Back to home page

OSCL-LXR

 
 

    


0001 # SPDX-License-Identifier: GPL-2.0-only
0002 
0003 menu "Memory Management options"
0004 
0005 #
0006 # For some reason microblaze and nios2 hard code SWAP=n.  Hopefully we can
0007 # add proper SWAP support to them, in which case this can be remove.
0008 #
0009 config ARCH_NO_SWAP
0010         bool
0011 
0012 config ZPOOL
0013         bool
0014 
0015 menuconfig SWAP
0016         bool "Support for paging of anonymous memory (swap)"
0017         depends on MMU && BLOCK && !ARCH_NO_SWAP
0018         default y
0019         help
0020           This option allows you to choose whether you want to have support
0021           for so called swap devices or swap files in your kernel that are
0022           used to provide more virtual memory than the actual RAM present
0023           in your computer.  If unsure say Y.
0024 
0025 config ZSWAP
0026         bool "Compressed cache for swap pages (EXPERIMENTAL)"
0027         depends on SWAP
0028         select FRONTSWAP
0029         select CRYPTO
0030         select ZPOOL
0031         help
0032           A lightweight compressed cache for swap pages.  It takes
0033           pages that are in the process of being swapped out and attempts to
0034           compress them into a dynamically allocated RAM-based memory pool.
0035           This can result in a significant I/O reduction on swap device and,
0036           in the case where decompressing from RAM is faster than swap device
0037           reads, can also improve workload performance.
0038 
0039           This is marked experimental because it is a new feature (as of
0040           v3.11) that interacts heavily with memory reclaim.  While these
0041           interactions don't cause any known issues on simple memory setups,
0042           they have not be fully explored on the large set of potential
0043           configurations and workloads that exist.
0044 
0045 config ZSWAP_DEFAULT_ON
0046         bool "Enable the compressed cache for swap pages by default"
0047         depends on ZSWAP
0048         help
0049           If selected, the compressed cache for swap pages will be enabled
0050           at boot, otherwise it will be disabled.
0051 
0052           The selection made here can be overridden by using the kernel
0053           command line 'zswap.enabled=' option.
0054 
0055 choice
0056         prompt "Default compressor"
0057         depends on ZSWAP
0058         default ZSWAP_COMPRESSOR_DEFAULT_LZO
0059         help
0060           Selects the default compression algorithm for the compressed cache
0061           for swap pages.
0062 
0063           For an overview what kind of performance can be expected from
0064           a particular compression algorithm please refer to the benchmarks
0065           available at the following LWN page:
0066           https://lwn.net/Articles/751795/
0067 
0068           If in doubt, select 'LZO'.
0069 
0070           The selection made here can be overridden by using the kernel
0071           command line 'zswap.compressor=' option.
0072 
0073 config ZSWAP_COMPRESSOR_DEFAULT_DEFLATE
0074         bool "Deflate"
0075         select CRYPTO_DEFLATE
0076         help
0077           Use the Deflate algorithm as the default compression algorithm.
0078 
0079 config ZSWAP_COMPRESSOR_DEFAULT_LZO
0080         bool "LZO"
0081         select CRYPTO_LZO
0082         help
0083           Use the LZO algorithm as the default compression algorithm.
0084 
0085 config ZSWAP_COMPRESSOR_DEFAULT_842
0086         bool "842"
0087         select CRYPTO_842
0088         help
0089           Use the 842 algorithm as the default compression algorithm.
0090 
0091 config ZSWAP_COMPRESSOR_DEFAULT_LZ4
0092         bool "LZ4"
0093         select CRYPTO_LZ4
0094         help
0095           Use the LZ4 algorithm as the default compression algorithm.
0096 
0097 config ZSWAP_COMPRESSOR_DEFAULT_LZ4HC
0098         bool "LZ4HC"
0099         select CRYPTO_LZ4HC
0100         help
0101           Use the LZ4HC algorithm as the default compression algorithm.
0102 
0103 config ZSWAP_COMPRESSOR_DEFAULT_ZSTD
0104         bool "zstd"
0105         select CRYPTO_ZSTD
0106         help
0107           Use the zstd algorithm as the default compression algorithm.
0108 endchoice
0109 
0110 config ZSWAP_COMPRESSOR_DEFAULT
0111        string
0112        depends on ZSWAP
0113        default "deflate" if ZSWAP_COMPRESSOR_DEFAULT_DEFLATE
0114        default "lzo" if ZSWAP_COMPRESSOR_DEFAULT_LZO
0115        default "842" if ZSWAP_COMPRESSOR_DEFAULT_842
0116        default "lz4" if ZSWAP_COMPRESSOR_DEFAULT_LZ4
0117        default "lz4hc" if ZSWAP_COMPRESSOR_DEFAULT_LZ4HC
0118        default "zstd" if ZSWAP_COMPRESSOR_DEFAULT_ZSTD
0119        default ""
0120 
0121 choice
0122         prompt "Default allocator"
0123         depends on ZSWAP
0124         default ZSWAP_ZPOOL_DEFAULT_ZBUD
0125         help
0126           Selects the default allocator for the compressed cache for
0127           swap pages.
0128           The default is 'zbud' for compatibility, however please do
0129           read the description of each of the allocators below before
0130           making a right choice.
0131 
0132           The selection made here can be overridden by using the kernel
0133           command line 'zswap.zpool=' option.
0134 
0135 config ZSWAP_ZPOOL_DEFAULT_ZBUD
0136         bool "zbud"
0137         select ZBUD
0138         help
0139           Use the zbud allocator as the default allocator.
0140 
0141 config ZSWAP_ZPOOL_DEFAULT_Z3FOLD
0142         bool "z3fold"
0143         select Z3FOLD
0144         help
0145           Use the z3fold allocator as the default allocator.
0146 
0147 config ZSWAP_ZPOOL_DEFAULT_ZSMALLOC
0148         bool "zsmalloc"
0149         select ZSMALLOC
0150         help
0151           Use the zsmalloc allocator as the default allocator.
0152 endchoice
0153 
0154 config ZSWAP_ZPOOL_DEFAULT
0155        string
0156        depends on ZSWAP
0157        default "zbud" if ZSWAP_ZPOOL_DEFAULT_ZBUD
0158        default "z3fold" if ZSWAP_ZPOOL_DEFAULT_Z3FOLD
0159        default "zsmalloc" if ZSWAP_ZPOOL_DEFAULT_ZSMALLOC
0160        default ""
0161 
0162 config ZBUD
0163         tristate "2:1 compression allocator (zbud)"
0164         depends on ZSWAP
0165         help
0166           A special purpose allocator for storing compressed pages.
0167           It is designed to store up to two compressed pages per physical
0168           page.  While this design limits storage density, it has simple and
0169           deterministic reclaim properties that make it preferable to a higher
0170           density approach when reclaim will be used.
0171 
0172 config Z3FOLD
0173         tristate "3:1 compression allocator (z3fold)"
0174         depends on ZSWAP
0175         help
0176           A special purpose allocator for storing compressed pages.
0177           It is designed to store up to three compressed pages per physical
0178           page. It is a ZBUD derivative so the simplicity and determinism are
0179           still there.
0180 
0181 config ZSMALLOC
0182         tristate
0183         prompt "N:1 compression allocator (zsmalloc)" if ZSWAP
0184         depends on MMU
0185         help
0186           zsmalloc is a slab-based memory allocator designed to store
0187           pages of various compression levels efficiently. It achieves
0188           the highest storage density with the least amount of fragmentation.
0189 
0190 config ZSMALLOC_STAT
0191         bool "Export zsmalloc statistics"
0192         depends on ZSMALLOC
0193         select DEBUG_FS
0194         help
0195           This option enables code in the zsmalloc to collect various
0196           statistics about what's happening in zsmalloc and exports that
0197           information to userspace via debugfs.
0198           If unsure, say N.
0199 
0200 menu "SLAB allocator options"
0201 
0202 choice
0203         prompt "Choose SLAB allocator"
0204         default SLUB
0205         help
0206            This option allows to select a slab allocator.
0207 
0208 config SLAB
0209         bool "SLAB"
0210         depends on !PREEMPT_RT
0211         select HAVE_HARDENED_USERCOPY_ALLOCATOR
0212         help
0213           The regular slab allocator that is established and known to work
0214           well in all environments. It organizes cache hot objects in
0215           per cpu and per node queues.
0216 
0217 config SLUB
0218         bool "SLUB (Unqueued Allocator)"
0219         select HAVE_HARDENED_USERCOPY_ALLOCATOR
0220         help
0221            SLUB is a slab allocator that minimizes cache line usage
0222            instead of managing queues of cached objects (SLAB approach).
0223            Per cpu caching is realized using slabs of objects instead
0224            of queues of objects. SLUB can use memory efficiently
0225            and has enhanced diagnostics. SLUB is the default choice for
0226            a slab allocator.
0227 
0228 config SLOB
0229         depends on EXPERT
0230         bool "SLOB (Simple Allocator)"
0231         depends on !PREEMPT_RT
0232         help
0233            SLOB replaces the stock allocator with a drastically simpler
0234            allocator. SLOB is generally more space efficient but
0235            does not perform as well on large systems.
0236 
0237 endchoice
0238 
0239 config SLAB_MERGE_DEFAULT
0240         bool "Allow slab caches to be merged"
0241         default y
0242         depends on SLAB || SLUB
0243         help
0244           For reduced kernel memory fragmentation, slab caches can be
0245           merged when they share the same size and other characteristics.
0246           This carries a risk of kernel heap overflows being able to
0247           overwrite objects from merged caches (and more easily control
0248           cache layout), which makes such heap attacks easier to exploit
0249           by attackers. By keeping caches unmerged, these kinds of exploits
0250           can usually only damage objects in the same cache. To disable
0251           merging at runtime, "slab_nomerge" can be passed on the kernel
0252           command line.
0253 
0254 config SLAB_FREELIST_RANDOM
0255         bool "Randomize slab freelist"
0256         depends on SLAB || SLUB
0257         help
0258           Randomizes the freelist order used on creating new pages. This
0259           security feature reduces the predictability of the kernel slab
0260           allocator against heap overflows.
0261 
0262 config SLAB_FREELIST_HARDENED
0263         bool "Harden slab freelist metadata"
0264         depends on SLAB || SLUB
0265         help
0266           Many kernel heap attacks try to target slab cache metadata and
0267           other infrastructure. This options makes minor performance
0268           sacrifices to harden the kernel slab allocator against common
0269           freelist exploit methods. Some slab implementations have more
0270           sanity-checking than others. This option is most effective with
0271           CONFIG_SLUB.
0272 
0273 config SLUB_STATS
0274         default n
0275         bool "Enable SLUB performance statistics"
0276         depends on SLUB && SYSFS
0277         help
0278           SLUB statistics are useful to debug SLUBs allocation behavior in
0279           order find ways to optimize the allocator. This should never be
0280           enabled for production use since keeping statistics slows down
0281           the allocator by a few percentage points. The slabinfo command
0282           supports the determination of the most active slabs to figure
0283           out which slabs are relevant to a particular load.
0284           Try running: slabinfo -DA
0285 
0286 config SLUB_CPU_PARTIAL
0287         default y
0288         depends on SLUB && SMP
0289         bool "SLUB per cpu partial cache"
0290         help
0291           Per cpu partial caches accelerate objects allocation and freeing
0292           that is local to a processor at the price of more indeterminism
0293           in the latency of the free. On overflow these caches will be cleared
0294           which requires the taking of locks that may cause latency spikes.
0295           Typically one would choose no for a realtime system.
0296 
0297 endmenu # SLAB allocator options
0298 
0299 config SHUFFLE_PAGE_ALLOCATOR
0300         bool "Page allocator randomization"
0301         default SLAB_FREELIST_RANDOM && ACPI_NUMA
0302         help
0303           Randomization of the page allocator improves the average
0304           utilization of a direct-mapped memory-side-cache. See section
0305           5.2.27 Heterogeneous Memory Attribute Table (HMAT) in the ACPI
0306           6.2a specification for an example of how a platform advertises
0307           the presence of a memory-side-cache. There are also incidental
0308           security benefits as it reduces the predictability of page
0309           allocations to compliment SLAB_FREELIST_RANDOM, but the
0310           default granularity of shuffling on the "MAX_ORDER - 1" i.e,
0311           10th order of pages is selected based on cache utilization
0312           benefits on x86.
0313 
0314           While the randomization improves cache utilization it may
0315           negatively impact workloads on platforms without a cache. For
0316           this reason, by default, the randomization is enabled only
0317           after runtime detection of a direct-mapped memory-side-cache.
0318           Otherwise, the randomization may be force enabled with the
0319           'page_alloc.shuffle' kernel command line parameter.
0320 
0321           Say Y if unsure.
0322 
0323 config COMPAT_BRK
0324         bool "Disable heap randomization"
0325         default y
0326         help
0327           Randomizing heap placement makes heap exploits harder, but it
0328           also breaks ancient binaries (including anything libc5 based).
0329           This option changes the bootup default to heap randomization
0330           disabled, and can be overridden at runtime by setting
0331           /proc/sys/kernel/randomize_va_space to 2.
0332 
0333           On non-ancient distros (post-2000 ones) N is usually a safe choice.
0334 
0335 config MMAP_ALLOW_UNINITIALIZED
0336         bool "Allow mmapped anonymous memory to be uninitialized"
0337         depends on EXPERT && !MMU
0338         default n
0339         help
0340           Normally, and according to the Linux spec, anonymous memory obtained
0341           from mmap() has its contents cleared before it is passed to
0342           userspace.  Enabling this config option allows you to request that
0343           mmap() skip that if it is given an MAP_UNINITIALIZED flag, thus
0344           providing a huge performance boost.  If this option is not enabled,
0345           then the flag will be ignored.
0346 
0347           This is taken advantage of by uClibc's malloc(), and also by
0348           ELF-FDPIC binfmt's brk and stack allocator.
0349 
0350           Because of the obvious security issues, this option should only be
0351           enabled on embedded devices where you control what is run in
0352           userspace.  Since that isn't generally a problem on no-MMU systems,
0353           it is normally safe to say Y here.
0354 
0355           See Documentation/admin-guide/mm/nommu-mmap.rst for more information.
0356 
0357 config SELECT_MEMORY_MODEL
0358         def_bool y
0359         depends on ARCH_SELECT_MEMORY_MODEL
0360 
0361 choice
0362         prompt "Memory model"
0363         depends on SELECT_MEMORY_MODEL
0364         default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT
0365         default FLATMEM_MANUAL
0366         help
0367           This option allows you to change some of the ways that
0368           Linux manages its memory internally. Most users will
0369           only have one option here selected by the architecture
0370           configuration. This is normal.
0371 
0372 config FLATMEM_MANUAL
0373         bool "Flat Memory"
0374         depends on !ARCH_SPARSEMEM_ENABLE || ARCH_FLATMEM_ENABLE
0375         help
0376           This option is best suited for non-NUMA systems with
0377           flat address space. The FLATMEM is the most efficient
0378           system in terms of performance and resource consumption
0379           and it is the best option for smaller systems.
0380 
0381           For systems that have holes in their physical address
0382           spaces and for features like NUMA and memory hotplug,
0383           choose "Sparse Memory".
0384 
0385           If unsure, choose this option (Flat Memory) over any other.
0386 
0387 config SPARSEMEM_MANUAL
0388         bool "Sparse Memory"
0389         depends on ARCH_SPARSEMEM_ENABLE
0390         help
0391           This will be the only option for some systems, including
0392           memory hot-plug systems.  This is normal.
0393 
0394           This option provides efficient support for systems with
0395           holes is their physical address space and allows memory
0396           hot-plug and hot-remove.
0397 
0398           If unsure, choose "Flat Memory" over this option.
0399 
0400 endchoice
0401 
0402 config SPARSEMEM
0403         def_bool y
0404         depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL
0405 
0406 config FLATMEM
0407         def_bool y
0408         depends on !SPARSEMEM || FLATMEM_MANUAL
0409 
0410 #
0411 # SPARSEMEM_EXTREME (which is the default) does some bootmem
0412 # allocations when sparse_init() is called.  If this cannot
0413 # be done on your architecture, select this option.  However,
0414 # statically allocating the mem_section[] array can potentially
0415 # consume vast quantities of .bss, so be careful.
0416 #
0417 # This option will also potentially produce smaller runtime code
0418 # with gcc 3.4 and later.
0419 #
0420 config SPARSEMEM_STATIC
0421         bool
0422 
0423 #
0424 # Architecture platforms which require a two level mem_section in SPARSEMEM
0425 # must select this option. This is usually for architecture platforms with
0426 # an extremely sparse physical address space.
0427 #
0428 config SPARSEMEM_EXTREME
0429         def_bool y
0430         depends on SPARSEMEM && !SPARSEMEM_STATIC
0431 
0432 config SPARSEMEM_VMEMMAP_ENABLE
0433         bool
0434 
0435 config SPARSEMEM_VMEMMAP
0436         bool "Sparse Memory virtual memmap"
0437         depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
0438         default y
0439         help
0440           SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise
0441           pfn_to_page and page_to_pfn operations.  This is the most
0442           efficient option when sufficient kernel resources are available.
0443 
0444 config HAVE_MEMBLOCK_PHYS_MAP
0445         bool
0446 
0447 config HAVE_FAST_GUP
0448         depends on MMU
0449         bool
0450 
0451 # Don't discard allocated memory used to track "memory" and "reserved" memblocks
0452 # after early boot, so it can still be used to test for validity of memory.
0453 # Also, memblocks are updated with memory hot(un)plug.
0454 config ARCH_KEEP_MEMBLOCK
0455         bool
0456 
0457 # Keep arch NUMA mapping infrastructure post-init.
0458 config NUMA_KEEP_MEMINFO
0459         bool
0460 
0461 config MEMORY_ISOLATION
0462         bool
0463 
0464 # IORESOURCE_SYSTEM_RAM regions in the kernel resource tree that are marked
0465 # IORESOURCE_EXCLUSIVE cannot be mapped to user space, for example, via
0466 # /dev/mem.
0467 config EXCLUSIVE_SYSTEM_RAM
0468         def_bool y
0469         depends on !DEVMEM || STRICT_DEVMEM
0470 
0471 #
0472 # Only be set on architectures that have completely implemented memory hotplug
0473 # feature. If you are not sure, don't touch it.
0474 #
0475 config HAVE_BOOTMEM_INFO_NODE
0476         def_bool n
0477 
0478 config ARCH_ENABLE_MEMORY_HOTPLUG
0479         bool
0480 
0481 config ARCH_ENABLE_MEMORY_HOTREMOVE
0482         bool
0483 
0484 # eventually, we can have this option just 'select SPARSEMEM'
0485 menuconfig MEMORY_HOTPLUG
0486         bool "Memory hotplug"
0487         select MEMORY_ISOLATION
0488         depends on SPARSEMEM
0489         depends on ARCH_ENABLE_MEMORY_HOTPLUG
0490         depends on 64BIT
0491         select NUMA_KEEP_MEMINFO if NUMA
0492 
0493 if MEMORY_HOTPLUG
0494 
0495 config MEMORY_HOTPLUG_DEFAULT_ONLINE
0496         bool "Online the newly added memory blocks by default"
0497         depends on MEMORY_HOTPLUG
0498         help
0499           This option sets the default policy setting for memory hotplug
0500           onlining policy (/sys/devices/system/memory/auto_online_blocks) which
0501           determines what happens to newly added memory regions. Policy setting
0502           can always be changed at runtime.
0503           See Documentation/admin-guide/mm/memory-hotplug.rst for more information.
0504 
0505           Say Y here if you want all hot-plugged memory blocks to appear in
0506           'online' state by default.
0507           Say N here if you want the default policy to keep all hot-plugged
0508           memory blocks in 'offline' state.
0509 
0510 config MEMORY_HOTREMOVE
0511         bool "Allow for memory hot remove"
0512         select HAVE_BOOTMEM_INFO_NODE if (X86_64 || PPC64)
0513         depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
0514         depends on MIGRATION
0515 
0516 config MHP_MEMMAP_ON_MEMORY
0517         def_bool y
0518         depends on MEMORY_HOTPLUG && SPARSEMEM_VMEMMAP
0519         depends on ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
0520 
0521 endif # MEMORY_HOTPLUG
0522 
0523 # Heavily threaded applications may benefit from splitting the mm-wide
0524 # page_table_lock, so that faults on different parts of the user address
0525 # space can be handled with less contention: split it at this NR_CPUS.
0526 # Default to 4 for wider testing, though 8 might be more appropriate.
0527 # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock.
0528 # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes.
0529 # SPARC32 allocates multiple pte tables within a single page, and therefore
0530 # a per-page lock leads to problems when multiple tables need to be locked
0531 # at the same time (e.g. copy_page_range()).
0532 # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page.
0533 #
0534 config SPLIT_PTLOCK_CPUS
0535         int
0536         default "999999" if !MMU
0537         default "999999" if ARM && !CPU_CACHE_VIPT
0538         default "999999" if PARISC && !PA20
0539         default "999999" if SPARC32
0540         default "4"
0541 
0542 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
0543         bool
0544 
0545 #
0546 # support for memory balloon
0547 config MEMORY_BALLOON
0548         bool
0549 
0550 #
0551 # support for memory balloon compaction
0552 config BALLOON_COMPACTION
0553         bool "Allow for balloon memory compaction/migration"
0554         def_bool y
0555         depends on COMPACTION && MEMORY_BALLOON
0556         help
0557           Memory fragmentation introduced by ballooning might reduce
0558           significantly the number of 2MB contiguous memory blocks that can be
0559           used within a guest, thus imposing performance penalties associated
0560           with the reduced number of transparent huge pages that could be used
0561           by the guest workload. Allowing the compaction & migration for memory
0562           pages enlisted as being part of memory balloon devices avoids the
0563           scenario aforementioned and helps improving memory defragmentation.
0564 
0565 #
0566 # support for memory compaction
0567 config COMPACTION
0568         bool "Allow for memory compaction"
0569         def_bool y
0570         select MIGRATION
0571         depends on MMU
0572         help
0573           Compaction is the only memory management component to form
0574           high order (larger physically contiguous) memory blocks
0575           reliably. The page allocator relies on compaction heavily and
0576           the lack of the feature can lead to unexpected OOM killer
0577           invocations for high order memory requests. You shouldn't
0578           disable this option unless there really is a strong reason for
0579           it and then we would be really interested to hear about that at
0580           linux-mm@kvack.org.
0581 
0582 #
0583 # support for free page reporting
0584 config PAGE_REPORTING
0585         bool "Free page reporting"
0586         def_bool n
0587         help
0588           Free page reporting allows for the incremental acquisition of
0589           free pages from the buddy allocator for the purpose of reporting
0590           those pages to another entity, such as a hypervisor, so that the
0591           memory can be freed within the host for other uses.
0592 
0593 #
0594 # support for page migration
0595 #
0596 config MIGRATION
0597         bool "Page migration"
0598         def_bool y
0599         depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
0600         help
0601           Allows the migration of the physical location of pages of processes
0602           while the virtual addresses are not changed. This is useful in
0603           two situations. The first is on NUMA systems to put pages nearer
0604           to the processors accessing. The second is when allocating huge
0605           pages as migration can relocate pages to satisfy a huge page
0606           allocation instead of reclaiming.
0607 
0608 config DEVICE_MIGRATION
0609         def_bool MIGRATION && ZONE_DEVICE
0610 
0611 config ARCH_ENABLE_HUGEPAGE_MIGRATION
0612         bool
0613 
0614 config ARCH_ENABLE_THP_MIGRATION
0615         bool
0616 
0617 config HUGETLB_PAGE_SIZE_VARIABLE
0618         def_bool n
0619         help
0620           Allows the pageblock_order value to be dynamic instead of just standard
0621           HUGETLB_PAGE_ORDER when there are multiple HugeTLB page sizes available
0622           on a platform.
0623 
0624           Note that the pageblock_order cannot exceed MAX_ORDER - 1 and will be
0625           clamped down to MAX_ORDER - 1.
0626 
0627 config CONTIG_ALLOC
0628         def_bool (MEMORY_ISOLATION && COMPACTION) || CMA
0629 
0630 config PHYS_ADDR_T_64BIT
0631         def_bool 64BIT
0632 
0633 config BOUNCE
0634         bool "Enable bounce buffers"
0635         default y
0636         depends on BLOCK && MMU && HIGHMEM
0637         help
0638           Enable bounce buffers for devices that cannot access the full range of
0639           memory available to the CPU. Enabled by default when HIGHMEM is
0640           selected, but you may say n to override this.
0641 
0642 config MMU_NOTIFIER
0643         bool
0644         select SRCU
0645         select INTERVAL_TREE
0646 
0647 config KSM
0648         bool "Enable KSM for page merging"
0649         depends on MMU
0650         select XXHASH
0651         help
0652           Enable Kernel Samepage Merging: KSM periodically scans those areas
0653           of an application's address space that an app has advised may be
0654           mergeable.  When it finds pages of identical content, it replaces
0655           the many instances by a single page with that content, so
0656           saving memory until one or another app needs to modify the content.
0657           Recommended for use with KVM, or with other duplicative applications.
0658           See Documentation/mm/ksm.rst for more information: KSM is inactive
0659           until a program has madvised that an area is MADV_MERGEABLE, and
0660           root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set).
0661 
0662 config DEFAULT_MMAP_MIN_ADDR
0663         int "Low address space to protect from user allocation"
0664         depends on MMU
0665         default 4096
0666         help
0667           This is the portion of low virtual memory which should be protected
0668           from userspace allocation.  Keeping a user from writing to low pages
0669           can help reduce the impact of kernel NULL pointer bugs.
0670 
0671           For most ia64, ppc64 and x86 users with lots of address space
0672           a value of 65536 is reasonable and should cause no problems.
0673           On arm and other archs it should not be higher than 32768.
0674           Programs which use vm86 functionality or have some need to map
0675           this low address space will need CAP_SYS_RAWIO or disable this
0676           protection by setting the value to 0.
0677 
0678           This value can be changed after boot using the
0679           /proc/sys/vm/mmap_min_addr tunable.
0680 
0681 config ARCH_SUPPORTS_MEMORY_FAILURE
0682         bool
0683 
0684 config MEMORY_FAILURE
0685         depends on MMU
0686         depends on ARCH_SUPPORTS_MEMORY_FAILURE
0687         bool "Enable recovery from hardware memory errors"
0688         select MEMORY_ISOLATION
0689         select RAS
0690         help
0691           Enables code to recover from some memory failures on systems
0692           with MCA recovery. This allows a system to continue running
0693           even when some of its memory has uncorrected errors. This requires
0694           special hardware support and typically ECC memory.
0695 
0696 config HWPOISON_INJECT
0697         tristate "HWPoison pages injector"
0698         depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS
0699         select PROC_PAGE_MONITOR
0700 
0701 config NOMMU_INITIAL_TRIM_EXCESS
0702         int "Turn on mmap() excess space trimming before booting"
0703         depends on !MMU
0704         default 1
0705         help
0706           The NOMMU mmap() frequently needs to allocate large contiguous chunks
0707           of memory on which to store mappings, but it can only ask the system
0708           allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
0709           more than it requires.  To deal with this, mmap() is able to trim off
0710           the excess and return it to the allocator.
0711 
0712           If trimming is enabled, the excess is trimmed off and returned to the
0713           system allocator, which can cause extra fragmentation, particularly
0714           if there are a lot of transient processes.
0715 
0716           If trimming is disabled, the excess is kept, but not used, which for
0717           long-term mappings means that the space is wasted.
0718 
0719           Trimming can be dynamically controlled through a sysctl option
0720           (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
0721           excess pages there must be before trimming should occur, or zero if
0722           no trimming is to occur.
0723 
0724           This option specifies the initial value of this option.  The default
0725           of 1 says that all excess pages should be trimmed.
0726 
0727           See Documentation/admin-guide/mm/nommu-mmap.rst for more information.
0728 
0729 config ARCH_WANT_GENERAL_HUGETLB
0730         bool
0731 
0732 config ARCH_WANTS_THP_SWAP
0733         def_bool n
0734 
0735 menuconfig TRANSPARENT_HUGEPAGE
0736         bool "Transparent Hugepage Support"
0737         depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE && !PREEMPT_RT
0738         select COMPACTION
0739         select XARRAY_MULTI
0740         help
0741           Transparent Hugepages allows the kernel to use huge pages and
0742           huge tlb transparently to the applications whenever possible.
0743           This feature can improve computing performance to certain
0744           applications by speeding up page faults during memory
0745           allocation, by reducing the number of tlb misses and by speeding
0746           up the pagetable walking.
0747 
0748           If memory constrained on embedded, you may want to say N.
0749 
0750 if TRANSPARENT_HUGEPAGE
0751 
0752 choice
0753         prompt "Transparent Hugepage Support sysfs defaults"
0754         depends on TRANSPARENT_HUGEPAGE
0755         default TRANSPARENT_HUGEPAGE_ALWAYS
0756         help
0757           Selects the sysfs defaults for Transparent Hugepage Support.
0758 
0759         config TRANSPARENT_HUGEPAGE_ALWAYS
0760                 bool "always"
0761         help
0762           Enabling Transparent Hugepage always, can increase the
0763           memory footprint of applications without a guaranteed
0764           benefit but it will work automatically for all applications.
0765 
0766         config TRANSPARENT_HUGEPAGE_MADVISE
0767                 bool "madvise"
0768         help
0769           Enabling Transparent Hugepage madvise, will only provide a
0770           performance improvement benefit to the applications using
0771           madvise(MADV_HUGEPAGE) but it won't risk to increase the
0772           memory footprint of applications without a guaranteed
0773           benefit.
0774 endchoice
0775 
0776 config THP_SWAP
0777         def_bool y
0778         depends on TRANSPARENT_HUGEPAGE && ARCH_WANTS_THP_SWAP && SWAP
0779         help
0780           Swap transparent huge pages in one piece, without splitting.
0781           XXX: For now, swap cluster backing transparent huge page
0782           will be split after swapout.
0783 
0784           For selection by architectures with reasonable THP sizes.
0785 
0786 config READ_ONLY_THP_FOR_FS
0787         bool "Read-only THP for filesystems (EXPERIMENTAL)"
0788         depends on TRANSPARENT_HUGEPAGE && SHMEM
0789 
0790         help
0791           Allow khugepaged to put read-only file-backed pages in THP.
0792 
0793           This is marked experimental because it is a new feature. Write
0794           support of file THPs will be developed in the next few release
0795           cycles.
0796 
0797 endif # TRANSPARENT_HUGEPAGE
0798 
0799 #
0800 # UP and nommu archs use km based percpu allocator
0801 #
0802 config NEED_PER_CPU_KM
0803         depends on !SMP || !MMU
0804         bool
0805         default y
0806 
0807 config NEED_PER_CPU_EMBED_FIRST_CHUNK
0808         bool
0809 
0810 config NEED_PER_CPU_PAGE_FIRST_CHUNK
0811         bool
0812 
0813 config USE_PERCPU_NUMA_NODE_ID
0814         bool
0815 
0816 config HAVE_SETUP_PER_CPU_AREA
0817         bool
0818 
0819 config FRONTSWAP
0820         bool
0821 
0822 config CMA
0823         bool "Contiguous Memory Allocator"
0824         depends on MMU
0825         select MIGRATION
0826         select MEMORY_ISOLATION
0827         help
0828           This enables the Contiguous Memory Allocator which allows other
0829           subsystems to allocate big physically-contiguous blocks of memory.
0830           CMA reserves a region of memory and allows only movable pages to
0831           be allocated from it. This way, the kernel can use the memory for
0832           pagecache and when a subsystem requests for contiguous area, the
0833           allocated pages are migrated away to serve the contiguous request.
0834 
0835           If unsure, say "n".
0836 
0837 config CMA_DEBUG
0838         bool "CMA debug messages (DEVELOPMENT)"
0839         depends on DEBUG_KERNEL && CMA
0840         help
0841           Turns on debug messages in CMA.  This produces KERN_DEBUG
0842           messages for every CMA call as well as various messages while
0843           processing calls such as dma_alloc_from_contiguous().
0844           This option does not affect warning and error messages.
0845 
0846 config CMA_DEBUGFS
0847         bool "CMA debugfs interface"
0848         depends on CMA && DEBUG_FS
0849         help
0850           Turns on the DebugFS interface for CMA.
0851 
0852 config CMA_SYSFS
0853         bool "CMA information through sysfs interface"
0854         depends on CMA && SYSFS
0855         help
0856           This option exposes some sysfs attributes to get information
0857           from CMA.
0858 
0859 config CMA_AREAS
0860         int "Maximum count of the CMA areas"
0861         depends on CMA
0862         default 19 if NUMA
0863         default 7
0864         help
0865           CMA allows to create CMA areas for particular purpose, mainly,
0866           used as device private area. This parameter sets the maximum
0867           number of CMA area in the system.
0868 
0869           If unsure, leave the default value "7" in UMA and "19" in NUMA.
0870 
0871 config MEM_SOFT_DIRTY
0872         bool "Track memory changes"
0873         depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY && PROC_FS
0874         select PROC_PAGE_MONITOR
0875         help
0876           This option enables memory changes tracking by introducing a
0877           soft-dirty bit on pte-s. This bit it set when someone writes
0878           into a page just as regular dirty bit, but unlike the latter
0879           it can be cleared by hands.
0880 
0881           See Documentation/admin-guide/mm/soft-dirty.rst for more details.
0882 
0883 config GENERIC_EARLY_IOREMAP
0884         bool
0885 
0886 config STACK_MAX_DEFAULT_SIZE_MB
0887         int "Default maximum user stack size for 32-bit processes (MB)"
0888         default 100
0889         range 8 2048
0890         depends on STACK_GROWSUP && (!64BIT || COMPAT)
0891         help
0892           This is the maximum stack size in Megabytes in the VM layout of 32-bit
0893           user processes when the stack grows upwards (currently only on parisc
0894           arch) when the RLIMIT_STACK hard limit is unlimited.
0895 
0896           A sane initial value is 100 MB.
0897 
0898 config DEFERRED_STRUCT_PAGE_INIT
0899         bool "Defer initialisation of struct pages to kthreads"
0900         depends on SPARSEMEM
0901         depends on !NEED_PER_CPU_KM
0902         depends on 64BIT
0903         select PADATA
0904         help
0905           Ordinarily all struct pages are initialised during early boot in a
0906           single thread. On very large machines this can take a considerable
0907           amount of time. If this option is set, large machines will bring up
0908           a subset of memmap at boot and then initialise the rest in parallel.
0909           This has a potential performance impact on tasks running early in the
0910           lifetime of the system until these kthreads finish the
0911           initialisation.
0912 
0913 config PAGE_IDLE_FLAG
0914         bool
0915         select PAGE_EXTENSION if !64BIT
0916         help
0917           This adds PG_idle and PG_young flags to 'struct page'.  PTE Accessed
0918           bit writers can set the state of the bit in the flags so that PTE
0919           Accessed bit readers may avoid disturbance.
0920 
0921 config IDLE_PAGE_TRACKING
0922         bool "Enable idle page tracking"
0923         depends on SYSFS && MMU
0924         select PAGE_IDLE_FLAG
0925         help
0926           This feature allows to estimate the amount of user pages that have
0927           not been touched during a given period of time. This information can
0928           be useful to tune memory cgroup limits and/or for job placement
0929           within a compute cluster.
0930 
0931           See Documentation/admin-guide/mm/idle_page_tracking.rst for
0932           more details.
0933 
0934 config ARCH_HAS_CACHE_LINE_SIZE
0935         bool
0936 
0937 config ARCH_HAS_CURRENT_STACK_POINTER
0938         bool
0939         help
0940           In support of HARDENED_USERCOPY performing stack variable lifetime
0941           checking, an architecture-agnostic way to find the stack pointer
0942           is needed. Once an architecture defines an unsigned long global
0943           register alias named "current_stack_pointer", this config can be
0944           selected.
0945 
0946 config ARCH_HAS_PTE_DEVMAP
0947         bool
0948 
0949 config ARCH_HAS_ZONE_DMA_SET
0950         bool
0951 
0952 config ZONE_DMA
0953         bool "Support DMA zone" if ARCH_HAS_ZONE_DMA_SET
0954         default y if ARM64 || X86
0955 
0956 config ZONE_DMA32
0957         bool "Support DMA32 zone" if ARCH_HAS_ZONE_DMA_SET
0958         depends on !X86_32
0959         default y if ARM64
0960 
0961 config ZONE_DEVICE
0962         bool "Device memory (pmem, HMM, etc...) hotplug support"
0963         depends on MEMORY_HOTPLUG
0964         depends on MEMORY_HOTREMOVE
0965         depends on SPARSEMEM_VMEMMAP
0966         depends on ARCH_HAS_PTE_DEVMAP
0967         select XARRAY_MULTI
0968 
0969         help
0970           Device memory hotplug support allows for establishing pmem,
0971           or other device driver discovered memory regions, in the
0972           memmap. This allows pfn_to_page() lookups of otherwise
0973           "device-physical" addresses which is needed for using a DAX
0974           mapping in an O_DIRECT operation, among other things.
0975 
0976           If FS_DAX is enabled, then say Y.
0977 
0978 #
0979 # Helpers to mirror range of the CPU page tables of a process into device page
0980 # tables.
0981 #
0982 config HMM_MIRROR
0983         bool
0984         depends on MMU
0985 
0986 config GET_FREE_REGION
0987         depends on SPARSEMEM
0988         bool
0989 
0990 config DEVICE_PRIVATE
0991         bool "Unaddressable device memory (GPU memory, ...)"
0992         depends on ZONE_DEVICE
0993         select GET_FREE_REGION
0994 
0995         help
0996           Allows creation of struct pages to represent unaddressable device
0997           memory; i.e., memory that is only accessible from the device (or
0998           group of devices). You likely also want to select HMM_MIRROR.
0999 
1000 config VMAP_PFN
1001         bool
1002 
1003 config ARCH_USES_HIGH_VMA_FLAGS
1004         bool
1005 config ARCH_HAS_PKEYS
1006         bool
1007 
1008 config VM_EVENT_COUNTERS
1009         default y
1010         bool "Enable VM event counters for /proc/vmstat" if EXPERT
1011         help
1012           VM event counters are needed for event counts to be shown.
1013           This option allows the disabling of the VM event counters
1014           on EXPERT systems.  /proc/vmstat will only show page counts
1015           if VM event counters are disabled.
1016 
1017 config PERCPU_STATS
1018         bool "Collect percpu memory statistics"
1019         help
1020           This feature collects and exposes statistics via debugfs. The
1021           information includes global and per chunk statistics, which can
1022           be used to help understand percpu memory usage.
1023 
1024 config GUP_TEST
1025         bool "Enable infrastructure for get_user_pages()-related unit tests"
1026         depends on DEBUG_FS
1027         help
1028           Provides /sys/kernel/debug/gup_test, which in turn provides a way
1029           to make ioctl calls that can launch kernel-based unit tests for
1030           the get_user_pages*() and pin_user_pages*() family of API calls.
1031 
1032           These tests include benchmark testing of the _fast variants of
1033           get_user_pages*() and pin_user_pages*(), as well as smoke tests of
1034           the non-_fast variants.
1035 
1036           There is also a sub-test that allows running dump_page() on any
1037           of up to eight pages (selected by command line args) within the
1038           range of user-space addresses. These pages are either pinned via
1039           pin_user_pages*(), or pinned via get_user_pages*(), as specified
1040           by other command line arguments.
1041 
1042           See tools/testing/selftests/vm/gup_test.c
1043 
1044 comment "GUP_TEST needs to have DEBUG_FS enabled"
1045         depends on !GUP_TEST && !DEBUG_FS
1046 
1047 config GUP_GET_PTE_LOW_HIGH
1048         bool
1049 
1050 config ARCH_HAS_PTE_SPECIAL
1051         bool
1052 
1053 #
1054 # Some architectures require a special hugepage directory format that is
1055 # required to support multiple hugepage sizes. For example a4fe3ce76
1056 # "powerpc/mm: Allow more flexible layouts for hugepage pagetables"
1057 # introduced it on powerpc.  This allows for a more flexible hugepage
1058 # pagetable layouts.
1059 #
1060 config ARCH_HAS_HUGEPD
1061         bool
1062 
1063 config MAPPING_DIRTY_HELPERS
1064         bool
1065 
1066 config KMAP_LOCAL
1067         bool
1068 
1069 config KMAP_LOCAL_NON_LINEAR_PTE_ARRAY
1070         bool
1071 
1072 # struct io_mapping based helper.  Selected by drivers that need them
1073 config IO_MAPPING
1074         bool
1075 
1076 config SECRETMEM
1077         def_bool ARCH_HAS_SET_DIRECT_MAP && !EMBEDDED
1078 
1079 config ANON_VMA_NAME
1080         bool "Anonymous VMA name support"
1081         depends on PROC_FS && ADVISE_SYSCALLS && MMU
1082 
1083         help
1084           Allow naming anonymous virtual memory areas.
1085 
1086           This feature allows assigning names to virtual memory areas. Assigned
1087           names can be later retrieved from /proc/pid/maps and /proc/pid/smaps
1088           and help identifying individual anonymous memory areas.
1089           Assigning a name to anonymous virtual memory area might prevent that
1090           area from being merged with adjacent virtual memory areas due to the
1091           difference in their name.
1092 
1093 config USERFAULTFD
1094         bool "Enable userfaultfd() system call"
1095         depends on MMU
1096         help
1097           Enable the userfaultfd() system call that allows to intercept and
1098           handle page faults in userland.
1099 
1100 config HAVE_ARCH_USERFAULTFD_WP
1101         bool
1102         help
1103           Arch has userfaultfd write protection support
1104 
1105 config HAVE_ARCH_USERFAULTFD_MINOR
1106         bool
1107         help
1108           Arch has userfaultfd minor fault support
1109 
1110 config PTE_MARKER
1111         bool
1112 
1113         help
1114           Allows to create marker PTEs for file-backed memory.
1115 
1116 config PTE_MARKER_UFFD_WP
1117         bool "Userfaultfd write protection support for shmem/hugetlbfs"
1118         default y
1119         depends on HAVE_ARCH_USERFAULTFD_WP
1120         select PTE_MARKER
1121 
1122         help
1123           Allows to create marker PTEs for userfaultfd write protection
1124           purposes.  It is required to enable userfaultfd write protection on
1125           file-backed memory types like shmem and hugetlbfs.
1126 
1127 source "mm/damon/Kconfig"
1128 
1129 endmenu