Back to home page

OSCL-LXR

 
 

    


0001 /* ******************************************************************
0002  * huff0 huffman decoder,
0003  * part of Finite State Entropy library
0004  * Copyright (c) Yann Collet, Facebook, Inc.
0005  *
0006  *  You can contact the author at :
0007  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
0008  *
0009  * This source code is licensed under both the BSD-style license (found in the
0010  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
0011  * in the COPYING file in the root directory of this source tree).
0012  * You may select, at your option, one of the above-listed licenses.
0013 ****************************************************************** */
0014 
0015 /* **************************************************************
0016 *  Dependencies
0017 ****************************************************************/
0018 #include "../common/zstd_deps.h"  /* ZSTD_memcpy, ZSTD_memset */
0019 #include "../common/compiler.h"
0020 #include "../common/bitstream.h"  /* BIT_* */
0021 #include "../common/fse.h"        /* to compress headers */
0022 #define HUF_STATIC_LINKING_ONLY
0023 #include "../common/huf.h"
0024 #include "../common/error_private.h"
0025 
0026 /* **************************************************************
0027 *  Macros
0028 ****************************************************************/
0029 
0030 /* These two optional macros force the use one way or another of the two
0031  * Huffman decompression implementations. You can't force in both directions
0032  * at the same time.
0033  */
0034 #if defined(HUF_FORCE_DECOMPRESS_X1) && \
0035     defined(HUF_FORCE_DECOMPRESS_X2)
0036 #error "Cannot force the use of the X1 and X2 decoders at the same time!"
0037 #endif
0038 
0039 
0040 /* **************************************************************
0041 *  Error Management
0042 ****************************************************************/
0043 #define HUF_isError ERR_isError
0044 
0045 
0046 /* **************************************************************
0047 *  Byte alignment for workSpace management
0048 ****************************************************************/
0049 #define HUF_ALIGN(x, a)         HUF_ALIGN_MASK((x), (a) - 1)
0050 #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
0051 
0052 
0053 /* **************************************************************
0054 *  BMI2 Variant Wrappers
0055 ****************************************************************/
0056 #if DYNAMIC_BMI2
0057 
0058 #define HUF_DGEN(fn)                                                        \
0059                                                                             \
0060     static size_t fn##_default(                                             \
0061                   void* dst,  size_t dstSize,                               \
0062             const void* cSrc, size_t cSrcSize,                              \
0063             const HUF_DTable* DTable)                                       \
0064     {                                                                       \
0065         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
0066     }                                                                       \
0067                                                                             \
0068     static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2(                       \
0069                   void* dst,  size_t dstSize,                               \
0070             const void* cSrc, size_t cSrcSize,                              \
0071             const HUF_DTable* DTable)                                       \
0072     {                                                                       \
0073         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
0074     }                                                                       \
0075                                                                             \
0076     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
0077                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
0078     {                                                                       \
0079         if (bmi2) {                                                         \
0080             return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);         \
0081         }                                                                   \
0082         return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable);          \
0083     }
0084 
0085 #else
0086 
0087 #define HUF_DGEN(fn)                                                        \
0088     static size_t fn(void* dst, size_t dstSize, void const* cSrc,           \
0089                      size_t cSrcSize, HUF_DTable const* DTable, int bmi2)   \
0090     {                                                                       \
0091         (void)bmi2;                                                         \
0092         return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable);             \
0093     }
0094 
0095 #endif
0096 
0097 
0098 /*-***************************/
0099 /*  generic DTableDesc       */
0100 /*-***************************/
0101 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
0102 
0103 static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
0104 {
0105     DTableDesc dtd;
0106     ZSTD_memcpy(&dtd, table, sizeof(dtd));
0107     return dtd;
0108 }
0109 
0110 
0111 #ifndef HUF_FORCE_DECOMPRESS_X2
0112 
0113 /*-***************************/
0114 /*  single-symbol decoding   */
0115 /*-***************************/
0116 typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1;   /* single-symbol decoding */
0117 
0118 /*
0119  * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
0120  * a time.
0121  */
0122 static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
0123     U64 D4;
0124     if (MEM_isLittleEndian()) {
0125         D4 = symbol + (nbBits << 8);
0126     } else {
0127         D4 = (symbol << 8) + nbBits;
0128     }
0129     D4 *= 0x0001000100010001ULL;
0130     return D4;
0131 }
0132 
0133 typedef struct {
0134         U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
0135         U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
0136         U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
0137         BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
0138         BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
0139 } HUF_ReadDTableX1_Workspace;
0140 
0141 
0142 size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
0143 {
0144     return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
0145 }
0146 
0147 size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
0148 {
0149     U32 tableLog = 0;
0150     U32 nbSymbols = 0;
0151     size_t iSize;
0152     void* const dtPtr = DTable + 1;
0153     HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
0154     HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
0155 
0156     DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
0157     if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
0158 
0159     DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
0160     /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */
0161 
0162     iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
0163     if (HUF_isError(iSize)) return iSize;
0164 
0165     /* Table header */
0166     {   DTableDesc dtd = HUF_getDTableDesc(DTable);
0167         if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
0168         dtd.tableType = 0;
0169         dtd.tableLog = (BYTE)tableLog;
0170         ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
0171     }
0172 
0173     /* Compute symbols and rankStart given rankVal:
0174      *
0175      * rankVal already contains the number of values of each weight.
0176      *
0177      * symbols contains the symbols ordered by weight. First are the rankVal[0]
0178      * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
0179      * symbols[0] is filled (but unused) to avoid a branch.
0180      *
0181      * rankStart contains the offset where each rank belongs in the DTable.
0182      * rankStart[0] is not filled because there are no entries in the table for
0183      * weight 0.
0184      */
0185     {
0186         int n;
0187         int nextRankStart = 0;
0188         int const unroll = 4;
0189         int const nLimit = (int)nbSymbols - unroll + 1;
0190         for (n=0; n<(int)tableLog+1; n++) {
0191             U32 const curr = nextRankStart;
0192             nextRankStart += wksp->rankVal[n];
0193             wksp->rankStart[n] = curr;
0194         }
0195         for (n=0; n < nLimit; n += unroll) {
0196             int u;
0197             for (u=0; u < unroll; ++u) {
0198                 size_t const w = wksp->huffWeight[n+u];
0199                 wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
0200             }
0201         }
0202         for (; n < (int)nbSymbols; ++n) {
0203             size_t const w = wksp->huffWeight[n];
0204             wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
0205         }
0206     }
0207 
0208     /* fill DTable
0209      * We fill all entries of each weight in order.
0210      * That way length is a constant for each iteration of the outter loop.
0211      * We can switch based on the length to a different inner loop which is
0212      * optimized for that particular case.
0213      */
0214     {
0215         U32 w;
0216         int symbol=wksp->rankVal[0];
0217         int rankStart=0;
0218         for (w=1; w<tableLog+1; ++w) {
0219             int const symbolCount = wksp->rankVal[w];
0220             int const length = (1 << w) >> 1;
0221             int uStart = rankStart;
0222             BYTE const nbBits = (BYTE)(tableLog + 1 - w);
0223             int s;
0224             int u;
0225             switch (length) {
0226             case 1:
0227                 for (s=0; s<symbolCount; ++s) {
0228                     HUF_DEltX1 D;
0229                     D.byte = wksp->symbols[symbol + s];
0230                     D.nbBits = nbBits;
0231                     dt[uStart] = D;
0232                     uStart += 1;
0233                 }
0234                 break;
0235             case 2:
0236                 for (s=0; s<symbolCount; ++s) {
0237                     HUF_DEltX1 D;
0238                     D.byte = wksp->symbols[symbol + s];
0239                     D.nbBits = nbBits;
0240                     dt[uStart+0] = D;
0241                     dt[uStart+1] = D;
0242                     uStart += 2;
0243                 }
0244                 break;
0245             case 4:
0246                 for (s=0; s<symbolCount; ++s) {
0247                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
0248                     MEM_write64(dt + uStart, D4);
0249                     uStart += 4;
0250                 }
0251                 break;
0252             case 8:
0253                 for (s=0; s<symbolCount; ++s) {
0254                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
0255                     MEM_write64(dt + uStart, D4);
0256                     MEM_write64(dt + uStart + 4, D4);
0257                     uStart += 8;
0258                 }
0259                 break;
0260             default:
0261                 for (s=0; s<symbolCount; ++s) {
0262                     U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
0263                     for (u=0; u < length; u += 16) {
0264                         MEM_write64(dt + uStart + u + 0, D4);
0265                         MEM_write64(dt + uStart + u + 4, D4);
0266                         MEM_write64(dt + uStart + u + 8, D4);
0267                         MEM_write64(dt + uStart + u + 12, D4);
0268                     }
0269                     assert(u == length);
0270                     uStart += length;
0271                 }
0272                 break;
0273             }
0274             symbol += symbolCount;
0275             rankStart += symbolCount * length;
0276         }
0277     }
0278     return iSize;
0279 }
0280 
0281 FORCE_INLINE_TEMPLATE BYTE
0282 HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
0283 {
0284     size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
0285     BYTE const c = dt[val].byte;
0286     BIT_skipBits(Dstream, dt[val].nbBits);
0287     return c;
0288 }
0289 
0290 #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
0291     *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
0292 
0293 #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr)  \
0294     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
0295         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
0296 
0297 #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
0298     if (MEM_64bits()) \
0299         HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
0300 
0301 HINT_INLINE size_t
0302 HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
0303 {
0304     BYTE* const pStart = p;
0305 
0306     /* up to 4 symbols at a time */
0307     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
0308         HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
0309         HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
0310         HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
0311         HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
0312     }
0313 
0314     /* [0-3] symbols remaining */
0315     if (MEM_32bits())
0316         while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
0317             HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
0318 
0319     /* no more data to retrieve from bitstream, no need to reload */
0320     while (p < pEnd)
0321         HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
0322 
0323     return pEnd-pStart;
0324 }
0325 
0326 FORCE_INLINE_TEMPLATE size_t
0327 HUF_decompress1X1_usingDTable_internal_body(
0328           void* dst,  size_t dstSize,
0329     const void* cSrc, size_t cSrcSize,
0330     const HUF_DTable* DTable)
0331 {
0332     BYTE* op = (BYTE*)dst;
0333     BYTE* const oend = op + dstSize;
0334     const void* dtPtr = DTable + 1;
0335     const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
0336     BIT_DStream_t bitD;
0337     DTableDesc const dtd = HUF_getDTableDesc(DTable);
0338     U32 const dtLog = dtd.tableLog;
0339 
0340     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
0341 
0342     HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
0343 
0344     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
0345 
0346     return dstSize;
0347 }
0348 
0349 FORCE_INLINE_TEMPLATE size_t
0350 HUF_decompress4X1_usingDTable_internal_body(
0351           void* dst,  size_t dstSize,
0352     const void* cSrc, size_t cSrcSize,
0353     const HUF_DTable* DTable)
0354 {
0355     /* Check */
0356     if (cSrcSize < 10) return ERROR(corruption_detected);  /* strict minimum : jump table + 1 byte per stream */
0357 
0358     {   const BYTE* const istart = (const BYTE*) cSrc;
0359         BYTE* const ostart = (BYTE*) dst;
0360         BYTE* const oend = ostart + dstSize;
0361         BYTE* const olimit = oend - 3;
0362         const void* const dtPtr = DTable + 1;
0363         const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
0364 
0365         /* Init */
0366         BIT_DStream_t bitD1;
0367         BIT_DStream_t bitD2;
0368         BIT_DStream_t bitD3;
0369         BIT_DStream_t bitD4;
0370         size_t const length1 = MEM_readLE16(istart);
0371         size_t const length2 = MEM_readLE16(istart+2);
0372         size_t const length3 = MEM_readLE16(istart+4);
0373         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
0374         const BYTE* const istart1 = istart + 6;  /* jumpTable */
0375         const BYTE* const istart2 = istart1 + length1;
0376         const BYTE* const istart3 = istart2 + length2;
0377         const BYTE* const istart4 = istart3 + length3;
0378         const size_t segmentSize = (dstSize+3) / 4;
0379         BYTE* const opStart2 = ostart + segmentSize;
0380         BYTE* const opStart3 = opStart2 + segmentSize;
0381         BYTE* const opStart4 = opStart3 + segmentSize;
0382         BYTE* op1 = ostart;
0383         BYTE* op2 = opStart2;
0384         BYTE* op3 = opStart3;
0385         BYTE* op4 = opStart4;
0386         DTableDesc const dtd = HUF_getDTableDesc(DTable);
0387         U32 const dtLog = dtd.tableLog;
0388         U32 endSignal = 1;
0389 
0390         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
0391         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
0392         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
0393         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
0394         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
0395 
0396         /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
0397         for ( ; (endSignal) & (op4 < olimit) ; ) {
0398             HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
0399             HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
0400             HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
0401             HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
0402             HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
0403             HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
0404             HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
0405             HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
0406             HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
0407             HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
0408             HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
0409             HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
0410             HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
0411             HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
0412             HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
0413             HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
0414             endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
0415             endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
0416             endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
0417             endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
0418         }
0419 
0420         /* check corruption */
0421         /* note : should not be necessary : op# advance in lock step, and we control op4.
0422          *        but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
0423         if (op1 > opStart2) return ERROR(corruption_detected);
0424         if (op2 > opStart3) return ERROR(corruption_detected);
0425         if (op3 > opStart4) return ERROR(corruption_detected);
0426         /* note : op4 supposed already verified within main loop */
0427 
0428         /* finish bitStreams one by one */
0429         HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
0430         HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
0431         HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
0432         HUF_decodeStreamX1(op4, &bitD4, oend,     dt, dtLog);
0433 
0434         /* check */
0435         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
0436           if (!endCheck) return ERROR(corruption_detected); }
0437 
0438         /* decoded size */
0439         return dstSize;
0440     }
0441 }
0442 
0443 
0444 typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
0445                                                const void *cSrc,
0446                                                size_t cSrcSize,
0447                                                const HUF_DTable *DTable);
0448 
0449 HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
0450 HUF_DGEN(HUF_decompress4X1_usingDTable_internal)
0451 
0452 
0453 
0454 size_t HUF_decompress1X1_usingDTable(
0455           void* dst,  size_t dstSize,
0456     const void* cSrc, size_t cSrcSize,
0457     const HUF_DTable* DTable)
0458 {
0459     DTableDesc dtd = HUF_getDTableDesc(DTable);
0460     if (dtd.tableType != 0) return ERROR(GENERIC);
0461     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
0462 }
0463 
0464 size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
0465                                    const void* cSrc, size_t cSrcSize,
0466                                    void* workSpace, size_t wkspSize)
0467 {
0468     const BYTE* ip = (const BYTE*) cSrc;
0469 
0470     size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
0471     if (HUF_isError(hSize)) return hSize;
0472     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
0473     ip += hSize; cSrcSize -= hSize;
0474 
0475     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
0476 }
0477 
0478 
0479 size_t HUF_decompress4X1_usingDTable(
0480           void* dst,  size_t dstSize,
0481     const void* cSrc, size_t cSrcSize,
0482     const HUF_DTable* DTable)
0483 {
0484     DTableDesc dtd = HUF_getDTableDesc(DTable);
0485     if (dtd.tableType != 0) return ERROR(GENERIC);
0486     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
0487 }
0488 
0489 static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
0490                                    const void* cSrc, size_t cSrcSize,
0491                                    void* workSpace, size_t wkspSize, int bmi2)
0492 {
0493     const BYTE* ip = (const BYTE*) cSrc;
0494 
0495     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
0496     if (HUF_isError(hSize)) return hSize;
0497     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
0498     ip += hSize; cSrcSize -= hSize;
0499 
0500     return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
0501 }
0502 
0503 size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
0504                                    const void* cSrc, size_t cSrcSize,
0505                                    void* workSpace, size_t wkspSize)
0506 {
0507     return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
0508 }
0509 
0510 
0511 #endif /* HUF_FORCE_DECOMPRESS_X2 */
0512 
0513 
0514 #ifndef HUF_FORCE_DECOMPRESS_X1
0515 
0516 /* *************************/
0517 /* double-symbols decoding */
0518 /* *************************/
0519 
0520 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2;  /* double-symbols decoding */
0521 typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
0522 typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
0523 typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
0524 
0525 
0526 /* HUF_fillDTableX2Level2() :
0527  * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
0528 static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed,
0529                            const U32* rankValOrigin, const int minWeight,
0530                            const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
0531                            U32 nbBitsBaseline, U16 baseSeq, U32* wksp, size_t wkspSize)
0532 {
0533     HUF_DEltX2 DElt;
0534     U32* rankVal = wksp;
0535 
0536     assert(wkspSize >= HUF_TABLELOG_MAX + 1);
0537     (void)wkspSize;
0538     /* get pre-calculated rankVal */
0539     ZSTD_memcpy(rankVal, rankValOrigin, sizeof(U32) * (HUF_TABLELOG_MAX + 1));
0540 
0541     /* fill skipped values */
0542     if (minWeight>1) {
0543         U32 i, skipSize = rankVal[minWeight];
0544         MEM_writeLE16(&(DElt.sequence), baseSeq);
0545         DElt.nbBits   = (BYTE)(consumed);
0546         DElt.length   = 1;
0547         for (i = 0; i < skipSize; i++)
0548             DTable[i] = DElt;
0549     }
0550 
0551     /* fill DTable */
0552     {   U32 s; for (s=0; s<sortedListSize; s++) {   /* note : sortedSymbols already skipped */
0553             const U32 symbol = sortedSymbols[s].symbol;
0554             const U32 weight = sortedSymbols[s].weight;
0555             const U32 nbBits = nbBitsBaseline - weight;
0556             const U32 length = 1 << (sizeLog-nbBits);
0557             const U32 start = rankVal[weight];
0558             U32 i = start;
0559             const U32 end = start + length;
0560 
0561             MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
0562             DElt.nbBits = (BYTE)(nbBits + consumed);
0563             DElt.length = 2;
0564             do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */
0565 
0566             rankVal[weight] += length;
0567     }   }
0568 }
0569 
0570 
0571 static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
0572                            const sortedSymbol_t* sortedList, const U32 sortedListSize,
0573                            const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
0574                            const U32 nbBitsBaseline, U32* wksp, size_t wkspSize)
0575 {
0576     U32* rankVal = wksp;
0577     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
0578     const U32 minBits  = nbBitsBaseline - maxWeight;
0579     U32 s;
0580 
0581     assert(wkspSize >= HUF_TABLELOG_MAX + 1);
0582     wksp += HUF_TABLELOG_MAX + 1;
0583     wkspSize -= HUF_TABLELOG_MAX + 1;
0584 
0585     ZSTD_memcpy(rankVal, rankValOrigin, sizeof(U32) * (HUF_TABLELOG_MAX + 1));
0586 
0587     /* fill DTable */
0588     for (s=0; s<sortedListSize; s++) {
0589         const U16 symbol = sortedList[s].symbol;
0590         const U32 weight = sortedList[s].weight;
0591         const U32 nbBits = nbBitsBaseline - weight;
0592         const U32 start = rankVal[weight];
0593         const U32 length = 1 << (targetLog-nbBits);
0594 
0595         if (targetLog-nbBits >= minBits) {   /* enough room for a second symbol */
0596             U32 sortedRank;
0597             int minWeight = nbBits + scaleLog;
0598             if (minWeight < 1) minWeight = 1;
0599             sortedRank = rankStart[minWeight];
0600             HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits,
0601                            rankValOrigin[nbBits], minWeight,
0602                            sortedList+sortedRank, sortedListSize-sortedRank,
0603                            nbBitsBaseline, symbol, wksp, wkspSize);
0604         } else {
0605             HUF_DEltX2 DElt;
0606             MEM_writeLE16(&(DElt.sequence), symbol);
0607             DElt.nbBits = (BYTE)(nbBits);
0608             DElt.length = 1;
0609             {   U32 const end = start + length;
0610                 U32 u;
0611                 for (u = start; u < end; u++) DTable[u] = DElt;
0612         }   }
0613         rankVal[weight] += length;
0614     }
0615 }
0616 
0617 typedef struct {
0618     rankValCol_t rankVal[HUF_TABLELOG_MAX];
0619     U32 rankStats[HUF_TABLELOG_MAX + 1];
0620     U32 rankStart0[HUF_TABLELOG_MAX + 2];
0621     sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
0622     BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
0623     U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
0624 } HUF_ReadDTableX2_Workspace;
0625 
0626 size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
0627                        const void* src, size_t srcSize,
0628                              void* workSpace, size_t wkspSize)
0629 {
0630     U32 tableLog, maxW, sizeOfSort, nbSymbols;
0631     DTableDesc dtd = HUF_getDTableDesc(DTable);
0632     U32 const maxTableLog = dtd.maxTableLog;
0633     size_t iSize;
0634     void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
0635     HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
0636     U32 *rankStart;
0637 
0638     HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
0639 
0640     if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
0641 
0642     rankStart = wksp->rankStart0 + 1;
0643     ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
0644     ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
0645 
0646     DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable));   /* if compiler fails here, assertion is wrong */
0647     if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
0648     /* ZSTD_memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */
0649 
0650     iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), /* bmi2 */ 0);
0651     if (HUF_isError(iSize)) return iSize;
0652 
0653     /* check result */
0654     if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
0655 
0656     /* find maxWeight */
0657     for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
0658 
0659     /* Get start index of each weight */
0660     {   U32 w, nextRankStart = 0;
0661         for (w=1; w<maxW+1; w++) {
0662             U32 curr = nextRankStart;
0663             nextRankStart += wksp->rankStats[w];
0664             rankStart[w] = curr;
0665         }
0666         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
0667         sizeOfSort = nextRankStart;
0668     }
0669 
0670     /* sort symbols by weight */
0671     {   U32 s;
0672         for (s=0; s<nbSymbols; s++) {
0673             U32 const w = wksp->weightList[s];
0674             U32 const r = rankStart[w]++;
0675             wksp->sortedSymbol[r].symbol = (BYTE)s;
0676             wksp->sortedSymbol[r].weight = (BYTE)w;
0677         }
0678         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
0679     }
0680 
0681     /* Build rankVal */
0682     {   U32* const rankVal0 = wksp->rankVal[0];
0683         {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
0684             U32 nextRankVal = 0;
0685             U32 w;
0686             for (w=1; w<maxW+1; w++) {
0687                 U32 curr = nextRankVal;
0688                 nextRankVal += wksp->rankStats[w] << (w+rescale);
0689                 rankVal0[w] = curr;
0690         }   }
0691         {   U32 const minBits = tableLog+1 - maxW;
0692             U32 consumed;
0693             for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
0694                 U32* const rankValPtr = wksp->rankVal[consumed];
0695                 U32 w;
0696                 for (w = 1; w < maxW+1; w++) {
0697                     rankValPtr[w] = rankVal0[w] >> consumed;
0698     }   }   }   }
0699 
0700     HUF_fillDTableX2(dt, maxTableLog,
0701                    wksp->sortedSymbol, sizeOfSort,
0702                    wksp->rankStart0, wksp->rankVal, maxW,
0703                    tableLog+1,
0704                    wksp->calleeWksp, sizeof(wksp->calleeWksp) / sizeof(U32));
0705 
0706     dtd.tableLog = (BYTE)maxTableLog;
0707     dtd.tableType = 1;
0708     ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
0709     return iSize;
0710 }
0711 
0712 
0713 FORCE_INLINE_TEMPLATE U32
0714 HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
0715 {
0716     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
0717     ZSTD_memcpy(op, dt+val, 2);
0718     BIT_skipBits(DStream, dt[val].nbBits);
0719     return dt[val].length;
0720 }
0721 
0722 FORCE_INLINE_TEMPLATE U32
0723 HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
0724 {
0725     size_t const val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
0726     ZSTD_memcpy(op, dt+val, 1);
0727     if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
0728     else {
0729         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
0730             BIT_skipBits(DStream, dt[val].nbBits);
0731             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
0732                 /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
0733                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
0734     }   }
0735     return 1;
0736 }
0737 
0738 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
0739     ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
0740 
0741 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
0742     if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
0743         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
0744 
0745 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
0746     if (MEM_64bits()) \
0747         ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
0748 
0749 HINT_INLINE size_t
0750 HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
0751                 const HUF_DEltX2* const dt, const U32 dtLog)
0752 {
0753     BYTE* const pStart = p;
0754 
0755     /* up to 8 symbols at a time */
0756     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
0757         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
0758         HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
0759         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
0760         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
0761     }
0762 
0763     /* closer to end : up to 2 symbols at a time */
0764     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
0765         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
0766 
0767     while (p <= pEnd-2)
0768         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
0769 
0770     if (p < pEnd)
0771         p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
0772 
0773     return p-pStart;
0774 }
0775 
0776 FORCE_INLINE_TEMPLATE size_t
0777 HUF_decompress1X2_usingDTable_internal_body(
0778           void* dst,  size_t dstSize,
0779     const void* cSrc, size_t cSrcSize,
0780     const HUF_DTable* DTable)
0781 {
0782     BIT_DStream_t bitD;
0783 
0784     /* Init */
0785     CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
0786 
0787     /* decode */
0788     {   BYTE* const ostart = (BYTE*) dst;
0789         BYTE* const oend = ostart + dstSize;
0790         const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
0791         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
0792         DTableDesc const dtd = HUF_getDTableDesc(DTable);
0793         HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
0794     }
0795 
0796     /* check */
0797     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
0798 
0799     /* decoded size */
0800     return dstSize;
0801 }
0802 
0803 FORCE_INLINE_TEMPLATE size_t
0804 HUF_decompress4X2_usingDTable_internal_body(
0805           void* dst,  size_t dstSize,
0806     const void* cSrc, size_t cSrcSize,
0807     const HUF_DTable* DTable)
0808 {
0809     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
0810 
0811     {   const BYTE* const istart = (const BYTE*) cSrc;
0812         BYTE* const ostart = (BYTE*) dst;
0813         BYTE* const oend = ostart + dstSize;
0814         BYTE* const olimit = oend - (sizeof(size_t)-1);
0815         const void* const dtPtr = DTable+1;
0816         const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
0817 
0818         /* Init */
0819         BIT_DStream_t bitD1;
0820         BIT_DStream_t bitD2;
0821         BIT_DStream_t bitD3;
0822         BIT_DStream_t bitD4;
0823         size_t const length1 = MEM_readLE16(istart);
0824         size_t const length2 = MEM_readLE16(istart+2);
0825         size_t const length3 = MEM_readLE16(istart+4);
0826         size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
0827         const BYTE* const istart1 = istart + 6;  /* jumpTable */
0828         const BYTE* const istart2 = istart1 + length1;
0829         const BYTE* const istart3 = istart2 + length2;
0830         const BYTE* const istart4 = istart3 + length3;
0831         size_t const segmentSize = (dstSize+3) / 4;
0832         BYTE* const opStart2 = ostart + segmentSize;
0833         BYTE* const opStart3 = opStart2 + segmentSize;
0834         BYTE* const opStart4 = opStart3 + segmentSize;
0835         BYTE* op1 = ostart;
0836         BYTE* op2 = opStart2;
0837         BYTE* op3 = opStart3;
0838         BYTE* op4 = opStart4;
0839         U32 endSignal = 1;
0840         DTableDesc const dtd = HUF_getDTableDesc(DTable);
0841         U32 const dtLog = dtd.tableLog;
0842 
0843         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
0844         CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
0845         CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
0846         CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
0847         CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
0848 
0849         /* 16-32 symbols per loop (4-8 symbols per stream) */
0850         for ( ; (endSignal) & (op4 < olimit); ) {
0851 #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
0852             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
0853             HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
0854             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
0855             HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
0856             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
0857             HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
0858             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
0859             HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
0860             endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
0861             endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
0862             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
0863             HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
0864             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
0865             HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
0866             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
0867             HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
0868             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
0869             HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
0870             endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
0871             endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
0872 #else
0873             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
0874             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
0875             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
0876             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
0877             HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
0878             HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
0879             HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
0880             HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
0881             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
0882             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
0883             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
0884             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
0885             HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
0886             HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
0887             HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
0888             HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
0889             endSignal = (U32)LIKELY((U32)
0890                         (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
0891                       & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
0892                       & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
0893                       & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
0894 #endif
0895         }
0896 
0897         /* check corruption */
0898         if (op1 > opStart2) return ERROR(corruption_detected);
0899         if (op2 > opStart3) return ERROR(corruption_detected);
0900         if (op3 > opStart4) return ERROR(corruption_detected);
0901         /* note : op4 already verified within main loop */
0902 
0903         /* finish bitStreams one by one */
0904         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
0905         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
0906         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
0907         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
0908 
0909         /* check */
0910         { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
0911           if (!endCheck) return ERROR(corruption_detected); }
0912 
0913         /* decoded size */
0914         return dstSize;
0915     }
0916 }
0917 
0918 HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
0919 HUF_DGEN(HUF_decompress4X2_usingDTable_internal)
0920 
0921 size_t HUF_decompress1X2_usingDTable(
0922           void* dst,  size_t dstSize,
0923     const void* cSrc, size_t cSrcSize,
0924     const HUF_DTable* DTable)
0925 {
0926     DTableDesc dtd = HUF_getDTableDesc(DTable);
0927     if (dtd.tableType != 1) return ERROR(GENERIC);
0928     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
0929 }
0930 
0931 size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
0932                                    const void* cSrc, size_t cSrcSize,
0933                                    void* workSpace, size_t wkspSize)
0934 {
0935     const BYTE* ip = (const BYTE*) cSrc;
0936 
0937     size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
0938                                                workSpace, wkspSize);
0939     if (HUF_isError(hSize)) return hSize;
0940     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
0941     ip += hSize; cSrcSize -= hSize;
0942 
0943     return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
0944 }
0945 
0946 
0947 size_t HUF_decompress4X2_usingDTable(
0948           void* dst,  size_t dstSize,
0949     const void* cSrc, size_t cSrcSize,
0950     const HUF_DTable* DTable)
0951 {
0952     DTableDesc dtd = HUF_getDTableDesc(DTable);
0953     if (dtd.tableType != 1) return ERROR(GENERIC);
0954     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
0955 }
0956 
0957 static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
0958                                    const void* cSrc, size_t cSrcSize,
0959                                    void* workSpace, size_t wkspSize, int bmi2)
0960 {
0961     const BYTE* ip = (const BYTE*) cSrc;
0962 
0963     size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
0964                                          workSpace, wkspSize);
0965     if (HUF_isError(hSize)) return hSize;
0966     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
0967     ip += hSize; cSrcSize -= hSize;
0968 
0969     return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
0970 }
0971 
0972 size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
0973                                    const void* cSrc, size_t cSrcSize,
0974                                    void* workSpace, size_t wkspSize)
0975 {
0976     return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
0977 }
0978 
0979 
0980 #endif /* HUF_FORCE_DECOMPRESS_X1 */
0981 
0982 
0983 /* ***********************************/
0984 /* Universal decompression selectors */
0985 /* ***********************************/
0986 
0987 size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
0988                                     const void* cSrc, size_t cSrcSize,
0989                                     const HUF_DTable* DTable)
0990 {
0991     DTableDesc const dtd = HUF_getDTableDesc(DTable);
0992 #if defined(HUF_FORCE_DECOMPRESS_X1)
0993     (void)dtd;
0994     assert(dtd.tableType == 0);
0995     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
0996 #elif defined(HUF_FORCE_DECOMPRESS_X2)
0997     (void)dtd;
0998     assert(dtd.tableType == 1);
0999     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1000 #else
1001     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
1002                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1003 #endif
1004 }
1005 
1006 size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
1007                                     const void* cSrc, size_t cSrcSize,
1008                                     const HUF_DTable* DTable)
1009 {
1010     DTableDesc const dtd = HUF_getDTableDesc(DTable);
1011 #if defined(HUF_FORCE_DECOMPRESS_X1)
1012     (void)dtd;
1013     assert(dtd.tableType == 0);
1014     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1015 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1016     (void)dtd;
1017     assert(dtd.tableType == 1);
1018     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1019 #else
1020     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
1021                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1022 #endif
1023 }
1024 
1025 
1026 #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1027 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1028 static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
1029 {
1030     /* single, double, quad */
1031     {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
1032     {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
1033     {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
1034     {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
1035     {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
1036     {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
1037     {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
1038     {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
1039     {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
1040     {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
1041     {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
1042     {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
1043     {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
1044     {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
1045     {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
1046     {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
1047 };
1048 #endif
1049 
1050 /* HUF_selectDecoder() :
1051  *  Tells which decoder is likely to decode faster,
1052  *  based on a set of pre-computed metrics.
1053  * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1054  *  Assumption : 0 < dstSize <= 128 KB */
1055 U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1056 {
1057     assert(dstSize > 0);
1058     assert(dstSize <= 128*1024);
1059 #if defined(HUF_FORCE_DECOMPRESS_X1)
1060     (void)dstSize;
1061     (void)cSrcSize;
1062     return 0;
1063 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1064     (void)dstSize;
1065     (void)cSrcSize;
1066     return 1;
1067 #else
1068     /* decoder timing evaluation */
1069     {   U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 */
1070         U32 const D256 = (U32)(dstSize >> 8);
1071         U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1072         U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1073         DTime1 += DTime1 >> 3;  /* advantage to algorithm using less memory, to reduce cache eviction */
1074         return DTime1 < DTime0;
1075     }
1076 #endif
1077 }
1078 
1079 
1080 size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
1081                                      size_t dstSize, const void* cSrc,
1082                                      size_t cSrcSize, void* workSpace,
1083                                      size_t wkspSize)
1084 {
1085     /* validation checks */
1086     if (dstSize == 0) return ERROR(dstSize_tooSmall);
1087     if (cSrcSize == 0) return ERROR(corruption_detected);
1088 
1089     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1090 #if defined(HUF_FORCE_DECOMPRESS_X1)
1091         (void)algoNb;
1092         assert(algoNb == 0);
1093         return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1094 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1095         (void)algoNb;
1096         assert(algoNb == 1);
1097         return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1098 #else
1099         return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1100                             cSrcSize, workSpace, wkspSize):
1101                         HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1102 #endif
1103     }
1104 }
1105 
1106 size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1107                                   const void* cSrc, size_t cSrcSize,
1108                                   void* workSpace, size_t wkspSize)
1109 {
1110     /* validation checks */
1111     if (dstSize == 0) return ERROR(dstSize_tooSmall);
1112     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
1113     if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
1114     if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
1115 
1116     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1117 #if defined(HUF_FORCE_DECOMPRESS_X1)
1118         (void)algoNb;
1119         assert(algoNb == 0);
1120         return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1121                                 cSrcSize, workSpace, wkspSize);
1122 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1123         (void)algoNb;
1124         assert(algoNb == 1);
1125         return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1126                                 cSrcSize, workSpace, wkspSize);
1127 #else
1128         return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1129                                 cSrcSize, workSpace, wkspSize):
1130                         HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1131                                 cSrcSize, workSpace, wkspSize);
1132 #endif
1133     }
1134 }
1135 
1136 
1137 size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
1138 {
1139     DTableDesc const dtd = HUF_getDTableDesc(DTable);
1140 #if defined(HUF_FORCE_DECOMPRESS_X1)
1141     (void)dtd;
1142     assert(dtd.tableType == 0);
1143     return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1144 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1145     (void)dtd;
1146     assert(dtd.tableType == 1);
1147     return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1148 #else
1149     return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
1150                            HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1151 #endif
1152 }
1153 
1154 #ifndef HUF_FORCE_DECOMPRESS_X2
1155 size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
1156 {
1157     const BYTE* ip = (const BYTE*) cSrc;
1158 
1159     size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1160     if (HUF_isError(hSize)) return hSize;
1161     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1162     ip += hSize; cSrcSize -= hSize;
1163 
1164     return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
1165 }
1166 #endif
1167 
1168 size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
1169 {
1170     DTableDesc const dtd = HUF_getDTableDesc(DTable);
1171 #if defined(HUF_FORCE_DECOMPRESS_X1)
1172     (void)dtd;
1173     assert(dtd.tableType == 0);
1174     return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1175 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1176     (void)dtd;
1177     assert(dtd.tableType == 1);
1178     return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1179 #else
1180     return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
1181                            HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1182 #endif
1183 }
1184 
1185 size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
1186 {
1187     /* validation checks */
1188     if (dstSize == 0) return ERROR(dstSize_tooSmall);
1189     if (cSrcSize == 0) return ERROR(corruption_detected);
1190 
1191     {   U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1192 #if defined(HUF_FORCE_DECOMPRESS_X1)
1193         (void)algoNb;
1194         assert(algoNb == 0);
1195         return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1196 #elif defined(HUF_FORCE_DECOMPRESS_X2)
1197         (void)algoNb;
1198         assert(algoNb == 1);
1199         return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1200 #else
1201         return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
1202                         HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1203 #endif
1204     }
1205 }
1206