Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * linux/mm/compaction.c
0004  *
0005  * Memory compaction for the reduction of external fragmentation. Note that
0006  * this heavily depends upon page migration to do all the real heavy
0007  * lifting
0008  *
0009  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
0010  */
0011 #include <linux/cpu.h>
0012 #include <linux/swap.h>
0013 #include <linux/migrate.h>
0014 #include <linux/compaction.h>
0015 #include <linux/mm_inline.h>
0016 #include <linux/sched/signal.h>
0017 #include <linux/backing-dev.h>
0018 #include <linux/sysctl.h>
0019 #include <linux/sysfs.h>
0020 #include <linux/page-isolation.h>
0021 #include <linux/kasan.h>
0022 #include <linux/kthread.h>
0023 #include <linux/freezer.h>
0024 #include <linux/page_owner.h>
0025 #include <linux/psi.h>
0026 #include "internal.h"
0027 
0028 #ifdef CONFIG_COMPACTION
0029 /*
0030  * Fragmentation score check interval for proactive compaction purposes.
0031  */
0032 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
0033 
0034 static inline void count_compact_event(enum vm_event_item item)
0035 {
0036     count_vm_event(item);
0037 }
0038 
0039 static inline void count_compact_events(enum vm_event_item item, long delta)
0040 {
0041     count_vm_events(item, delta);
0042 }
0043 #else
0044 #define count_compact_event(item) do { } while (0)
0045 #define count_compact_events(item, delta) do { } while (0)
0046 #endif
0047 
0048 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
0049 
0050 #define CREATE_TRACE_POINTS
0051 #include <trace/events/compaction.h>
0052 
0053 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
0054 #define block_end_pfn(pfn, order)   ALIGN((pfn) + 1, 1UL << (order))
0055 #define pageblock_start_pfn(pfn)    block_start_pfn(pfn, pageblock_order)
0056 #define pageblock_end_pfn(pfn)      block_end_pfn(pfn, pageblock_order)
0057 
0058 /*
0059  * Page order with-respect-to which proactive compaction
0060  * calculates external fragmentation, which is used as
0061  * the "fragmentation score" of a node/zone.
0062  */
0063 #if defined CONFIG_TRANSPARENT_HUGEPAGE
0064 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
0065 #elif defined CONFIG_HUGETLBFS
0066 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
0067 #else
0068 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
0069 #endif
0070 
0071 static unsigned long release_freepages(struct list_head *freelist)
0072 {
0073     struct page *page, *next;
0074     unsigned long high_pfn = 0;
0075 
0076     list_for_each_entry_safe(page, next, freelist, lru) {
0077         unsigned long pfn = page_to_pfn(page);
0078         list_del(&page->lru);
0079         __free_page(page);
0080         if (pfn > high_pfn)
0081             high_pfn = pfn;
0082     }
0083 
0084     return high_pfn;
0085 }
0086 
0087 static void split_map_pages(struct list_head *list)
0088 {
0089     unsigned int i, order, nr_pages;
0090     struct page *page, *next;
0091     LIST_HEAD(tmp_list);
0092 
0093     list_for_each_entry_safe(page, next, list, lru) {
0094         list_del(&page->lru);
0095 
0096         order = page_private(page);
0097         nr_pages = 1 << order;
0098 
0099         post_alloc_hook(page, order, __GFP_MOVABLE);
0100         if (order)
0101             split_page(page, order);
0102 
0103         for (i = 0; i < nr_pages; i++) {
0104             list_add(&page->lru, &tmp_list);
0105             page++;
0106         }
0107     }
0108 
0109     list_splice(&tmp_list, list);
0110 }
0111 
0112 #ifdef CONFIG_COMPACTION
0113 bool PageMovable(struct page *page)
0114 {
0115     const struct movable_operations *mops;
0116 
0117     VM_BUG_ON_PAGE(!PageLocked(page), page);
0118     if (!__PageMovable(page))
0119         return false;
0120 
0121     mops = page_movable_ops(page);
0122     if (mops)
0123         return true;
0124 
0125     return false;
0126 }
0127 EXPORT_SYMBOL(PageMovable);
0128 
0129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
0130 {
0131     VM_BUG_ON_PAGE(!PageLocked(page), page);
0132     VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
0133     page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
0134 }
0135 EXPORT_SYMBOL(__SetPageMovable);
0136 
0137 void __ClearPageMovable(struct page *page)
0138 {
0139     VM_BUG_ON_PAGE(!PageMovable(page), page);
0140     /*
0141      * This page still has the type of a movable page, but it's
0142      * actually not movable any more.
0143      */
0144     page->mapping = (void *)PAGE_MAPPING_MOVABLE;
0145 }
0146 EXPORT_SYMBOL(__ClearPageMovable);
0147 
0148 /* Do not skip compaction more than 64 times */
0149 #define COMPACT_MAX_DEFER_SHIFT 6
0150 
0151 /*
0152  * Compaction is deferred when compaction fails to result in a page
0153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
0154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
0155  */
0156 static void defer_compaction(struct zone *zone, int order)
0157 {
0158     zone->compact_considered = 0;
0159     zone->compact_defer_shift++;
0160 
0161     if (order < zone->compact_order_failed)
0162         zone->compact_order_failed = order;
0163 
0164     if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
0165         zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
0166 
0167     trace_mm_compaction_defer_compaction(zone, order);
0168 }
0169 
0170 /* Returns true if compaction should be skipped this time */
0171 static bool compaction_deferred(struct zone *zone, int order)
0172 {
0173     unsigned long defer_limit = 1UL << zone->compact_defer_shift;
0174 
0175     if (order < zone->compact_order_failed)
0176         return false;
0177 
0178     /* Avoid possible overflow */
0179     if (++zone->compact_considered >= defer_limit) {
0180         zone->compact_considered = defer_limit;
0181         return false;
0182     }
0183 
0184     trace_mm_compaction_deferred(zone, order);
0185 
0186     return true;
0187 }
0188 
0189 /*
0190  * Update defer tracking counters after successful compaction of given order,
0191  * which means an allocation either succeeded (alloc_success == true) or is
0192  * expected to succeed.
0193  */
0194 void compaction_defer_reset(struct zone *zone, int order,
0195         bool alloc_success)
0196 {
0197     if (alloc_success) {
0198         zone->compact_considered = 0;
0199         zone->compact_defer_shift = 0;
0200     }
0201     if (order >= zone->compact_order_failed)
0202         zone->compact_order_failed = order + 1;
0203 
0204     trace_mm_compaction_defer_reset(zone, order);
0205 }
0206 
0207 /* Returns true if restarting compaction after many failures */
0208 static bool compaction_restarting(struct zone *zone, int order)
0209 {
0210     if (order < zone->compact_order_failed)
0211         return false;
0212 
0213     return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
0214         zone->compact_considered >= 1UL << zone->compact_defer_shift;
0215 }
0216 
0217 /* Returns true if the pageblock should be scanned for pages to isolate. */
0218 static inline bool isolation_suitable(struct compact_control *cc,
0219                     struct page *page)
0220 {
0221     if (cc->ignore_skip_hint)
0222         return true;
0223 
0224     return !get_pageblock_skip(page);
0225 }
0226 
0227 static void reset_cached_positions(struct zone *zone)
0228 {
0229     zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
0230     zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
0231     zone->compact_cached_free_pfn =
0232                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
0233 }
0234 
0235 /*
0236  * Compound pages of >= pageblock_order should consistently be skipped until
0237  * released. It is always pointless to compact pages of such order (if they are
0238  * migratable), and the pageblocks they occupy cannot contain any free pages.
0239  */
0240 static bool pageblock_skip_persistent(struct page *page)
0241 {
0242     if (!PageCompound(page))
0243         return false;
0244 
0245     page = compound_head(page);
0246 
0247     if (compound_order(page) >= pageblock_order)
0248         return true;
0249 
0250     return false;
0251 }
0252 
0253 static bool
0254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
0255                             bool check_target)
0256 {
0257     struct page *page = pfn_to_online_page(pfn);
0258     struct page *block_page;
0259     struct page *end_page;
0260     unsigned long block_pfn;
0261 
0262     if (!page)
0263         return false;
0264     if (zone != page_zone(page))
0265         return false;
0266     if (pageblock_skip_persistent(page))
0267         return false;
0268 
0269     /*
0270      * If skip is already cleared do no further checking once the
0271      * restart points have been set.
0272      */
0273     if (check_source && check_target && !get_pageblock_skip(page))
0274         return true;
0275 
0276     /*
0277      * If clearing skip for the target scanner, do not select a
0278      * non-movable pageblock as the starting point.
0279      */
0280     if (!check_source && check_target &&
0281         get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
0282         return false;
0283 
0284     /* Ensure the start of the pageblock or zone is online and valid */
0285     block_pfn = pageblock_start_pfn(pfn);
0286     block_pfn = max(block_pfn, zone->zone_start_pfn);
0287     block_page = pfn_to_online_page(block_pfn);
0288     if (block_page) {
0289         page = block_page;
0290         pfn = block_pfn;
0291     }
0292 
0293     /* Ensure the end of the pageblock or zone is online and valid */
0294     block_pfn = pageblock_end_pfn(pfn) - 1;
0295     block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
0296     end_page = pfn_to_online_page(block_pfn);
0297     if (!end_page)
0298         return false;
0299 
0300     /*
0301      * Only clear the hint if a sample indicates there is either a
0302      * free page or an LRU page in the block. One or other condition
0303      * is necessary for the block to be a migration source/target.
0304      */
0305     do {
0306         if (check_source && PageLRU(page)) {
0307             clear_pageblock_skip(page);
0308             return true;
0309         }
0310 
0311         if (check_target && PageBuddy(page)) {
0312             clear_pageblock_skip(page);
0313             return true;
0314         }
0315 
0316         page += (1 << PAGE_ALLOC_COSTLY_ORDER);
0317     } while (page <= end_page);
0318 
0319     return false;
0320 }
0321 
0322 /*
0323  * This function is called to clear all cached information on pageblocks that
0324  * should be skipped for page isolation when the migrate and free page scanner
0325  * meet.
0326  */
0327 static void __reset_isolation_suitable(struct zone *zone)
0328 {
0329     unsigned long migrate_pfn = zone->zone_start_pfn;
0330     unsigned long free_pfn = zone_end_pfn(zone) - 1;
0331     unsigned long reset_migrate = free_pfn;
0332     unsigned long reset_free = migrate_pfn;
0333     bool source_set = false;
0334     bool free_set = false;
0335 
0336     if (!zone->compact_blockskip_flush)
0337         return;
0338 
0339     zone->compact_blockskip_flush = false;
0340 
0341     /*
0342      * Walk the zone and update pageblock skip information. Source looks
0343      * for PageLRU while target looks for PageBuddy. When the scanner
0344      * is found, both PageBuddy and PageLRU are checked as the pageblock
0345      * is suitable as both source and target.
0346      */
0347     for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
0348                     free_pfn -= pageblock_nr_pages) {
0349         cond_resched();
0350 
0351         /* Update the migrate PFN */
0352         if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
0353             migrate_pfn < reset_migrate) {
0354             source_set = true;
0355             reset_migrate = migrate_pfn;
0356             zone->compact_init_migrate_pfn = reset_migrate;
0357             zone->compact_cached_migrate_pfn[0] = reset_migrate;
0358             zone->compact_cached_migrate_pfn[1] = reset_migrate;
0359         }
0360 
0361         /* Update the free PFN */
0362         if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
0363             free_pfn > reset_free) {
0364             free_set = true;
0365             reset_free = free_pfn;
0366             zone->compact_init_free_pfn = reset_free;
0367             zone->compact_cached_free_pfn = reset_free;
0368         }
0369     }
0370 
0371     /* Leave no distance if no suitable block was reset */
0372     if (reset_migrate >= reset_free) {
0373         zone->compact_cached_migrate_pfn[0] = migrate_pfn;
0374         zone->compact_cached_migrate_pfn[1] = migrate_pfn;
0375         zone->compact_cached_free_pfn = free_pfn;
0376     }
0377 }
0378 
0379 void reset_isolation_suitable(pg_data_t *pgdat)
0380 {
0381     int zoneid;
0382 
0383     for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
0384         struct zone *zone = &pgdat->node_zones[zoneid];
0385         if (!populated_zone(zone))
0386             continue;
0387 
0388         /* Only flush if a full compaction finished recently */
0389         if (zone->compact_blockskip_flush)
0390             __reset_isolation_suitable(zone);
0391     }
0392 }
0393 
0394 /*
0395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
0396  * locks are not required for read/writers. Returns true if it was already set.
0397  */
0398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
0399                             unsigned long pfn)
0400 {
0401     bool skip;
0402 
0403     /* Do no update if skip hint is being ignored */
0404     if (cc->ignore_skip_hint)
0405         return false;
0406 
0407     if (!IS_ALIGNED(pfn, pageblock_nr_pages))
0408         return false;
0409 
0410     skip = get_pageblock_skip(page);
0411     if (!skip && !cc->no_set_skip_hint)
0412         set_pageblock_skip(page);
0413 
0414     return skip;
0415 }
0416 
0417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
0418 {
0419     struct zone *zone = cc->zone;
0420 
0421     pfn = pageblock_end_pfn(pfn);
0422 
0423     /* Set for isolation rather than compaction */
0424     if (cc->no_set_skip_hint)
0425         return;
0426 
0427     if (pfn > zone->compact_cached_migrate_pfn[0])
0428         zone->compact_cached_migrate_pfn[0] = pfn;
0429     if (cc->mode != MIGRATE_ASYNC &&
0430         pfn > zone->compact_cached_migrate_pfn[1])
0431         zone->compact_cached_migrate_pfn[1] = pfn;
0432 }
0433 
0434 /*
0435  * If no pages were isolated then mark this pageblock to be skipped in the
0436  * future. The information is later cleared by __reset_isolation_suitable().
0437  */
0438 static void update_pageblock_skip(struct compact_control *cc,
0439             struct page *page, unsigned long pfn)
0440 {
0441     struct zone *zone = cc->zone;
0442 
0443     if (cc->no_set_skip_hint)
0444         return;
0445 
0446     if (!page)
0447         return;
0448 
0449     set_pageblock_skip(page);
0450 
0451     /* Update where async and sync compaction should restart */
0452     if (pfn < zone->compact_cached_free_pfn)
0453         zone->compact_cached_free_pfn = pfn;
0454 }
0455 #else
0456 static inline bool isolation_suitable(struct compact_control *cc,
0457                     struct page *page)
0458 {
0459     return true;
0460 }
0461 
0462 static inline bool pageblock_skip_persistent(struct page *page)
0463 {
0464     return false;
0465 }
0466 
0467 static inline void update_pageblock_skip(struct compact_control *cc,
0468             struct page *page, unsigned long pfn)
0469 {
0470 }
0471 
0472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
0473 {
0474 }
0475 
0476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
0477                             unsigned long pfn)
0478 {
0479     return false;
0480 }
0481 #endif /* CONFIG_COMPACTION */
0482 
0483 /*
0484  * Compaction requires the taking of some coarse locks that are potentially
0485  * very heavily contended. For async compaction, trylock and record if the
0486  * lock is contended. The lock will still be acquired but compaction will
0487  * abort when the current block is finished regardless of success rate.
0488  * Sync compaction acquires the lock.
0489  *
0490  * Always returns true which makes it easier to track lock state in callers.
0491  */
0492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
0493                         struct compact_control *cc)
0494     __acquires(lock)
0495 {
0496     /* Track if the lock is contended in async mode */
0497     if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
0498         if (spin_trylock_irqsave(lock, *flags))
0499             return true;
0500 
0501         cc->contended = true;
0502     }
0503 
0504     spin_lock_irqsave(lock, *flags);
0505     return true;
0506 }
0507 
0508 /*
0509  * Compaction requires the taking of some coarse locks that are potentially
0510  * very heavily contended. The lock should be periodically unlocked to avoid
0511  * having disabled IRQs for a long time, even when there is nobody waiting on
0512  * the lock. It might also be that allowing the IRQs will result in
0513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
0514  * Either compaction type will also abort if a fatal signal is pending.
0515  * In either case if the lock was locked, it is dropped and not regained.
0516  *
0517  * Returns true if compaction should abort due to fatal signal pending.
0518  * Returns false when compaction can continue.
0519  */
0520 static bool compact_unlock_should_abort(spinlock_t *lock,
0521         unsigned long flags, bool *locked, struct compact_control *cc)
0522 {
0523     if (*locked) {
0524         spin_unlock_irqrestore(lock, flags);
0525         *locked = false;
0526     }
0527 
0528     if (fatal_signal_pending(current)) {
0529         cc->contended = true;
0530         return true;
0531     }
0532 
0533     cond_resched();
0534 
0535     return false;
0536 }
0537 
0538 /*
0539  * Isolate free pages onto a private freelist. If @strict is true, will abort
0540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
0541  * (even though it may still end up isolating some pages).
0542  */
0543 static unsigned long isolate_freepages_block(struct compact_control *cc,
0544                 unsigned long *start_pfn,
0545                 unsigned long end_pfn,
0546                 struct list_head *freelist,
0547                 unsigned int stride,
0548                 bool strict)
0549 {
0550     int nr_scanned = 0, total_isolated = 0;
0551     struct page *cursor;
0552     unsigned long flags = 0;
0553     bool locked = false;
0554     unsigned long blockpfn = *start_pfn;
0555     unsigned int order;
0556 
0557     /* Strict mode is for isolation, speed is secondary */
0558     if (strict)
0559         stride = 1;
0560 
0561     cursor = pfn_to_page(blockpfn);
0562 
0563     /* Isolate free pages. */
0564     for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
0565         int isolated;
0566         struct page *page = cursor;
0567 
0568         /*
0569          * Periodically drop the lock (if held) regardless of its
0570          * contention, to give chance to IRQs. Abort if fatal signal
0571          * pending.
0572          */
0573         if (!(blockpfn % COMPACT_CLUSTER_MAX)
0574             && compact_unlock_should_abort(&cc->zone->lock, flags,
0575                                 &locked, cc))
0576             break;
0577 
0578         nr_scanned++;
0579 
0580         /*
0581          * For compound pages such as THP and hugetlbfs, we can save
0582          * potentially a lot of iterations if we skip them at once.
0583          * The check is racy, but we can consider only valid values
0584          * and the only danger is skipping too much.
0585          */
0586         if (PageCompound(page)) {
0587             const unsigned int order = compound_order(page);
0588 
0589             if (likely(order < MAX_ORDER)) {
0590                 blockpfn += (1UL << order) - 1;
0591                 cursor += (1UL << order) - 1;
0592             }
0593             goto isolate_fail;
0594         }
0595 
0596         if (!PageBuddy(page))
0597             goto isolate_fail;
0598 
0599         /* If we already hold the lock, we can skip some rechecking. */
0600         if (!locked) {
0601             locked = compact_lock_irqsave(&cc->zone->lock,
0602                                 &flags, cc);
0603 
0604             /* Recheck this is a buddy page under lock */
0605             if (!PageBuddy(page))
0606                 goto isolate_fail;
0607         }
0608 
0609         /* Found a free page, will break it into order-0 pages */
0610         order = buddy_order(page);
0611         isolated = __isolate_free_page(page, order);
0612         if (!isolated)
0613             break;
0614         set_page_private(page, order);
0615 
0616         nr_scanned += isolated - 1;
0617         total_isolated += isolated;
0618         cc->nr_freepages += isolated;
0619         list_add_tail(&page->lru, freelist);
0620 
0621         if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
0622             blockpfn += isolated;
0623             break;
0624         }
0625         /* Advance to the end of split page */
0626         blockpfn += isolated - 1;
0627         cursor += isolated - 1;
0628         continue;
0629 
0630 isolate_fail:
0631         if (strict)
0632             break;
0633         else
0634             continue;
0635 
0636     }
0637 
0638     if (locked)
0639         spin_unlock_irqrestore(&cc->zone->lock, flags);
0640 
0641     /*
0642      * There is a tiny chance that we have read bogus compound_order(),
0643      * so be careful to not go outside of the pageblock.
0644      */
0645     if (unlikely(blockpfn > end_pfn))
0646         blockpfn = end_pfn;
0647 
0648     trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
0649                     nr_scanned, total_isolated);
0650 
0651     /* Record how far we have got within the block */
0652     *start_pfn = blockpfn;
0653 
0654     /*
0655      * If strict isolation is requested by CMA then check that all the
0656      * pages requested were isolated. If there were any failures, 0 is
0657      * returned and CMA will fail.
0658      */
0659     if (strict && blockpfn < end_pfn)
0660         total_isolated = 0;
0661 
0662     cc->total_free_scanned += nr_scanned;
0663     if (total_isolated)
0664         count_compact_events(COMPACTISOLATED, total_isolated);
0665     return total_isolated;
0666 }
0667 
0668 /**
0669  * isolate_freepages_range() - isolate free pages.
0670  * @cc:        Compaction control structure.
0671  * @start_pfn: The first PFN to start isolating.
0672  * @end_pfn:   The one-past-last PFN.
0673  *
0674  * Non-free pages, invalid PFNs, or zone boundaries within the
0675  * [start_pfn, end_pfn) range are considered errors, cause function to
0676  * undo its actions and return zero.
0677  *
0678  * Otherwise, function returns one-past-the-last PFN of isolated page
0679  * (which may be greater then end_pfn if end fell in a middle of
0680  * a free page).
0681  */
0682 unsigned long
0683 isolate_freepages_range(struct compact_control *cc,
0684             unsigned long start_pfn, unsigned long end_pfn)
0685 {
0686     unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
0687     LIST_HEAD(freelist);
0688 
0689     pfn = start_pfn;
0690     block_start_pfn = pageblock_start_pfn(pfn);
0691     if (block_start_pfn < cc->zone->zone_start_pfn)
0692         block_start_pfn = cc->zone->zone_start_pfn;
0693     block_end_pfn = pageblock_end_pfn(pfn);
0694 
0695     for (; pfn < end_pfn; pfn += isolated,
0696                 block_start_pfn = block_end_pfn,
0697                 block_end_pfn += pageblock_nr_pages) {
0698         /* Protect pfn from changing by isolate_freepages_block */
0699         unsigned long isolate_start_pfn = pfn;
0700 
0701         block_end_pfn = min(block_end_pfn, end_pfn);
0702 
0703         /*
0704          * pfn could pass the block_end_pfn if isolated freepage
0705          * is more than pageblock order. In this case, we adjust
0706          * scanning range to right one.
0707          */
0708         if (pfn >= block_end_pfn) {
0709             block_start_pfn = pageblock_start_pfn(pfn);
0710             block_end_pfn = pageblock_end_pfn(pfn);
0711             block_end_pfn = min(block_end_pfn, end_pfn);
0712         }
0713 
0714         if (!pageblock_pfn_to_page(block_start_pfn,
0715                     block_end_pfn, cc->zone))
0716             break;
0717 
0718         isolated = isolate_freepages_block(cc, &isolate_start_pfn,
0719                     block_end_pfn, &freelist, 0, true);
0720 
0721         /*
0722          * In strict mode, isolate_freepages_block() returns 0 if
0723          * there are any holes in the block (ie. invalid PFNs or
0724          * non-free pages).
0725          */
0726         if (!isolated)
0727             break;
0728 
0729         /*
0730          * If we managed to isolate pages, it is always (1 << n) *
0731          * pageblock_nr_pages for some non-negative n.  (Max order
0732          * page may span two pageblocks).
0733          */
0734     }
0735 
0736     /* __isolate_free_page() does not map the pages */
0737     split_map_pages(&freelist);
0738 
0739     if (pfn < end_pfn) {
0740         /* Loop terminated early, cleanup. */
0741         release_freepages(&freelist);
0742         return 0;
0743     }
0744 
0745     /* We don't use freelists for anything. */
0746     return pfn;
0747 }
0748 
0749 /* Similar to reclaim, but different enough that they don't share logic */
0750 static bool too_many_isolated(pg_data_t *pgdat)
0751 {
0752     bool too_many;
0753 
0754     unsigned long active, inactive, isolated;
0755 
0756     inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
0757             node_page_state(pgdat, NR_INACTIVE_ANON);
0758     active = node_page_state(pgdat, NR_ACTIVE_FILE) +
0759             node_page_state(pgdat, NR_ACTIVE_ANON);
0760     isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
0761             node_page_state(pgdat, NR_ISOLATED_ANON);
0762 
0763     too_many = isolated > (inactive + active) / 2;
0764     if (!too_many)
0765         wake_throttle_isolated(pgdat);
0766 
0767     return too_many;
0768 }
0769 
0770 /**
0771  * isolate_migratepages_block() - isolate all migrate-able pages within
0772  *                a single pageblock
0773  * @cc:     Compaction control structure.
0774  * @low_pfn:    The first PFN to isolate
0775  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
0776  * @mode:   Isolation mode to be used.
0777  *
0778  * Isolate all pages that can be migrated from the range specified by
0779  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
0780  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
0781  * -ENOMEM in case we could not allocate a page, or 0.
0782  * cc->migrate_pfn will contain the next pfn to scan.
0783  *
0784  * The pages are isolated on cc->migratepages list (not required to be empty),
0785  * and cc->nr_migratepages is updated accordingly.
0786  */
0787 static int
0788 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
0789             unsigned long end_pfn, isolate_mode_t mode)
0790 {
0791     pg_data_t *pgdat = cc->zone->zone_pgdat;
0792     unsigned long nr_scanned = 0, nr_isolated = 0;
0793     struct lruvec *lruvec;
0794     unsigned long flags = 0;
0795     struct lruvec *locked = NULL;
0796     struct page *page = NULL, *valid_page = NULL;
0797     struct address_space *mapping;
0798     unsigned long start_pfn = low_pfn;
0799     bool skip_on_failure = false;
0800     unsigned long next_skip_pfn = 0;
0801     bool skip_updated = false;
0802     int ret = 0;
0803 
0804     cc->migrate_pfn = low_pfn;
0805 
0806     /*
0807      * Ensure that there are not too many pages isolated from the LRU
0808      * list by either parallel reclaimers or compaction. If there are,
0809      * delay for some time until fewer pages are isolated
0810      */
0811     while (unlikely(too_many_isolated(pgdat))) {
0812         /* stop isolation if there are still pages not migrated */
0813         if (cc->nr_migratepages)
0814             return -EAGAIN;
0815 
0816         /* async migration should just abort */
0817         if (cc->mode == MIGRATE_ASYNC)
0818             return -EAGAIN;
0819 
0820         reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
0821 
0822         if (fatal_signal_pending(current))
0823             return -EINTR;
0824     }
0825 
0826     cond_resched();
0827 
0828     if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
0829         skip_on_failure = true;
0830         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
0831     }
0832 
0833     /* Time to isolate some pages for migration */
0834     for (; low_pfn < end_pfn; low_pfn++) {
0835 
0836         if (skip_on_failure && low_pfn >= next_skip_pfn) {
0837             /*
0838              * We have isolated all migration candidates in the
0839              * previous order-aligned block, and did not skip it due
0840              * to failure. We should migrate the pages now and
0841              * hopefully succeed compaction.
0842              */
0843             if (nr_isolated)
0844                 break;
0845 
0846             /*
0847              * We failed to isolate in the previous order-aligned
0848              * block. Set the new boundary to the end of the
0849              * current block. Note we can't simply increase
0850              * next_skip_pfn by 1 << order, as low_pfn might have
0851              * been incremented by a higher number due to skipping
0852              * a compound or a high-order buddy page in the
0853              * previous loop iteration.
0854              */
0855             next_skip_pfn = block_end_pfn(low_pfn, cc->order);
0856         }
0857 
0858         /*
0859          * Periodically drop the lock (if held) regardless of its
0860          * contention, to give chance to IRQs. Abort completely if
0861          * a fatal signal is pending.
0862          */
0863         if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
0864             if (locked) {
0865                 unlock_page_lruvec_irqrestore(locked, flags);
0866                 locked = NULL;
0867             }
0868 
0869             if (fatal_signal_pending(current)) {
0870                 cc->contended = true;
0871                 ret = -EINTR;
0872 
0873                 goto fatal_pending;
0874             }
0875 
0876             cond_resched();
0877         }
0878 
0879         nr_scanned++;
0880 
0881         page = pfn_to_page(low_pfn);
0882 
0883         /*
0884          * Check if the pageblock has already been marked skipped.
0885          * Only the aligned PFN is checked as the caller isolates
0886          * COMPACT_CLUSTER_MAX at a time so the second call must
0887          * not falsely conclude that the block should be skipped.
0888          */
0889         if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
0890             if (!isolation_suitable(cc, page)) {
0891                 low_pfn = end_pfn;
0892                 page = NULL;
0893                 goto isolate_abort;
0894             }
0895             valid_page = page;
0896         }
0897 
0898         if (PageHuge(page) && cc->alloc_contig) {
0899             ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
0900 
0901             /*
0902              * Fail isolation in case isolate_or_dissolve_huge_page()
0903              * reports an error. In case of -ENOMEM, abort right away.
0904              */
0905             if (ret < 0) {
0906                  /* Do not report -EBUSY down the chain */
0907                 if (ret == -EBUSY)
0908                     ret = 0;
0909                 low_pfn += compound_nr(page) - 1;
0910                 goto isolate_fail;
0911             }
0912 
0913             if (PageHuge(page)) {
0914                 /*
0915                  * Hugepage was successfully isolated and placed
0916                  * on the cc->migratepages list.
0917                  */
0918                 low_pfn += compound_nr(page) - 1;
0919                 goto isolate_success_no_list;
0920             }
0921 
0922             /*
0923              * Ok, the hugepage was dissolved. Now these pages are
0924              * Buddy and cannot be re-allocated because they are
0925              * isolated. Fall-through as the check below handles
0926              * Buddy pages.
0927              */
0928         }
0929 
0930         /*
0931          * Skip if free. We read page order here without zone lock
0932          * which is generally unsafe, but the race window is small and
0933          * the worst thing that can happen is that we skip some
0934          * potential isolation targets.
0935          */
0936         if (PageBuddy(page)) {
0937             unsigned long freepage_order = buddy_order_unsafe(page);
0938 
0939             /*
0940              * Without lock, we cannot be sure that what we got is
0941              * a valid page order. Consider only values in the
0942              * valid order range to prevent low_pfn overflow.
0943              */
0944             if (freepage_order > 0 && freepage_order < MAX_ORDER)
0945                 low_pfn += (1UL << freepage_order) - 1;
0946             continue;
0947         }
0948 
0949         /*
0950          * Regardless of being on LRU, compound pages such as THP and
0951          * hugetlbfs are not to be compacted unless we are attempting
0952          * an allocation much larger than the huge page size (eg CMA).
0953          * We can potentially save a lot of iterations if we skip them
0954          * at once. The check is racy, but we can consider only valid
0955          * values and the only danger is skipping too much.
0956          */
0957         if (PageCompound(page) && !cc->alloc_contig) {
0958             const unsigned int order = compound_order(page);
0959 
0960             if (likely(order < MAX_ORDER))
0961                 low_pfn += (1UL << order) - 1;
0962             goto isolate_fail;
0963         }
0964 
0965         /*
0966          * Check may be lockless but that's ok as we recheck later.
0967          * It's possible to migrate LRU and non-lru movable pages.
0968          * Skip any other type of page
0969          */
0970         if (!PageLRU(page)) {
0971             /*
0972              * __PageMovable can return false positive so we need
0973              * to verify it under page_lock.
0974              */
0975             if (unlikely(__PageMovable(page)) &&
0976                     !PageIsolated(page)) {
0977                 if (locked) {
0978                     unlock_page_lruvec_irqrestore(locked, flags);
0979                     locked = NULL;
0980                 }
0981 
0982                 if (!isolate_movable_page(page, mode))
0983                     goto isolate_success;
0984             }
0985 
0986             goto isolate_fail;
0987         }
0988 
0989         /*
0990          * Migration will fail if an anonymous page is pinned in memory,
0991          * so avoid taking lru_lock and isolating it unnecessarily in an
0992          * admittedly racy check.
0993          */
0994         mapping = page_mapping(page);
0995         if (!mapping && page_count(page) > page_mapcount(page))
0996             goto isolate_fail;
0997 
0998         /*
0999          * Only allow to migrate anonymous pages in GFP_NOFS context
1000          * because those do not depend on fs locks.
1001          */
1002         if (!(cc->gfp_mask & __GFP_FS) && mapping)
1003             goto isolate_fail;
1004 
1005         /*
1006          * Be careful not to clear PageLRU until after we're
1007          * sure the page is not being freed elsewhere -- the
1008          * page release code relies on it.
1009          */
1010         if (unlikely(!get_page_unless_zero(page)))
1011             goto isolate_fail;
1012 
1013         /* Only take pages on LRU: a check now makes later tests safe */
1014         if (!PageLRU(page))
1015             goto isolate_fail_put;
1016 
1017         /* Compaction might skip unevictable pages but CMA takes them */
1018         if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019             goto isolate_fail_put;
1020 
1021         /*
1022          * To minimise LRU disruption, the caller can indicate with
1023          * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024          * it will be able to migrate without blocking - clean pages
1025          * for the most part.  PageWriteback would require blocking.
1026          */
1027         if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1028             goto isolate_fail_put;
1029 
1030         if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031             bool migrate_dirty;
1032 
1033             /*
1034              * Only pages without mappings or that have a
1035              * ->migrate_folio callback are possible to migrate
1036              * without blocking. However, we can be racing with
1037              * truncation so it's necessary to lock the page
1038              * to stabilise the mapping as truncation holds
1039              * the page lock until after the page is removed
1040              * from the page cache.
1041              */
1042             if (!trylock_page(page))
1043                 goto isolate_fail_put;
1044 
1045             mapping = page_mapping(page);
1046             migrate_dirty = !mapping ||
1047                     mapping->a_ops->migrate_folio;
1048             unlock_page(page);
1049             if (!migrate_dirty)
1050                 goto isolate_fail_put;
1051         }
1052 
1053         /* Try isolate the page */
1054         if (!TestClearPageLRU(page))
1055             goto isolate_fail_put;
1056 
1057         lruvec = folio_lruvec(page_folio(page));
1058 
1059         /* If we already hold the lock, we can skip some rechecking */
1060         if (lruvec != locked) {
1061             if (locked)
1062                 unlock_page_lruvec_irqrestore(locked, flags);
1063 
1064             compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065             locked = lruvec;
1066 
1067             lruvec_memcg_debug(lruvec, page_folio(page));
1068 
1069             /* Try get exclusive access under lock */
1070             if (!skip_updated) {
1071                 skip_updated = true;
1072                 if (test_and_set_skip(cc, page, low_pfn))
1073                     goto isolate_abort;
1074             }
1075 
1076             /*
1077              * Page become compound since the non-locked check,
1078              * and it's on LRU. It can only be a THP so the order
1079              * is safe to read and it's 0 for tail pages.
1080              */
1081             if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082                 low_pfn += compound_nr(page) - 1;
1083                 SetPageLRU(page);
1084                 goto isolate_fail_put;
1085             }
1086         }
1087 
1088         /* The whole page is taken off the LRU; skip the tail pages. */
1089         if (PageCompound(page))
1090             low_pfn += compound_nr(page) - 1;
1091 
1092         /* Successfully isolated */
1093         del_page_from_lru_list(page, lruvec);
1094         mod_node_page_state(page_pgdat(page),
1095                 NR_ISOLATED_ANON + page_is_file_lru(page),
1096                 thp_nr_pages(page));
1097 
1098 isolate_success:
1099         list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101         cc->nr_migratepages += compound_nr(page);
1102         nr_isolated += compound_nr(page);
1103         nr_scanned += compound_nr(page) - 1;
1104 
1105         /*
1106          * Avoid isolating too much unless this block is being
1107          * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108          * or a lock is contended. For contention, isolate quickly to
1109          * potentially remove one source of contention.
1110          */
1111         if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112             !cc->rescan && !cc->contended) {
1113             ++low_pfn;
1114             break;
1115         }
1116 
1117         continue;
1118 
1119 isolate_fail_put:
1120         /* Avoid potential deadlock in freeing page under lru_lock */
1121         if (locked) {
1122             unlock_page_lruvec_irqrestore(locked, flags);
1123             locked = NULL;
1124         }
1125         put_page(page);
1126 
1127 isolate_fail:
1128         if (!skip_on_failure && ret != -ENOMEM)
1129             continue;
1130 
1131         /*
1132          * We have isolated some pages, but then failed. Release them
1133          * instead of migrating, as we cannot form the cc->order buddy
1134          * page anyway.
1135          */
1136         if (nr_isolated) {
1137             if (locked) {
1138                 unlock_page_lruvec_irqrestore(locked, flags);
1139                 locked = NULL;
1140             }
1141             putback_movable_pages(&cc->migratepages);
1142             cc->nr_migratepages = 0;
1143             nr_isolated = 0;
1144         }
1145 
1146         if (low_pfn < next_skip_pfn) {
1147             low_pfn = next_skip_pfn - 1;
1148             /*
1149              * The check near the loop beginning would have updated
1150              * next_skip_pfn too, but this is a bit simpler.
1151              */
1152             next_skip_pfn += 1UL << cc->order;
1153         }
1154 
1155         if (ret == -ENOMEM)
1156             break;
1157     }
1158 
1159     /*
1160      * The PageBuddy() check could have potentially brought us outside
1161      * the range to be scanned.
1162      */
1163     if (unlikely(low_pfn > end_pfn))
1164         low_pfn = end_pfn;
1165 
1166     page = NULL;
1167 
1168 isolate_abort:
1169     if (locked)
1170         unlock_page_lruvec_irqrestore(locked, flags);
1171     if (page) {
1172         SetPageLRU(page);
1173         put_page(page);
1174     }
1175 
1176     /*
1177      * Updated the cached scanner pfn once the pageblock has been scanned
1178      * Pages will either be migrated in which case there is no point
1179      * scanning in the near future or migration failed in which case the
1180      * failure reason may persist. The block is marked for skipping if
1181      * there were no pages isolated in the block or if the block is
1182      * rescanned twice in a row.
1183      */
1184     if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185         if (valid_page && !skip_updated)
1186             set_pageblock_skip(valid_page);
1187         update_cached_migrate(cc, low_pfn);
1188     }
1189 
1190     trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191                         nr_scanned, nr_isolated);
1192 
1193 fatal_pending:
1194     cc->total_migrate_scanned += nr_scanned;
1195     if (nr_isolated)
1196         count_compact_events(COMPACTISOLATED, nr_isolated);
1197 
1198     cc->migrate_pfn = low_pfn;
1199 
1200     return ret;
1201 }
1202 
1203 /**
1204  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205  * @cc:        Compaction control structure.
1206  * @start_pfn: The first PFN to start isolating.
1207  * @end_pfn:   The one-past-last PFN.
1208  *
1209  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210  * in case we could not allocate a page, or 0.
1211  */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214                             unsigned long end_pfn)
1215 {
1216     unsigned long pfn, block_start_pfn, block_end_pfn;
1217     int ret = 0;
1218 
1219     /* Scan block by block. First and last block may be incomplete */
1220     pfn = start_pfn;
1221     block_start_pfn = pageblock_start_pfn(pfn);
1222     if (block_start_pfn < cc->zone->zone_start_pfn)
1223         block_start_pfn = cc->zone->zone_start_pfn;
1224     block_end_pfn = pageblock_end_pfn(pfn);
1225 
1226     for (; pfn < end_pfn; pfn = block_end_pfn,
1227                 block_start_pfn = block_end_pfn,
1228                 block_end_pfn += pageblock_nr_pages) {
1229 
1230         block_end_pfn = min(block_end_pfn, end_pfn);
1231 
1232         if (!pageblock_pfn_to_page(block_start_pfn,
1233                     block_end_pfn, cc->zone))
1234             continue;
1235 
1236         ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237                          ISOLATE_UNEVICTABLE);
1238 
1239         if (ret)
1240             break;
1241 
1242         if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243             break;
1244     }
1245 
1246     return ret;
1247 }
1248 
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251 
1252 static bool suitable_migration_source(struct compact_control *cc,
1253                             struct page *page)
1254 {
1255     int block_mt;
1256 
1257     if (pageblock_skip_persistent(page))
1258         return false;
1259 
1260     if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261         return true;
1262 
1263     block_mt = get_pageblock_migratetype(page);
1264 
1265     if (cc->migratetype == MIGRATE_MOVABLE)
1266         return is_migrate_movable(block_mt);
1267     else
1268         return block_mt == cc->migratetype;
1269 }
1270 
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273                             struct page *page)
1274 {
1275     /* If the page is a large free page, then disallow migration */
1276     if (PageBuddy(page)) {
1277         /*
1278          * We are checking page_order without zone->lock taken. But
1279          * the only small danger is that we skip a potentially suitable
1280          * pageblock, so it's not worth to check order for valid range.
1281          */
1282         if (buddy_order_unsafe(page) >= pageblock_order)
1283             return false;
1284     }
1285 
1286     if (cc->ignore_block_suitable)
1287         return true;
1288 
1289     /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290     if (is_migrate_movable(get_pageblock_migratetype(page)))
1291         return true;
1292 
1293     /* Otherwise skip the block */
1294     return false;
1295 }
1296 
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300     unsigned short shift = BITS_PER_LONG - 1;
1301 
1302     return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304 
1305 /*
1306  * Test whether the free scanner has reached the same or lower pageblock than
1307  * the migration scanner, and compaction should thus terminate.
1308  */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311     return (cc->free_pfn >> pageblock_order)
1312         <= (cc->migrate_pfn >> pageblock_order);
1313 }
1314 
1315 /*
1316  * Used when scanning for a suitable migration target which scans freelists
1317  * in reverse. Reorders the list such as the unscanned pages are scanned
1318  * first on the next iteration of the free scanner
1319  */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323     LIST_HEAD(sublist);
1324 
1325     if (!list_is_last(freelist, &freepage->lru)) {
1326         list_cut_before(&sublist, freelist, &freepage->lru);
1327         list_splice_tail(&sublist, freelist);
1328     }
1329 }
1330 
1331 /*
1332  * Similar to move_freelist_head except used by the migration scanner
1333  * when scanning forward. It's possible for these list operations to
1334  * move against each other if they search the free list exactly in
1335  * lockstep.
1336  */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340     LIST_HEAD(sublist);
1341 
1342     if (!list_is_first(freelist, &freepage->lru)) {
1343         list_cut_position(&sublist, freelist, &freepage->lru);
1344         list_splice_tail(&sublist, freelist);
1345     }
1346 }
1347 
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351     unsigned long start_pfn, end_pfn;
1352     struct page *page;
1353 
1354     /* Do not search around if there are enough pages already */
1355     if (cc->nr_freepages >= cc->nr_migratepages)
1356         return;
1357 
1358     /* Minimise scanning during async compaction */
1359     if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360         return;
1361 
1362     /* Pageblock boundaries */
1363     start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364     end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365 
1366     page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367     if (!page)
1368         return;
1369 
1370     /* Scan before */
1371     if (start_pfn != pfn) {
1372         isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373         if (cc->nr_freepages >= cc->nr_migratepages)
1374             return;
1375     }
1376 
1377     /* Scan after */
1378     start_pfn = pfn + nr_isolated;
1379     if (start_pfn < end_pfn)
1380         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381 
1382     /* Skip this pageblock in the future as it's full or nearly full */
1383     if (cc->nr_freepages < cc->nr_migratepages)
1384         set_pageblock_skip(page);
1385 }
1386 
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390     order--;
1391     if (order < 0)
1392         order = cc->order - 1;
1393 
1394     /* Search wrapped around? */
1395     if (order == cc->search_order) {
1396         cc->search_order--;
1397         if (cc->search_order < 0)
1398             cc->search_order = cc->order - 1;
1399         return -1;
1400     }
1401 
1402     return order;
1403 }
1404 
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408     unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409     unsigned int nr_scanned = 0;
1410     unsigned long low_pfn, min_pfn, highest = 0;
1411     unsigned long nr_isolated = 0;
1412     unsigned long distance;
1413     struct page *page = NULL;
1414     bool scan_start = false;
1415     int order;
1416 
1417     /* Full compaction passes in a negative order */
1418     if (cc->order <= 0)
1419         return cc->free_pfn;
1420 
1421     /*
1422      * If starting the scan, use a deeper search and use the highest
1423      * PFN found if a suitable one is not found.
1424      */
1425     if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426         limit = pageblock_nr_pages >> 1;
1427         scan_start = true;
1428     }
1429 
1430     /*
1431      * Preferred point is in the top quarter of the scan space but take
1432      * a pfn from the top half if the search is problematic.
1433      */
1434     distance = (cc->free_pfn - cc->migrate_pfn);
1435     low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436     min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437 
1438     if (WARN_ON_ONCE(min_pfn > low_pfn))
1439         low_pfn = min_pfn;
1440 
1441     /*
1442      * Search starts from the last successful isolation order or the next
1443      * order to search after a previous failure
1444      */
1445     cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446 
1447     for (order = cc->search_order;
1448          !page && order >= 0;
1449          order = next_search_order(cc, order)) {
1450         struct free_area *area = &cc->zone->free_area[order];
1451         struct list_head *freelist;
1452         struct page *freepage;
1453         unsigned long flags;
1454         unsigned int order_scanned = 0;
1455         unsigned long high_pfn = 0;
1456 
1457         if (!area->nr_free)
1458             continue;
1459 
1460         spin_lock_irqsave(&cc->zone->lock, flags);
1461         freelist = &area->free_list[MIGRATE_MOVABLE];
1462         list_for_each_entry_reverse(freepage, freelist, lru) {
1463             unsigned long pfn;
1464 
1465             order_scanned++;
1466             nr_scanned++;
1467             pfn = page_to_pfn(freepage);
1468 
1469             if (pfn >= highest)
1470                 highest = max(pageblock_start_pfn(pfn),
1471                           cc->zone->zone_start_pfn);
1472 
1473             if (pfn >= low_pfn) {
1474                 cc->fast_search_fail = 0;
1475                 cc->search_order = order;
1476                 page = freepage;
1477                 break;
1478             }
1479 
1480             if (pfn >= min_pfn && pfn > high_pfn) {
1481                 high_pfn = pfn;
1482 
1483                 /* Shorten the scan if a candidate is found */
1484                 limit >>= 1;
1485             }
1486 
1487             if (order_scanned >= limit)
1488                 break;
1489         }
1490 
1491         /* Use a minimum pfn if a preferred one was not found */
1492         if (!page && high_pfn) {
1493             page = pfn_to_page(high_pfn);
1494 
1495             /* Update freepage for the list reorder below */
1496             freepage = page;
1497         }
1498 
1499         /* Reorder to so a future search skips recent pages */
1500         move_freelist_head(freelist, freepage);
1501 
1502         /* Isolate the page if available */
1503         if (page) {
1504             if (__isolate_free_page(page, order)) {
1505                 set_page_private(page, order);
1506                 nr_isolated = 1 << order;
1507                 nr_scanned += nr_isolated - 1;
1508                 cc->nr_freepages += nr_isolated;
1509                 list_add_tail(&page->lru, &cc->freepages);
1510                 count_compact_events(COMPACTISOLATED, nr_isolated);
1511             } else {
1512                 /* If isolation fails, abort the search */
1513                 order = cc->search_order + 1;
1514                 page = NULL;
1515             }
1516         }
1517 
1518         spin_unlock_irqrestore(&cc->zone->lock, flags);
1519 
1520         /*
1521          * Smaller scan on next order so the total scan is related
1522          * to freelist_scan_limit.
1523          */
1524         if (order_scanned >= limit)
1525             limit = max(1U, limit >> 1);
1526     }
1527 
1528     if (!page) {
1529         cc->fast_search_fail++;
1530         if (scan_start) {
1531             /*
1532              * Use the highest PFN found above min. If one was
1533              * not found, be pessimistic for direct compaction
1534              * and use the min mark.
1535              */
1536             if (highest >= min_pfn) {
1537                 page = pfn_to_page(highest);
1538                 cc->free_pfn = highest;
1539             } else {
1540                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1541                     page = pageblock_pfn_to_page(min_pfn,
1542                         min(pageblock_end_pfn(min_pfn),
1543                             zone_end_pfn(cc->zone)),
1544                         cc->zone);
1545                     cc->free_pfn = min_pfn;
1546                 }
1547             }
1548         }
1549     }
1550 
1551     if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552         highest -= pageblock_nr_pages;
1553         cc->zone->compact_cached_free_pfn = highest;
1554     }
1555 
1556     cc->total_free_scanned += nr_scanned;
1557     if (!page)
1558         return cc->free_pfn;
1559 
1560     low_pfn = page_to_pfn(page);
1561     fast_isolate_around(cc, low_pfn, nr_isolated);
1562     return low_pfn;
1563 }
1564 
1565 /*
1566  * Based on information in the current compact_control, find blocks
1567  * suitable for isolating free pages from and then isolate them.
1568  */
1569 static void isolate_freepages(struct compact_control *cc)
1570 {
1571     struct zone *zone = cc->zone;
1572     struct page *page;
1573     unsigned long block_start_pfn;  /* start of current pageblock */
1574     unsigned long isolate_start_pfn; /* exact pfn we start at */
1575     unsigned long block_end_pfn;    /* end of current pageblock */
1576     unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1577     struct list_head *freelist = &cc->freepages;
1578     unsigned int stride;
1579 
1580     /* Try a small search of the free lists for a candidate */
1581     fast_isolate_freepages(cc);
1582     if (cc->nr_freepages)
1583         goto splitmap;
1584 
1585     /*
1586      * Initialise the free scanner. The starting point is where we last
1587      * successfully isolated from, zone-cached value, or the end of the
1588      * zone when isolating for the first time. For looping we also need
1589      * this pfn aligned down to the pageblock boundary, because we do
1590      * block_start_pfn -= pageblock_nr_pages in the for loop.
1591      * For ending point, take care when isolating in last pageblock of a
1592      * zone which ends in the middle of a pageblock.
1593      * The low boundary is the end of the pageblock the migration scanner
1594      * is using.
1595      */
1596     isolate_start_pfn = cc->free_pfn;
1597     block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1598     block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599                         zone_end_pfn(zone));
1600     low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1601     stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1602 
1603     /*
1604      * Isolate free pages until enough are available to migrate the
1605      * pages on cc->migratepages. We stop searching if the migrate
1606      * and free page scanners meet or enough free pages are isolated.
1607      */
1608     for (; block_start_pfn >= low_pfn;
1609                 block_end_pfn = block_start_pfn,
1610                 block_start_pfn -= pageblock_nr_pages,
1611                 isolate_start_pfn = block_start_pfn) {
1612         unsigned long nr_isolated;
1613 
1614         /*
1615          * This can iterate a massively long zone without finding any
1616          * suitable migration targets, so periodically check resched.
1617          */
1618         if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1619             cond_resched();
1620 
1621         page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622                                     zone);
1623         if (!page)
1624             continue;
1625 
1626         /* Check the block is suitable for migration */
1627         if (!suitable_migration_target(cc, page))
1628             continue;
1629 
1630         /* If isolation recently failed, do not retry */
1631         if (!isolation_suitable(cc, page))
1632             continue;
1633 
1634         /* Found a block suitable for isolating free pages from. */
1635         nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636                     block_end_pfn, freelist, stride, false);
1637 
1638         /* Update the skip hint if the full pageblock was scanned */
1639         if (isolate_start_pfn == block_end_pfn)
1640             update_pageblock_skip(cc, page, block_start_pfn);
1641 
1642         /* Are enough freepages isolated? */
1643         if (cc->nr_freepages >= cc->nr_migratepages) {
1644             if (isolate_start_pfn >= block_end_pfn) {
1645                 /*
1646                  * Restart at previous pageblock if more
1647                  * freepages can be isolated next time.
1648                  */
1649                 isolate_start_pfn =
1650                     block_start_pfn - pageblock_nr_pages;
1651             }
1652             break;
1653         } else if (isolate_start_pfn < block_end_pfn) {
1654             /*
1655              * If isolation failed early, do not continue
1656              * needlessly.
1657              */
1658             break;
1659         }
1660 
1661         /* Adjust stride depending on isolation */
1662         if (nr_isolated) {
1663             stride = 1;
1664             continue;
1665         }
1666         stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1667     }
1668 
1669     /*
1670      * Record where the free scanner will restart next time. Either we
1671      * broke from the loop and set isolate_start_pfn based on the last
1672      * call to isolate_freepages_block(), or we met the migration scanner
1673      * and the loop terminated due to isolate_start_pfn < low_pfn
1674      */
1675     cc->free_pfn = isolate_start_pfn;
1676 
1677 splitmap:
1678     /* __isolate_free_page() does not map the pages */
1679     split_map_pages(freelist);
1680 }
1681 
1682 /*
1683  * This is a migrate-callback that "allocates" freepages by taking pages
1684  * from the isolated freelists in the block we are migrating to.
1685  */
1686 static struct page *compaction_alloc(struct page *migratepage,
1687                     unsigned long data)
1688 {
1689     struct compact_control *cc = (struct compact_control *)data;
1690     struct page *freepage;
1691 
1692     if (list_empty(&cc->freepages)) {
1693         isolate_freepages(cc);
1694 
1695         if (list_empty(&cc->freepages))
1696             return NULL;
1697     }
1698 
1699     freepage = list_entry(cc->freepages.next, struct page, lru);
1700     list_del(&freepage->lru);
1701     cc->nr_freepages--;
1702 
1703     return freepage;
1704 }
1705 
1706 /*
1707  * This is a migrate-callback that "frees" freepages back to the isolated
1708  * freelist.  All pages on the freelist are from the same zone, so there is no
1709  * special handling needed for NUMA.
1710  */
1711 static void compaction_free(struct page *page, unsigned long data)
1712 {
1713     struct compact_control *cc = (struct compact_control *)data;
1714 
1715     list_add(&page->lru, &cc->freepages);
1716     cc->nr_freepages++;
1717 }
1718 
1719 /* possible outcome of isolate_migratepages */
1720 typedef enum {
1721     ISOLATE_ABORT,      /* Abort compaction now */
1722     ISOLATE_NONE,       /* No pages isolated, continue scanning */
1723     ISOLATE_SUCCESS,    /* Pages isolated, migrate */
1724 } isolate_migrate_t;
1725 
1726 /*
1727  * Allow userspace to control policy on scanning the unevictable LRU for
1728  * compactable pages.
1729  */
1730 #ifdef CONFIG_PREEMPT_RT
1731 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1732 #else
1733 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1734 #endif
1735 
1736 static inline void
1737 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1738 {
1739     if (cc->fast_start_pfn == ULONG_MAX)
1740         return;
1741 
1742     if (!cc->fast_start_pfn)
1743         cc->fast_start_pfn = pfn;
1744 
1745     cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1746 }
1747 
1748 static inline unsigned long
1749 reinit_migrate_pfn(struct compact_control *cc)
1750 {
1751     if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1752         return cc->migrate_pfn;
1753 
1754     cc->migrate_pfn = cc->fast_start_pfn;
1755     cc->fast_start_pfn = ULONG_MAX;
1756 
1757     return cc->migrate_pfn;
1758 }
1759 
1760 /*
1761  * Briefly search the free lists for a migration source that already has
1762  * some free pages to reduce the number of pages that need migration
1763  * before a pageblock is free.
1764  */
1765 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1766 {
1767     unsigned int limit = freelist_scan_limit(cc);
1768     unsigned int nr_scanned = 0;
1769     unsigned long distance;
1770     unsigned long pfn = cc->migrate_pfn;
1771     unsigned long high_pfn;
1772     int order;
1773     bool found_block = false;
1774 
1775     /* Skip hints are relied on to avoid repeats on the fast search */
1776     if (cc->ignore_skip_hint)
1777         return pfn;
1778 
1779     /*
1780      * If the migrate_pfn is not at the start of a zone or the start
1781      * of a pageblock then assume this is a continuation of a previous
1782      * scan restarted due to COMPACT_CLUSTER_MAX.
1783      */
1784     if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1785         return pfn;
1786 
1787     /*
1788      * For smaller orders, just linearly scan as the number of pages
1789      * to migrate should be relatively small and does not necessarily
1790      * justify freeing up a large block for a small allocation.
1791      */
1792     if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1793         return pfn;
1794 
1795     /*
1796      * Only allow kcompactd and direct requests for movable pages to
1797      * quickly clear out a MOVABLE pageblock for allocation. This
1798      * reduces the risk that a large movable pageblock is freed for
1799      * an unmovable/reclaimable small allocation.
1800      */
1801     if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1802         return pfn;
1803 
1804     /*
1805      * When starting the migration scanner, pick any pageblock within the
1806      * first half of the search space. Otherwise try and pick a pageblock
1807      * within the first eighth to reduce the chances that a migration
1808      * target later becomes a source.
1809      */
1810     distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1811     if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1812         distance >>= 2;
1813     high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1814 
1815     for (order = cc->order - 1;
1816          order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1817          order--) {
1818         struct free_area *area = &cc->zone->free_area[order];
1819         struct list_head *freelist;
1820         unsigned long flags;
1821         struct page *freepage;
1822 
1823         if (!area->nr_free)
1824             continue;
1825 
1826         spin_lock_irqsave(&cc->zone->lock, flags);
1827         freelist = &area->free_list[MIGRATE_MOVABLE];
1828         list_for_each_entry(freepage, freelist, lru) {
1829             unsigned long free_pfn;
1830 
1831             if (nr_scanned++ >= limit) {
1832                 move_freelist_tail(freelist, freepage);
1833                 break;
1834             }
1835 
1836             free_pfn = page_to_pfn(freepage);
1837             if (free_pfn < high_pfn) {
1838                 /*
1839                  * Avoid if skipped recently. Ideally it would
1840                  * move to the tail but even safe iteration of
1841                  * the list assumes an entry is deleted, not
1842                  * reordered.
1843                  */
1844                 if (get_pageblock_skip(freepage))
1845                     continue;
1846 
1847                 /* Reorder to so a future search skips recent pages */
1848                 move_freelist_tail(freelist, freepage);
1849 
1850                 update_fast_start_pfn(cc, free_pfn);
1851                 pfn = pageblock_start_pfn(free_pfn);
1852                 if (pfn < cc->zone->zone_start_pfn)
1853                     pfn = cc->zone->zone_start_pfn;
1854                 cc->fast_search_fail = 0;
1855                 found_block = true;
1856                 set_pageblock_skip(freepage);
1857                 break;
1858             }
1859         }
1860         spin_unlock_irqrestore(&cc->zone->lock, flags);
1861     }
1862 
1863     cc->total_migrate_scanned += nr_scanned;
1864 
1865     /*
1866      * If fast scanning failed then use a cached entry for a page block
1867      * that had free pages as the basis for starting a linear scan.
1868      */
1869     if (!found_block) {
1870         cc->fast_search_fail++;
1871         pfn = reinit_migrate_pfn(cc);
1872     }
1873     return pfn;
1874 }
1875 
1876 /*
1877  * Isolate all pages that can be migrated from the first suitable block,
1878  * starting at the block pointed to by the migrate scanner pfn within
1879  * compact_control.
1880  */
1881 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1882 {
1883     unsigned long block_start_pfn;
1884     unsigned long block_end_pfn;
1885     unsigned long low_pfn;
1886     struct page *page;
1887     const isolate_mode_t isolate_mode =
1888         (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1889         (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1890     bool fast_find_block;
1891 
1892     /*
1893      * Start at where we last stopped, or beginning of the zone as
1894      * initialized by compact_zone(). The first failure will use
1895      * the lowest PFN as the starting point for linear scanning.
1896      */
1897     low_pfn = fast_find_migrateblock(cc);
1898     block_start_pfn = pageblock_start_pfn(low_pfn);
1899     if (block_start_pfn < cc->zone->zone_start_pfn)
1900         block_start_pfn = cc->zone->zone_start_pfn;
1901 
1902     /*
1903      * fast_find_migrateblock marks a pageblock skipped so to avoid
1904      * the isolation_suitable check below, check whether the fast
1905      * search was successful.
1906      */
1907     fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1908 
1909     /* Only scan within a pageblock boundary */
1910     block_end_pfn = pageblock_end_pfn(low_pfn);
1911 
1912     /*
1913      * Iterate over whole pageblocks until we find the first suitable.
1914      * Do not cross the free scanner.
1915      */
1916     for (; block_end_pfn <= cc->free_pfn;
1917             fast_find_block = false,
1918             cc->migrate_pfn = low_pfn = block_end_pfn,
1919             block_start_pfn = block_end_pfn,
1920             block_end_pfn += pageblock_nr_pages) {
1921 
1922         /*
1923          * This can potentially iterate a massively long zone with
1924          * many pageblocks unsuitable, so periodically check if we
1925          * need to schedule.
1926          */
1927         if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1928             cond_resched();
1929 
1930         page = pageblock_pfn_to_page(block_start_pfn,
1931                         block_end_pfn, cc->zone);
1932         if (!page)
1933             continue;
1934 
1935         /*
1936          * If isolation recently failed, do not retry. Only check the
1937          * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1938          * to be visited multiple times. Assume skip was checked
1939          * before making it "skip" so other compaction instances do
1940          * not scan the same block.
1941          */
1942         if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1943             !fast_find_block && !isolation_suitable(cc, page))
1944             continue;
1945 
1946         /*
1947          * For async direct compaction, only scan the pageblocks of the
1948          * same migratetype without huge pages. Async direct compaction
1949          * is optimistic to see if the minimum amount of work satisfies
1950          * the allocation. The cached PFN is updated as it's possible
1951          * that all remaining blocks between source and target are
1952          * unsuitable and the compaction scanners fail to meet.
1953          */
1954         if (!suitable_migration_source(cc, page)) {
1955             update_cached_migrate(cc, block_end_pfn);
1956             continue;
1957         }
1958 
1959         /* Perform the isolation */
1960         if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1961                         isolate_mode))
1962             return ISOLATE_ABORT;
1963 
1964         /*
1965          * Either we isolated something and proceed with migration. Or
1966          * we failed and compact_zone should decide if we should
1967          * continue or not.
1968          */
1969         break;
1970     }
1971 
1972     return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1973 }
1974 
1975 /*
1976  * order == -1 is expected when compacting via
1977  * /proc/sys/vm/compact_memory
1978  */
1979 static inline bool is_via_compact_memory(int order)
1980 {
1981     return order == -1;
1982 }
1983 
1984 static bool kswapd_is_running(pg_data_t *pgdat)
1985 {
1986     return pgdat->kswapd && task_is_running(pgdat->kswapd);
1987 }
1988 
1989 /*
1990  * A zone's fragmentation score is the external fragmentation wrt to the
1991  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1992  */
1993 static unsigned int fragmentation_score_zone(struct zone *zone)
1994 {
1995     return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1996 }
1997 
1998 /*
1999  * A weighted zone's fragmentation score is the external fragmentation
2000  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2001  * returns a value in the range [0, 100].
2002  *
2003  * The scaling factor ensures that proactive compaction focuses on larger
2004  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2005  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2006  * and thus never exceeds the high threshold for proactive compaction.
2007  */
2008 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2009 {
2010     unsigned long score;
2011 
2012     score = zone->present_pages * fragmentation_score_zone(zone);
2013     return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2014 }
2015 
2016 /*
2017  * The per-node proactive (background) compaction process is started by its
2018  * corresponding kcompactd thread when the node's fragmentation score
2019  * exceeds the high threshold. The compaction process remains active till
2020  * the node's score falls below the low threshold, or one of the back-off
2021  * conditions is met.
2022  */
2023 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2024 {
2025     unsigned int score = 0;
2026     int zoneid;
2027 
2028     for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2029         struct zone *zone;
2030 
2031         zone = &pgdat->node_zones[zoneid];
2032         score += fragmentation_score_zone_weighted(zone);
2033     }
2034 
2035     return score;
2036 }
2037 
2038 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2039 {
2040     unsigned int wmark_low;
2041 
2042     /*
2043      * Cap the low watermark to avoid excessive compaction
2044      * activity in case a user sets the proactiveness tunable
2045      * close to 100 (maximum).
2046      */
2047     wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2048     return low ? wmark_low : min(wmark_low + 10, 100U);
2049 }
2050 
2051 static bool should_proactive_compact_node(pg_data_t *pgdat)
2052 {
2053     int wmark_high;
2054 
2055     if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2056         return false;
2057 
2058     wmark_high = fragmentation_score_wmark(pgdat, false);
2059     return fragmentation_score_node(pgdat) > wmark_high;
2060 }
2061 
2062 static enum compact_result __compact_finished(struct compact_control *cc)
2063 {
2064     unsigned int order;
2065     const int migratetype = cc->migratetype;
2066     int ret;
2067 
2068     /* Compaction run completes if the migrate and free scanner meet */
2069     if (compact_scanners_met(cc)) {
2070         /* Let the next compaction start anew. */
2071         reset_cached_positions(cc->zone);
2072 
2073         /*
2074          * Mark that the PG_migrate_skip information should be cleared
2075          * by kswapd when it goes to sleep. kcompactd does not set the
2076          * flag itself as the decision to be clear should be directly
2077          * based on an allocation request.
2078          */
2079         if (cc->direct_compaction)
2080             cc->zone->compact_blockskip_flush = true;
2081 
2082         if (cc->whole_zone)
2083             return COMPACT_COMPLETE;
2084         else
2085             return COMPACT_PARTIAL_SKIPPED;
2086     }
2087 
2088     if (cc->proactive_compaction) {
2089         int score, wmark_low;
2090         pg_data_t *pgdat;
2091 
2092         pgdat = cc->zone->zone_pgdat;
2093         if (kswapd_is_running(pgdat))
2094             return COMPACT_PARTIAL_SKIPPED;
2095 
2096         score = fragmentation_score_zone(cc->zone);
2097         wmark_low = fragmentation_score_wmark(pgdat, true);
2098 
2099         if (score > wmark_low)
2100             ret = COMPACT_CONTINUE;
2101         else
2102             ret = COMPACT_SUCCESS;
2103 
2104         goto out;
2105     }
2106 
2107     if (is_via_compact_memory(cc->order))
2108         return COMPACT_CONTINUE;
2109 
2110     /*
2111      * Always finish scanning a pageblock to reduce the possibility of
2112      * fallbacks in the future. This is particularly important when
2113      * migration source is unmovable/reclaimable but it's not worth
2114      * special casing.
2115      */
2116     if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2117         return COMPACT_CONTINUE;
2118 
2119     /* Direct compactor: Is a suitable page free? */
2120     ret = COMPACT_NO_SUITABLE_PAGE;
2121     for (order = cc->order; order < MAX_ORDER; order++) {
2122         struct free_area *area = &cc->zone->free_area[order];
2123         bool can_steal;
2124 
2125         /* Job done if page is free of the right migratetype */
2126         if (!free_area_empty(area, migratetype))
2127             return COMPACT_SUCCESS;
2128 
2129 #ifdef CONFIG_CMA
2130         /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2131         if (migratetype == MIGRATE_MOVABLE &&
2132             !free_area_empty(area, MIGRATE_CMA))
2133             return COMPACT_SUCCESS;
2134 #endif
2135         /*
2136          * Job done if allocation would steal freepages from
2137          * other migratetype buddy lists.
2138          */
2139         if (find_suitable_fallback(area, order, migratetype,
2140                         true, &can_steal) != -1)
2141             /*
2142              * Movable pages are OK in any pageblock. If we are
2143              * stealing for a non-movable allocation, make sure
2144              * we finish compacting the current pageblock first
2145              * (which is assured by the above migrate_pfn align
2146              * check) so it is as free as possible and we won't
2147              * have to steal another one soon.
2148              */
2149             return COMPACT_SUCCESS;
2150     }
2151 
2152 out:
2153     if (cc->contended || fatal_signal_pending(current))
2154         ret = COMPACT_CONTENDED;
2155 
2156     return ret;
2157 }
2158 
2159 static enum compact_result compact_finished(struct compact_control *cc)
2160 {
2161     int ret;
2162 
2163     ret = __compact_finished(cc);
2164     trace_mm_compaction_finished(cc->zone, cc->order, ret);
2165     if (ret == COMPACT_NO_SUITABLE_PAGE)
2166         ret = COMPACT_CONTINUE;
2167 
2168     return ret;
2169 }
2170 
2171 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2172                     unsigned int alloc_flags,
2173                     int highest_zoneidx,
2174                     unsigned long wmark_target)
2175 {
2176     unsigned long watermark;
2177 
2178     if (is_via_compact_memory(order))
2179         return COMPACT_CONTINUE;
2180 
2181     watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2182     /*
2183      * If watermarks for high-order allocation are already met, there
2184      * should be no need for compaction at all.
2185      */
2186     if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2187                                 alloc_flags))
2188         return COMPACT_SUCCESS;
2189 
2190     /*
2191      * Watermarks for order-0 must be met for compaction to be able to
2192      * isolate free pages for migration targets. This means that the
2193      * watermark and alloc_flags have to match, or be more pessimistic than
2194      * the check in __isolate_free_page(). We don't use the direct
2195      * compactor's alloc_flags, as they are not relevant for freepage
2196      * isolation. We however do use the direct compactor's highest_zoneidx
2197      * to skip over zones where lowmem reserves would prevent allocation
2198      * even if compaction succeeds.
2199      * For costly orders, we require low watermark instead of min for
2200      * compaction to proceed to increase its chances.
2201      * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2202      * suitable migration targets
2203      */
2204     watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2205                 low_wmark_pages(zone) : min_wmark_pages(zone);
2206     watermark += compact_gap(order);
2207     if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2208                         ALLOC_CMA, wmark_target))
2209         return COMPACT_SKIPPED;
2210 
2211     return COMPACT_CONTINUE;
2212 }
2213 
2214 /*
2215  * compaction_suitable: Is this suitable to run compaction on this zone now?
2216  * Returns
2217  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2218  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2219  *   COMPACT_CONTINUE - If compaction should run now
2220  */
2221 enum compact_result compaction_suitable(struct zone *zone, int order,
2222                     unsigned int alloc_flags,
2223                     int highest_zoneidx)
2224 {
2225     enum compact_result ret;
2226     int fragindex;
2227 
2228     ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2229                     zone_page_state(zone, NR_FREE_PAGES));
2230     /*
2231      * fragmentation index determines if allocation failures are due to
2232      * low memory or external fragmentation
2233      *
2234      * index of -1000 would imply allocations might succeed depending on
2235      * watermarks, but we already failed the high-order watermark check
2236      * index towards 0 implies failure is due to lack of memory
2237      * index towards 1000 implies failure is due to fragmentation
2238      *
2239      * Only compact if a failure would be due to fragmentation. Also
2240      * ignore fragindex for non-costly orders where the alternative to
2241      * a successful reclaim/compaction is OOM. Fragindex and the
2242      * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2243      * excessive compaction for costly orders, but it should not be at the
2244      * expense of system stability.
2245      */
2246     if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2247         fragindex = fragmentation_index(zone, order);
2248         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2249             ret = COMPACT_NOT_SUITABLE_ZONE;
2250     }
2251 
2252     trace_mm_compaction_suitable(zone, order, ret);
2253     if (ret == COMPACT_NOT_SUITABLE_ZONE)
2254         ret = COMPACT_SKIPPED;
2255 
2256     return ret;
2257 }
2258 
2259 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2260         int alloc_flags)
2261 {
2262     struct zone *zone;
2263     struct zoneref *z;
2264 
2265     /*
2266      * Make sure at least one zone would pass __compaction_suitable if we continue
2267      * retrying the reclaim.
2268      */
2269     for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2270                 ac->highest_zoneidx, ac->nodemask) {
2271         unsigned long available;
2272         enum compact_result compact_result;
2273 
2274         /*
2275          * Do not consider all the reclaimable memory because we do not
2276          * want to trash just for a single high order allocation which
2277          * is even not guaranteed to appear even if __compaction_suitable
2278          * is happy about the watermark check.
2279          */
2280         available = zone_reclaimable_pages(zone) / order;
2281         available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2282         compact_result = __compaction_suitable(zone, order, alloc_flags,
2283                 ac->highest_zoneidx, available);
2284         if (compact_result == COMPACT_CONTINUE)
2285             return true;
2286     }
2287 
2288     return false;
2289 }
2290 
2291 static enum compact_result
2292 compact_zone(struct compact_control *cc, struct capture_control *capc)
2293 {
2294     enum compact_result ret;
2295     unsigned long start_pfn = cc->zone->zone_start_pfn;
2296     unsigned long end_pfn = zone_end_pfn(cc->zone);
2297     unsigned long last_migrated_pfn;
2298     const bool sync = cc->mode != MIGRATE_ASYNC;
2299     bool update_cached;
2300     unsigned int nr_succeeded = 0;
2301 
2302     /*
2303      * These counters track activities during zone compaction.  Initialize
2304      * them before compacting a new zone.
2305      */
2306     cc->total_migrate_scanned = 0;
2307     cc->total_free_scanned = 0;
2308     cc->nr_migratepages = 0;
2309     cc->nr_freepages = 0;
2310     INIT_LIST_HEAD(&cc->freepages);
2311     INIT_LIST_HEAD(&cc->migratepages);
2312 
2313     cc->migratetype = gfp_migratetype(cc->gfp_mask);
2314     ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2315                             cc->highest_zoneidx);
2316     /* Compaction is likely to fail */
2317     if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2318         return ret;
2319 
2320     /* huh, compaction_suitable is returning something unexpected */
2321     VM_BUG_ON(ret != COMPACT_CONTINUE);
2322 
2323     /*
2324      * Clear pageblock skip if there were failures recently and compaction
2325      * is about to be retried after being deferred.
2326      */
2327     if (compaction_restarting(cc->zone, cc->order))
2328         __reset_isolation_suitable(cc->zone);
2329 
2330     /*
2331      * Setup to move all movable pages to the end of the zone. Used cached
2332      * information on where the scanners should start (unless we explicitly
2333      * want to compact the whole zone), but check that it is initialised
2334      * by ensuring the values are within zone boundaries.
2335      */
2336     cc->fast_start_pfn = 0;
2337     if (cc->whole_zone) {
2338         cc->migrate_pfn = start_pfn;
2339         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2340     } else {
2341         cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2342         cc->free_pfn = cc->zone->compact_cached_free_pfn;
2343         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2344             cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2345             cc->zone->compact_cached_free_pfn = cc->free_pfn;
2346         }
2347         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2348             cc->migrate_pfn = start_pfn;
2349             cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2350             cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2351         }
2352 
2353         if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2354             cc->whole_zone = true;
2355     }
2356 
2357     last_migrated_pfn = 0;
2358 
2359     /*
2360      * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2361      * the basis that some migrations will fail in ASYNC mode. However,
2362      * if the cached PFNs match and pageblocks are skipped due to having
2363      * no isolation candidates, then the sync state does not matter.
2364      * Until a pageblock with isolation candidates is found, keep the
2365      * cached PFNs in sync to avoid revisiting the same blocks.
2366      */
2367     update_cached = !sync &&
2368         cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2369 
2370     trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2371 
2372     /* lru_add_drain_all could be expensive with involving other CPUs */
2373     lru_add_drain();
2374 
2375     while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2376         int err;
2377         unsigned long iteration_start_pfn = cc->migrate_pfn;
2378 
2379         /*
2380          * Avoid multiple rescans which can happen if a page cannot be
2381          * isolated (dirty/writeback in async mode) or if the migrated
2382          * pages are being allocated before the pageblock is cleared.
2383          * The first rescan will capture the entire pageblock for
2384          * migration. If it fails, it'll be marked skip and scanning
2385          * will proceed as normal.
2386          */
2387         cc->rescan = false;
2388         if (pageblock_start_pfn(last_migrated_pfn) ==
2389             pageblock_start_pfn(iteration_start_pfn)) {
2390             cc->rescan = true;
2391         }
2392 
2393         switch (isolate_migratepages(cc)) {
2394         case ISOLATE_ABORT:
2395             ret = COMPACT_CONTENDED;
2396             putback_movable_pages(&cc->migratepages);
2397             cc->nr_migratepages = 0;
2398             goto out;
2399         case ISOLATE_NONE:
2400             if (update_cached) {
2401                 cc->zone->compact_cached_migrate_pfn[1] =
2402                     cc->zone->compact_cached_migrate_pfn[0];
2403             }
2404 
2405             /*
2406              * We haven't isolated and migrated anything, but
2407              * there might still be unflushed migrations from
2408              * previous cc->order aligned block.
2409              */
2410             goto check_drain;
2411         case ISOLATE_SUCCESS:
2412             update_cached = false;
2413             last_migrated_pfn = iteration_start_pfn;
2414         }
2415 
2416         err = migrate_pages(&cc->migratepages, compaction_alloc,
2417                 compaction_free, (unsigned long)cc, cc->mode,
2418                 MR_COMPACTION, &nr_succeeded);
2419 
2420         trace_mm_compaction_migratepages(cc, nr_succeeded);
2421 
2422         /* All pages were either migrated or will be released */
2423         cc->nr_migratepages = 0;
2424         if (err) {
2425             putback_movable_pages(&cc->migratepages);
2426             /*
2427              * migrate_pages() may return -ENOMEM when scanners meet
2428              * and we want compact_finished() to detect it
2429              */
2430             if (err == -ENOMEM && !compact_scanners_met(cc)) {
2431                 ret = COMPACT_CONTENDED;
2432                 goto out;
2433             }
2434             /*
2435              * We failed to migrate at least one page in the current
2436              * order-aligned block, so skip the rest of it.
2437              */
2438             if (cc->direct_compaction &&
2439                         (cc->mode == MIGRATE_ASYNC)) {
2440                 cc->migrate_pfn = block_end_pfn(
2441                         cc->migrate_pfn - 1, cc->order);
2442                 /* Draining pcplists is useless in this case */
2443                 last_migrated_pfn = 0;
2444             }
2445         }
2446 
2447 check_drain:
2448         /*
2449          * Has the migration scanner moved away from the previous
2450          * cc->order aligned block where we migrated from? If yes,
2451          * flush the pages that were freed, so that they can merge and
2452          * compact_finished() can detect immediately if allocation
2453          * would succeed.
2454          */
2455         if (cc->order > 0 && last_migrated_pfn) {
2456             unsigned long current_block_start =
2457                 block_start_pfn(cc->migrate_pfn, cc->order);
2458 
2459             if (last_migrated_pfn < current_block_start) {
2460                 lru_add_drain_cpu_zone(cc->zone);
2461                 /* No more flushing until we migrate again */
2462                 last_migrated_pfn = 0;
2463             }
2464         }
2465 
2466         /* Stop if a page has been captured */
2467         if (capc && capc->page) {
2468             ret = COMPACT_SUCCESS;
2469             break;
2470         }
2471     }
2472 
2473 out:
2474     /*
2475      * Release free pages and update where the free scanner should restart,
2476      * so we don't leave any returned pages behind in the next attempt.
2477      */
2478     if (cc->nr_freepages > 0) {
2479         unsigned long free_pfn = release_freepages(&cc->freepages);
2480 
2481         cc->nr_freepages = 0;
2482         VM_BUG_ON(free_pfn == 0);
2483         /* The cached pfn is always the first in a pageblock */
2484         free_pfn = pageblock_start_pfn(free_pfn);
2485         /*
2486          * Only go back, not forward. The cached pfn might have been
2487          * already reset to zone end in compact_finished()
2488          */
2489         if (free_pfn > cc->zone->compact_cached_free_pfn)
2490             cc->zone->compact_cached_free_pfn = free_pfn;
2491     }
2492 
2493     count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2494     count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2495 
2496     trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2497 
2498     return ret;
2499 }
2500 
2501 static enum compact_result compact_zone_order(struct zone *zone, int order,
2502         gfp_t gfp_mask, enum compact_priority prio,
2503         unsigned int alloc_flags, int highest_zoneidx,
2504         struct page **capture)
2505 {
2506     enum compact_result ret;
2507     struct compact_control cc = {
2508         .order = order,
2509         .search_order = order,
2510         .gfp_mask = gfp_mask,
2511         .zone = zone,
2512         .mode = (prio == COMPACT_PRIO_ASYNC) ?
2513                     MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2514         .alloc_flags = alloc_flags,
2515         .highest_zoneidx = highest_zoneidx,
2516         .direct_compaction = true,
2517         .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2518         .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2519         .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2520     };
2521     struct capture_control capc = {
2522         .cc = &cc,
2523         .page = NULL,
2524     };
2525 
2526     /*
2527      * Make sure the structs are really initialized before we expose the
2528      * capture control, in case we are interrupted and the interrupt handler
2529      * frees a page.
2530      */
2531     barrier();
2532     WRITE_ONCE(current->capture_control, &capc);
2533 
2534     ret = compact_zone(&cc, &capc);
2535 
2536     VM_BUG_ON(!list_empty(&cc.freepages));
2537     VM_BUG_ON(!list_empty(&cc.migratepages));
2538 
2539     /*
2540      * Make sure we hide capture control first before we read the captured
2541      * page pointer, otherwise an interrupt could free and capture a page
2542      * and we would leak it.
2543      */
2544     WRITE_ONCE(current->capture_control, NULL);
2545     *capture = READ_ONCE(capc.page);
2546     /*
2547      * Technically, it is also possible that compaction is skipped but
2548      * the page is still captured out of luck(IRQ came and freed the page).
2549      * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2550      * the COMPACT[STALL|FAIL] when compaction is skipped.
2551      */
2552     if (*capture)
2553         ret = COMPACT_SUCCESS;
2554 
2555     return ret;
2556 }
2557 
2558 int sysctl_extfrag_threshold = 500;
2559 
2560 /**
2561  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2562  * @gfp_mask: The GFP mask of the current allocation
2563  * @order: The order of the current allocation
2564  * @alloc_flags: The allocation flags of the current allocation
2565  * @ac: The context of current allocation
2566  * @prio: Determines how hard direct compaction should try to succeed
2567  * @capture: Pointer to free page created by compaction will be stored here
2568  *
2569  * This is the main entry point for direct page compaction.
2570  */
2571 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2572         unsigned int alloc_flags, const struct alloc_context *ac,
2573         enum compact_priority prio, struct page **capture)
2574 {
2575     int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2576     struct zoneref *z;
2577     struct zone *zone;
2578     enum compact_result rc = COMPACT_SKIPPED;
2579 
2580     /*
2581      * Check if the GFP flags allow compaction - GFP_NOIO is really
2582      * tricky context because the migration might require IO
2583      */
2584     if (!may_perform_io)
2585         return COMPACT_SKIPPED;
2586 
2587     trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2588 
2589     /* Compact each zone in the list */
2590     for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2591                     ac->highest_zoneidx, ac->nodemask) {
2592         enum compact_result status;
2593 
2594         if (prio > MIN_COMPACT_PRIORITY
2595                     && compaction_deferred(zone, order)) {
2596             rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2597             continue;
2598         }
2599 
2600         status = compact_zone_order(zone, order, gfp_mask, prio,
2601                 alloc_flags, ac->highest_zoneidx, capture);
2602         rc = max(status, rc);
2603 
2604         /* The allocation should succeed, stop compacting */
2605         if (status == COMPACT_SUCCESS) {
2606             /*
2607              * We think the allocation will succeed in this zone,
2608              * but it is not certain, hence the false. The caller
2609              * will repeat this with true if allocation indeed
2610              * succeeds in this zone.
2611              */
2612             compaction_defer_reset(zone, order, false);
2613 
2614             break;
2615         }
2616 
2617         if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2618                     status == COMPACT_PARTIAL_SKIPPED))
2619             /*
2620              * We think that allocation won't succeed in this zone
2621              * so we defer compaction there. If it ends up
2622              * succeeding after all, it will be reset.
2623              */
2624             defer_compaction(zone, order);
2625 
2626         /*
2627          * We might have stopped compacting due to need_resched() in
2628          * async compaction, or due to a fatal signal detected. In that
2629          * case do not try further zones
2630          */
2631         if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2632                     || fatal_signal_pending(current))
2633             break;
2634     }
2635 
2636     return rc;
2637 }
2638 
2639 /*
2640  * Compact all zones within a node till each zone's fragmentation score
2641  * reaches within proactive compaction thresholds (as determined by the
2642  * proactiveness tunable).
2643  *
2644  * It is possible that the function returns before reaching score targets
2645  * due to various back-off conditions, such as, contention on per-node or
2646  * per-zone locks.
2647  */
2648 static void proactive_compact_node(pg_data_t *pgdat)
2649 {
2650     int zoneid;
2651     struct zone *zone;
2652     struct compact_control cc = {
2653         .order = -1,
2654         .mode = MIGRATE_SYNC_LIGHT,
2655         .ignore_skip_hint = true,
2656         .whole_zone = true,
2657         .gfp_mask = GFP_KERNEL,
2658         .proactive_compaction = true,
2659     };
2660 
2661     for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2662         zone = &pgdat->node_zones[zoneid];
2663         if (!populated_zone(zone))
2664             continue;
2665 
2666         cc.zone = zone;
2667 
2668         compact_zone(&cc, NULL);
2669 
2670         VM_BUG_ON(!list_empty(&cc.freepages));
2671         VM_BUG_ON(!list_empty(&cc.migratepages));
2672     }
2673 }
2674 
2675 /* Compact all zones within a node */
2676 static void compact_node(int nid)
2677 {
2678     pg_data_t *pgdat = NODE_DATA(nid);
2679     int zoneid;
2680     struct zone *zone;
2681     struct compact_control cc = {
2682         .order = -1,
2683         .mode = MIGRATE_SYNC,
2684         .ignore_skip_hint = true,
2685         .whole_zone = true,
2686         .gfp_mask = GFP_KERNEL,
2687     };
2688 
2689 
2690     for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2691 
2692         zone = &pgdat->node_zones[zoneid];
2693         if (!populated_zone(zone))
2694             continue;
2695 
2696         cc.zone = zone;
2697 
2698         compact_zone(&cc, NULL);
2699 
2700         VM_BUG_ON(!list_empty(&cc.freepages));
2701         VM_BUG_ON(!list_empty(&cc.migratepages));
2702     }
2703 }
2704 
2705 /* Compact all nodes in the system */
2706 static void compact_nodes(void)
2707 {
2708     int nid;
2709 
2710     /* Flush pending updates to the LRU lists */
2711     lru_add_drain_all();
2712 
2713     for_each_online_node(nid)
2714         compact_node(nid);
2715 }
2716 
2717 /*
2718  * Tunable for proactive compaction. It determines how
2719  * aggressively the kernel should compact memory in the
2720  * background. It takes values in the range [0, 100].
2721  */
2722 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2723 
2724 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2725         void *buffer, size_t *length, loff_t *ppos)
2726 {
2727     int rc, nid;
2728 
2729     rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2730     if (rc)
2731         return rc;
2732 
2733     if (write && sysctl_compaction_proactiveness) {
2734         for_each_online_node(nid) {
2735             pg_data_t *pgdat = NODE_DATA(nid);
2736 
2737             if (pgdat->proactive_compact_trigger)
2738                 continue;
2739 
2740             pgdat->proactive_compact_trigger = true;
2741             wake_up_interruptible(&pgdat->kcompactd_wait);
2742         }
2743     }
2744 
2745     return 0;
2746 }
2747 
2748 /*
2749  * This is the entry point for compacting all nodes via
2750  * /proc/sys/vm/compact_memory
2751  */
2752 int sysctl_compaction_handler(struct ctl_table *table, int write,
2753             void *buffer, size_t *length, loff_t *ppos)
2754 {
2755     if (write)
2756         compact_nodes();
2757 
2758     return 0;
2759 }
2760 
2761 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2762 static ssize_t compact_store(struct device *dev,
2763                  struct device_attribute *attr,
2764                  const char *buf, size_t count)
2765 {
2766     int nid = dev->id;
2767 
2768     if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2769         /* Flush pending updates to the LRU lists */
2770         lru_add_drain_all();
2771 
2772         compact_node(nid);
2773     }
2774 
2775     return count;
2776 }
2777 static DEVICE_ATTR_WO(compact);
2778 
2779 int compaction_register_node(struct node *node)
2780 {
2781     return device_create_file(&node->dev, &dev_attr_compact);
2782 }
2783 
2784 void compaction_unregister_node(struct node *node)
2785 {
2786     return device_remove_file(&node->dev, &dev_attr_compact);
2787 }
2788 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2789 
2790 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2791 {
2792     return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2793         pgdat->proactive_compact_trigger;
2794 }
2795 
2796 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2797 {
2798     int zoneid;
2799     struct zone *zone;
2800     enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2801 
2802     for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2803         zone = &pgdat->node_zones[zoneid];
2804 
2805         if (!populated_zone(zone))
2806             continue;
2807 
2808         if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2809                     highest_zoneidx) == COMPACT_CONTINUE)
2810             return true;
2811     }
2812 
2813     return false;
2814 }
2815 
2816 static void kcompactd_do_work(pg_data_t *pgdat)
2817 {
2818     /*
2819      * With no special task, compact all zones so that a page of requested
2820      * order is allocatable.
2821      */
2822     int zoneid;
2823     struct zone *zone;
2824     struct compact_control cc = {
2825         .order = pgdat->kcompactd_max_order,
2826         .search_order = pgdat->kcompactd_max_order,
2827         .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2828         .mode = MIGRATE_SYNC_LIGHT,
2829         .ignore_skip_hint = false,
2830         .gfp_mask = GFP_KERNEL,
2831     };
2832     trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2833                             cc.highest_zoneidx);
2834     count_compact_event(KCOMPACTD_WAKE);
2835 
2836     for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2837         int status;
2838 
2839         zone = &pgdat->node_zones[zoneid];
2840         if (!populated_zone(zone))
2841             continue;
2842 
2843         if (compaction_deferred(zone, cc.order))
2844             continue;
2845 
2846         if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2847                             COMPACT_CONTINUE)
2848             continue;
2849 
2850         if (kthread_should_stop())
2851             return;
2852 
2853         cc.zone = zone;
2854         status = compact_zone(&cc, NULL);
2855 
2856         if (status == COMPACT_SUCCESS) {
2857             compaction_defer_reset(zone, cc.order, false);
2858         } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2859             /*
2860              * Buddy pages may become stranded on pcps that could
2861              * otherwise coalesce on the zone's free area for
2862              * order >= cc.order.  This is ratelimited by the
2863              * upcoming deferral.
2864              */
2865             drain_all_pages(zone);
2866 
2867             /*
2868              * We use sync migration mode here, so we defer like
2869              * sync direct compaction does.
2870              */
2871             defer_compaction(zone, cc.order);
2872         }
2873 
2874         count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2875                      cc.total_migrate_scanned);
2876         count_compact_events(KCOMPACTD_FREE_SCANNED,
2877                      cc.total_free_scanned);
2878 
2879         VM_BUG_ON(!list_empty(&cc.freepages));
2880         VM_BUG_ON(!list_empty(&cc.migratepages));
2881     }
2882 
2883     /*
2884      * Regardless of success, we are done until woken up next. But remember
2885      * the requested order/highest_zoneidx in case it was higher/tighter
2886      * than our current ones
2887      */
2888     if (pgdat->kcompactd_max_order <= cc.order)
2889         pgdat->kcompactd_max_order = 0;
2890     if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2891         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2892 }
2893 
2894 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2895 {
2896     if (!order)
2897         return;
2898 
2899     if (pgdat->kcompactd_max_order < order)
2900         pgdat->kcompactd_max_order = order;
2901 
2902     if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2903         pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2904 
2905     /*
2906      * Pairs with implicit barrier in wait_event_freezable()
2907      * such that wakeups are not missed.
2908      */
2909     if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2910         return;
2911 
2912     if (!kcompactd_node_suitable(pgdat))
2913         return;
2914 
2915     trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2916                             highest_zoneidx);
2917     wake_up_interruptible(&pgdat->kcompactd_wait);
2918 }
2919 
2920 /*
2921  * The background compaction daemon, started as a kernel thread
2922  * from the init process.
2923  */
2924 static int kcompactd(void *p)
2925 {
2926     pg_data_t *pgdat = (pg_data_t *)p;
2927     struct task_struct *tsk = current;
2928     long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2929     long timeout = default_timeout;
2930 
2931     const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2932 
2933     if (!cpumask_empty(cpumask))
2934         set_cpus_allowed_ptr(tsk, cpumask);
2935 
2936     set_freezable();
2937 
2938     pgdat->kcompactd_max_order = 0;
2939     pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2940 
2941     while (!kthread_should_stop()) {
2942         unsigned long pflags;
2943 
2944         /*
2945          * Avoid the unnecessary wakeup for proactive compaction
2946          * when it is disabled.
2947          */
2948         if (!sysctl_compaction_proactiveness)
2949             timeout = MAX_SCHEDULE_TIMEOUT;
2950         trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2951         if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2952             kcompactd_work_requested(pgdat), timeout) &&
2953             !pgdat->proactive_compact_trigger) {
2954 
2955             psi_memstall_enter(&pflags);
2956             kcompactd_do_work(pgdat);
2957             psi_memstall_leave(&pflags);
2958             /*
2959              * Reset the timeout value. The defer timeout from
2960              * proactive compaction is lost here but that is fine
2961              * as the condition of the zone changing substantionally
2962              * then carrying on with the previous defer interval is
2963              * not useful.
2964              */
2965             timeout = default_timeout;
2966             continue;
2967         }
2968 
2969         /*
2970          * Start the proactive work with default timeout. Based
2971          * on the fragmentation score, this timeout is updated.
2972          */
2973         timeout = default_timeout;
2974         if (should_proactive_compact_node(pgdat)) {
2975             unsigned int prev_score, score;
2976 
2977             prev_score = fragmentation_score_node(pgdat);
2978             proactive_compact_node(pgdat);
2979             score = fragmentation_score_node(pgdat);
2980             /*
2981              * Defer proactive compaction if the fragmentation
2982              * score did not go down i.e. no progress made.
2983              */
2984             if (unlikely(score >= prev_score))
2985                 timeout =
2986                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2987         }
2988         if (unlikely(pgdat->proactive_compact_trigger))
2989             pgdat->proactive_compact_trigger = false;
2990     }
2991 
2992     return 0;
2993 }
2994 
2995 /*
2996  * This kcompactd start function will be called by init and node-hot-add.
2997  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2998  */
2999 void kcompactd_run(int nid)
3000 {
3001     pg_data_t *pgdat = NODE_DATA(nid);
3002 
3003     if (pgdat->kcompactd)
3004         return;
3005 
3006     pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3007     if (IS_ERR(pgdat->kcompactd)) {
3008         pr_err("Failed to start kcompactd on node %d\n", nid);
3009         pgdat->kcompactd = NULL;
3010     }
3011 }
3012 
3013 /*
3014  * Called by memory hotplug when all memory in a node is offlined. Caller must
3015  * be holding mem_hotplug_begin/done().
3016  */
3017 void kcompactd_stop(int nid)
3018 {
3019     struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3020 
3021     if (kcompactd) {
3022         kthread_stop(kcompactd);
3023         NODE_DATA(nid)->kcompactd = NULL;
3024     }
3025 }
3026 
3027 /*
3028  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3029  * not required for correctness. So if the last cpu in a node goes
3030  * away, we get changed to run anywhere: as the first one comes back,
3031  * restore their cpu bindings.
3032  */
3033 static int kcompactd_cpu_online(unsigned int cpu)
3034 {
3035     int nid;
3036 
3037     for_each_node_state(nid, N_MEMORY) {
3038         pg_data_t *pgdat = NODE_DATA(nid);
3039         const struct cpumask *mask;
3040 
3041         mask = cpumask_of_node(pgdat->node_id);
3042 
3043         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044             /* One of our CPUs online: restore mask */
3045             if (pgdat->kcompactd)
3046                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3047     }
3048     return 0;
3049 }
3050 
3051 static int __init kcompactd_init(void)
3052 {
3053     int nid;
3054     int ret;
3055 
3056     ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3057                     "mm/compaction:online",
3058                     kcompactd_cpu_online, NULL);
3059     if (ret < 0) {
3060         pr_err("kcompactd: failed to register hotplug callbacks.\n");
3061         return ret;
3062     }
3063 
3064     for_each_node_state(nid, N_MEMORY)
3065         kcompactd_run(nid);
3066     return 0;
3067 }
3068 subsys_initcall(kcompactd_init)
3069 
3070 #endif /* CONFIG_COMPACTION */