![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0 0002 /* 0003 * Generic Reed Solomon encoder / decoder library 0004 * 0005 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 0006 * 0007 * Reed Solomon code lifted from reed solomon library written by Phil Karn 0008 * Copyright 2002 Phil Karn, KA9Q 0009 * 0010 * Description: 0011 * 0012 * The generic Reed Solomon library provides runtime configurable 0013 * encoding / decoding of RS codes. 0014 * 0015 * Each user must call init_rs to get a pointer to a rs_control structure 0016 * for the given rs parameters. The control struct is unique per instance. 0017 * It points to a codec which can be shared by multiple control structures. 0018 * If a codec is newly allocated then the polynomial arrays for fast 0019 * encoding / decoding are built. This can take some time so make sure not 0020 * to call this function from a time critical path. Usually a module / 0021 * driver should initialize the necessary rs_control structure on module / 0022 * driver init and release it on exit. 0023 * 0024 * The encoding puts the calculated syndrome into a given syndrome buffer. 0025 * 0026 * The decoding is a two step process. The first step calculates the 0027 * syndrome over the received (data + syndrome) and calls the second stage, 0028 * which does the decoding / error correction itself. Many hw encoders 0029 * provide a syndrome calculation over the received data + syndrome and can 0030 * call the second stage directly. 0031 */ 0032 #include <linux/errno.h> 0033 #include <linux/kernel.h> 0034 #include <linux/init.h> 0035 #include <linux/module.h> 0036 #include <linux/rslib.h> 0037 #include <linux/slab.h> 0038 #include <linux/mutex.h> 0039 0040 enum { 0041 RS_DECODE_LAMBDA, 0042 RS_DECODE_SYN, 0043 RS_DECODE_B, 0044 RS_DECODE_T, 0045 RS_DECODE_OMEGA, 0046 RS_DECODE_ROOT, 0047 RS_DECODE_REG, 0048 RS_DECODE_LOC, 0049 RS_DECODE_NUM_BUFFERS 0050 }; 0051 0052 /* This list holds all currently allocated rs codec structures */ 0053 static LIST_HEAD(codec_list); 0054 /* Protection for the list */ 0055 static DEFINE_MUTEX(rslistlock); 0056 0057 /** 0058 * codec_init - Initialize a Reed-Solomon codec 0059 * @symsize: symbol size, bits (1-8) 0060 * @gfpoly: Field generator polynomial coefficients 0061 * @gffunc: Field generator function 0062 * @fcr: first root of RS code generator polynomial, index form 0063 * @prim: primitive element to generate polynomial roots 0064 * @nroots: RS code generator polynomial degree (number of roots) 0065 * @gfp: GFP_ flags for allocations 0066 * 0067 * Allocate a codec structure and the polynom arrays for faster 0068 * en/decoding. Fill the arrays according to the given parameters. 0069 */ 0070 static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), 0071 int fcr, int prim, int nroots, gfp_t gfp) 0072 { 0073 int i, j, sr, root, iprim; 0074 struct rs_codec *rs; 0075 0076 rs = kzalloc(sizeof(*rs), gfp); 0077 if (!rs) 0078 return NULL; 0079 0080 INIT_LIST_HEAD(&rs->list); 0081 0082 rs->mm = symsize; 0083 rs->nn = (1 << symsize) - 1; 0084 rs->fcr = fcr; 0085 rs->prim = prim; 0086 rs->nroots = nroots; 0087 rs->gfpoly = gfpoly; 0088 rs->gffunc = gffunc; 0089 0090 /* Allocate the arrays */ 0091 rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); 0092 if (rs->alpha_to == NULL) 0093 goto err; 0094 0095 rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); 0096 if (rs->index_of == NULL) 0097 goto err; 0098 0099 rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); 0100 if(rs->genpoly == NULL) 0101 goto err; 0102 0103 /* Generate Galois field lookup tables */ 0104 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 0105 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 0106 if (gfpoly) { 0107 sr = 1; 0108 for (i = 0; i < rs->nn; i++) { 0109 rs->index_of[sr] = i; 0110 rs->alpha_to[i] = sr; 0111 sr <<= 1; 0112 if (sr & (1 << symsize)) 0113 sr ^= gfpoly; 0114 sr &= rs->nn; 0115 } 0116 } else { 0117 sr = gffunc(0); 0118 for (i = 0; i < rs->nn; i++) { 0119 rs->index_of[sr] = i; 0120 rs->alpha_to[i] = sr; 0121 sr = gffunc(sr); 0122 } 0123 } 0124 /* If it's not primitive, exit */ 0125 if(sr != rs->alpha_to[0]) 0126 goto err; 0127 0128 /* Find prim-th root of 1, used in decoding */ 0129 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 0130 /* prim-th root of 1, index form */ 0131 rs->iprim = iprim / prim; 0132 0133 /* Form RS code generator polynomial from its roots */ 0134 rs->genpoly[0] = 1; 0135 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 0136 rs->genpoly[i + 1] = 1; 0137 /* Multiply rs->genpoly[] by @**(root + x) */ 0138 for (j = i; j > 0; j--) { 0139 if (rs->genpoly[j] != 0) { 0140 rs->genpoly[j] = rs->genpoly[j -1] ^ 0141 rs->alpha_to[rs_modnn(rs, 0142 rs->index_of[rs->genpoly[j]] + root)]; 0143 } else 0144 rs->genpoly[j] = rs->genpoly[j - 1]; 0145 } 0146 /* rs->genpoly[0] can never be zero */ 0147 rs->genpoly[0] = 0148 rs->alpha_to[rs_modnn(rs, 0149 rs->index_of[rs->genpoly[0]] + root)]; 0150 } 0151 /* convert rs->genpoly[] to index form for quicker encoding */ 0152 for (i = 0; i <= nroots; i++) 0153 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 0154 0155 rs->users = 1; 0156 list_add(&rs->list, &codec_list); 0157 return rs; 0158 0159 err: 0160 kfree(rs->genpoly); 0161 kfree(rs->index_of); 0162 kfree(rs->alpha_to); 0163 kfree(rs); 0164 return NULL; 0165 } 0166 0167 0168 /** 0169 * free_rs - Free the rs control structure 0170 * @rs: The control structure which is not longer used by the 0171 * caller 0172 * 0173 * Free the control structure. If @rs is the last user of the associated 0174 * codec, free the codec as well. 0175 */ 0176 void free_rs(struct rs_control *rs) 0177 { 0178 struct rs_codec *cd; 0179 0180 if (!rs) 0181 return; 0182 0183 cd = rs->codec; 0184 mutex_lock(&rslistlock); 0185 cd->users--; 0186 if(!cd->users) { 0187 list_del(&cd->list); 0188 kfree(cd->alpha_to); 0189 kfree(cd->index_of); 0190 kfree(cd->genpoly); 0191 kfree(cd); 0192 } 0193 mutex_unlock(&rslistlock); 0194 kfree(rs); 0195 } 0196 EXPORT_SYMBOL_GPL(free_rs); 0197 0198 /** 0199 * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one 0200 * @symsize: the symbol size (number of bits) 0201 * @gfpoly: the extended Galois field generator polynomial coefficients, 0202 * with the 0th coefficient in the low order bit. The polynomial 0203 * must be primitive; 0204 * @gffunc: pointer to function to generate the next field element, 0205 * or the multiplicative identity element if given 0. Used 0206 * instead of gfpoly if gfpoly is 0 0207 * @fcr: the first consecutive root of the rs code generator polynomial 0208 * in index form 0209 * @prim: primitive element to generate polynomial roots 0210 * @nroots: RS code generator polynomial degree (number of roots) 0211 * @gfp: GFP_ flags for allocations 0212 */ 0213 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 0214 int (*gffunc)(int), int fcr, 0215 int prim, int nroots, gfp_t gfp) 0216 { 0217 struct list_head *tmp; 0218 struct rs_control *rs; 0219 unsigned int bsize; 0220 0221 /* Sanity checks */ 0222 if (symsize < 1) 0223 return NULL; 0224 if (fcr < 0 || fcr >= (1<<symsize)) 0225 return NULL; 0226 if (prim <= 0 || prim >= (1<<symsize)) 0227 return NULL; 0228 if (nroots < 0 || nroots >= (1<<symsize)) 0229 return NULL; 0230 0231 /* 0232 * The decoder needs buffers in each control struct instance to 0233 * avoid variable size or large fixed size allocations on 0234 * stack. Size the buffers to arrays of [nroots + 1]. 0235 */ 0236 bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); 0237 rs = kzalloc(sizeof(*rs) + bsize, gfp); 0238 if (!rs) 0239 return NULL; 0240 0241 mutex_lock(&rslistlock); 0242 0243 /* Walk through the list and look for a matching entry */ 0244 list_for_each(tmp, &codec_list) { 0245 struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); 0246 0247 if (symsize != cd->mm) 0248 continue; 0249 if (gfpoly != cd->gfpoly) 0250 continue; 0251 if (gffunc != cd->gffunc) 0252 continue; 0253 if (fcr != cd->fcr) 0254 continue; 0255 if (prim != cd->prim) 0256 continue; 0257 if (nroots != cd->nroots) 0258 continue; 0259 /* We have a matching one already */ 0260 cd->users++; 0261 rs->codec = cd; 0262 goto out; 0263 } 0264 0265 /* Create a new one */ 0266 rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 0267 if (!rs->codec) { 0268 kfree(rs); 0269 rs = NULL; 0270 } 0271 out: 0272 mutex_unlock(&rslistlock); 0273 return rs; 0274 } 0275 0276 /** 0277 * init_rs_gfp - Create a RS control struct and initialize it 0278 * @symsize: the symbol size (number of bits) 0279 * @gfpoly: the extended Galois field generator polynomial coefficients, 0280 * with the 0th coefficient in the low order bit. The polynomial 0281 * must be primitive; 0282 * @fcr: the first consecutive root of the rs code generator polynomial 0283 * in index form 0284 * @prim: primitive element to generate polynomial roots 0285 * @nroots: RS code generator polynomial degree (number of roots) 0286 * @gfp: Memory allocation flags. 0287 */ 0288 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 0289 int nroots, gfp_t gfp) 0290 { 0291 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 0292 } 0293 EXPORT_SYMBOL_GPL(init_rs_gfp); 0294 0295 /** 0296 * init_rs_non_canonical - Allocate rs control struct for fields with 0297 * non-canonical representation 0298 * @symsize: the symbol size (number of bits) 0299 * @gffunc: pointer to function to generate the next field element, 0300 * or the multiplicative identity element if given 0. Used 0301 * instead of gfpoly if gfpoly is 0 0302 * @fcr: the first consecutive root of the rs code generator polynomial 0303 * in index form 0304 * @prim: primitive element to generate polynomial roots 0305 * @nroots: RS code generator polynomial degree (number of roots) 0306 */ 0307 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 0308 int fcr, int prim, int nroots) 0309 { 0310 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 0311 GFP_KERNEL); 0312 } 0313 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 0314 0315 #ifdef CONFIG_REED_SOLOMON_ENC8 0316 /** 0317 * encode_rs8 - Calculate the parity for data values (8bit data width) 0318 * @rsc: the rs control structure 0319 * @data: data field of a given type 0320 * @len: data length 0321 * @par: parity data, must be initialized by caller (usually all 0) 0322 * @invmsk: invert data mask (will be xored on data) 0323 * 0324 * The parity uses a uint16_t data type to enable 0325 * symbol size > 8. The calling code must take care of encoding of the 0326 * syndrome result for storage itself. 0327 */ 0328 int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, 0329 uint16_t invmsk) 0330 { 0331 #include "encode_rs.c" 0332 } 0333 EXPORT_SYMBOL_GPL(encode_rs8); 0334 #endif 0335 0336 #ifdef CONFIG_REED_SOLOMON_DEC8 0337 /** 0338 * decode_rs8 - Decode codeword (8bit data width) 0339 * @rsc: the rs control structure 0340 * @data: data field of a given type 0341 * @par: received parity data field 0342 * @len: data length 0343 * @s: syndrome data field, must be in index form 0344 * (if NULL, syndrome is calculated) 0345 * @no_eras: number of erasures 0346 * @eras_pos: position of erasures, can be NULL 0347 * @invmsk: invert data mask (will be xored on data, not on parity!) 0348 * @corr: buffer to store correction bitmask on eras_pos 0349 * 0350 * The syndrome and parity uses a uint16_t data type to enable 0351 * symbol size > 8. The calling code must take care of decoding of the 0352 * syndrome result and the received parity before calling this code. 0353 * 0354 * Note: The rs_control struct @rsc contains buffers which are used for 0355 * decoding, so the caller has to ensure that decoder invocations are 0356 * serialized. 0357 * 0358 * Returns the number of corrected symbols or -EBADMSG for uncorrectable 0359 * errors. The count includes errors in the parity. 0360 */ 0361 int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, 0362 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 0363 uint16_t *corr) 0364 { 0365 #include "decode_rs.c" 0366 } 0367 EXPORT_SYMBOL_GPL(decode_rs8); 0368 #endif 0369 0370 #ifdef CONFIG_REED_SOLOMON_ENC16 0371 /** 0372 * encode_rs16 - Calculate the parity for data values (16bit data width) 0373 * @rsc: the rs control structure 0374 * @data: data field of a given type 0375 * @len: data length 0376 * @par: parity data, must be initialized by caller (usually all 0) 0377 * @invmsk: invert data mask (will be xored on data, not on parity!) 0378 * 0379 * Each field in the data array contains up to symbol size bits of valid data. 0380 */ 0381 int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, 0382 uint16_t invmsk) 0383 { 0384 #include "encode_rs.c" 0385 } 0386 EXPORT_SYMBOL_GPL(encode_rs16); 0387 #endif 0388 0389 #ifdef CONFIG_REED_SOLOMON_DEC16 0390 /** 0391 * decode_rs16 - Decode codeword (16bit data width) 0392 * @rsc: the rs control structure 0393 * @data: data field of a given type 0394 * @par: received parity data field 0395 * @len: data length 0396 * @s: syndrome data field, must be in index form 0397 * (if NULL, syndrome is calculated) 0398 * @no_eras: number of erasures 0399 * @eras_pos: position of erasures, can be NULL 0400 * @invmsk: invert data mask (will be xored on data, not on parity!) 0401 * @corr: buffer to store correction bitmask on eras_pos 0402 * 0403 * Each field in the data array contains up to symbol size bits of valid data. 0404 * 0405 * Note: The rc_control struct @rsc contains buffers which are used for 0406 * decoding, so the caller has to ensure that decoder invocations are 0407 * serialized. 0408 * 0409 * Returns the number of corrected symbols or -EBADMSG for uncorrectable 0410 * errors. The count includes errors in the parity. 0411 */ 0412 int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, 0413 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 0414 uint16_t *corr) 0415 { 0416 #include "decode_rs.c" 0417 } 0418 EXPORT_SYMBOL_GPL(decode_rs16); 0419 #endif 0420 0421 MODULE_LICENSE("GPL"); 0422 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 0423 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 0424
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |