock(vmf->ptl);
1513 
1514     migrated = migrate_misplaced_page(page, vma, target_nid);
1515     if (migrated) {
1516         flags |= TNF_MIGRATED;
1517         page_nid = target_nid;
1518     } else {
1519         flags |= TNF_MIGRATE_FAIL;
1520         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1521         if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1522             spin_unlock(vmf->ptl);
1523             goto out;
1524         }
1525         goto out_map;
1526     }
1527 
1528 out:
1529     if (page_nid != NUMA_NO_NODE)
1530         task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1531                 flags);
1532 
1533     return 0;
1534 
1535 out_map:
1536     /* Restore the PMD */
1537     pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1538     pmd = pmd_mkyoung(pmd);
1539     if (was_writable)
1540         pmd = pmd_mkwrite(pmd);
1541     set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542     update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543     spin_unlock(vmf->ptl);
1544     goto out;
1545 }
1546 
1547 /*
1548  * Return true if we do MADV_FREE successfully on entire pmd page.
1549  * Otherwise, return false.
1550  */
1551 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1552         pmd_t *pmd, unsigned long addr, unsigned long next)
1553 {
1554     spinlock_t *ptl;
1555     pmd_t orig_pmd;
1556     struct page *page;
1557     struct mm_struct *mm = tlb->mm;
1558     bool ret = false;
1559 
1560     tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1561 
1562     ptl = pmd_trans_huge_lock(pmd, vma);
1563     if (!ptl)
1564         goto out_unlocked;
1565 
1566     orig_pmd = *pmd;
1567     if (is_huge_zero_pmd(orig_pmd))
1568         goto out;
1569 
1570     if (unlikely(!pmd_present(orig_pmd))) {
1571         VM_BUG_ON(thp_migration_supported() &&
1572                   !is_pmd_migration_entry(orig_pmd));
1573         goto out;
1574     }
1575 
1576     page = pmd_page(orig_pmd);
1577     /*
1578      * If other processes are mapping this page, we couldn't discard
1579      * the page unless they all do MADV_FREE so let's skip the page.
1580      */
1581     if (total_mapcount(page) != 1)
1582         goto out;
1583 
1584     if (!trylock_page(page))
1585         goto out;
1586 
1587     /*
1588      * If user want to discard part-pages of THP, split it so MADV_FREE
1589      * will deactivate only them.
1590      */
1591     if (next - addr != HPAGE_PMD_SIZE) {
1592         get_page(page);
1593         spin_unlock(ptl);
1594         split_huge_page(page);
1595         unlock_page(page);
1596         put_page(page);
1597         goto out_unlocked;
1598     }
1599 
1600     if (PageDirty(page))
1601         ClearPageDirty(page);
1602     unlock_page(page);
1603 
1604     if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1605         pmdp_invalidate(vma, addr, pmd);
1606         orig_pmd = pmd_mkold(orig_pmd);
1607         orig_pmd = pmd_mkclean(orig_pmd);
1608 
1609         set_pmd_at(mm, addr, pmd, orig_pmd);
1610         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1611     }
1612 
1613     mark_page_lazyfree(page);
1614     ret = true;
1615 out:
1616     spin_unlock(ptl);
1617 out_unlocked:
1618     return ret;
1619 }
1620 
1621 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1622 {
1623     pgtable_t pgtable;
1624 
1625     pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1626     pte_free(mm, pgtable);
1627     mm_dec_nr_ptes(mm);
1628 }
1629 
1630 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1631          pmd_t *pmd, unsigned long addr)
1632 {
1633     pmd_t orig_pmd;
1634     spinlock_t *ptl;
1635 
1636     tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1637 
1638     ptl = __pmd_trans_huge_lock(pmd, vma);
1639     if (!ptl)
1640         return 0;
1641     /*
1642      * For architectures like ppc64 we look at deposited pgtable
1643      * when calling pmdp_huge_get_and_clear. So do the
1644      * pgtable_trans_huge_withdraw after finishing pmdp related
1645      * operations.
1646      */
1647     orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1648                         tlb->fullmm);
1649     tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1650     if (vma_is_special_huge(vma)) {
1651         if (arch_needs_pgtable_deposit())
1652             zap_deposited_table(tlb->mm, pmd);
1653         spin_unlock(ptl);
1654     } else if (is_huge_zero_pmd(orig_pmd)) {
1655         zap_deposited_table(tlb->mm, pmd);
1656         spin_unlock(ptl);
1657     } else {
1658         struct page *page = NULL;
1659         int flush_needed = 1;
1660 
1661         if (pmd_present(orig_pmd)) {
1662             page = pmd_page(orig_pmd);
1663             page_remove_rmap(page, vma, true);
1664             VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1665             VM_BUG_ON_PAGE(!PageHead(page), page);
1666         } else if (thp_migration_supported()) {
1667             swp_entry_t entry;
1668 
1669             VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1670             entry = pmd_to_swp_entry(orig_pmd);
1671             page = pfn_swap_entry_to_page(entry);
1672             flush_needed = 0;
1673         } else
1674             WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1675 
1676         if (PageAnon(page)) {
1677             zap_deposited_table(tlb->mm, pmd);
1678             add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1679         } else {
1680             if (arch_needs_pgtable_deposit())
1681                 zap_deposited_table(tlb->mm, pmd);
1682             add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1683         }
1684 
1685         spin_unlock(ptl);
1686         if (flush_needed)
1687             tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1688     }
1689     return 1;
1690 }
1691 
1692 #ifndef pmd_move_must_withdraw
1693 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1694                      spinlock_t *old_pmd_ptl,
1695                      struct vm_area_struct *vma)
1696 {
1697     /*
1698      * With split pmd lock we also need to move preallocated
1699      * PTE page table if new_pmd is on different PMD page table.
1700      *
1701      * We also don't deposit and withdraw tables for file pages.
1702      */
1703     return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1704 }
1705 #endif
1706 
1707 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1708 {
1709 #ifdef CONFIG_MEM_SOFT_DIRTY
1710     if (unlikely(is_pmd_migration_entry(pmd)))
1711         pmd = pmd_swp_mksoft_dirty(pmd);
1712     else if (pmd_present(pmd))
1713         pmd = pmd_mksoft_dirty(pmd);
1714 #endif
1715     return pmd;
1716 }
1717 
1718 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1719           unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1720 {
1721     spinlock_t *old_ptl, *new_ptl;
1722     pmd_t pmd;
1723     struct mm_struct *mm = vma->vm_mm;
1724     bool force_flush = false;
1725 
1726     /*
1727      * The destination pmd shouldn't be established, free_pgtables()
1728      * should have release it.
1729      */
1730     if (WARN_ON(!pmd_none(*new_pmd))) {
1731         VM_BUG_ON(pmd_trans_huge(*new_pmd));
1732         return false;
1733     }
1734 
1735     /*
1736      * We don't have to worry about the ordering of src and dst
1737      * ptlocks because exclusive mmap_lock prevents deadlock.
1738      */
1739     old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1740     if (old_ptl) {
1741         new_ptl = pmd_lockptr(mm, new_pmd);
1742         if (new_ptl != old_ptl)
1743             spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1744         pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1745         if (pmd_present(pmd))
1746             force_flush = true;
1747         VM_BUG_ON(!pmd_none(*new_pmd));
1748 
1749         if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1750             pgtable_t pgtable;
1751             pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1752             pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1753         }
1754         pmd = move_soft_dirty_pmd(pmd);
1755         set_pmd_at(mm, new_addr, new_pmd, pmd);
1756         if (force_flush)
1757             flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1758         if (new_ptl != old_ptl)
1759             spin_unlock(new_ptl);
1760         spin_unlock(old_ptl);
1761         return true;
1762     }
1763     return false;
1764 }
1765 
1766 /*
1767  * Returns
1768  *  - 0 if PMD could not be locked
1769  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1770  *      or if prot_numa but THP migration is not supported
1771  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1772  */
1773 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1774             pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1775             unsigned long cp_flags)
1776 {
1777     struct mm_struct *mm = vma->vm_mm;
1778     spinlock_t *ptl;
1779     pmd_t oldpmd, entry;
1780     bool preserve_write;
1781     int ret;
1782     bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1783     bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1784     bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1785 
1786     tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1787 
1788     if (prot_numa && !thp_migration_supported())
1789         return 1;
1790 
1791     ptl = __pmd_trans_huge_lock(pmd, vma);
1792     if (!ptl)
1793         return 0;
1794 
1795     preserve_write = prot_numa && pmd_write(*pmd);
1796     ret = 1;
1797 
1798 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1799     if (is_swap_pmd(*pmd)) {
1800         swp_entry_t entry = pmd_to_swp_entry(*pmd);
1801         struct page *page = pfn_swap_entry_to_page(entry);
1802 
1803         VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1804         if (is_writable_migration_entry(entry)) {
1805             pmd_t newpmd;
1806             /*
1807              * A protection check is difficult so
1808              * just be safe and disable write
1809              */
1810             if (PageAnon(page))
1811                 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1812             else
1813                 entry = make_readable_migration_entry(swp_offset(entry));
1814             newpmd = swp_entry_to_pmd(entry);
1815             if (pmd_swp_soft_dirty(*pmd))
1816                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1817             if (pmd_swp_uffd_wp(*pmd))
1818                 newpmd = pmd_swp_mkuffd_wp(newpmd);
1819             set_pmd_at(mm, addr, pmd, newpmd);
1820         }
1821         goto unlock;
1822     }
1823 #endif
1824 
1825     if (prot_numa) {
1826         struct page *page;
1827         /*
1828          * Avoid trapping faults against the zero page. The read-only
1829          * data is likely to be read-cached on the local CPU and
1830          * local/remote hits to the zero page are not interesting.
1831          */
1832         if (is_huge_zero_pmd(*pmd))
1833             goto unlock;
1834 
1835         if (pmd_protnone(*pmd))
1836             goto unlock;
1837 
1838         page = pmd_page(*pmd);
1839         /*
1840          * Skip scanning top tier node if normal numa
1841          * balancing is disabled
1842          */
1843         if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1844             node_is_toptier(page_to_nid(page)))
1845             goto unlock;
1846     }
1847     /*
1848      * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1849      * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1850      * which is also under mmap_read_lock(mm):
1851      *
1852      *  CPU0:               CPU1:
1853      *              change_huge_pmd(prot_numa=1)
1854      *               pmdp_huge_get_and_clear_notify()
1855      * madvise_dontneed()
1856      *  zap_pmd_range()
1857      *   pmd_trans_huge(*pmd) == 0 (without ptl)
1858      *   // skip the pmd
1859      *               set_pmd_at();
1860      *               // pmd is re-established
1861      *
1862      * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1863      * which may break userspace.
1864      *
1865      * pmdp_invalidate_ad() is required to make sure we don't miss
1866      * dirty/young flags set by hardware.
1867      */
1868     oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1869 
1870     entry = pmd_modify(oldpmd, newprot);
1871     if (preserve_write)
1872         entry = pmd_mk_savedwrite(entry);
1873     if (uffd_wp) {
1874         entry = pmd_wrprotect(entry);
1875         entry = pmd_mkuffd_wp(entry);
1876     } else if (uffd_wp_resolve) {
1877         /*
1878          * Leave the write bit to be handled by PF interrupt
1879          * handler, then things like COW could be properly
1880          * handled.
1881          */
1882         entry = pmd_clear_uffd_wp(entry);
1883     }
1884     ret = HPAGE_PMD_NR;
1885     set_pmd_at(mm, addr, pmd, entry);
1886 
1887     if (huge_pmd_needs_flush(oldpmd, entry))
1888         tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1889 
1890     BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1891 unlock:
1892     spin_unlock(ptl);
1893     return ret;
1894 }
1895 
1896 /*
1897  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898  *
1899  * Note that if it returns page table lock pointer, this routine returns without
1900  * unlocking page table lock. So callers must unlock it.
1901  */
1902 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903 {
1904     spinlock_t *ptl;
1905     ptl = pmd_lock(vma->vm_mm, pmd);
1906     if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1907             pmd_devmap(*pmd)))
1908         return ptl;
1909     spin_unlock(ptl);
1910     return NULL;
1911 }
1912 
1913 /*
1914  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1915  *
1916  * Note that if it returns page table lock pointer, this routine returns without
1917  * unlocking page table lock. So callers must unlock it.
1918  */
1919 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920 {
1921     spinlock_t *ptl;
1922 
1923     ptl = pud_lock(vma->vm_mm, pud);
1924     if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1925         return ptl;
1926     spin_unlock(ptl);
1927     return NULL;
1928 }
1929 
1930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932          pud_t *pud, unsigned long addr)
1933 {
1934     spinlock_t *ptl;
1935 
1936     ptl = __pud_trans_huge_lock(pud, vma);
1937     if (!ptl)
1938         return 0;
1939 
1940     pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1941     tlb_remove_pud_tlb_entry(tlb, pud, addr);
1942     if (vma_is_special_huge(vma)) {
1943         spin_unlock(ptl);
1944         /* No zero page support yet */
1945     } else {
1946         /* No support for anonymous PUD pages yet */
1947         BUG();
1948     }
1949     return 1;
1950 }
1951 
1952 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1953         unsigned long haddr)
1954 {
1955     VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1956     VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1957     VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1958     VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1959 
1960     count_vm_event(THP_SPLIT_PUD);
1961 
1962     pudp_huge_clear_flush_notify(vma, haddr, pud);
1963 }
1964 
1965 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1966         unsigned long address)
1967 {
1968     spinlock_t *ptl;
1969     struct mmu_notifier_range range;
1970 
1971     mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1972                 address & HPAGE_PUD_MASK,
1973                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1974     mmu_notifier_invalidate_range_start(&range);
1975     ptl = pud_lock(vma->vm_mm, pud);
1976     if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1977         goto out;
1978     __split_huge_pud_locked(vma, pud, range.start);
1979 
1980 out:
1981     spin_unlock(ptl);
1982     /*
1983      * No need to double call mmu_notifier->invalidate_range() callback as
1984      * the above pudp_huge_clear_flush_notify() did already call it.
1985      */
1986     mmu_notifier_invalidate_range_only_end(&range);
1987 }
1988 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1989 
1990 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1991         unsigned long haddr, pmd_t *pmd)
1992 {
1993     struct mm_struct *mm = vma->vm_mm;
1994     pgtable_t pgtable;
1995     pmd_t _pmd;
1996     int i;
1997 
1998     /*
1999      * Leave pmd empty until pte is filled note that it is fine to delay
2000      * notification until mmu_notifier_invalidate_range_end() as we are
2001      * replacing a zero pmd write protected page with a zero pte write
2002      * protected page.
2003      *
2004      * See Documentation/mm/mmu_notifier.rst
2005      */
2006     pmdp_huge_clear_flush(vma, haddr, pmd);
2007 
2008     pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2009     pmd_populate(mm, &_pmd, pgtable);
2010 
2011     for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2012         pte_t *pte, entry;
2013         entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2014         entry = pte_mkspecial(entry);
2015         pte = pte_offset_map(&_pmd, haddr);
2016         VM_BUG_ON(!pte_none(*pte));
2017         set_pte_at(mm, haddr, pte, entry);
2018         pte_unmap(pte);
2019     }
2020     smp_wmb(); /* make pte visible before pmd */
2021     pmd_populate(mm, pmd, pgtable);
2022 }
2023 
2024 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2025         unsigned long haddr, bool freeze)
2026 {
2027     struct mm_struct *mm = vma->vm_mm;
2028     struct page *page;
2029     pgtable_t pgtable;
2030     pmd_t old_pmd, _pmd;
2031     bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2032     bool anon_exclusive = false;
2033     unsigned long addr;
2034     int i;
2035 
2036     VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2037     VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2038     VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2039     VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2040                 && !pmd_devmap(*pmd));
2041 
2042     count_vm_event(THP_SPLIT_PMD);
2043 
2044     if (!vma_is_anonymous(vma)) {
2045         old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2046         /*
2047          * We are going to unmap this huge page. So
2048          * just go ahead and zap it
2049          */
2050         if (arch_needs_pgtable_deposit())
2051             zap_deposited_table(mm, pmd);
2052         if (vma_is_special_huge(vma))
2053             return;
2054         if (unlikely(is_pmd_migration_entry(old_pmd))) {
2055             swp_entry_t entry;
2056 
2057             entry = pmd_to_swp_entry(old_pmd);
2058             page = pfn_swap_entry_to_page(entry);
2059         } else {
2060             page = pmd_page(old_pmd);
2061             if (!PageDirty(page) && pmd_dirty(old_pmd))
2062                 set_page_dirty(page);
2063             if (!PageReferenced(page) && pmd_young(old_pmd))
2064                 SetPageReferenced(page);
2065             page_remove_rmap(page, vma, true);
2066             put_page(page);
2067         }
2068         add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2069         return;
2070     }
2071 
2072     if (is_huge_zero_pmd(*pmd)) {
2073         /*
2074          * FIXME: Do we want to invalidate secondary mmu by calling
2075          * mmu_notifier_invalidate_range() see comments below inside
2076          * __split_huge_pmd() ?
2077          *
2078          * We are going from a zero huge page write protected to zero
2079          * small page also write protected so it does not seems useful
2080          * to invalidate secondary mmu at this time.
2081          */
2082         return __split_huge_zero_page_pmd(vma, haddr, pmd);
2083     }
2084 
2085     /*
2086      * Up to this point the pmd is present and huge and userland has the
2087      * whole access to the hugepage during the split (which happens in
2088      * place). If we overwrite the pmd with the not-huge version pointing
2089      * to the pte here (which of course we could if all CPUs were bug
2090      * free), userland could trigger a small page size TLB miss on the
2091      * small sized TLB while the hugepage TLB entry is still established in
2092      * the huge TLB. Some CPU doesn't like that.
2093      * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2094      * 383 on page 105. Intel should be safe but is also warns that it's
2095      * only safe if the permission and cache attributes of the two entries
2096      * loaded in the two TLB is identical (which should be the case here).
2097      * But it is generally safer to never allow small and huge TLB entries
2098      * for the same virtual address to be loaded simultaneously. So instead
2099      * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2100      * current pmd notpresent (atomically because here the pmd_trans_huge
2101      * must remain set at all times on the pmd until the split is complete
2102      * for this pmd), then we flush the SMP TLB and finally we write the
2103      * non-huge version of the pmd entry with pmd_populate.
2104      */
2105     old_pmd = pmdp_invalidate(vma, haddr, pmd);
2106 
2107     pmd_migration = is_pmd_migration_entry(old_pmd);
2108     if (unlikely(pmd_migration)) {
2109         swp_entry_t entry;
2110 
2111         entry = pmd_to_swp_entry(old_pmd);
2112         page = pfn_swap_entry_to_page(entry);
2113         write = is_writable_migration_entry(entry);
2114         if (PageAnon(page))
2115             anon_exclusive = is_readable_exclusive_migration_entry(entry);
2116         young = false;
2117         soft_dirty = pmd_swp_soft_dirty(old_pmd);
2118         uffd_wp = pmd_swp_uffd_wp(old_pmd);
2119     } else {
2120         page = pmd_page(old_pmd);
2121         if (pmd_dirty(old_pmd))
2122             SetPageDirty(page);
2123         write = pmd_write(old_pmd);
2124         young = pmd_young(old_pmd);
2125         soft_dirty = pmd_soft_dirty(old_pmd);
2126         uffd_wp = pmd_uffd_wp(old_pmd);
2127 
2128         VM_BUG_ON_PAGE(!page_count(page), page);
2129         page_ref_add(page, HPAGE_PMD_NR - 1);
2130 
2131         /*
2132          * Without "freeze", we'll simply split the PMD, propagating the
2133          * PageAnonExclusive() flag for each PTE by setting it for
2134          * each subpage -- no need to (temporarily) clear.
2135          *
2136          * With "freeze" we want to replace mapped pages by
2137          * migration entries right away. This is only possible if we
2138          * managed to clear PageAnonExclusive() -- see
2139          * set_pmd_migration_entry().
2140          *
2141          * In case we cannot clear PageAnonExclusive(), split the PMD
2142          * only and let try_to_migrate_one() fail later.
2143          */
2144         anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2145         if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2146             freeze = false;
2147     }
2148 
2149     /*
2150      * Withdraw the table only after we mark the pmd entry invalid.
2151      * This's critical for some architectures (Power).
2152      */
2153     pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154     pmd_populate(mm, &_pmd, pgtable);
2155 
2156     for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157         pte_t entry, *pte;
2158         /*
2159          * Note that NUMA hinting access restrictions are not
2160          * transferred to avoid any possibility of altering
2161          * permissions across VMAs.
2162          */
2163         if (freeze || pmd_migration) {
2164             swp_entry_t swp_entry;
2165             if (write)
2166                 swp_entry = make_writable_migration_entry(
2167                             page_to_pfn(page + i));
2168             else if (anon_exclusive)
2169                 swp_entry = make_readable_exclusive_migration_entry(
2170                             page_to_pfn(page + i));
2171             else
2172                 swp_entry = make_readable_migration_entry(
2173                             page_to_pfn(page + i));
2174             entry = swp_entry_to_pte(swp_entry);
2175             if (soft_dirty)
2176                 entry = pte_swp_mksoft_dirty(entry);
2177             if (uffd_wp)
2178                 entry = pte_swp_mkuffd_wp(entry);
2179         } else {
2180             entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2181             entry = maybe_mkwrite(entry, vma);
2182             if (anon_exclusive)
2183                 SetPageAnonExclusive(page + i);
2184             if (!write)
2185                 entry = pte_wrprotect(entry);
2186             if (!young)
2187                 entry = pte_mkold(entry);
2188             if (soft_dirty)
2189                 entry = pte_mksoft_dirty(entry);
2190             if (uffd_wp)
2191                 entry = pte_mkuffd_wp(entry);
2192         }
2193         pte = pte_offset_map(&_pmd, addr);
2194         BUG_ON(!pte_none(*pte));
2195         set_pte_at(mm, addr, pte, entry);
2196         if (!pmd_migration)
2197             atomic_inc(&page[i]._mapcount);
2198         pte_unmap(pte);
2199     }
2200 
2201     if (!pmd_migration) {
2202         /*
2203          * Set PG_double_map before dropping compound_mapcount to avoid
2204          * false-negative page_mapped().
2205          */
2206         if (compound_mapcount(page) > 1 &&
2207             !TestSetPageDoubleMap(page)) {
2208             for (i = 0; i < HPAGE_PMD_NR; i++)
2209                 atomic_inc(&page[i]._mapcount);
2210         }
2211 
2212         lock_page_memcg(page);
2213         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2214             /* Last compound_mapcount is gone. */
2215             __mod_lruvec_page_state(page, NR_ANON_THPS,
2216                         -HPAGE_PMD_NR);
2217             if (TestClearPageDoubleMap(page)) {
2218                 /* No need in mapcount reference anymore */
2219                 for (i = 0; i < HPAGE_PMD_NR; i++)
2220                     atomic_dec(&page[i]._mapcount);
2221             }
2222         }
2223         unlock_page_memcg(page);
2224 
2225         /* Above is effectively page_remove_rmap(page, vma, true) */
2226         munlock_vma_page(page, vma, true);
2227     }
2228 
2229     smp_wmb(); /* make pte visible before pmd */
2230     pmd_populate(mm, pmd, pgtable);
2231 
2232     if (freeze) {
2233         for (i = 0; i < HPAGE_PMD_NR; i++) {
2234             page_remove_rmap(page + i, vma, false);
2235             put_page(page + i);
2236         }
2237     }
2238 }
2239 
2240 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2241         unsigned long address, bool freeze, struct folio *folio)
2242 {
2243     spinlock_t *ptl;
2244     struct mmu_notifier_range range;
2245 
2246     mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2247                 address & HPAGE_PMD_MASK,
2248                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2249     mmu_notifier_invalidate_range_start(&range);
2250     ptl = pmd_lock(vma->vm_mm, pmd);
2251 
2252     /*
2253      * If caller asks to setup a migration entry, we need a folio to check
2254      * pmd against. Otherwise we can end up replacing wrong folio.
2255      */
2256     VM_BUG_ON(freeze && !folio);
2257     VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2258 
2259     if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2260         is_pmd_migration_entry(*pmd)) {
2261         /*
2262          * It's safe to call pmd_page when folio is set because it's
2263          * guaranteed that pmd is present.
2264          */
2265         if (folio && folio != page_folio(pmd_page(*pmd)))
2266             goto out;
2267         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2268     }
2269 
2270 out:
2271     spin_unlock(ptl);
2272     /*
2273      * No need to double call mmu_notifier->invalidate_range() callback.
2274      * They are 3 cases to consider inside __split_huge_pmd_locked():
2275      *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2276      *  2) __split_huge_zero_page_pmd() read only zero page and any write
2277      *    fault will trigger a flush_notify before pointing to a new page
2278      *    (it is fine if the secondary mmu keeps pointing to the old zero
2279      *    page in the meantime)
2280      *  3) Split a huge pmd into pte pointing to the same page. No need
2281      *     to invalidate secondary tlb entry they are all still valid.
2282      *     any further changes to individual pte will notify. So no need
2283      *     to call mmu_notifier->invalidate_range()
2284      */
2285     mmu_notifier_invalidate_range_only_end(&range);
2286 }
2287 
2288 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2289         bool freeze, struct folio *folio)
2290 {
2291     pgd_t *pgd;
2292     p4d_t *p4d;
2293     pud_t *pud;
2294     pmd_t *pmd;
2295 
2296     pgd = pgd_offset(vma->vm_mm, address);
2297     if (!pgd_present(*pgd))
2298         return;
2299 
2300     p4d = p4d_offset(pgd, address);
2301     if (!p4d_present(*p4d))
2302         return;
2303 
2304     pud = pud_offset(p4d, address);
2305     if (!pud_present(*pud))
2306         return;
2307 
2308     pmd = pmd_offset(pud, address);
2309 
2310     __split_huge_pmd(vma, pmd, address, freeze, folio);
2311 }
2312 
2313 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2314 {
2315     /*
2316      * If the new address isn't hpage aligned and it could previously
2317      * contain an hugepage: check if we need to split an huge pmd.
2318      */
2319     if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2320         range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2321              ALIGN(address, HPAGE_PMD_SIZE)))
2322         split_huge_pmd_address(vma, address, false, NULL);
2323 }
2324 
2325 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2326                  unsigned long start,
2327                  unsigned long end,
2328                  long adjust_next)
2329 {
2330     /* Check if we need to split start first. */
2331     split_huge_pmd_if_needed(vma, start);
2332 
2333     /* Check if we need to split end next. */
2334     split_huge_pmd_if_needed(vma, end);
2335 
2336     /*
2337      * If we're also updating the vma->vm_next->vm_start,
2338      * check if we need to split it.
2339      */
2340     if (adjust_next > 0) {
2341         struct vm_area_struct *next = vma->vm_next;
2342         unsigned long nstart = next->vm_start;
2343         nstart += adjust_next;
2344         split_huge_pmd_if_needed(next, nstart);
2345     }
2346 }
2347 
2348 static void unmap_page(struct page *page)
2349 {
2350     struct folio *folio = page_folio(page);
2351     enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2352         TTU_SYNC;
2353 
2354     VM_BUG_ON_PAGE(!PageHead(page), page);
2355 
2356     /*
2357      * Anon pages need migration entries to preserve them, but file
2358      * pages can simply be left unmapped, then faulted back on demand.
2359      * If that is ever changed (perhaps for mlock), update remap_page().
2360      */
2361     if (folio_test_anon(folio))
2362         try_to_migrate(folio, ttu_flags);
2363     else
2364         try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2365 }
2366 
2367 static void remap_page(struct folio *folio, unsigned long nr)
2368 {
2369     int i = 0;
2370 
2371     /* If unmap_page() uses try_to_migrate() on file, remove this check */
2372     if (!folio_test_anon(folio))
2373         return;
2374     for (;;) {
2375         remove_migration_ptes(folio, folio, true);
2376         i += folio_nr_pages(folio);
2377         if (i >= nr)
2378             break;
2379         folio = folio_next(folio);
2380     }
2381 }
2382 
2383 static void lru_add_page_tail(struct page *head, struct page *tail,
2384         struct lruvec *lruvec, struct list_head *list)
2385 {
2386     VM_BUG_ON_PAGE(!PageHead(head), head);
2387     VM_BUG_ON_PAGE(PageCompound(tail), head);
2388     VM_BUG_ON_PAGE(PageLRU(tail), head);
2389     lockdep_assert_held(&lruvec->lru_lock);
2390 
2391     if (list) {
2392         /* page reclaim is reclaiming a huge page */
2393         VM_WARN_ON(PageLRU(head));
2394         get_page(tail);
2395         list_add_tail(&tail->lru, list);
2396     } else {
2397         /* head is still on lru (and we have it frozen) */
2398         VM_WARN_ON(!PageLRU(head));
2399         if (PageUnevictable(tail))
2400             tail->mlock_count = 0;
2401         else
2402             list_add_tail(&tail->lru, &head->lru);
2403         SetPageLRU(tail);
2404     }
2405 }
2406 
2407 static void __split_huge_page_tail(struct page *head, int tail,
2408         struct lruvec *lruvec, struct list_head *list)
2409 {
2410     struct page *page_tail = head + tail;
2411 
2412     VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2413 
2414     /*
2415      * Clone page flags before unfreezing refcount.
2416      *
2417      * After successful get_page_unless_zero() might follow flags change,
2418      * for example lock_page() which set PG_waiters.
2419      *
2420      * Note that for mapped sub-pages of an anonymous THP,
2421      * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2422      * the migration entry instead from where remap_page() will restore it.
2423      * We can still have PG_anon_exclusive set on effectively unmapped and
2424      * unreferenced sub-pages of an anonymous THP: we can simply drop
2425      * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2426      */
2427     page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2428     page_tail->flags |= (head->flags &
2429             ((1L << PG_referenced) |
2430              (1L << PG_swapbacked) |
2431              (1L << PG_swapcache) |
2432              (1L << PG_mlocked) |
2433              (1L << PG_uptodate) |
2434              (1L << PG_active) |
2435              (1L << PG_workingset) |
2436              (1L << PG_locked) |
2437              (1L << PG_unevictable) |
2438 #ifdef CONFIG_64BIT
2439              (1L << PG_arch_2) |
2440 #endif
2441              (1L << PG_dirty)));
2442 
2443     /* ->mapping in first tail page is compound_mapcount */
2444     VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2445             page_tail);
2446     page_tail->mapping = head->mapping;
2447     page_tail->index = head->index + tail;
2448     page_tail->private = 0;
2449 
2450     /* Page flags must be visible before we make the page non-compound. */
2451     smp_wmb();
2452 
2453     /*
2454      * Clear PageTail before unfreezing page refcount.
2455      *
2456      * After successful get_page_unless_zero() might follow put_page()
2457      * which needs correct compound_head().
2458      */
2459     clear_compound_head(page_tail);
2460 
2461     /* Finally unfreeze refcount. Additional reference from page cache. */
2462     page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2463                       PageSwapCache(head)));
2464 
2465     if (page_is_young(head))
2466         set_page_young(page_tail);
2467     if (page_is_idle(head))
2468         set_page_idle(page_tail);
2469 
2470     page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2471 
2472     /*
2473      * always add to the tail because some iterators expect new
2474      * pages to show after the currently processed elements - e.g.
2475      * migrate_pages
2476      */
2477     lru_add_page_tail(head, page_tail, lruvec, list);
2478 }
2479 
2480 static void __split_huge_page(struct page *page, struct list_head *list,
2481         pgoff_t end)
2482 {
2483     struct folio *folio = page_folio(page);
2484     struct page *head = &folio->page;
2485     struct lruvec *lruvec;
2486     struct address_space *swap_cache = NULL;
2487     unsigned long offset = 0;
2488     unsigned int nr = thp_nr_pages(head);
2489     int i;
2490 
2491     /* complete memcg works before add pages to LRU */
2492     split_page_memcg(head, nr);
2493 
2494     if (PageAnon(head) && PageSwapCache(head)) {
2495         swp_entry_t entry = { .val = page_private(head) };
2496 
2497         offset = swp_offset(entry);
2498         swap_cache = swap_address_space(entry);
2499         xa_lock(&swap_cache->i_pages);
2500     }
2501 
2502     /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2503     lruvec = folio_lruvec_lock(folio);
2504 
2505     ClearPageHasHWPoisoned(head);
2506 
2507     for (i = nr - 1; i >= 1; i--) {
2508         __split_huge_page_tail(head, i, lruvec, list);
2509         /* Some pages can be beyond EOF: drop them from page cache */
2510         if (head[i].index >= end) {
2511             struct folio *tail = page_folio(head + i);
2512 
2513             if (shmem_mapping(head->mapping))
2514                 shmem_uncharge(head->mapping->host, 1);
2515             else if (folio_test_clear_dirty(tail))
2516                 folio_account_cleaned(tail,
2517                     inode_to_wb(folio->mapping->host));
2518             __filemap_remove_folio(tail, NULL);
2519             folio_put(tail);
2520         } else if (!PageAnon(page)) {
2521             __xa_store(&head->mapping->i_pages, head[i].index,
2522                     head + i, 0);
2523         } else if (swap_cache) {
2524             __xa_store(&swap_cache->i_pages, offset + i,
2525                     head + i, 0);
2526         }
2527     }
2528 
2529     ClearPageCompound(head);
2530     unlock_page_lruvec(lruvec);
2531     /* Caller disabled irqs, so they are still disabled here */
2532 
2533     split_page_owner(head, nr);
2534 
2535     /* See comment in __split_huge_page_tail() */
2536     if (PageAnon(head)) {
2537         /* Additional pin to swap cache */
2538         if (PageSwapCache(head)) {
2539             page_ref_add(head, 2);
2540             xa_unlock(&swap_cache->i_pages);
2541         } else {
2542             page_ref_inc(head);
2543         }
2544     } else {
2545         /* Additional pin to page cache */
2546         page_ref_add(head, 2);
2547         xa_unlock(&head->mapping->i_pages);
2548     }
2549     local_irq_enable();
2550 
2551     remap_page(folio, nr);
2552 
2553     if (PageSwapCache(head)) {
2554         swp_entry_t entry = { .val = page_private(head) };
2555 
2556         split_swap_cluster(entry);
2557     }
2558 
2559     for (i = 0; i < nr; i++) {
2560         struct page *subpage = head + i;
2561         if (subpage == page)
2562             continue;
2563         unlock_page(subpage);
2564 
2565         /*
2566          * Subpages may be freed if there wasn't any mapping
2567          * like if add_to_swap() is running on a lru page that
2568          * had its mapping zapped. And freeing these pages
2569          * requires taking the lru_lock so we do the put_page
2570          * of the tail pages after the split is complete.
2571          */
2572         free_page_and_swap_cache(subpage);
2573     }
2574 }
2575 
2576 /* Racy check whether the huge page can be split */
2577 bool can_split_folio(struct folio *folio, int *pextra_pins)
2578 {
2579     int extra_pins;
2580 
2581     /* Additional pins from page cache */
2582     if (folio_test_anon(folio))
2583         extra_pins = folio_test_swapcache(folio) ?
2584                 folio_nr_pages(folio) : 0;
2585     else
2586         extra_pins = folio_nr_pages(folio);
2587     if (pextra_pins)
2588         *pextra_pins = extra_pins;
2589     return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2590 }
2591 
2592 /*
2593  * This function splits huge page into normal pages. @page can point to any
2594  * subpage of huge page to split. Split doesn't change the position of @page.
2595  *
2596  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597  * The huge page must be locked.
2598  *
2599  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2600  *
2601  * Both head page and tail pages will inherit mapping, flags, and so on from
2602  * the hugepage.
2603  *
2604  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605  * they are not mapped.
2606  *
2607  * Returns 0 if the hugepage is split successfully.
2608  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2609  * us.
2610  */
2611 int split_huge_page_to_list(struct page *page, struct list_head *list)
2612 {
2613     struct folio *folio = page_folio(page);
2614     struct page *head = &folio->page;
2615     struct deferred_split *ds_queue = get_deferred_split_queue(head);
2616     XA_STATE(xas, &head->mapping->i_pages, head->index);
2617     struct anon_vma *anon_vma = NULL;
2618     struct address_space *mapping = NULL;
2619     int extra_pins, ret;
2620     pgoff_t end;
2621     bool is_hzp;
2622 
2623     VM_BUG_ON_PAGE(!PageLocked(head), head);
2624     VM_BUG_ON_PAGE(!PageCompound(head), head);
2625 
2626     is_hzp = is_huge_zero_page(head);
2627     VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2628     if (is_hzp)
2629         return -EBUSY;
2630 
2631     if (PageWriteback(head))
2632         return -EBUSY;
2633 
2634     if (PageAnon(head)) {
2635         /*
2636          * The caller does not necessarily hold an mmap_lock that would
2637          * prevent the anon_vma disappearing so we first we take a
2638          * reference to it and then lock the anon_vma for write. This
2639          * is similar to folio_lock_anon_vma_read except the write lock
2640          * is taken to serialise against parallel split or collapse
2641          * operations.
2642          */
2643         anon_vma = page_get_anon_vma(head);
2644         if (!anon_vma) {
2645             ret = -EBUSY;
2646             goto out;
2647         }
2648         end = -1;
2649         mapping = NULL;
2650         anon_vma_lock_write(anon_vma);
2651     } else {
2652         mapping = head->mapping;
2653 
2654         /* Truncated ? */
2655         if (!mapping) {
2656             ret = -EBUSY;
2657             goto out;
2658         }
2659 
2660         xas_split_alloc(&xas, head, compound_order(head),
2661                 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2662         if (xas_error(&xas)) {
2663             ret = xas_error(&xas);
2664             goto out;
2665         }
2666 
2667         anon_vma = NULL;
2668         i_mmap_lock_read(mapping);
2669 
2670         /*
2671          *__split_huge_page() may need to trim off pages beyond EOF:
2672          * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2673          * which cannot be nested inside the page tree lock. So note
2674          * end now: i_size itself may be changed at any moment, but
2675          * head page lock is good enough to serialize the trimming.
2676          */
2677         end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2678         if (shmem_mapping(mapping))
2679             end = shmem_fallocend(mapping->host, end);
2680     }
2681 
2682     /*
2683      * Racy check if we can split the page, before unmap_page() will
2684      * split PMDs
2685      */
2686     if (!can_split_folio(folio, &extra_pins)) {
2687         ret = -EBUSY;
2688         goto out_unlock;
2689     }
2690 
2691     unmap_page(head);
2692 
2693     /* block interrupt reentry in xa_lock and spinlock */
2694     local_irq_disable();
2695     if (mapping) {
2696         /*
2697          * Check if the head page is present in page cache.
2698          * We assume all tail are present too, if head is there.
2699          */
2700         xas_lock(&xas);
2701         xas_reset(&xas);
2702         if (xas_load(&xas) != head)
2703             goto fail;
2704     }
2705 
2706     /* Prevent deferred_split_scan() touching ->_refcount */
2707     spin_lock(&ds_queue->split_queue_lock);
2708     if (page_ref_freeze(head, 1 + extra_pins)) {
2709         if (!list_empty(page_deferred_list(head))) {
2710             ds_queue->split_queue_len--;
2711             list_del(page_deferred_list(head));
2712         }
2713         spin_unlock(&ds_queue->split_queue_lock);
2714         if (mapping) {
2715             int nr = thp_nr_pages(head);
2716 
2717             xas_split(&xas, head, thp_order(head));
2718             if (PageSwapBacked(head)) {
2719                 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2720                             -nr);
2721             } else {
2722                 __mod_lruvec_page_state(head, NR_FILE_THPS,
2723                             -nr);
2724                 filemap_nr_thps_dec(mapping);
2725             }
2726         }
2727 
2728         __split_huge_page(page, list, end);
2729         ret = 0;
2730     } else {
2731         spin_unlock(&ds_queue->split_queue_lock);
2732 fail:
2733         if (mapping)
2734             xas_unlock(&xas);
2735         local_irq_enable();
2736         remap_page(folio, folio_nr_pages(folio));
2737         ret = -EBUSY;
2738     }
2739 
2740 out_unlock:
2741     if (anon_vma) {
2742         anon_vma_unlock_write(anon_vma);
2743         put_anon_vma(anon_vma);
2744     }
2745     if (mapping)
2746         i_mmap_unlock_read(mapping);
2747 out:
2748     xas_destroy(&xas);
2749     count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2750     return ret;
2751 }
2752 
2753 void free_transhuge_page(struct page *page)
2754 {
2755     struct deferred_split *ds_queue = get_deferred_split_queue(page);
2756     unsigned long flags;
2757 
2758     spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2759     if (!list_empty(page_deferred_list(page))) {
2760         ds_queue->split_queue_len--;
2761         list_del(page_deferred_list(page));
2762     }
2763     spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2764     free_compound_page(page);
2765 }
2766 
2767 void deferred_split_huge_page(struct page *page)
2768 {
2769     struct deferred_split *ds_queue = get_deferred_split_queue(page);
2770 #ifdef CONFIG_MEMCG
2771     struct mem_cgroup *memcg = page_memcg(compound_head(page));
2772 #endif
2773     unsigned long flags;
2774 
2775     VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2776 
2777     /*
2778      * The try_to_unmap() in page reclaim path might reach here too,
2779      * this may cause a race condition to corrupt deferred split queue.
2780      * And, if page reclaim is already handling the same page, it is
2781      * unnecessary to handle it again in shrinker.
2782      *
2783      * Check PageSwapCache to determine if the page is being
2784      * handled by page reclaim since THP swap would add the page into
2785      * swap cache before calling try_to_unmap().
2786      */
2787     if (PageSwapCache(page))
2788         return;
2789 
2790     spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2791     if (list_empty(page_deferred_list(page))) {
2792         count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2793         list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2794         ds_queue->split_queue_len++;
2795 #ifdef CONFIG_MEMCG
2796         if (memcg)
2797             set_shrinker_bit(memcg, page_to_nid(page),
2798                      deferred_split_shrinker.id);
2799 #endif
2800     }
2801     spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 }
2803 
2804 static unsigned long deferred_split_count(struct shrinker *shrink,
2805         struct shrink_control *sc)
2806 {
2807     struct pglist_data *pgdata = NODE_DATA(sc->nid);
2808     struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2809 
2810 #ifdef CONFIG_MEMCG
2811     if (sc->memcg)
2812         ds_queue = &sc->memcg->deferred_split_queue;
2813 #endif
2814     return READ_ONCE(ds_queue->split_queue_len);
2815 }
2816 
2817 static unsigned long deferred_split_scan(struct shrinker *shrink,
2818         struct shrink_control *sc)
2819 {
2820     struct pglist_data *pgdata = NODE_DATA(sc->nid);
2821     struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2822     unsigned long flags;
2823     LIST_HEAD(list), *pos, *next;
2824     struct page *page;
2825     int split = 0;
2826 
2827 #ifdef CONFIG_MEMCG
2828     if (sc->memcg)
2829         ds_queue = &sc->memcg->deferred_split_queue;
2830 #endif
2831 
2832     spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833     /* Take pin on all head pages to avoid freeing them under us */
2834     list_for_each_safe(pos, next, &ds_queue->split_queue) {
2835         page = list_entry((void *)pos, struct page, deferred_list);
2836         page = compound_head(page);
2837         if (get_page_unless_zero(page)) {
2838             list_move(page_deferred_list(page), &list);
2839         } else {
2840             /* We lost race with put_compound_page() */
2841             list_del_init(page_deferred_list(page));
2842             ds_queue->split_queue_len--;
2843         }
2844         if (!--sc->nr_to_scan)
2845             break;
2846     }
2847     spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2848 
2849     list_for_each_safe(pos, next, &list) {
2850         page = list_entry((void *)pos, struct page, deferred_list);
2851         if (!trylock_page(page))
2852             goto next;
2853         /* split_huge_page() removes page from list on success */
2854         if (!split_huge_page(page))
2855             split++;
2856         unlock_page(page);
2857 next:
2858         put_page(page);
2859     }
2860 
2861     spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2862     list_splice_tail(&list, &ds_queue->split_queue);
2863     spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864 
2865     /*
2866      * Stop shrinker if we didn't split any page, but the queue is empty.
2867      * This can happen if pages were freed under us.
2868      */
2869     if (!split && list_empty(&ds_queue->split_queue))
2870         return SHRINK_STOP;
2871     return split;
2872 }
2873 
2874 static struct shrinker deferred_split_shrinker = {
2875     .count_objects = deferred_split_count,
2876     .scan_objects = deferred_split_scan,
2877     .seeks = DEFAULT_SEEKS,
2878     .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2879          SHRINKER_NONSLAB,
2880 };
2881 
2882 #ifdef CONFIG_DEBUG_FS
2883 static void split_huge_pages_all(void)
2884 {
2885     struct zone *zone;
2886     struct page *page;
2887     unsigned long pfn, max_zone_pfn;
2888     unsigned long total = 0, split = 0;
2889 
2890     pr_debug("Split all THPs\n");
2891     for_each_zone(zone) {
2892         if (!managed_zone(zone))
2893             continue;
2894         max_zone_pfn = zone_end_pfn(zone);
2895         for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2896             int nr_pages;
2897 
2898             page = pfn_to_online_page(pfn);
2899             if (!page || !get_page_unless_zero(page))
2900                 continue;
2901 
2902             if (zone != page_zone(page))
2903                 goto next;
2904 
2905             if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2906                 goto next;
2907 
2908             total++;
2909             lock_page(page);
2910             nr_pages = thp_nr_pages(page);
2911             if (!split_huge_page(page))
2912                 split++;
2913             pfn += nr_pages - 1;
2914             unlock_page(page);
2915 next:
2916             put_page(page);
2917             cond_resched();
2918         }
2919     }
2920 
2921     pr_debug("%lu of %lu THP split\n", split, total);
2922 }
2923 
2924 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2925 {
2926     return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2927             is_vm_hugetlb_page(vma);
2928 }
2929 
2930 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2931                 unsigned long vaddr_end)
2932 {
2933     int ret = 0;
2934     struct task_struct *task;
2935     struct mm_struct *mm;
2936     unsigned long total = 0, split = 0;
2937     unsigned long addr;
2938 
2939     vaddr_start &= PAGE_MASK;
2940     vaddr_end &= PAGE_MASK;
2941 
2942     /* Find the task_struct from pid */
2943     rcu_read_lock();
2944     task = find_task_by_vpid(pid);
2945     if (!task) {
2946         rcu_read_unlock();
2947         ret = -ESRCH;
2948         goto out;
2949     }
2950     get_task_struct(task);
2951     rcu_read_unlock();
2952 
2953     /* Find the mm_struct */
2954     mm = get_task_mm(task);
2955     put_task_struct(task);
2956 
2957     if (!mm) {
2958         ret = -EINVAL;
2959         goto out;
2960     }
2961 
2962     pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2963          pid, vaddr_start, vaddr_end);
2964 
2965     mmap_read_lock(mm);
2966     /*
2967      * always increase addr by PAGE_SIZE, since we could have a PTE page
2968      * table filled with PTE-mapped THPs, each of which is distinct.
2969      */
2970     for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2971         struct vm_area_struct *vma = vma_lookup(mm, addr);
2972         struct page *page;
2973 
2974         if (!vma)
2975             break;
2976 
2977         /* skip special VMA and hugetlb VMA */
2978         if (vma_not_suitable_for_thp_split(vma)) {
2979             addr = vma->vm_end;
2980             continue;
2981         }
2982 
2983         /* FOLL_DUMP to ignore special (like zero) pages */
2984         page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2985 
2986         if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
2987             continue;
2988 
2989         if (!is_transparent_hugepage(page))
2990             goto next;
2991 
2992         total++;
2993         if (!can_split_folio(page_folio(page), NULL))
2994             goto next;
2995 
2996         if (!trylock_page(page))
2997             goto next;
2998 
2999         if (!split_huge_page(page))
3000             split++;
3001 
3002         unlock_page(page);
3003 next:
3004         put_page(page);
3005         cond_resched();
3006     }
3007     mmap_read_unlock(mm);
3008     mmput(mm);
3009 
3010     pr_debug("%lu of %lu THP split\n", split, total);
3011 
3012 out:
3013     return ret;
3014 }
3015 
3016 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3017                 pgoff_t off_end)
3018 {
3019     struct filename *file;
3020     struct file *candidate;
3021     struct address_space *mapping;
3022     int ret = -EINVAL;
3023     pgoff_t index;
3024     int nr_pages = 1;
3025     unsigned long total = 0, split = 0;
3026 
3027     file = getname_kernel(file_path);
3028     if (IS_ERR(file))
3029         return ret;
3030 
3031     candidate = file_open_name(file, O_RDONLY, 0);
3032     if (IS_ERR(candidate))
3033         goto out;
3034 
3035     pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3036          file_path, off_start, off_end);
3037 
3038     mapping = candidate->f_mapping;
3039 
3040     for (index = off_start; index < off_end; index += nr_pages) {
3041         struct page *fpage = pagecache_get_page(mapping, index,
3042                         FGP_ENTRY | FGP_HEAD, 0);
3043 
3044         nr_pages = 1;
3045         if (xa_is_value(fpage) || !fpage)
3046             continue;
3047 
3048         if (!is_transparent_hugepage(fpage))
3049             goto next;
3050 
3051         total++;
3052         nr_pages = thp_nr_pages(fpage);
3053 
3054         if (!trylock_page(fpage))
3055             goto next;
3056 
3057         if (!split_huge_page(fpage))
3058             split++;
3059 
3060         unlock_page(fpage);
3061 next:
3062         put_page(fpage);
3063         cond_resched();
3064     }
3065 
3066     filp_close(candidate, NULL);
3067     ret = 0;
3068 
3069     pr_debug("%lu of %lu file-backed THP split\n", split, total);
3070 out:
3071     putname(file);
3072     return ret;
3073 }
3074 
3075 #define MAX_INPUT_BUF_SZ 255
3076 
3077 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3078                 size_t count, loff_t *ppops)
3079 {
3080     static DEFINE_MUTEX(split_debug_mutex);
3081     ssize_t ret;
3082     /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3083     char input_buf[MAX_INPUT_BUF_SZ];
3084     int pid;
3085     unsigned long vaddr_start, vaddr_end;
3086 
3087     ret = mutex_lock_interruptible(&split_debug_mutex);
3088     if (ret)
3089         return ret;
3090 
3091     ret = -EFAULT;
3092 
3093     memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3094     if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3095         goto out;
3096 
3097     input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3098 
3099     if (input_buf[0] == '/') {
3100         char *tok;
3101         char *buf = input_buf;
3102         char file_path[MAX_INPUT_BUF_SZ];
3103         pgoff_t off_start = 0, off_end = 0;
3104         size_t input_len = strlen(input_buf);
3105 
3106         tok = strsep(&buf, ",");
3107         if (tok) {
3108             strcpy(file_path, tok);
3109         } else {
3110             ret = -EINVAL;
3111             goto out;
3112         }
3113 
3114         ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3115         if (ret != 2) {
3116             ret = -EINVAL;
3117             goto out;
3118         }
3119         ret = split_huge_pages_in_file(file_path, off_start, off_end);
3120         if (!ret)
3121             ret = input_len;
3122 
3123         goto out;
3124     }
3125 
3126     ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3127     if (ret == 1 && pid == 1) {
3128         split_huge_pages_all();
3129         ret = strlen(input_buf);
3130         goto out;
3131     } else if (ret != 3) {
3132         ret = -EINVAL;
3133         goto out;
3134     }
3135 
3136     ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3137     if (!ret)
3138         ret = strlen(input_buf);
3139 out:
3140     mutex_unlock(&split_debug_mutex);
3141     return ret;
3142 
3143 }
3144 
3145 static const struct file_operations split_huge_pages_fops = {
3146     .owner   = THIS_MODULE,
3147     .write   = split_huge_pages_write,
3148     .llseek  = no_llseek,
3149 };
3150 
3151 static int __init split_huge_pages_debugfs(void)
3152 {
3153     debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3154                 &split_huge_pages_fops);
3155     return 0;
3156 }
3157 late_initcall(split_huge_pages_debugfs);
3158 #endif
3159 
3160 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3161 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3162         struct page *page)
3163 {
3164     struct vm_area_struct *vma = pvmw->vma;
3165     struct mm_struct *mm = vma->vm_mm;
3166     unsigned long address = pvmw->address;
3167     bool anon_exclusive;
3168     pmd_t pmdval;
3169     swp_entry_t entry;
3170     pmd_t pmdswp;
3171 
3172     if (!(pvmw->pmd && !pvmw->pte))
3173         return 0;
3174 
3175     flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3176     pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3177 
3178     anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3179     if (anon_exclusive && page_try_share_anon_rmap(page)) {
3180         set_pmd_at(mm, address, pvmw->pmd, pmdval);
3181         return -EBUSY;
3182     }
3183 
3184     if (pmd_dirty(pmdval))
3185         set_page_dirty(page);
3186     if (pmd_write(pmdval))
3187         entry = make_writable_migration_entry(page_to_pfn(page));
3188     else if (anon_exclusive)
3189         entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3190     else
3191         entry = make_readable_migration_entry(page_to_pfn(page));
3192     pmdswp = swp_entry_to_pmd(entry);
3193     if (pmd_soft_dirty(pmdval))
3194         pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3195     set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3196     page_remove_rmap(page, vma, true);
3197     put_page(page);
3198     trace_set_migration_pmd(address, pmd_val(pmdswp));
3199 
3200     return 0;
3201 }
3202 
3203 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3204 {
3205     struct vm_area_struct *vma = pvmw->vma;
3206     struct mm_struct *mm = vma->vm_mm;
3207     unsigned long address = pvmw->address;
3208     unsigned long haddr = address & HPAGE_PMD_MASK;
3209     pmd_t pmde;
3210     swp_entry_t entry;
3211 
3212     if (!(pvmw->pmd && !pvmw->pte))
3213         return;
3214 
3215     entry = pmd_to_swp_entry(*pvmw->pmd);
3216     get_page(new);
3217     pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)));
3218     if (pmd_swp_soft_dirty(*pvmw->pmd))
3219         pmde = pmd_mksoft_dirty(pmde);
3220     if (is_writable_migration_entry(entry))
3221         pmde = maybe_pmd_mkwrite(pmde, vma);
3222     if (pmd_swp_uffd_wp(*pvmw->pmd))
3223         pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3224 
3225     if (PageAnon(new)) {
3226         rmap_t rmap_flags = RMAP_COMPOUND;
3227 
3228         if (!is_readable_migration_entry(entry))
3229             rmap_flags |= RMAP_EXCLUSIVE;
3230 
3231         page_add_anon_rmap(new, vma, haddr, rmap_flags);
3232     } else {
3233         page_add_file_rmap(new, vma, true);
3234     }
3235     VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3236     set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3237 
3238     /* No need to invalidate - it was non-present before */
3239     update_mmu_cache_pmd(vma, address, pvmw->pmd);
3240     trace_remove_migration_pmd(address, pmd_val(pmde));
3241 }
3242 #endif