0001
0002
0003
0004
0005 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0006
0007 #include <linux/init.h>
0008 #include <linux/kernel.h>
0009 #include <linux/mm.h>
0010 #include <linux/module.h>
0011 #include <linux/slab.h>
0012 #include <linux/string.h>
0013 #include <linux/vmalloc.h>
0014
0015 #define GARBAGE_INT (0x09A7BA9E)
0016 #define GARBAGE_BYTE (0x9E)
0017
0018 #define REPORT_FAILURES_IN_FN() \
0019 do { \
0020 if (failures) \
0021 pr_info("%s failed %d out of %d times\n", \
0022 __func__, failures, num_tests); \
0023 else \
0024 pr_info("all %d tests in %s passed\n", \
0025 num_tests, __func__); \
0026 } while (0)
0027
0028
0029 static int __init count_nonzero_bytes(void *ptr, size_t size)
0030 {
0031 int i, ret = 0;
0032 unsigned char *p = (unsigned char *)ptr;
0033
0034 for (i = 0; i < size; i++)
0035 if (p[i])
0036 ret++;
0037 return ret;
0038 }
0039
0040
0041 static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip)
0042 {
0043 unsigned int *p = (unsigned int *)((char *)ptr + skip);
0044 int i = 0;
0045
0046 WARN_ON(skip > size);
0047 size -= skip;
0048
0049 while (size >= sizeof(*p)) {
0050 p[i] = GARBAGE_INT;
0051 i++;
0052 size -= sizeof(*p);
0053 }
0054 if (size)
0055 memset(&p[i], GARBAGE_BYTE, size);
0056 }
0057
0058 static void __init fill_with_garbage(void *ptr, size_t size)
0059 {
0060 fill_with_garbage_skip(ptr, size, 0);
0061 }
0062
0063 static int __init do_alloc_pages_order(int order, int *total_failures)
0064 {
0065 struct page *page;
0066 void *buf;
0067 size_t size = PAGE_SIZE << order;
0068
0069 page = alloc_pages(GFP_KERNEL, order);
0070 buf = page_address(page);
0071 fill_with_garbage(buf, size);
0072 __free_pages(page, order);
0073
0074 page = alloc_pages(GFP_KERNEL, order);
0075 buf = page_address(page);
0076 if (count_nonzero_bytes(buf, size))
0077 (*total_failures)++;
0078 fill_with_garbage(buf, size);
0079 __free_pages(page, order);
0080 return 1;
0081 }
0082
0083
0084 static int __init test_pages(int *total_failures)
0085 {
0086 int failures = 0, num_tests = 0;
0087 int i;
0088
0089 for (i = 0; i < 10; i++)
0090 num_tests += do_alloc_pages_order(i, &failures);
0091
0092 REPORT_FAILURES_IN_FN();
0093 *total_failures += failures;
0094 return num_tests;
0095 }
0096
0097
0098 static int __init do_kmalloc_size(size_t size, int *total_failures)
0099 {
0100 void *buf;
0101
0102 buf = kmalloc(size, GFP_KERNEL);
0103 fill_with_garbage(buf, size);
0104 kfree(buf);
0105
0106 buf = kmalloc(size, GFP_KERNEL);
0107 if (count_nonzero_bytes(buf, size))
0108 (*total_failures)++;
0109 fill_with_garbage(buf, size);
0110 kfree(buf);
0111 return 1;
0112 }
0113
0114
0115 static int __init do_vmalloc_size(size_t size, int *total_failures)
0116 {
0117 void *buf;
0118
0119 buf = vmalloc(size);
0120 fill_with_garbage(buf, size);
0121 vfree(buf);
0122
0123 buf = vmalloc(size);
0124 if (count_nonzero_bytes(buf, size))
0125 (*total_failures)++;
0126 fill_with_garbage(buf, size);
0127 vfree(buf);
0128 return 1;
0129 }
0130
0131
0132 static int __init test_kvmalloc(int *total_failures)
0133 {
0134 int failures = 0, num_tests = 0;
0135 int i, size;
0136
0137 for (i = 0; i < 20; i++) {
0138 size = 1 << i;
0139 num_tests += do_kmalloc_size(size, &failures);
0140 num_tests += do_vmalloc_size(size, &failures);
0141 }
0142
0143 REPORT_FAILURES_IN_FN();
0144 *total_failures += failures;
0145 return num_tests;
0146 }
0147
0148 #define CTOR_BYTES (sizeof(unsigned int))
0149 #define CTOR_PATTERN (0x41414141)
0150
0151 static void test_ctor(void *obj)
0152 {
0153 *(unsigned int *)obj = CTOR_PATTERN;
0154 }
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166 static bool __init check_buf(void *buf, int size, bool want_ctor,
0167 bool want_rcu, bool want_zero)
0168 {
0169 int bytes;
0170 bool fail = false;
0171
0172 bytes = count_nonzero_bytes(buf, size);
0173 WARN_ON(want_ctor && want_zero);
0174 if (want_zero)
0175 return bytes;
0176 if (want_ctor) {
0177 if (*(unsigned int *)buf != CTOR_PATTERN)
0178 fail = 1;
0179 } else {
0180 if (bytes)
0181 fail = !want_rcu;
0182 }
0183 return fail;
0184 }
0185
0186 #define BULK_SIZE 100
0187 static void *bulk_array[BULK_SIZE];
0188
0189
0190
0191
0192
0193
0194
0195 static int __init do_kmem_cache_size(size_t size, bool want_ctor,
0196 bool want_rcu, bool want_zero,
0197 int *total_failures)
0198 {
0199 struct kmem_cache *c;
0200 int iter;
0201 bool fail = false;
0202 gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0);
0203 void *buf, *buf_copy;
0204
0205 c = kmem_cache_create("test_cache", size, 1,
0206 want_rcu ? SLAB_TYPESAFE_BY_RCU : 0,
0207 want_ctor ? test_ctor : NULL);
0208 for (iter = 0; iter < 10; iter++) {
0209
0210 if (!want_rcu && !want_ctor) {
0211 int ret;
0212
0213 ret = kmem_cache_alloc_bulk(c, alloc_mask, BULK_SIZE, bulk_array);
0214 if (!ret) {
0215 fail = true;
0216 } else {
0217 int i;
0218 for (i = 0; i < ret; i++)
0219 fail |= check_buf(bulk_array[i], size, want_ctor, want_rcu, want_zero);
0220 kmem_cache_free_bulk(c, ret, bulk_array);
0221 }
0222 }
0223
0224 buf = kmem_cache_alloc(c, alloc_mask);
0225
0226 fail |= check_buf(buf, size, want_ctor, want_rcu, want_zero);
0227 fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0);
0228
0229 if (!want_rcu) {
0230 kmem_cache_free(c, buf);
0231 continue;
0232 }
0233
0234
0235
0236
0237
0238 rcu_read_lock();
0239
0240
0241
0242
0243 buf_copy = kmalloc(size, GFP_ATOMIC);
0244 if (buf_copy)
0245 memcpy(buf_copy, buf, size);
0246
0247 kmem_cache_free(c, buf);
0248
0249
0250
0251
0252
0253 fail |= check_buf(buf, size, want_ctor, want_rcu,
0254 false);
0255 if (buf_copy) {
0256 fail |= (bool)memcmp(buf, buf_copy, size);
0257 kfree(buf_copy);
0258 }
0259 rcu_read_unlock();
0260 }
0261 kmem_cache_destroy(c);
0262
0263 *total_failures += fail;
0264 return 1;
0265 }
0266
0267
0268
0269
0270
0271 static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures)
0272 {
0273 struct kmem_cache *c;
0274 void *buf, *buf_contents, *saved_ptr;
0275 void **used_objects;
0276 int i, iter, maxiter = 1024;
0277 bool fail = false;
0278
0279 c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU,
0280 NULL);
0281 buf = kmem_cache_alloc(c, GFP_KERNEL);
0282 if (!buf)
0283 goto out;
0284 saved_ptr = buf;
0285 fill_with_garbage(buf, size);
0286 buf_contents = kmalloc(size, GFP_KERNEL);
0287 if (!buf_contents) {
0288 kmem_cache_free(c, buf);
0289 goto out;
0290 }
0291 used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL);
0292 if (!used_objects) {
0293 kmem_cache_free(c, buf);
0294 kfree(buf_contents);
0295 goto out;
0296 }
0297 memcpy(buf_contents, buf, size);
0298 kmem_cache_free(c, buf);
0299
0300
0301
0302
0303 for (iter = 0; iter < maxiter; iter++) {
0304 buf = kmem_cache_alloc(c, GFP_KERNEL);
0305 used_objects[iter] = buf;
0306 if (buf == saved_ptr) {
0307 fail = memcmp(buf_contents, buf, size);
0308 for (i = 0; i <= iter; i++)
0309 kmem_cache_free(c, used_objects[i]);
0310 goto free_out;
0311 }
0312 }
0313
0314 for (iter = 0; iter < maxiter; iter++)
0315 kmem_cache_free(c, used_objects[iter]);
0316
0317 free_out:
0318 kfree(buf_contents);
0319 kfree(used_objects);
0320 out:
0321 kmem_cache_destroy(c);
0322 *total_failures += fail;
0323 return 1;
0324 }
0325
0326 static int __init do_kmem_cache_size_bulk(int size, int *total_failures)
0327 {
0328 struct kmem_cache *c;
0329 int i, iter, maxiter = 1024;
0330 int num, bytes;
0331 bool fail = false;
0332 void *objects[10];
0333
0334 c = kmem_cache_create("test_cache", size, size, 0, NULL);
0335 for (iter = 0; (iter < maxiter) && !fail; iter++) {
0336 num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects),
0337 objects);
0338 for (i = 0; i < num; i++) {
0339 bytes = count_nonzero_bytes(objects[i], size);
0340 if (bytes)
0341 fail = true;
0342 fill_with_garbage(objects[i], size);
0343 }
0344
0345 if (num)
0346 kmem_cache_free_bulk(c, num, objects);
0347 }
0348 kmem_cache_destroy(c);
0349 *total_failures += fail;
0350 return 1;
0351 }
0352
0353
0354
0355
0356
0357 static int __init test_kmemcache(int *total_failures)
0358 {
0359 int failures = 0, num_tests = 0;
0360 int i, flags, size;
0361 bool ctor, rcu, zero;
0362
0363 for (i = 0; i < 10; i++) {
0364 size = 8 << i;
0365 for (flags = 0; flags < 8; flags++) {
0366 ctor = flags & 1;
0367 rcu = flags & 2;
0368 zero = flags & 4;
0369 if (ctor & zero)
0370 continue;
0371 num_tests += do_kmem_cache_size(size, ctor, rcu, zero,
0372 &failures);
0373 }
0374 num_tests += do_kmem_cache_size_bulk(size, &failures);
0375 }
0376 REPORT_FAILURES_IN_FN();
0377 *total_failures += failures;
0378 return num_tests;
0379 }
0380
0381
0382 static int __init test_rcu_persistent(int *total_failures)
0383 {
0384 int failures = 0, num_tests = 0;
0385 int i, size;
0386
0387 for (i = 0; i < 10; i++) {
0388 size = 8 << i;
0389 num_tests += do_kmem_cache_rcu_persistent(size, &failures);
0390 }
0391 REPORT_FAILURES_IN_FN();
0392 *total_failures += failures;
0393 return num_tests;
0394 }
0395
0396
0397
0398
0399
0400 static int __init test_meminit_init(void)
0401 {
0402 int failures = 0, num_tests = 0;
0403
0404 num_tests += test_pages(&failures);
0405 num_tests += test_kvmalloc(&failures);
0406 num_tests += test_kmemcache(&failures);
0407 num_tests += test_rcu_persistent(&failures);
0408
0409 if (failures == 0)
0410 pr_info("all %d tests passed!\n", num_tests);
0411 else
0412 pr_info("failures: %d out of %d\n", failures, num_tests);
0413
0414 return failures ? -EINVAL : 0;
0415 }
0416 module_init(test_meminit_init);
0417
0418 MODULE_LICENSE("GPL");