![]() |
|
|||
0001 /* 0002 * Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd 0003 * 0004 * Author: Lasse Collin <lasse.collin@tukaani.org> 0005 * 0006 * This file has been put into the public domain. 0007 * You can do whatever you want with this file. 0008 */ 0009 0010 /* 0011 * Important notes about in-place decompression 0012 * 0013 * At least on x86, the kernel is decompressed in place: the compressed data 0014 * is placed to the end of the output buffer, and the decompressor overwrites 0015 * most of the compressed data. There must be enough safety margin to 0016 * guarantee that the write position is always behind the read position. 0017 * 0018 * The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below. 0019 * Note that the margin with XZ is bigger than with Deflate (gzip)! 0020 * 0021 * The worst case for in-place decompression is that the beginning of 0022 * the file is compressed extremely well, and the rest of the file is 0023 * incompressible. Thus, we must look for worst-case expansion when the 0024 * compressor is encoding incompressible data. 0025 * 0026 * The structure of the .xz file in case of a compressed kernel is as follows. 0027 * Sizes (as bytes) of the fields are in parenthesis. 0028 * 0029 * Stream Header (12) 0030 * Block Header: 0031 * Block Header (8-12) 0032 * Compressed Data (N) 0033 * Block Padding (0-3) 0034 * CRC32 (4) 0035 * Index (8-20) 0036 * Stream Footer (12) 0037 * 0038 * Normally there is exactly one Block, but let's assume that there are 0039 * 2-4 Blocks just in case. Because Stream Header and also Block Header 0040 * of the first Block don't make the decompressor produce any uncompressed 0041 * data, we can ignore them from our calculations. Block Headers of possible 0042 * additional Blocks have to be taken into account still. With these 0043 * assumptions, it is safe to assume that the total header overhead is 0044 * less than 128 bytes. 0045 * 0046 * Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ 0047 * doesn't change the size of the data, it is enough to calculate the 0048 * safety margin for LZMA2. 0049 * 0050 * LZMA2 stores the data in chunks. Each chunk has a header whose size is 0051 * a maximum of 6 bytes, but to get round 2^n numbers, let's assume that 0052 * the maximum chunk header size is 8 bytes. After the chunk header, there 0053 * may be up to 64 KiB of actual payload in the chunk. Often the payload is 0054 * quite a bit smaller though; to be safe, let's assume that an average 0055 * chunk has only 32 KiB of payload. 0056 * 0057 * The maximum uncompressed size of the payload is 2 MiB. The minimum 0058 * uncompressed size of the payload is in practice never less than the 0059 * payload size itself. The LZMA2 format would allow uncompressed size 0060 * to be less than the payload size, but no sane compressor creates such 0061 * files. LZMA2 supports storing incompressible data in uncompressed form, 0062 * so there's never a need to create payloads whose uncompressed size is 0063 * smaller than the compressed size. 0064 * 0065 * The assumption, that the uncompressed size of the payload is never 0066 * smaller than the payload itself, is valid only when talking about 0067 * the payload as a whole. It is possible that the payload has parts where 0068 * the decompressor consumes more input than it produces output. Calculating 0069 * the worst case for this would be tricky. Instead of trying to do that, 0070 * let's simply make sure that the decompressor never overwrites any bytes 0071 * of the payload which it is currently reading. 0072 * 0073 * Now we have enough information to calculate the safety margin. We need 0074 * - 128 bytes for the .xz file format headers; 0075 * - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header 0076 * per chunk, each chunk having average payload size of 32 KiB); and 0077 * - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that 0078 * the decompressor never overwrites anything from the LZMA2 chunk 0079 * payload it is currently reading. 0080 * 0081 * We get the following formula: 0082 * 0083 * safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536 0084 * = 128 + (uncompressed_size >> 12) + 65536 0085 * 0086 * For comparison, according to arch/x86/boot/compressed/misc.c, the 0087 * equivalent formula for Deflate is this: 0088 * 0089 * safety_margin = 18 + (uncompressed_size >> 12) + 32768 0090 * 0091 * Thus, when updating Deflate-only in-place kernel decompressor to 0092 * support XZ, the fixed overhead has to be increased from 18+32768 bytes 0093 * to 128+65536 bytes. 0094 */ 0095 0096 /* 0097 * STATIC is defined to "static" if we are being built for kernel 0098 * decompression (pre-boot code). <linux/decompress/mm.h> will define 0099 * STATIC to empty if it wasn't already defined. Since we will need to 0100 * know later if we are being used for kernel decompression, we define 0101 * XZ_PREBOOT here. 0102 */ 0103 #ifdef STATIC 0104 # define XZ_PREBOOT 0105 #endif 0106 #ifdef __KERNEL__ 0107 # include <linux/decompress/mm.h> 0108 #endif 0109 #define XZ_EXTERN STATIC 0110 0111 #ifndef XZ_PREBOOT 0112 # include <linux/slab.h> 0113 # include <linux/xz.h> 0114 #else 0115 /* 0116 * Use the internal CRC32 code instead of kernel's CRC32 module, which 0117 * is not available in early phase of booting. 0118 */ 0119 #define XZ_INTERNAL_CRC32 1 0120 0121 /* 0122 * For boot time use, we enable only the BCJ filter of the current 0123 * architecture or none if no BCJ filter is available for the architecture. 0124 */ 0125 #ifdef CONFIG_X86 0126 # define XZ_DEC_X86 0127 #endif 0128 #ifdef CONFIG_PPC 0129 # define XZ_DEC_POWERPC 0130 #endif 0131 #ifdef CONFIG_ARM 0132 # define XZ_DEC_ARM 0133 #endif 0134 #ifdef CONFIG_IA64 0135 # define XZ_DEC_IA64 0136 #endif 0137 #ifdef CONFIG_SPARC 0138 # define XZ_DEC_SPARC 0139 #endif 0140 0141 /* 0142 * This will get the basic headers so that memeq() and others 0143 * can be defined. 0144 */ 0145 #include "xz/xz_private.h" 0146 0147 /* 0148 * Replace the normal allocation functions with the versions from 0149 * <linux/decompress/mm.h>. vfree() needs to support vfree(NULL) 0150 * when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it. 0151 * Workaround it here because the other decompressors don't need it. 0152 */ 0153 #undef kmalloc 0154 #undef kfree 0155 #undef vmalloc 0156 #undef vfree 0157 #define kmalloc(size, flags) malloc(size) 0158 #define kfree(ptr) free(ptr) 0159 #define vmalloc(size) malloc(size) 0160 #define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0) 0161 0162 /* 0163 * FIXME: Not all basic memory functions are provided in architecture-specific 0164 * files (yet). We define our own versions here for now, but this should be 0165 * only a temporary solution. 0166 * 0167 * memeq and memzero are not used much and any remotely sane implementation 0168 * is fast enough. memcpy/memmove speed matters in multi-call mode, but 0169 * the kernel image is decompressed in single-call mode, in which only 0170 * memmove speed can matter and only if there is a lot of incompressible data 0171 * (LZMA2 stores incompressible chunks in uncompressed form). Thus, the 0172 * functions below should just be kept small; it's probably not worth 0173 * optimizing for speed. 0174 */ 0175 0176 #ifndef memeq 0177 static bool memeq(const void *a, const void *b, size_t size) 0178 { 0179 const uint8_t *x = a; 0180 const uint8_t *y = b; 0181 size_t i; 0182 0183 for (i = 0; i < size; ++i) 0184 if (x[i] != y[i]) 0185 return false; 0186 0187 return true; 0188 } 0189 #endif 0190 0191 #ifndef memzero 0192 static void memzero(void *buf, size_t size) 0193 { 0194 uint8_t *b = buf; 0195 uint8_t *e = b + size; 0196 0197 while (b != e) 0198 *b++ = '\0'; 0199 } 0200 #endif 0201 0202 #ifndef memmove 0203 /* Not static to avoid a conflict with the prototype in the Linux headers. */ 0204 void *memmove(void *dest, const void *src, size_t size) 0205 { 0206 uint8_t *d = dest; 0207 const uint8_t *s = src; 0208 size_t i; 0209 0210 if (d < s) { 0211 for (i = 0; i < size; ++i) 0212 d[i] = s[i]; 0213 } else if (d > s) { 0214 i = size; 0215 while (i-- > 0) 0216 d[i] = s[i]; 0217 } 0218 0219 return dest; 0220 } 0221 #endif 0222 0223 /* 0224 * Since we need memmove anyway, would use it as memcpy too. 0225 * Commented out for now to avoid breaking things. 0226 */ 0227 /* 0228 #ifndef memcpy 0229 # define memcpy memmove 0230 #endif 0231 */ 0232 0233 #include "xz/xz_crc32.c" 0234 #include "xz/xz_dec_stream.c" 0235 #include "xz/xz_dec_lzma2.c" 0236 #include "xz/xz_dec_bcj.c" 0237 0238 #endif /* XZ_PREBOOT */ 0239 0240 /* Size of the input and output buffers in multi-call mode */ 0241 #define XZ_IOBUF_SIZE 4096 0242 0243 /* 0244 * This function implements the API defined in <linux/decompress/generic.h>. 0245 * 0246 * This wrapper will automatically choose single-call or multi-call mode 0247 * of the native XZ decoder API. The single-call mode can be used only when 0248 * both input and output buffers are available as a single chunk, i.e. when 0249 * fill() and flush() won't be used. 0250 */ 0251 STATIC int INIT unxz(unsigned char *in, long in_size, 0252 long (*fill)(void *dest, unsigned long size), 0253 long (*flush)(void *src, unsigned long size), 0254 unsigned char *out, long *in_used, 0255 void (*error)(char *x)) 0256 { 0257 struct xz_buf b; 0258 struct xz_dec *s; 0259 enum xz_ret ret; 0260 bool must_free_in = false; 0261 0262 #if XZ_INTERNAL_CRC32 0263 xz_crc32_init(); 0264 #endif 0265 0266 if (in_used != NULL) 0267 *in_used = 0; 0268 0269 if (fill == NULL && flush == NULL) 0270 s = xz_dec_init(XZ_SINGLE, 0); 0271 else 0272 s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1); 0273 0274 if (s == NULL) 0275 goto error_alloc_state; 0276 0277 if (flush == NULL) { 0278 b.out = out; 0279 b.out_size = (size_t)-1; 0280 } else { 0281 b.out_size = XZ_IOBUF_SIZE; 0282 b.out = malloc(XZ_IOBUF_SIZE); 0283 if (b.out == NULL) 0284 goto error_alloc_out; 0285 } 0286 0287 if (in == NULL) { 0288 must_free_in = true; 0289 in = malloc(XZ_IOBUF_SIZE); 0290 if (in == NULL) 0291 goto error_alloc_in; 0292 } 0293 0294 b.in = in; 0295 b.in_pos = 0; 0296 b.in_size = in_size; 0297 b.out_pos = 0; 0298 0299 if (fill == NULL && flush == NULL) { 0300 ret = xz_dec_run(s, &b); 0301 } else { 0302 do { 0303 if (b.in_pos == b.in_size && fill != NULL) { 0304 if (in_used != NULL) 0305 *in_used += b.in_pos; 0306 0307 b.in_pos = 0; 0308 0309 in_size = fill(in, XZ_IOBUF_SIZE); 0310 if (in_size < 0) { 0311 /* 0312 * This isn't an optimal error code 0313 * but it probably isn't worth making 0314 * a new one either. 0315 */ 0316 ret = XZ_BUF_ERROR; 0317 break; 0318 } 0319 0320 b.in_size = in_size; 0321 } 0322 0323 ret = xz_dec_run(s, &b); 0324 0325 if (flush != NULL && (b.out_pos == b.out_size 0326 || (ret != XZ_OK && b.out_pos > 0))) { 0327 /* 0328 * Setting ret here may hide an error 0329 * returned by xz_dec_run(), but probably 0330 * it's not too bad. 0331 */ 0332 if (flush(b.out, b.out_pos) != (long)b.out_pos) 0333 ret = XZ_BUF_ERROR; 0334 0335 b.out_pos = 0; 0336 } 0337 } while (ret == XZ_OK); 0338 0339 if (must_free_in) 0340 free(in); 0341 0342 if (flush != NULL) 0343 free(b.out); 0344 } 0345 0346 if (in_used != NULL) 0347 *in_used += b.in_pos; 0348 0349 xz_dec_end(s); 0350 0351 switch (ret) { 0352 case XZ_STREAM_END: 0353 return 0; 0354 0355 case XZ_MEM_ERROR: 0356 /* This can occur only in multi-call mode. */ 0357 error("XZ decompressor ran out of memory"); 0358 break; 0359 0360 case XZ_FORMAT_ERROR: 0361 error("Input is not in the XZ format (wrong magic bytes)"); 0362 break; 0363 0364 case XZ_OPTIONS_ERROR: 0365 error("Input was encoded with settings that are not " 0366 "supported by this XZ decoder"); 0367 break; 0368 0369 case XZ_DATA_ERROR: 0370 case XZ_BUF_ERROR: 0371 error("XZ-compressed data is corrupt"); 0372 break; 0373 0374 default: 0375 error("Bug in the XZ decompressor"); 0376 break; 0377 } 0378 0379 return -1; 0380 0381 error_alloc_in: 0382 if (flush != NULL) 0383 free(b.out); 0384 0385 error_alloc_out: 0386 xz_dec_end(s); 0387 0388 error_alloc_state: 0389 error("XZ decompressor ran out of memory"); 0390 return -1; 0391 } 0392 0393 /* 0394 * This macro is used by architecture-specific files to decompress 0395 * the kernel image. 0396 */ 0397 #ifdef XZ_PREBOOT 0398 STATIC int INIT __decompress(unsigned char *buf, long len, 0399 long (*fill)(void*, unsigned long), 0400 long (*flush)(void*, unsigned long), 0401 unsigned char *out_buf, long olen, 0402 long *pos, 0403 void (*error)(char *x)) 0404 { 0405 return unxz(buf, len, fill, flush, out_buf, pos, error); 0406 } 0407 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |