Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Generic polynomial calculation using integer coefficients.
0004  *
0005  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
0006  *
0007  * Authors:
0008  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
0009  *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
0010  *
0011  */
0012 
0013 #include <linux/kernel.h>
0014 #include <linux/module.h>
0015 #include <linux/polynomial.h>
0016 
0017 /*
0018  * Originally this was part of drivers/hwmon/bt1-pvt.c.
0019  * There the following conversion is used and should serve as an example here:
0020  *
0021  * The original translation formulae of the temperature (in degrees of Celsius)
0022  * to PVT data and vice-versa are following:
0023  *
0024  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
0025  *     1.7204e2
0026  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
0027  *     3.1020e-1*(N^1) - 4.838e1
0028  *
0029  * where T = [-48.380, 147.438]C and N = [0, 1023].
0030  *
0031  * They must be accordingly altered to be suitable for the integer arithmetics.
0032  * The technique is called 'factor redistribution', which just makes sure the
0033  * multiplications and divisions are made so to have a result of the operations
0034  * within the integer numbers limit. In addition we need to translate the
0035  * formulae to accept millidegrees of Celsius. Here what they look like after
0036  * the alterations:
0037  *
0038  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
0039  *     17204e2) / 1e4
0040  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
0041  *     48380
0042  * where T = [-48380, 147438] mC and N = [0, 1023].
0043  *
0044  * static const struct polynomial poly_temp_to_N = {
0045  *         .total_divider = 10000,
0046  *         .terms = {
0047  *                 {4, 18322, 10000, 10000},
0048  *                 {3, 2343, 10000, 10},
0049  *                 {2, 87018, 10000, 10},
0050  *                 {1, 39269, 1000, 1},
0051  *                 {0, 1720400, 1, 1}
0052  *         }
0053  * };
0054  *
0055  * static const struct polynomial poly_N_to_temp = {
0056  *         .total_divider = 1,
0057  *         .terms = {
0058  *                 {4, -16743, 1000, 1},
0059  *                 {3, 81542, 1000, 1},
0060  *                 {2, -182010, 1000, 1},
0061  *                 {1, 310200, 1000, 1},
0062  *                 {0, -48380, 1, 1}
0063  *         }
0064  * };
0065  */
0066 
0067 /**
0068  * polynomial_calc - calculate a polynomial using integer arithmetic
0069  *
0070  * @poly: pointer to the descriptor of the polynomial
0071  * @data: input value of the polynimal
0072  *
0073  * Calculate the result of a polynomial using only integer arithmetic. For
0074  * this to work without too much loss of precision the coefficients has to
0075  * be altered. This is called factor redistribution.
0076  *
0077  * Returns the result of the polynomial calculation.
0078  */
0079 long polynomial_calc(const struct polynomial *poly, long data)
0080 {
0081     const struct polynomial_term *term = poly->terms;
0082     long total_divider = poly->total_divider ?: 1;
0083     long tmp, ret = 0;
0084     int deg;
0085 
0086     /*
0087      * Here is the polynomial calculation function, which performs the
0088      * redistributed terms calculations. It's pretty straightforward.
0089      * We walk over each degree term up to the free one, and perform
0090      * the redistributed multiplication of the term coefficient, its
0091      * divider (as for the rationale fraction representation), data
0092      * power and the rational fraction divider leftover. Then all of
0093      * this is collected in a total sum variable, which value is
0094      * normalized by the total divider before being returned.
0095      */
0096     do {
0097         tmp = term->coef;
0098         for (deg = 0; deg < term->deg; ++deg)
0099             tmp = mult_frac(tmp, data, term->divider);
0100         ret += tmp / term->divider_leftover;
0101     } while ((term++)->deg);
0102 
0103     return ret / total_divider;
0104 }
0105 EXPORT_SYMBOL_GPL(polynomial_calc);
0106 
0107 MODULE_DESCRIPTION("Generic polynomial calculations");
0108 MODULE_LICENSE("GPL");