Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 #define DEBG(x)
0003 #define DEBG1(x)
0004 /* inflate.c -- Not copyrighted 1992 by Mark Adler
0005    version c10p1, 10 January 1993 */
0006 
0007 /* 
0008  * Adapted for booting Linux by Hannu Savolainen 1993
0009  * based on gzip-1.0.3 
0010  *
0011  * Nicolas Pitre <nico@fluxnic.net>, 1999/04/14 :
0012  *   Little mods for all variable to reside either into rodata or bss segments
0013  *   by marking constant variables with 'const' and initializing all the others
0014  *   at run-time only.  This allows for the kernel uncompressor to run
0015  *   directly from Flash or ROM memory on embedded systems.
0016  */
0017 
0018 /*
0019    Inflate deflated (PKZIP's method 8 compressed) data.  The compression
0020    method searches for as much of the current string of bytes (up to a
0021    length of 258) in the previous 32 K bytes.  If it doesn't find any
0022    matches (of at least length 3), it codes the next byte.  Otherwise, it
0023    codes the length of the matched string and its distance backwards from
0024    the current position.  There is a single Huffman code that codes both
0025    single bytes (called "literals") and match lengths.  A second Huffman
0026    code codes the distance information, which follows a length code.  Each
0027    length or distance code actually represents a base value and a number
0028    of "extra" (sometimes zero) bits to get to add to the base value.  At
0029    the end of each deflated block is a special end-of-block (EOB) literal/
0030    length code.  The decoding process is basically: get a literal/length
0031    code; if EOB then done; if a literal, emit the decoded byte; if a
0032    length then get the distance and emit the referred-to bytes from the
0033    sliding window of previously emitted data.
0034 
0035    There are (currently) three kinds of inflate blocks: stored, fixed, and
0036    dynamic.  The compressor deals with some chunk of data at a time, and
0037    decides which method to use on a chunk-by-chunk basis.  A chunk might
0038    typically be 32 K or 64 K.  If the chunk is incompressible, then the
0039    "stored" method is used.  In this case, the bytes are simply stored as
0040    is, eight bits per byte, with none of the above coding.  The bytes are
0041    preceded by a count, since there is no longer an EOB code.
0042 
0043    If the data is compressible, then either the fixed or dynamic methods
0044    are used.  In the dynamic method, the compressed data is preceded by
0045    an encoding of the literal/length and distance Huffman codes that are
0046    to be used to decode this block.  The representation is itself Huffman
0047    coded, and so is preceded by a description of that code.  These code
0048    descriptions take up a little space, and so for small blocks, there is
0049    a predefined set of codes, called the fixed codes.  The fixed method is
0050    used if the block codes up smaller that way (usually for quite small
0051    chunks), otherwise the dynamic method is used.  In the latter case, the
0052    codes are customized to the probabilities in the current block, and so
0053    can code it much better than the pre-determined fixed codes.
0054  
0055    The Huffman codes themselves are decoded using a multi-level table
0056    lookup, in order to maximize the speed of decoding plus the speed of
0057    building the decoding tables.  See the comments below that precede the
0058    lbits and dbits tuning parameters.
0059  */
0060 
0061 
0062 /*
0063    Notes beyond the 1.93a appnote.txt:
0064 
0065    1. Distance pointers never point before the beginning of the output
0066       stream.
0067    2. Distance pointers can point back across blocks, up to 32k away.
0068    3. There is an implied maximum of 7 bits for the bit length table and
0069       15 bits for the actual data.
0070    4. If only one code exists, then it is encoded using one bit.  (Zero
0071       would be more efficient, but perhaps a little confusing.)  If two
0072       codes exist, they are coded using one bit each (0 and 1).
0073    5. There is no way of sending zero distance codes--a dummy must be
0074       sent if there are none.  (History: a pre 2.0 version of PKZIP would
0075       store blocks with no distance codes, but this was discovered to be
0076       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
0077       zero distance codes, which is sent as one code of zero bits in
0078       length.
0079    6. There are up to 286 literal/length codes.  Code 256 represents the
0080       end-of-block.  Note however that the static length tree defines
0081       288 codes just to fill out the Huffman codes.  Codes 286 and 287
0082       cannot be used though, since there is no length base or extra bits
0083       defined for them.  Similarly, there are up to 30 distance codes.
0084       However, static trees define 32 codes (all 5 bits) to fill out the
0085       Huffman codes, but the last two had better not show up in the data.
0086    7. Unzip can check dynamic Huffman blocks for complete code sets.
0087       The exception is that a single code would not be complete (see #4).
0088    8. The five bits following the block type is really the number of
0089       literal codes sent minus 257.
0090    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
0091       (1+6+6).  Therefore, to output three times the length, you output
0092       three codes (1+1+1), whereas to output four times the same length,
0093       you only need two codes (1+3).  Hmm.
0094   10. In the tree reconstruction algorithm, Code = Code + Increment
0095       only if BitLength(i) is not zero.  (Pretty obvious.)
0096   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
0097   12. Note: length code 284 can represent 227-258, but length code 285
0098       really is 258.  The last length deserves its own, short code
0099       since it gets used a lot in very redundant files.  The length
0100       258 is special since 258 - 3 (the min match length) is 255.
0101   13. The literal/length and distance code bit lengths are read as a
0102       single stream of lengths.  It is possible (and advantageous) for
0103       a repeat code (16, 17, or 18) to go across the boundary between
0104       the two sets of lengths.
0105  */
0106 #include <linux/compiler.h>
0107 #ifdef NO_INFLATE_MALLOC
0108 #include <linux/slab.h>
0109 #endif
0110 
0111 #ifdef RCSID
0112 static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
0113 #endif
0114 
0115 #ifndef STATIC
0116 
0117 #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
0118 #  include <sys/types.h>
0119 #  include <stdlib.h>
0120 #endif
0121 
0122 #include "gzip.h"
0123 #define STATIC
0124 #endif /* !STATIC */
0125 
0126 #ifndef INIT
0127 #define INIT
0128 #endif
0129     
0130 #define slide window
0131 
0132 /* Huffman code lookup table entry--this entry is four bytes for machines
0133    that have 16-bit pointers (e.g. PC's in the small or medium model).
0134    Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
0135    means that v is a literal, 16 < e < 32 means that v is a pointer to
0136    the next table, which codes e - 16 bits, and lastly e == 99 indicates
0137    an unused code.  If a code with e == 99 is looked up, this implies an
0138    error in the data. */
0139 struct huft {
0140   uch e;                /* number of extra bits or operation */
0141   uch b;                /* number of bits in this code or subcode */
0142   union {
0143     ush n;              /* literal, length base, or distance base */
0144     struct huft *t;     /* pointer to next level of table */
0145   } v;
0146 };
0147 
0148 
0149 /* Function prototypes */
0150 STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, 
0151         const ush *, const ush *, struct huft **, int *));
0152 STATIC int INIT huft_free OF((struct huft *));
0153 STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
0154 STATIC int INIT inflate_stored OF((void));
0155 STATIC int INIT inflate_fixed OF((void));
0156 STATIC int INIT inflate_dynamic OF((void));
0157 STATIC int INIT inflate_block OF((int *));
0158 STATIC int INIT inflate OF((void));
0159 
0160 
0161 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
0162    stream to find repeated byte strings.  This is implemented here as a
0163    circular buffer.  The index is updated simply by incrementing and then
0164    ANDing with 0x7fff (32K-1). */
0165 /* It is left to other modules to supply the 32 K area.  It is assumed
0166    to be usable as if it were declared "uch slide[32768];" or as just
0167    "uch *slide;" and then malloc'ed in the latter case.  The definition
0168    must be in unzip.h, included above. */
0169 /* unsigned wp;             current position in slide */
0170 #define wp outcnt
0171 #define flush_output(w) (wp=(w),flush_window())
0172 
0173 /* Tables for deflate from PKZIP's appnote.txt. */
0174 static const unsigned border[] = {    /* Order of the bit length code lengths */
0175         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
0176 static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
0177         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
0178         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
0179         /* note: see note #13 above about the 258 in this list. */
0180 static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
0181         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
0182         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
0183 static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
0184         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
0185         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
0186         8193, 12289, 16385, 24577};
0187 static const ush cpdext[] = {         /* Extra bits for distance codes */
0188         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
0189         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
0190         12, 12, 13, 13};
0191 
0192 
0193 
0194 /* Macros for inflate() bit peeking and grabbing.
0195    The usage is:
0196    
0197         NEEDBITS(j)
0198         x = b & mask_bits[j];
0199         DUMPBITS(j)
0200 
0201    where NEEDBITS makes sure that b has at least j bits in it, and
0202    DUMPBITS removes the bits from b.  The macros use the variable k
0203    for the number of bits in b.  Normally, b and k are register
0204    variables for speed, and are initialized at the beginning of a
0205    routine that uses these macros from a global bit buffer and count.
0206 
0207    If we assume that EOB will be the longest code, then we will never
0208    ask for bits with NEEDBITS that are beyond the end of the stream.
0209    So, NEEDBITS should not read any more bytes than are needed to
0210    meet the request.  Then no bytes need to be "returned" to the buffer
0211    at the end of the last block.
0212 
0213    However, this assumption is not true for fixed blocks--the EOB code
0214    is 7 bits, but the other literal/length codes can be 8 or 9 bits.
0215    (The EOB code is shorter than other codes because fixed blocks are
0216    generally short.  So, while a block always has an EOB, many other
0217    literal/length codes have a significantly lower probability of
0218    showing up at all.)  However, by making the first table have a
0219    lookup of seven bits, the EOB code will be found in that first
0220    lookup, and so will not require that too many bits be pulled from
0221    the stream.
0222  */
0223 
0224 STATIC ulg bb;                         /* bit buffer */
0225 STATIC unsigned bk;                    /* bits in bit buffer */
0226 
0227 STATIC const ush mask_bits[] = {
0228     0x0000,
0229     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0230     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
0231 };
0232 
0233 #define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
0234 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
0235 #define DUMPBITS(n) {b>>=(n);k-=(n);}
0236 
0237 #ifndef NO_INFLATE_MALLOC
0238 /* A trivial malloc implementation, adapted from
0239  *  malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
0240  */
0241 
0242 static unsigned long malloc_ptr;
0243 static int malloc_count;
0244 
0245 static void *malloc(int size)
0246 {
0247        void *p;
0248 
0249        if (size < 0)
0250         error("Malloc error");
0251        if (!malloc_ptr)
0252         malloc_ptr = free_mem_ptr;
0253 
0254        malloc_ptr = (malloc_ptr + 3) & ~3;     /* Align */
0255 
0256        p = (void *)malloc_ptr;
0257        malloc_ptr += size;
0258 
0259        if (free_mem_end_ptr && malloc_ptr >= free_mem_end_ptr)
0260         error("Out of memory");
0261 
0262        malloc_count++;
0263        return p;
0264 }
0265 
0266 static void free(void *where)
0267 {
0268        malloc_count--;
0269        if (!malloc_count)
0270         malloc_ptr = free_mem_ptr;
0271 }
0272 #else
0273 #define malloc(a) kmalloc(a, GFP_KERNEL)
0274 #define free(a) kfree(a)
0275 #endif
0276 
0277 /*
0278    Huffman code decoding is performed using a multi-level table lookup.
0279    The fastest way to decode is to simply build a lookup table whose
0280    size is determined by the longest code.  However, the time it takes
0281    to build this table can also be a factor if the data being decoded
0282    is not very long.  The most common codes are necessarily the
0283    shortest codes, so those codes dominate the decoding time, and hence
0284    the speed.  The idea is you can have a shorter table that decodes the
0285    shorter, more probable codes, and then point to subsidiary tables for
0286    the longer codes.  The time it costs to decode the longer codes is
0287    then traded against the time it takes to make longer tables.
0288 
0289    This results of this trade are in the variables lbits and dbits
0290    below.  lbits is the number of bits the first level table for literal/
0291    length codes can decode in one step, and dbits is the same thing for
0292    the distance codes.  Subsequent tables are also less than or equal to
0293    those sizes.  These values may be adjusted either when all of the
0294    codes are shorter than that, in which case the longest code length in
0295    bits is used, or when the shortest code is *longer* than the requested
0296    table size, in which case the length of the shortest code in bits is
0297    used.
0298 
0299    There are two different values for the two tables, since they code a
0300    different number of possibilities each.  The literal/length table
0301    codes 286 possible values, or in a flat code, a little over eight
0302    bits.  The distance table codes 30 possible values, or a little less
0303    than five bits, flat.  The optimum values for speed end up being
0304    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
0305    The optimum values may differ though from machine to machine, and
0306    possibly even between compilers.  Your mileage may vary.
0307  */
0308 
0309 
0310 STATIC const int lbits = 9;          /* bits in base literal/length lookup table */
0311 STATIC const int dbits = 6;          /* bits in base distance lookup table */
0312 
0313 
0314 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
0315 #define BMAX 16         /* maximum bit length of any code (16 for explode) */
0316 #define N_MAX 288       /* maximum number of codes in any set */
0317 
0318 
0319 STATIC unsigned hufts;         /* track memory usage */
0320 
0321 
0322 STATIC int INIT huft_build(
0323     unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
0324     unsigned n,             /* number of codes (assumed <= N_MAX) */
0325     unsigned s,             /* number of simple-valued codes (0..s-1) */
0326     const ush *d,           /* list of base values for non-simple codes */
0327     const ush *e,           /* list of extra bits for non-simple codes */
0328     struct huft **t,        /* result: starting table */
0329     int *m                  /* maximum lookup bits, returns actual */
0330     )
0331 /* Given a list of code lengths and a maximum table size, make a set of
0332    tables to decode that set of codes.  Return zero on success, one if
0333    the given code set is incomplete (the tables are still built in this
0334    case), two if the input is invalid (all zero length codes or an
0335    oversubscribed set of lengths), and three if not enough memory. */
0336 {
0337   unsigned a;                   /* counter for codes of length k */
0338   unsigned f;                   /* i repeats in table every f entries */
0339   int g;                        /* maximum code length */
0340   int h;                        /* table level */
0341   register unsigned i;          /* counter, current code */
0342   register unsigned j;          /* counter */
0343   register int k;               /* number of bits in current code */
0344   int l;                        /* bits per table (returned in m) */
0345   register unsigned *p;         /* pointer into c[], b[], or v[] */
0346   register struct huft *q;      /* points to current table */
0347   struct huft r;                /* table entry for structure assignment */
0348   register int w;               /* bits before this table == (l * h) */
0349   unsigned *xp;                 /* pointer into x */
0350   int y;                        /* number of dummy codes added */
0351   unsigned z;                   /* number of entries in current table */
0352   struct {
0353     unsigned c[BMAX+1];           /* bit length count table */
0354     struct huft *u[BMAX];         /* table stack */
0355     unsigned v[N_MAX];            /* values in order of bit length */
0356     unsigned x[BMAX+1];           /* bit offsets, then code stack */
0357   } *stk;
0358   unsigned *c, *v, *x;
0359   struct huft **u;
0360   int ret;
0361 
0362 DEBG("huft1 ");
0363 
0364   stk = malloc(sizeof(*stk));
0365   if (stk == NULL)
0366     return 3;           /* out of memory */
0367 
0368   c = stk->c;
0369   v = stk->v;
0370   x = stk->x;
0371   u = stk->u;
0372 
0373   /* Generate counts for each bit length */
0374   memzero(stk->c, sizeof(stk->c));
0375   p = b;  i = n;
0376   do {
0377     Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
0378         n-i, *p));
0379     c[*p]++;                    /* assume all entries <= BMAX */
0380     p++;                      /* Can't combine with above line (Solaris bug) */
0381   } while (--i);
0382   if (c[0] == n)                /* null input--all zero length codes */
0383   {
0384     *t = (struct huft *)NULL;
0385     *m = 0;
0386     ret = 2;
0387     goto out;
0388   }
0389 
0390 DEBG("huft2 ");
0391 
0392   /* Find minimum and maximum length, bound *m by those */
0393   l = *m;
0394   for (j = 1; j <= BMAX; j++)
0395     if (c[j])
0396       break;
0397   k = j;                        /* minimum code length */
0398   if ((unsigned)l < j)
0399     l = j;
0400   for (i = BMAX; i; i--)
0401     if (c[i])
0402       break;
0403   g = i;                        /* maximum code length */
0404   if ((unsigned)l > i)
0405     l = i;
0406   *m = l;
0407 
0408 DEBG("huft3 ");
0409 
0410   /* Adjust last length count to fill out codes, if needed */
0411   for (y = 1 << j; j < i; j++, y <<= 1)
0412     if ((y -= c[j]) < 0) {
0413       ret = 2;                 /* bad input: more codes than bits */
0414       goto out;
0415     }
0416   if ((y -= c[i]) < 0) {
0417     ret = 2;
0418     goto out;
0419   }
0420   c[i] += y;
0421 
0422 DEBG("huft4 ");
0423 
0424   /* Generate starting offsets into the value table for each length */
0425   x[1] = j = 0;
0426   p = c + 1;  xp = x + 2;
0427   while (--i) {                 /* note that i == g from above */
0428     *xp++ = (j += *p++);
0429   }
0430 
0431 DEBG("huft5 ");
0432 
0433   /* Make a table of values in order of bit lengths */
0434   p = b;  i = 0;
0435   do {
0436     if ((j = *p++) != 0)
0437       v[x[j]++] = i;
0438   } while (++i < n);
0439   n = x[g];                   /* set n to length of v */
0440 
0441 DEBG("h6 ");
0442 
0443   /* Generate the Huffman codes and for each, make the table entries */
0444   x[0] = i = 0;                 /* first Huffman code is zero */
0445   p = v;                        /* grab values in bit order */
0446   h = -1;                       /* no tables yet--level -1 */
0447   w = -l;                       /* bits decoded == (l * h) */
0448   u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
0449   q = (struct huft *)NULL;      /* ditto */
0450   z = 0;                        /* ditto */
0451 DEBG("h6a ");
0452 
0453   /* go through the bit lengths (k already is bits in shortest code) */
0454   for (; k <= g; k++)
0455   {
0456 DEBG("h6b ");
0457     a = c[k];
0458     while (a--)
0459     {
0460 DEBG("h6b1 ");
0461       /* here i is the Huffman code of length k bits for value *p */
0462       /* make tables up to required level */
0463       while (k > w + l)
0464       {
0465 DEBG1("1 ");
0466         h++;
0467         w += l;                 /* previous table always l bits */
0468 
0469         /* compute minimum size table less than or equal to l bits */
0470         z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
0471         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
0472         {                       /* too few codes for k-w bit table */
0473 DEBG1("2 ");
0474           f -= a + 1;           /* deduct codes from patterns left */
0475           xp = c + k;
0476           if (j < z)
0477             while (++j < z)       /* try smaller tables up to z bits */
0478             {
0479               if ((f <<= 1) <= *++xp)
0480                 break;            /* enough codes to use up j bits */
0481               f -= *xp;           /* else deduct codes from patterns */
0482             }
0483         }
0484 DEBG1("3 ");
0485         z = 1 << j;             /* table entries for j-bit table */
0486 
0487         /* allocate and link in new table */
0488         if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
0489             (struct huft *)NULL)
0490         {
0491           if (h)
0492             huft_free(u[0]);
0493           ret = 3;             /* not enough memory */
0494       goto out;
0495         }
0496 DEBG1("4 ");
0497         hufts += z + 1;         /* track memory usage */
0498         *t = q + 1;             /* link to list for huft_free() */
0499         *(t = &(q->v.t)) = (struct huft *)NULL;
0500         u[h] = ++q;             /* table starts after link */
0501 
0502 DEBG1("5 ");
0503         /* connect to last table, if there is one */
0504         if (h)
0505         {
0506           x[h] = i;             /* save pattern for backing up */
0507           r.b = (uch)l;         /* bits to dump before this table */
0508           r.e = (uch)(16 + j);  /* bits in this table */
0509           r.v.t = q;            /* pointer to this table */
0510           j = i >> (w - l);     /* (get around Turbo C bug) */
0511           u[h-1][j] = r;        /* connect to last table */
0512         }
0513 DEBG1("6 ");
0514       }
0515 DEBG("h6c ");
0516 
0517       /* set up table entry in r */
0518       r.b = (uch)(k - w);
0519       if (p >= v + n)
0520         r.e = 99;               /* out of values--invalid code */
0521       else if (*p < s)
0522       {
0523         r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
0524         r.v.n = (ush)(*p);             /* simple code is just the value */
0525     p++;                           /* one compiler does not like *p++ */
0526       }
0527       else
0528       {
0529         r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
0530         r.v.n = d[*p++ - s];
0531       }
0532 DEBG("h6d ");
0533 
0534       /* fill code-like entries with r */
0535       f = 1 << (k - w);
0536       for (j = i >> w; j < z; j += f)
0537         q[j] = r;
0538 
0539       /* backwards increment the k-bit code i */
0540       for (j = 1 << (k - 1); i & j; j >>= 1)
0541         i ^= j;
0542       i ^= j;
0543 
0544       /* backup over finished tables */
0545       while ((i & ((1 << w) - 1)) != x[h])
0546       {
0547         h--;                    /* don't need to update q */
0548         w -= l;
0549       }
0550 DEBG("h6e ");
0551     }
0552 DEBG("h6f ");
0553   }
0554 
0555 DEBG("huft7 ");
0556 
0557   /* Return true (1) if we were given an incomplete table */
0558   ret = y != 0 && g != 1;
0559 
0560   out:
0561   free(stk);
0562   return ret;
0563 }
0564 
0565 
0566 
0567 STATIC int INIT huft_free(
0568     struct huft *t         /* table to free */
0569     )
0570 /* Free the malloc'ed tables built by huft_build(), which makes a linked
0571    list of the tables it made, with the links in a dummy first entry of
0572    each table. */
0573 {
0574   register struct huft *p, *q;
0575 
0576 
0577   /* Go through linked list, freeing from the malloced (t[-1]) address. */
0578   p = t;
0579   while (p != (struct huft *)NULL)
0580   {
0581     q = (--p)->v.t;
0582     free((char*)p);
0583     p = q;
0584   } 
0585   return 0;
0586 }
0587 
0588 
0589 STATIC int INIT inflate_codes(
0590     struct huft *tl,    /* literal/length decoder tables */
0591     struct huft *td,    /* distance decoder tables */
0592     int bl,             /* number of bits decoded by tl[] */
0593     int bd              /* number of bits decoded by td[] */
0594     )
0595 /* inflate (decompress) the codes in a deflated (compressed) block.
0596    Return an error code or zero if it all goes ok. */
0597 {
0598   register unsigned e;  /* table entry flag/number of extra bits */
0599   unsigned n, d;        /* length and index for copy */
0600   unsigned w;           /* current window position */
0601   struct huft *t;       /* pointer to table entry */
0602   unsigned ml, md;      /* masks for bl and bd bits */
0603   register ulg b;       /* bit buffer */
0604   register unsigned k;  /* number of bits in bit buffer */
0605 
0606 
0607   /* make local copies of globals */
0608   b = bb;                       /* initialize bit buffer */
0609   k = bk;
0610   w = wp;                       /* initialize window position */
0611 
0612   /* inflate the coded data */
0613   ml = mask_bits[bl];           /* precompute masks for speed */
0614   md = mask_bits[bd];
0615   for (;;)                      /* do until end of block */
0616   {
0617     NEEDBITS((unsigned)bl)
0618     if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
0619       do {
0620         if (e == 99)
0621           return 1;
0622         DUMPBITS(t->b)
0623         e -= 16;
0624         NEEDBITS(e)
0625       } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
0626     DUMPBITS(t->b)
0627     if (e == 16)                /* then it's a literal */
0628     {
0629       slide[w++] = (uch)t->v.n;
0630       Tracevv((stderr, "%c", slide[w-1]));
0631       if (w == WSIZE)
0632       {
0633         flush_output(w);
0634         w = 0;
0635       }
0636     }
0637     else                        /* it's an EOB or a length */
0638     {
0639       /* exit if end of block */
0640       if (e == 15)
0641         break;
0642 
0643       /* get length of block to copy */
0644       NEEDBITS(e)
0645       n = t->v.n + ((unsigned)b & mask_bits[e]);
0646       DUMPBITS(e);
0647 
0648       /* decode distance of block to copy */
0649       NEEDBITS((unsigned)bd)
0650       if ((e = (t = td + ((unsigned)b & md))->e) > 16)
0651         do {
0652           if (e == 99)
0653             return 1;
0654           DUMPBITS(t->b)
0655           e -= 16;
0656           NEEDBITS(e)
0657         } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
0658       DUMPBITS(t->b)
0659       NEEDBITS(e)
0660       d = w - t->v.n - ((unsigned)b & mask_bits[e]);
0661       DUMPBITS(e)
0662       Tracevv((stderr,"\\[%d,%d]", w-d, n));
0663 
0664       /* do the copy */
0665       do {
0666         n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
0667 #if !defined(NOMEMCPY) && !defined(DEBUG)
0668         if (w - d >= e)         /* (this test assumes unsigned comparison) */
0669         {
0670           memcpy(slide + w, slide + d, e);
0671           w += e;
0672           d += e;
0673         }
0674         else                      /* do it slow to avoid memcpy() overlap */
0675 #endif /* !NOMEMCPY */
0676           do {
0677             slide[w++] = slide[d++];
0678         Tracevv((stderr, "%c", slide[w-1]));
0679           } while (--e);
0680         if (w == WSIZE)
0681         {
0682           flush_output(w);
0683           w = 0;
0684         }
0685       } while (n);
0686     }
0687   }
0688 
0689 
0690   /* restore the globals from the locals */
0691   wp = w;                       /* restore global window pointer */
0692   bb = b;                       /* restore global bit buffer */
0693   bk = k;
0694 
0695   /* done */
0696   return 0;
0697 
0698  underrun:
0699   return 4;         /* Input underrun */
0700 }
0701 
0702 
0703 
0704 STATIC int INIT inflate_stored(void)
0705 /* "decompress" an inflated type 0 (stored) block. */
0706 {
0707   unsigned n;           /* number of bytes in block */
0708   unsigned w;           /* current window position */
0709   register ulg b;       /* bit buffer */
0710   register unsigned k;  /* number of bits in bit buffer */
0711 
0712 DEBG("<stor");
0713 
0714   /* make local copies of globals */
0715   b = bb;                       /* initialize bit buffer */
0716   k = bk;
0717   w = wp;                       /* initialize window position */
0718 
0719 
0720   /* go to byte boundary */
0721   n = k & 7;
0722   DUMPBITS(n);
0723 
0724 
0725   /* get the length and its complement */
0726   NEEDBITS(16)
0727   n = ((unsigned)b & 0xffff);
0728   DUMPBITS(16)
0729   NEEDBITS(16)
0730   if (n != (unsigned)((~b) & 0xffff))
0731     return 1;                   /* error in compressed data */
0732   DUMPBITS(16)
0733 
0734 
0735   /* read and output the compressed data */
0736   while (n--)
0737   {
0738     NEEDBITS(8)
0739     slide[w++] = (uch)b;
0740     if (w == WSIZE)
0741     {
0742       flush_output(w);
0743       w = 0;
0744     }
0745     DUMPBITS(8)
0746   }
0747 
0748 
0749   /* restore the globals from the locals */
0750   wp = w;                       /* restore global window pointer */
0751   bb = b;                       /* restore global bit buffer */
0752   bk = k;
0753 
0754   DEBG(">");
0755   return 0;
0756 
0757  underrun:
0758   return 4;         /* Input underrun */
0759 }
0760 
0761 
0762 /*
0763  * We use `noinline' here to prevent gcc-3.5 from using too much stack space
0764  */
0765 STATIC int noinline INIT inflate_fixed(void)
0766 /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
0767    either replace this with a custom decoder, or at least precompute the
0768    Huffman tables. */
0769 {
0770   int i;                /* temporary variable */
0771   struct huft *tl;      /* literal/length code table */
0772   struct huft *td;      /* distance code table */
0773   int bl;               /* lookup bits for tl */
0774   int bd;               /* lookup bits for td */
0775   unsigned *l;          /* length list for huft_build */
0776 
0777 DEBG("<fix");
0778 
0779   l = malloc(sizeof(*l) * 288);
0780   if (l == NULL)
0781     return 3;           /* out of memory */
0782 
0783   /* set up literal table */
0784   for (i = 0; i < 144; i++)
0785     l[i] = 8;
0786   for (; i < 256; i++)
0787     l[i] = 9;
0788   for (; i < 280; i++)
0789     l[i] = 7;
0790   for (; i < 288; i++)          /* make a complete, but wrong code set */
0791     l[i] = 8;
0792   bl = 7;
0793   if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) {
0794     free(l);
0795     return i;
0796   }
0797 
0798   /* set up distance table */
0799   for (i = 0; i < 30; i++)      /* make an incomplete code set */
0800     l[i] = 5;
0801   bd = 5;
0802   if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
0803   {
0804     huft_free(tl);
0805     free(l);
0806 
0807     DEBG(">");
0808     return i;
0809   }
0810 
0811 
0812   /* decompress until an end-of-block code */
0813   if (inflate_codes(tl, td, bl, bd)) {
0814     free(l);
0815     return 1;
0816   }
0817 
0818   /* free the decoding tables, return */
0819   free(l);
0820   huft_free(tl);
0821   huft_free(td);
0822   return 0;
0823 }
0824 
0825 
0826 /*
0827  * We use `noinline' here to prevent gcc-3.5 from using too much stack space
0828  */
0829 STATIC int noinline INIT inflate_dynamic(void)
0830 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
0831 {
0832   int i;                /* temporary variables */
0833   unsigned j;
0834   unsigned l;           /* last length */
0835   unsigned m;           /* mask for bit lengths table */
0836   unsigned n;           /* number of lengths to get */
0837   struct huft *tl;      /* literal/length code table */
0838   struct huft *td;      /* distance code table */
0839   int bl;               /* lookup bits for tl */
0840   int bd;               /* lookup bits for td */
0841   unsigned nb;          /* number of bit length codes */
0842   unsigned nl;          /* number of literal/length codes */
0843   unsigned nd;          /* number of distance codes */
0844   unsigned *ll;         /* literal/length and distance code lengths */
0845   register ulg b;       /* bit buffer */
0846   register unsigned k;  /* number of bits in bit buffer */
0847   int ret;
0848 
0849 DEBG("<dyn");
0850 
0851 #ifdef PKZIP_BUG_WORKAROUND
0852   ll = malloc(sizeof(*ll) * (288+32));  /* literal/length and distance code lengths */
0853 #else
0854   ll = malloc(sizeof(*ll) * (286+30));  /* literal/length and distance code lengths */
0855 #endif
0856 
0857   if (ll == NULL)
0858     return 1;
0859 
0860   /* make local bit buffer */
0861   b = bb;
0862   k = bk;
0863 
0864 
0865   /* read in table lengths */
0866   NEEDBITS(5)
0867   nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
0868   DUMPBITS(5)
0869   NEEDBITS(5)
0870   nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
0871   DUMPBITS(5)
0872   NEEDBITS(4)
0873   nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
0874   DUMPBITS(4)
0875 #ifdef PKZIP_BUG_WORKAROUND
0876   if (nl > 288 || nd > 32)
0877 #else
0878   if (nl > 286 || nd > 30)
0879 #endif
0880   {
0881     ret = 1;             /* bad lengths */
0882     goto out;
0883   }
0884 
0885 DEBG("dyn1 ");
0886 
0887   /* read in bit-length-code lengths */
0888   for (j = 0; j < nb; j++)
0889   {
0890     NEEDBITS(3)
0891     ll[border[j]] = (unsigned)b & 7;
0892     DUMPBITS(3)
0893   }
0894   for (; j < 19; j++)
0895     ll[border[j]] = 0;
0896 
0897 DEBG("dyn2 ");
0898 
0899   /* build decoding table for trees--single level, 7 bit lookup */
0900   bl = 7;
0901   if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
0902   {
0903     if (i == 1)
0904       huft_free(tl);
0905     ret = i;                   /* incomplete code set */
0906     goto out;
0907   }
0908 
0909 DEBG("dyn3 ");
0910 
0911   /* read in literal and distance code lengths */
0912   n = nl + nd;
0913   m = mask_bits[bl];
0914   i = l = 0;
0915   while ((unsigned)i < n)
0916   {
0917     NEEDBITS((unsigned)bl)
0918     j = (td = tl + ((unsigned)b & m))->b;
0919     DUMPBITS(j)
0920     j = td->v.n;
0921     if (j < 16)                 /* length of code in bits (0..15) */
0922       ll[i++] = l = j;          /* save last length in l */
0923     else if (j == 16)           /* repeat last length 3 to 6 times */
0924     {
0925       NEEDBITS(2)
0926       j = 3 + ((unsigned)b & 3);
0927       DUMPBITS(2)
0928       if ((unsigned)i + j > n) {
0929         ret = 1;
0930     goto out;
0931       }
0932       while (j--)
0933         ll[i++] = l;
0934     }
0935     else if (j == 17)           /* 3 to 10 zero length codes */
0936     {
0937       NEEDBITS(3)
0938       j = 3 + ((unsigned)b & 7);
0939       DUMPBITS(3)
0940       if ((unsigned)i + j > n) {
0941         ret = 1;
0942     goto out;
0943       }
0944       while (j--)
0945         ll[i++] = 0;
0946       l = 0;
0947     }
0948     else                        /* j == 18: 11 to 138 zero length codes */
0949     {
0950       NEEDBITS(7)
0951       j = 11 + ((unsigned)b & 0x7f);
0952       DUMPBITS(7)
0953       if ((unsigned)i + j > n) {
0954         ret = 1;
0955     goto out;
0956       }
0957       while (j--)
0958         ll[i++] = 0;
0959       l = 0;
0960     }
0961   }
0962 
0963 DEBG("dyn4 ");
0964 
0965   /* free decoding table for trees */
0966   huft_free(tl);
0967 
0968 DEBG("dyn5 ");
0969 
0970   /* restore the global bit buffer */
0971   bb = b;
0972   bk = k;
0973 
0974 DEBG("dyn5a ");
0975 
0976   /* build the decoding tables for literal/length and distance codes */
0977   bl = lbits;
0978   if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
0979   {
0980 DEBG("dyn5b ");
0981     if (i == 1) {
0982       error("incomplete literal tree");
0983       huft_free(tl);
0984     }
0985     ret = i;                   /* incomplete code set */
0986     goto out;
0987   }
0988 DEBG("dyn5c ");
0989   bd = dbits;
0990   if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
0991   {
0992 DEBG("dyn5d ");
0993     if (i == 1) {
0994       error("incomplete distance tree");
0995 #ifdef PKZIP_BUG_WORKAROUND
0996       i = 0;
0997     }
0998 #else
0999       huft_free(td);
1000     }
1001     huft_free(tl);
1002     ret = i;                   /* incomplete code set */
1003     goto out;
1004 #endif
1005   }
1006 
1007 DEBG("dyn6 ");
1008 
1009   /* decompress until an end-of-block code */
1010   if (inflate_codes(tl, td, bl, bd)) {
1011     ret = 1;
1012     goto out;
1013   }
1014 
1015 DEBG("dyn7 ");
1016 
1017   /* free the decoding tables, return */
1018   huft_free(tl);
1019   huft_free(td);
1020 
1021   DEBG(">");
1022   ret = 0;
1023 out:
1024   free(ll);
1025   return ret;
1026 
1027 underrun:
1028   ret = 4;          /* Input underrun */
1029   goto out;
1030 }
1031 
1032 
1033 
1034 STATIC int INIT inflate_block(
1035     int *e                  /* last block flag */
1036     )
1037 /* decompress an inflated block */
1038 {
1039   unsigned t;           /* block type */
1040   register ulg b;       /* bit buffer */
1041   register unsigned k;  /* number of bits in bit buffer */
1042 
1043   DEBG("<blk");
1044 
1045   /* make local bit buffer */
1046   b = bb;
1047   k = bk;
1048 
1049 
1050   /* read in last block bit */
1051   NEEDBITS(1)
1052   *e = (int)b & 1;
1053   DUMPBITS(1)
1054 
1055 
1056   /* read in block type */
1057   NEEDBITS(2)
1058   t = (unsigned)b & 3;
1059   DUMPBITS(2)
1060 
1061 
1062   /* restore the global bit buffer */
1063   bb = b;
1064   bk = k;
1065 
1066   /* inflate that block type */
1067   if (t == 2)
1068     return inflate_dynamic();
1069   if (t == 0)
1070     return inflate_stored();
1071   if (t == 1)
1072     return inflate_fixed();
1073 
1074   DEBG(">");
1075 
1076   /* bad block type */
1077   return 2;
1078 
1079  underrun:
1080   return 4;         /* Input underrun */
1081 }
1082 
1083 
1084 
1085 STATIC int INIT inflate(void)
1086 /* decompress an inflated entry */
1087 {
1088   int e;                /* last block flag */
1089   int r;                /* result code */
1090   unsigned h;           /* maximum struct huft's malloc'ed */
1091 
1092   /* initialize window, bit buffer */
1093   wp = 0;
1094   bk = 0;
1095   bb = 0;
1096 
1097 
1098   /* decompress until the last block */
1099   h = 0;
1100   do {
1101     hufts = 0;
1102 #ifdef ARCH_HAS_DECOMP_WDOG
1103     arch_decomp_wdog();
1104 #endif
1105     r = inflate_block(&e);
1106     if (r)
1107         return r;
1108     if (hufts > h)
1109       h = hufts;
1110   } while (!e);
1111 
1112   /* Undo too much lookahead. The next read will be byte aligned so we
1113    * can discard unused bits in the last meaningful byte.
1114    */
1115   while (bk >= 8) {
1116     bk -= 8;
1117     inptr--;
1118   }
1119 
1120   /* flush out slide */
1121   flush_output(wp);
1122 
1123 
1124   /* return success */
1125 #ifdef DEBUG
1126   fprintf(stderr, "<%u> ", h);
1127 #endif /* DEBUG */
1128   return 0;
1129 }
1130 
1131 /**********************************************************************
1132  *
1133  * The following are support routines for inflate.c
1134  *
1135  **********************************************************************/
1136 
1137 static ulg crc_32_tab[256];
1138 static ulg crc;     /* initialized in makecrc() so it'll reside in bss */
1139 #define CRC_VALUE (crc ^ 0xffffffffUL)
1140 
1141 /*
1142  * Code to compute the CRC-32 table. Borrowed from 
1143  * gzip-1.0.3/makecrc.c.
1144  */
1145 
1146 static void INIT
1147 makecrc(void)
1148 {
1149 /* Not copyrighted 1990 Mark Adler  */
1150 
1151   unsigned long c;      /* crc shift register */
1152   unsigned long e;      /* polynomial exclusive-or pattern */
1153   int i;                /* counter for all possible eight bit values */
1154   int k;                /* byte being shifted into crc apparatus */
1155 
1156   /* terms of polynomial defining this crc (except x^32): */
1157   static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1158 
1159   /* Make exclusive-or pattern from polynomial */
1160   e = 0;
1161   for (i = 0; i < sizeof(p)/sizeof(int); i++)
1162     e |= 1L << (31 - p[i]);
1163 
1164   crc_32_tab[0] = 0;
1165 
1166   for (i = 1; i < 256; i++)
1167   {
1168     c = 0;
1169     for (k = i | 256; k != 1; k >>= 1)
1170     {
1171       c = c & 1 ? (c >> 1) ^ e : c >> 1;
1172       if (k & 1)
1173         c ^= e;
1174     }
1175     crc_32_tab[i] = c;
1176   }
1177 
1178   /* this is initialized here so this code could reside in ROM */
1179   crc = (ulg)0xffffffffUL; /* shift register contents */
1180 }
1181 
1182 /* gzip flag byte */
1183 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
1184 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1185 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
1186 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
1187 #define COMMENT      0x10 /* bit 4 set: file comment present */
1188 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
1189 #define RESERVED     0xC0 /* bit 6,7:   reserved */
1190 
1191 /*
1192  * Do the uncompression!
1193  */
1194 static int INIT gunzip(void)
1195 {
1196     uch flags;
1197     unsigned char magic[2]; /* magic header */
1198     char method;
1199     ulg orig_crc = 0;       /* original crc */
1200     ulg orig_len = 0;       /* original uncompressed length */
1201     int res;
1202 
1203     magic[0] = NEXTBYTE();
1204     magic[1] = NEXTBYTE();
1205     method   = NEXTBYTE();
1206 
1207     if (magic[0] != 037 ||
1208     ((magic[1] != 0213) && (magic[1] != 0236))) {
1209         error("bad gzip magic numbers");
1210         return -1;
1211     }
1212 
1213     /* We only support method #8, DEFLATED */
1214     if (method != 8)  {
1215         error("internal error, invalid method");
1216         return -1;
1217     }
1218 
1219     flags  = (uch)get_byte();
1220     if ((flags & ENCRYPTED) != 0) {
1221         error("Input is encrypted");
1222         return -1;
1223     }
1224     if ((flags & CONTINUATION) != 0) {
1225         error("Multi part input");
1226         return -1;
1227     }
1228     if ((flags & RESERVED) != 0) {
1229         error("Input has invalid flags");
1230         return -1;
1231     }
1232     NEXTBYTE(); /* Get timestamp */
1233     NEXTBYTE();
1234     NEXTBYTE();
1235     NEXTBYTE();
1236 
1237     (void)NEXTBYTE();  /* Ignore extra flags for the moment */
1238     (void)NEXTBYTE();  /* Ignore OS type for the moment */
1239 
1240     if ((flags & EXTRA_FIELD) != 0) {
1241         unsigned len = (unsigned)NEXTBYTE();
1242         len |= ((unsigned)NEXTBYTE())<<8;
1243         while (len--) (void)NEXTBYTE();
1244     }
1245 
1246     /* Get original file name if it was truncated */
1247     if ((flags & ORIG_NAME) != 0) {
1248         /* Discard the old name */
1249         while (NEXTBYTE() != 0) /* null */ ;
1250     } 
1251 
1252     /* Discard file comment if any */
1253     if ((flags & COMMENT) != 0) {
1254         while (NEXTBYTE() != 0) /* null */ ;
1255     }
1256 
1257     /* Decompress */
1258     if ((res = inflate())) {
1259         switch (res) {
1260         case 0:
1261             break;
1262         case 1:
1263             error("invalid compressed format (err=1)");
1264             break;
1265         case 2:
1266             error("invalid compressed format (err=2)");
1267             break;
1268         case 3:
1269             error("out of memory");
1270             break;
1271         case 4:
1272             error("out of input data");
1273             break;
1274         default:
1275             error("invalid compressed format (other)");
1276         }
1277         return -1;
1278     }
1279         
1280     /* Get the crc and original length */
1281     /* crc32  (see algorithm.doc)
1282      * uncompressed input size modulo 2^32
1283      */
1284     orig_crc = (ulg) NEXTBYTE();
1285     orig_crc |= (ulg) NEXTBYTE() << 8;
1286     orig_crc |= (ulg) NEXTBYTE() << 16;
1287     orig_crc |= (ulg) NEXTBYTE() << 24;
1288     
1289     orig_len = (ulg) NEXTBYTE();
1290     orig_len |= (ulg) NEXTBYTE() << 8;
1291     orig_len |= (ulg) NEXTBYTE() << 16;
1292     orig_len |= (ulg) NEXTBYTE() << 24;
1293     
1294     /* Validate decompression */
1295     if (orig_crc != CRC_VALUE) {
1296         error("crc error");
1297         return -1;
1298     }
1299     if (orig_len != bytes_out) {
1300         error("length error");
1301         return -1;
1302     }
1303     return 0;
1304 
1305  underrun:          /* NEXTBYTE() goto's here if needed */
1306     error("out of input data");
1307     return -1;
1308 }
1309 
1310