Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Generic ring buffer
0004  *
0005  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
0006  */
0007 #include <linux/trace_recursion.h>
0008 #include <linux/trace_events.h>
0009 #include <linux/ring_buffer.h>
0010 #include <linux/trace_clock.h>
0011 #include <linux/sched/clock.h>
0012 #include <linux/trace_seq.h>
0013 #include <linux/spinlock.h>
0014 #include <linux/irq_work.h>
0015 #include <linux/security.h>
0016 #include <linux/uaccess.h>
0017 #include <linux/hardirq.h>
0018 #include <linux/kthread.h>  /* for self test */
0019 #include <linux/module.h>
0020 #include <linux/percpu.h>
0021 #include <linux/mutex.h>
0022 #include <linux/delay.h>
0023 #include <linux/slab.h>
0024 #include <linux/init.h>
0025 #include <linux/hash.h>
0026 #include <linux/list.h>
0027 #include <linux/cpu.h>
0028 #include <linux/oom.h>
0029 
0030 #include <asm/local.h>
0031 
0032 /*
0033  * The "absolute" timestamp in the buffer is only 59 bits.
0034  * If a clock has the 5 MSBs set, it needs to be saved and
0035  * reinserted.
0036  */
0037 #define TS_MSB      (0xf8ULL << 56)
0038 #define ABS_TS_MASK (~TS_MSB)
0039 
0040 static void update_pages_handler(struct work_struct *work);
0041 
0042 /*
0043  * The ring buffer header is special. We must manually up keep it.
0044  */
0045 int ring_buffer_print_entry_header(struct trace_seq *s)
0046 {
0047     trace_seq_puts(s, "# compressed entry header\n");
0048     trace_seq_puts(s, "\ttype_len    :    5 bits\n");
0049     trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
0050     trace_seq_puts(s, "\tarray       :   32 bits\n");
0051     trace_seq_putc(s, '\n');
0052     trace_seq_printf(s, "\tpadding     : type == %d\n",
0053              RINGBUF_TYPE_PADDING);
0054     trace_seq_printf(s, "\ttime_extend : type == %d\n",
0055              RINGBUF_TYPE_TIME_EXTEND);
0056     trace_seq_printf(s, "\ttime_stamp : type == %d\n",
0057              RINGBUF_TYPE_TIME_STAMP);
0058     trace_seq_printf(s, "\tdata max type_len  == %d\n",
0059              RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
0060 
0061     return !trace_seq_has_overflowed(s);
0062 }
0063 
0064 /*
0065  * The ring buffer is made up of a list of pages. A separate list of pages is
0066  * allocated for each CPU. A writer may only write to a buffer that is
0067  * associated with the CPU it is currently executing on.  A reader may read
0068  * from any per cpu buffer.
0069  *
0070  * The reader is special. For each per cpu buffer, the reader has its own
0071  * reader page. When a reader has read the entire reader page, this reader
0072  * page is swapped with another page in the ring buffer.
0073  *
0074  * Now, as long as the writer is off the reader page, the reader can do what
0075  * ever it wants with that page. The writer will never write to that page
0076  * again (as long as it is out of the ring buffer).
0077  *
0078  * Here's some silly ASCII art.
0079  *
0080  *   +------+
0081  *   |reader|          RING BUFFER
0082  *   |page  |
0083  *   +------+        +---+   +---+   +---+
0084  *                   |   |-->|   |-->|   |
0085  *                   +---+   +---+   +---+
0086  *                     ^               |
0087  *                     |               |
0088  *                     +---------------+
0089  *
0090  *
0091  *   +------+
0092  *   |reader|          RING BUFFER
0093  *   |page  |------------------v
0094  *   +------+        +---+   +---+   +---+
0095  *                   |   |-->|   |-->|   |
0096  *                   +---+   +---+   +---+
0097  *                     ^               |
0098  *                     |               |
0099  *                     +---------------+
0100  *
0101  *
0102  *   +------+
0103  *   |reader|          RING BUFFER
0104  *   |page  |------------------v
0105  *   +------+        +---+   +---+   +---+
0106  *      ^            |   |-->|   |-->|   |
0107  *      |            +---+   +---+   +---+
0108  *      |                              |
0109  *      |                              |
0110  *      +------------------------------+
0111  *
0112  *
0113  *   +------+
0114  *   |buffer|          RING BUFFER
0115  *   |page  |------------------v
0116  *   +------+        +---+   +---+   +---+
0117  *      ^            |   |   |   |-->|   |
0118  *      |   New      +---+   +---+   +---+
0119  *      |  Reader------^               |
0120  *      |   page                       |
0121  *      +------------------------------+
0122  *
0123  *
0124  * After we make this swap, the reader can hand this page off to the splice
0125  * code and be done with it. It can even allocate a new page if it needs to
0126  * and swap that into the ring buffer.
0127  *
0128  * We will be using cmpxchg soon to make all this lockless.
0129  *
0130  */
0131 
0132 /* Used for individual buffers (after the counter) */
0133 #define RB_BUFFER_OFF       (1 << 20)
0134 
0135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
0136 
0137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
0138 #define RB_ALIGNMENT        4U
0139 #define RB_MAX_SMALL_DATA   (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
0140 #define RB_EVNT_MIN_SIZE    8U  /* two 32bit words */
0141 
0142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
0143 # define RB_FORCE_8BYTE_ALIGNMENT   0
0144 # define RB_ARCH_ALIGNMENT      RB_ALIGNMENT
0145 #else
0146 # define RB_FORCE_8BYTE_ALIGNMENT   1
0147 # define RB_ARCH_ALIGNMENT      8U
0148 #endif
0149 
0150 #define RB_ALIGN_DATA       __aligned(RB_ARCH_ALIGNMENT)
0151 
0152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
0153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
0154 
0155 enum {
0156     RB_LEN_TIME_EXTEND = 8,
0157     RB_LEN_TIME_STAMP =  8,
0158 };
0159 
0160 #define skip_time_extend(event) \
0161     ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
0162 
0163 #define extended_time(event) \
0164     (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
0165 
0166 static inline int rb_null_event(struct ring_buffer_event *event)
0167 {
0168     return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
0169 }
0170 
0171 static void rb_event_set_padding(struct ring_buffer_event *event)
0172 {
0173     /* padding has a NULL time_delta */
0174     event->type_len = RINGBUF_TYPE_PADDING;
0175     event->time_delta = 0;
0176 }
0177 
0178 static unsigned
0179 rb_event_data_length(struct ring_buffer_event *event)
0180 {
0181     unsigned length;
0182 
0183     if (event->type_len)
0184         length = event->type_len * RB_ALIGNMENT;
0185     else
0186         length = event->array[0];
0187     return length + RB_EVNT_HDR_SIZE;
0188 }
0189 
0190 /*
0191  * Return the length of the given event. Will return
0192  * the length of the time extend if the event is a
0193  * time extend.
0194  */
0195 static inline unsigned
0196 rb_event_length(struct ring_buffer_event *event)
0197 {
0198     switch (event->type_len) {
0199     case RINGBUF_TYPE_PADDING:
0200         if (rb_null_event(event))
0201             /* undefined */
0202             return -1;
0203         return  event->array[0] + RB_EVNT_HDR_SIZE;
0204 
0205     case RINGBUF_TYPE_TIME_EXTEND:
0206         return RB_LEN_TIME_EXTEND;
0207 
0208     case RINGBUF_TYPE_TIME_STAMP:
0209         return RB_LEN_TIME_STAMP;
0210 
0211     case RINGBUF_TYPE_DATA:
0212         return rb_event_data_length(event);
0213     default:
0214         WARN_ON_ONCE(1);
0215     }
0216     /* not hit */
0217     return 0;
0218 }
0219 
0220 /*
0221  * Return total length of time extend and data,
0222  *   or just the event length for all other events.
0223  */
0224 static inline unsigned
0225 rb_event_ts_length(struct ring_buffer_event *event)
0226 {
0227     unsigned len = 0;
0228 
0229     if (extended_time(event)) {
0230         /* time extends include the data event after it */
0231         len = RB_LEN_TIME_EXTEND;
0232         event = skip_time_extend(event);
0233     }
0234     return len + rb_event_length(event);
0235 }
0236 
0237 /**
0238  * ring_buffer_event_length - return the length of the event
0239  * @event: the event to get the length of
0240  *
0241  * Returns the size of the data load of a data event.
0242  * If the event is something other than a data event, it
0243  * returns the size of the event itself. With the exception
0244  * of a TIME EXTEND, where it still returns the size of the
0245  * data load of the data event after it.
0246  */
0247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
0248 {
0249     unsigned length;
0250 
0251     if (extended_time(event))
0252         event = skip_time_extend(event);
0253 
0254     length = rb_event_length(event);
0255     if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
0256         return length;
0257     length -= RB_EVNT_HDR_SIZE;
0258     if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
0259                 length -= sizeof(event->array[0]);
0260     return length;
0261 }
0262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
0263 
0264 /* inline for ring buffer fast paths */
0265 static __always_inline void *
0266 rb_event_data(struct ring_buffer_event *event)
0267 {
0268     if (extended_time(event))
0269         event = skip_time_extend(event);
0270     WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
0271     /* If length is in len field, then array[0] has the data */
0272     if (event->type_len)
0273         return (void *)&event->array[0];
0274     /* Otherwise length is in array[0] and array[1] has the data */
0275     return (void *)&event->array[1];
0276 }
0277 
0278 /**
0279  * ring_buffer_event_data - return the data of the event
0280  * @event: the event to get the data from
0281  */
0282 void *ring_buffer_event_data(struct ring_buffer_event *event)
0283 {
0284     return rb_event_data(event);
0285 }
0286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
0287 
0288 #define for_each_buffer_cpu(buffer, cpu)        \
0289     for_each_cpu(cpu, buffer->cpumask)
0290 
0291 #define for_each_online_buffer_cpu(buffer, cpu)     \
0292     for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
0293 
0294 #define TS_SHIFT    27
0295 #define TS_MASK     ((1ULL << TS_SHIFT) - 1)
0296 #define TS_DELTA_TEST   (~TS_MASK)
0297 
0298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
0299 {
0300     u64 ts;
0301 
0302     ts = event->array[0];
0303     ts <<= TS_SHIFT;
0304     ts += event->time_delta;
0305 
0306     return ts;
0307 }
0308 
0309 /* Flag when events were overwritten */
0310 #define RB_MISSED_EVENTS    (1 << 31)
0311 /* Missed count stored at end */
0312 #define RB_MISSED_STORED    (1 << 30)
0313 
0314 struct buffer_data_page {
0315     u64      time_stamp;    /* page time stamp */
0316     local_t      commit;    /* write committed index */
0317     unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
0318 };
0319 
0320 /*
0321  * Note, the buffer_page list must be first. The buffer pages
0322  * are allocated in cache lines, which means that each buffer
0323  * page will be at the beginning of a cache line, and thus
0324  * the least significant bits will be zero. We use this to
0325  * add flags in the list struct pointers, to make the ring buffer
0326  * lockless.
0327  */
0328 struct buffer_page {
0329     struct list_head list;      /* list of buffer pages */
0330     local_t      write;     /* index for next write */
0331     unsigned     read;      /* index for next read */
0332     local_t      entries;   /* entries on this page */
0333     unsigned long    real_end;  /* real end of data */
0334     struct buffer_data_page *page;  /* Actual data page */
0335 };
0336 
0337 /*
0338  * The buffer page counters, write and entries, must be reset
0339  * atomically when crossing page boundaries. To synchronize this
0340  * update, two counters are inserted into the number. One is
0341  * the actual counter for the write position or count on the page.
0342  *
0343  * The other is a counter of updaters. Before an update happens
0344  * the update partition of the counter is incremented. This will
0345  * allow the updater to update the counter atomically.
0346  *
0347  * The counter is 20 bits, and the state data is 12.
0348  */
0349 #define RB_WRITE_MASK       0xfffff
0350 #define RB_WRITE_INTCNT     (1 << 20)
0351 
0352 static void rb_init_page(struct buffer_data_page *bpage)
0353 {
0354     local_set(&bpage->commit, 0);
0355 }
0356 
0357 /*
0358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
0359  * this issue out.
0360  */
0361 static void free_buffer_page(struct buffer_page *bpage)
0362 {
0363     free_page((unsigned long)bpage->page);
0364     kfree(bpage);
0365 }
0366 
0367 /*
0368  * We need to fit the time_stamp delta into 27 bits.
0369  */
0370 static inline int test_time_stamp(u64 delta)
0371 {
0372     if (delta & TS_DELTA_TEST)
0373         return 1;
0374     return 0;
0375 }
0376 
0377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
0378 
0379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
0380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
0381 
0382 int ring_buffer_print_page_header(struct trace_seq *s)
0383 {
0384     struct buffer_data_page field;
0385 
0386     trace_seq_printf(s, "\tfield: u64 timestamp;\t"
0387              "offset:0;\tsize:%u;\tsigned:%u;\n",
0388              (unsigned int)sizeof(field.time_stamp),
0389              (unsigned int)is_signed_type(u64));
0390 
0391     trace_seq_printf(s, "\tfield: local_t commit;\t"
0392              "offset:%u;\tsize:%u;\tsigned:%u;\n",
0393              (unsigned int)offsetof(typeof(field), commit),
0394              (unsigned int)sizeof(field.commit),
0395              (unsigned int)is_signed_type(long));
0396 
0397     trace_seq_printf(s, "\tfield: int overwrite;\t"
0398              "offset:%u;\tsize:%u;\tsigned:%u;\n",
0399              (unsigned int)offsetof(typeof(field), commit),
0400              1,
0401              (unsigned int)is_signed_type(long));
0402 
0403     trace_seq_printf(s, "\tfield: char data;\t"
0404              "offset:%u;\tsize:%u;\tsigned:%u;\n",
0405              (unsigned int)offsetof(typeof(field), data),
0406              (unsigned int)BUF_PAGE_SIZE,
0407              (unsigned int)is_signed_type(char));
0408 
0409     return !trace_seq_has_overflowed(s);
0410 }
0411 
0412 struct rb_irq_work {
0413     struct irq_work         work;
0414     wait_queue_head_t       waiters;
0415     wait_queue_head_t       full_waiters;
0416     bool                waiters_pending;
0417     bool                full_waiters_pending;
0418     bool                wakeup_full;
0419 };
0420 
0421 /*
0422  * Structure to hold event state and handle nested events.
0423  */
0424 struct rb_event_info {
0425     u64         ts;
0426     u64         delta;
0427     u64         before;
0428     u64         after;
0429     unsigned long       length;
0430     struct buffer_page  *tail_page;
0431     int         add_timestamp;
0432 };
0433 
0434 /*
0435  * Used for the add_timestamp
0436  *  NONE
0437  *  EXTEND - wants a time extend
0438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
0439  *  FORCE - force a full time stamp.
0440  */
0441 enum {
0442     RB_ADD_STAMP_NONE       = 0,
0443     RB_ADD_STAMP_EXTEND     = BIT(1),
0444     RB_ADD_STAMP_ABSOLUTE       = BIT(2),
0445     RB_ADD_STAMP_FORCE      = BIT(3)
0446 };
0447 /*
0448  * Used for which event context the event is in.
0449  *  TRANSITION = 0
0450  *  NMI     = 1
0451  *  IRQ     = 2
0452  *  SOFTIRQ = 3
0453  *  NORMAL  = 4
0454  *
0455  * See trace_recursive_lock() comment below for more details.
0456  */
0457 enum {
0458     RB_CTX_TRANSITION,
0459     RB_CTX_NMI,
0460     RB_CTX_IRQ,
0461     RB_CTX_SOFTIRQ,
0462     RB_CTX_NORMAL,
0463     RB_CTX_MAX
0464 };
0465 
0466 #if BITS_PER_LONG == 32
0467 #define RB_TIME_32
0468 #endif
0469 
0470 /* To test on 64 bit machines */
0471 //#define RB_TIME_32
0472 
0473 #ifdef RB_TIME_32
0474 
0475 struct rb_time_struct {
0476     local_t     cnt;
0477     local_t     top;
0478     local_t     bottom;
0479     local_t     msb;
0480 };
0481 #else
0482 #include <asm/local64.h>
0483 struct rb_time_struct {
0484     local64_t   time;
0485 };
0486 #endif
0487 typedef struct rb_time_struct rb_time_t;
0488 
0489 #define MAX_NEST    5
0490 
0491 /*
0492  * head_page == tail_page && head == tail then buffer is empty.
0493  */
0494 struct ring_buffer_per_cpu {
0495     int             cpu;
0496     atomic_t            record_disabled;
0497     atomic_t            resize_disabled;
0498     struct trace_buffer *buffer;
0499     raw_spinlock_t          reader_lock;    /* serialize readers */
0500     arch_spinlock_t         lock;
0501     struct lock_class_key       lock_key;
0502     struct buffer_data_page     *free_page;
0503     unsigned long           nr_pages;
0504     unsigned int            current_context;
0505     struct list_head        *pages;
0506     struct buffer_page      *head_page; /* read from head */
0507     struct buffer_page      *tail_page; /* write to tail */
0508     struct buffer_page      *commit_page;   /* committed pages */
0509     struct buffer_page      *reader_page;
0510     unsigned long           lost_events;
0511     unsigned long           last_overrun;
0512     unsigned long           nest;
0513     local_t             entries_bytes;
0514     local_t             entries;
0515     local_t             overrun;
0516     local_t             commit_overrun;
0517     local_t             dropped_events;
0518     local_t             committing;
0519     local_t             commits;
0520     local_t             pages_touched;
0521     local_t             pages_read;
0522     long                last_pages_touch;
0523     size_t              shortest_full;
0524     unsigned long           read;
0525     unsigned long           read_bytes;
0526     rb_time_t           write_stamp;
0527     rb_time_t           before_stamp;
0528     u64             event_stamp[MAX_NEST];
0529     u64             read_stamp;
0530     /* ring buffer pages to update, > 0 to add, < 0 to remove */
0531     long                nr_pages_to_update;
0532     struct list_head        new_pages; /* new pages to add */
0533     struct work_struct      update_pages_work;
0534     struct completion       update_done;
0535 
0536     struct rb_irq_work      irq_work;
0537 };
0538 
0539 struct trace_buffer {
0540     unsigned            flags;
0541     int             cpus;
0542     atomic_t            record_disabled;
0543     cpumask_var_t           cpumask;
0544 
0545     struct lock_class_key       *reader_lock_key;
0546 
0547     struct mutex            mutex;
0548 
0549     struct ring_buffer_per_cpu  **buffers;
0550 
0551     struct hlist_node       node;
0552     u64             (*clock)(void);
0553 
0554     struct rb_irq_work      irq_work;
0555     bool                time_stamp_abs;
0556 };
0557 
0558 struct ring_buffer_iter {
0559     struct ring_buffer_per_cpu  *cpu_buffer;
0560     unsigned long           head;
0561     unsigned long           next_event;
0562     struct buffer_page      *head_page;
0563     struct buffer_page      *cache_reader_page;
0564     unsigned long           cache_read;
0565     u64             read_stamp;
0566     u64             page_stamp;
0567     struct ring_buffer_event    *event;
0568     int             missed_events;
0569 };
0570 
0571 #ifdef RB_TIME_32
0572 
0573 /*
0574  * On 32 bit machines, local64_t is very expensive. As the ring
0575  * buffer doesn't need all the features of a true 64 bit atomic,
0576  * on 32 bit, it uses these functions (64 still uses local64_t).
0577  *
0578  * For the ring buffer, 64 bit required operations for the time is
0579  * the following:
0580  *
0581  *  - Reads may fail if it interrupted a modification of the time stamp.
0582  *      It will succeed if it did not interrupt another write even if
0583  *      the read itself is interrupted by a write.
0584  *      It returns whether it was successful or not.
0585  *
0586  *  - Writes always succeed and will overwrite other writes and writes
0587  *      that were done by events interrupting the current write.
0588  *
0589  *  - A write followed by a read of the same time stamp will always succeed,
0590  *      but may not contain the same value.
0591  *
0592  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
0593  *      Other than that, it acts like a normal cmpxchg.
0594  *
0595  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
0596  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
0597  *
0598  * The two most significant bits of each half holds a 2 bit counter (0-3).
0599  * Each update will increment this counter by one.
0600  * When reading the top and bottom, if the two counter bits match then the
0601  *  top and bottom together make a valid 60 bit number.
0602  */
0603 #define RB_TIME_SHIFT   30
0604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
0605 #define RB_TIME_MSB_SHIFT    60
0606 
0607 static inline int rb_time_cnt(unsigned long val)
0608 {
0609     return (val >> RB_TIME_SHIFT) & 3;
0610 }
0611 
0612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
0613 {
0614     u64 val;
0615 
0616     val = top & RB_TIME_VAL_MASK;
0617     val <<= RB_TIME_SHIFT;
0618     val |= bottom & RB_TIME_VAL_MASK;
0619 
0620     return val;
0621 }
0622 
0623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
0624 {
0625     unsigned long top, bottom, msb;
0626     unsigned long c;
0627 
0628     /*
0629      * If the read is interrupted by a write, then the cnt will
0630      * be different. Loop until both top and bottom have been read
0631      * without interruption.
0632      */
0633     do {
0634         c = local_read(&t->cnt);
0635         top = local_read(&t->top);
0636         bottom = local_read(&t->bottom);
0637         msb = local_read(&t->msb);
0638     } while (c != local_read(&t->cnt));
0639 
0640     *cnt = rb_time_cnt(top);
0641 
0642     /* If top and bottom counts don't match, this interrupted a write */
0643     if (*cnt != rb_time_cnt(bottom))
0644         return false;
0645 
0646     /* The shift to msb will lose its cnt bits */
0647     *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
0648     return true;
0649 }
0650 
0651 static bool rb_time_read(rb_time_t *t, u64 *ret)
0652 {
0653     unsigned long cnt;
0654 
0655     return __rb_time_read(t, ret, &cnt);
0656 }
0657 
0658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
0659 {
0660     return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
0661 }
0662 
0663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
0664                  unsigned long *msb)
0665 {
0666     *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
0667     *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
0668     *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
0669 }
0670 
0671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
0672 {
0673     val = rb_time_val_cnt(val, cnt);
0674     local_set(t, val);
0675 }
0676 
0677 static void rb_time_set(rb_time_t *t, u64 val)
0678 {
0679     unsigned long cnt, top, bottom, msb;
0680 
0681     rb_time_split(val, &top, &bottom, &msb);
0682 
0683     /* Writes always succeed with a valid number even if it gets interrupted. */
0684     do {
0685         cnt = local_inc_return(&t->cnt);
0686         rb_time_val_set(&t->top, top, cnt);
0687         rb_time_val_set(&t->bottom, bottom, cnt);
0688         rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
0689     } while (cnt != local_read(&t->cnt));
0690 }
0691 
0692 static inline bool
0693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
0694 {
0695     unsigned long ret;
0696 
0697     ret = local_cmpxchg(l, expect, set);
0698     return ret == expect;
0699 }
0700 
0701 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
0702 {
0703     unsigned long cnt, top, bottom, msb;
0704     unsigned long cnt2, top2, bottom2, msb2;
0705     u64 val;
0706 
0707     /* The cmpxchg always fails if it interrupted an update */
0708      if (!__rb_time_read(t, &val, &cnt2))
0709          return false;
0710 
0711      if (val != expect)
0712          return false;
0713 
0714      cnt = local_read(&t->cnt);
0715      if ((cnt & 3) != cnt2)
0716          return false;
0717 
0718      cnt2 = cnt + 1;
0719 
0720      rb_time_split(val, &top, &bottom, &msb);
0721      top = rb_time_val_cnt(top, cnt);
0722      bottom = rb_time_val_cnt(bottom, cnt);
0723 
0724      rb_time_split(set, &top2, &bottom2, &msb2);
0725      top2 = rb_time_val_cnt(top2, cnt2);
0726      bottom2 = rb_time_val_cnt(bottom2, cnt2);
0727 
0728     if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
0729         return false;
0730     if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
0731         return false;
0732     if (!rb_time_read_cmpxchg(&t->top, top, top2))
0733         return false;
0734     if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
0735         return false;
0736     return true;
0737 }
0738 
0739 #else /* 64 bits */
0740 
0741 /* local64_t always succeeds */
0742 
0743 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
0744 {
0745     *ret = local64_read(&t->time);
0746     return true;
0747 }
0748 static void rb_time_set(rb_time_t *t, u64 val)
0749 {
0750     local64_set(&t->time, val);
0751 }
0752 
0753 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
0754 {
0755     u64 val;
0756     val = local64_cmpxchg(&t->time, expect, set);
0757     return val == expect;
0758 }
0759 #endif
0760 
0761 /*
0762  * Enable this to make sure that the event passed to
0763  * ring_buffer_event_time_stamp() is not committed and also
0764  * is on the buffer that it passed in.
0765  */
0766 //#define RB_VERIFY_EVENT
0767 #ifdef RB_VERIFY_EVENT
0768 static struct list_head *rb_list_head(struct list_head *list);
0769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
0770              void *event)
0771 {
0772     struct buffer_page *page = cpu_buffer->commit_page;
0773     struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
0774     struct list_head *next;
0775     long commit, write;
0776     unsigned long addr = (unsigned long)event;
0777     bool done = false;
0778     int stop = 0;
0779 
0780     /* Make sure the event exists and is not committed yet */
0781     do {
0782         if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
0783             done = true;
0784         commit = local_read(&page->page->commit);
0785         write = local_read(&page->write);
0786         if (addr >= (unsigned long)&page->page->data[commit] &&
0787             addr < (unsigned long)&page->page->data[write])
0788             return;
0789 
0790         next = rb_list_head(page->list.next);
0791         page = list_entry(next, struct buffer_page, list);
0792     } while (!done);
0793     WARN_ON_ONCE(1);
0794 }
0795 #else
0796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
0797              void *event)
0798 {
0799 }
0800 #endif
0801 
0802 /*
0803  * The absolute time stamp drops the 5 MSBs and some clocks may
0804  * require them. The rb_fix_abs_ts() will take a previous full
0805  * time stamp, and add the 5 MSB of that time stamp on to the
0806  * saved absolute time stamp. Then they are compared in case of
0807  * the unlikely event that the latest time stamp incremented
0808  * the 5 MSB.
0809  */
0810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
0811 {
0812     if (save_ts & TS_MSB) {
0813         abs |= save_ts & TS_MSB;
0814         /* Check for overflow */
0815         if (unlikely(abs < save_ts))
0816             abs += 1ULL << 59;
0817     }
0818     return abs;
0819 }
0820 
0821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
0822 
0823 /**
0824  * ring_buffer_event_time_stamp - return the event's current time stamp
0825  * @buffer: The buffer that the event is on
0826  * @event: the event to get the time stamp of
0827  *
0828  * Note, this must be called after @event is reserved, and before it is
0829  * committed to the ring buffer. And must be called from the same
0830  * context where the event was reserved (normal, softirq, irq, etc).
0831  *
0832  * Returns the time stamp associated with the current event.
0833  * If the event has an extended time stamp, then that is used as
0834  * the time stamp to return.
0835  * In the highly unlikely case that the event was nested more than
0836  * the max nesting, then the write_stamp of the buffer is returned,
0837  * otherwise  current time is returned, but that really neither of
0838  * the last two cases should ever happen.
0839  */
0840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
0841                  struct ring_buffer_event *event)
0842 {
0843     struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
0844     unsigned int nest;
0845     u64 ts;
0846 
0847     /* If the event includes an absolute time, then just use that */
0848     if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
0849         ts = rb_event_time_stamp(event);
0850         return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
0851     }
0852 
0853     nest = local_read(&cpu_buffer->committing);
0854     verify_event(cpu_buffer, event);
0855     if (WARN_ON_ONCE(!nest))
0856         goto fail;
0857 
0858     /* Read the current saved nesting level time stamp */
0859     if (likely(--nest < MAX_NEST))
0860         return cpu_buffer->event_stamp[nest];
0861 
0862     /* Shouldn't happen, warn if it does */
0863     WARN_ONCE(1, "nest (%d) greater than max", nest);
0864 
0865  fail:
0866     /* Can only fail on 32 bit */
0867     if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
0868         /* Screw it, just read the current time */
0869         ts = rb_time_stamp(cpu_buffer->buffer);
0870 
0871     return ts;
0872 }
0873 
0874 /**
0875  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
0876  * @buffer: The ring_buffer to get the number of pages from
0877  * @cpu: The cpu of the ring_buffer to get the number of pages from
0878  *
0879  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
0880  */
0881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
0882 {
0883     return buffer->buffers[cpu]->nr_pages;
0884 }
0885 
0886 /**
0887  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
0888  * @buffer: The ring_buffer to get the number of pages from
0889  * @cpu: The cpu of the ring_buffer to get the number of pages from
0890  *
0891  * Returns the number of pages that have content in the ring buffer.
0892  */
0893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
0894 {
0895     size_t read;
0896     size_t cnt;
0897 
0898     read = local_read(&buffer->buffers[cpu]->pages_read);
0899     cnt = local_read(&buffer->buffers[cpu]->pages_touched);
0900     /* The reader can read an empty page, but not more than that */
0901     if (cnt < read) {
0902         WARN_ON_ONCE(read > cnt + 1);
0903         return 0;
0904     }
0905 
0906     return cnt - read;
0907 }
0908 
0909 /*
0910  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
0911  *
0912  * Schedules a delayed work to wake up any task that is blocked on the
0913  * ring buffer waiters queue.
0914  */
0915 static void rb_wake_up_waiters(struct irq_work *work)
0916 {
0917     struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
0918 
0919     wake_up_all(&rbwork->waiters);
0920     if (rbwork->wakeup_full) {
0921         rbwork->wakeup_full = false;
0922         wake_up_all(&rbwork->full_waiters);
0923     }
0924 }
0925 
0926 /**
0927  * ring_buffer_wait - wait for input to the ring buffer
0928  * @buffer: buffer to wait on
0929  * @cpu: the cpu buffer to wait on
0930  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
0931  *
0932  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
0933  * as data is added to any of the @buffer's cpu buffers. Otherwise
0934  * it will wait for data to be added to a specific cpu buffer.
0935  */
0936 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
0937 {
0938     struct ring_buffer_per_cpu *cpu_buffer;
0939     DEFINE_WAIT(wait);
0940     struct rb_irq_work *work;
0941     int ret = 0;
0942 
0943     /*
0944      * Depending on what the caller is waiting for, either any
0945      * data in any cpu buffer, or a specific buffer, put the
0946      * caller on the appropriate wait queue.
0947      */
0948     if (cpu == RING_BUFFER_ALL_CPUS) {
0949         work = &buffer->irq_work;
0950         /* Full only makes sense on per cpu reads */
0951         full = 0;
0952     } else {
0953         if (!cpumask_test_cpu(cpu, buffer->cpumask))
0954             return -ENODEV;
0955         cpu_buffer = buffer->buffers[cpu];
0956         work = &cpu_buffer->irq_work;
0957     }
0958 
0959 
0960     while (true) {
0961         if (full)
0962             prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
0963         else
0964             prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
0965 
0966         /*
0967          * The events can happen in critical sections where
0968          * checking a work queue can cause deadlocks.
0969          * After adding a task to the queue, this flag is set
0970          * only to notify events to try to wake up the queue
0971          * using irq_work.
0972          *
0973          * We don't clear it even if the buffer is no longer
0974          * empty. The flag only causes the next event to run
0975          * irq_work to do the work queue wake up. The worse
0976          * that can happen if we race with !trace_empty() is that
0977          * an event will cause an irq_work to try to wake up
0978          * an empty queue.
0979          *
0980          * There's no reason to protect this flag either, as
0981          * the work queue and irq_work logic will do the necessary
0982          * synchronization for the wake ups. The only thing
0983          * that is necessary is that the wake up happens after
0984          * a task has been queued. It's OK for spurious wake ups.
0985          */
0986         if (full)
0987             work->full_waiters_pending = true;
0988         else
0989             work->waiters_pending = true;
0990 
0991         if (signal_pending(current)) {
0992             ret = -EINTR;
0993             break;
0994         }
0995 
0996         if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
0997             break;
0998 
0999         if (cpu != RING_BUFFER_ALL_CPUS &&
1000             !ring_buffer_empty_cpu(buffer, cpu)) {
1001             unsigned long flags;
1002             bool pagebusy;
1003             size_t nr_pages;
1004             size_t dirty;
1005 
1006             if (!full)
1007                 break;
1008 
1009             raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1010             pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1011             nr_pages = cpu_buffer->nr_pages;
1012             dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
1013             if (!cpu_buffer->shortest_full ||
1014                 cpu_buffer->shortest_full < full)
1015                 cpu_buffer->shortest_full = full;
1016             raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1017             if (!pagebusy &&
1018                 (!nr_pages || (dirty * 100) > full * nr_pages))
1019                 break;
1020         }
1021 
1022         schedule();
1023     }
1024 
1025     if (full)
1026         finish_wait(&work->full_waiters, &wait);
1027     else
1028         finish_wait(&work->waiters, &wait);
1029 
1030     return ret;
1031 }
1032 
1033 /**
1034  * ring_buffer_poll_wait - poll on buffer input
1035  * @buffer: buffer to wait on
1036  * @cpu: the cpu buffer to wait on
1037  * @filp: the file descriptor
1038  * @poll_table: The poll descriptor
1039  *
1040  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1041  * as data is added to any of the @buffer's cpu buffers. Otherwise
1042  * it will wait for data to be added to a specific cpu buffer.
1043  *
1044  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1045  * zero otherwise.
1046  */
1047 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1048               struct file *filp, poll_table *poll_table)
1049 {
1050     struct ring_buffer_per_cpu *cpu_buffer;
1051     struct rb_irq_work *work;
1052 
1053     if (cpu == RING_BUFFER_ALL_CPUS)
1054         work = &buffer->irq_work;
1055     else {
1056         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1057             return -EINVAL;
1058 
1059         cpu_buffer = buffer->buffers[cpu];
1060         work = &cpu_buffer->irq_work;
1061     }
1062 
1063     poll_wait(filp, &work->waiters, poll_table);
1064     work->waiters_pending = true;
1065     /*
1066      * There's a tight race between setting the waiters_pending and
1067      * checking if the ring buffer is empty.  Once the waiters_pending bit
1068      * is set, the next event will wake the task up, but we can get stuck
1069      * if there's only a single event in.
1070      *
1071      * FIXME: Ideally, we need a memory barrier on the writer side as well,
1072      * but adding a memory barrier to all events will cause too much of a
1073      * performance hit in the fast path.  We only need a memory barrier when
1074      * the buffer goes from empty to having content.  But as this race is
1075      * extremely small, and it's not a problem if another event comes in, we
1076      * will fix it later.
1077      */
1078     smp_mb();
1079 
1080     if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1081         (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1082         return EPOLLIN | EPOLLRDNORM;
1083     return 0;
1084 }
1085 
1086 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1087 #define RB_WARN_ON(b, cond)                     \
1088     ({                              \
1089         int _____ret = unlikely(cond);              \
1090         if (_____ret) {                     \
1091             if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1092                 struct ring_buffer_per_cpu *__b =   \
1093                     (void *)b;          \
1094                 atomic_inc(&__b->buffer->record_disabled); \
1095             } else                      \
1096                 atomic_inc(&b->record_disabled);    \
1097             WARN_ON(1);                 \
1098         }                           \
1099         _____ret;                       \
1100     })
1101 
1102 /* Up this if you want to test the TIME_EXTENTS and normalization */
1103 #define DEBUG_SHIFT 0
1104 
1105 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1106 {
1107     u64 ts;
1108 
1109     /* Skip retpolines :-( */
1110     if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1111         ts = trace_clock_local();
1112     else
1113         ts = buffer->clock();
1114 
1115     /* shift to debug/test normalization and TIME_EXTENTS */
1116     return ts << DEBUG_SHIFT;
1117 }
1118 
1119 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1120 {
1121     u64 time;
1122 
1123     preempt_disable_notrace();
1124     time = rb_time_stamp(buffer);
1125     preempt_enable_notrace();
1126 
1127     return time;
1128 }
1129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1130 
1131 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1132                       int cpu, u64 *ts)
1133 {
1134     /* Just stupid testing the normalize function and deltas */
1135     *ts >>= DEBUG_SHIFT;
1136 }
1137 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1138 
1139 /*
1140  * Making the ring buffer lockless makes things tricky.
1141  * Although writes only happen on the CPU that they are on,
1142  * and they only need to worry about interrupts. Reads can
1143  * happen on any CPU.
1144  *
1145  * The reader page is always off the ring buffer, but when the
1146  * reader finishes with a page, it needs to swap its page with
1147  * a new one from the buffer. The reader needs to take from
1148  * the head (writes go to the tail). But if a writer is in overwrite
1149  * mode and wraps, it must push the head page forward.
1150  *
1151  * Here lies the problem.
1152  *
1153  * The reader must be careful to replace only the head page, and
1154  * not another one. As described at the top of the file in the
1155  * ASCII art, the reader sets its old page to point to the next
1156  * page after head. It then sets the page after head to point to
1157  * the old reader page. But if the writer moves the head page
1158  * during this operation, the reader could end up with the tail.
1159  *
1160  * We use cmpxchg to help prevent this race. We also do something
1161  * special with the page before head. We set the LSB to 1.
1162  *
1163  * When the writer must push the page forward, it will clear the
1164  * bit that points to the head page, move the head, and then set
1165  * the bit that points to the new head page.
1166  *
1167  * We also don't want an interrupt coming in and moving the head
1168  * page on another writer. Thus we use the second LSB to catch
1169  * that too. Thus:
1170  *
1171  * head->list->prev->next        bit 1          bit 0
1172  *                              -------        -------
1173  * Normal page                     0              0
1174  * Points to head page             0              1
1175  * New head page                   1              0
1176  *
1177  * Note we can not trust the prev pointer of the head page, because:
1178  *
1179  * +----+       +-----+        +-----+
1180  * |    |------>|  T  |---X--->|  N  |
1181  * |    |<------|     |        |     |
1182  * +----+       +-----+        +-----+
1183  *   ^                           ^ |
1184  *   |          +-----+          | |
1185  *   +----------|  R  |----------+ |
1186  *              |     |<-----------+
1187  *              +-----+
1188  *
1189  * Key:  ---X-->  HEAD flag set in pointer
1190  *         T      Tail page
1191  *         R      Reader page
1192  *         N      Next page
1193  *
1194  * (see __rb_reserve_next() to see where this happens)
1195  *
1196  *  What the above shows is that the reader just swapped out
1197  *  the reader page with a page in the buffer, but before it
1198  *  could make the new header point back to the new page added
1199  *  it was preempted by a writer. The writer moved forward onto
1200  *  the new page added by the reader and is about to move forward
1201  *  again.
1202  *
1203  *  You can see, it is legitimate for the previous pointer of
1204  *  the head (or any page) not to point back to itself. But only
1205  *  temporarily.
1206  */
1207 
1208 #define RB_PAGE_NORMAL      0UL
1209 #define RB_PAGE_HEAD        1UL
1210 #define RB_PAGE_UPDATE      2UL
1211 
1212 
1213 #define RB_FLAG_MASK        3UL
1214 
1215 /* PAGE_MOVED is not part of the mask */
1216 #define RB_PAGE_MOVED       4UL
1217 
1218 /*
1219  * rb_list_head - remove any bit
1220  */
1221 static struct list_head *rb_list_head(struct list_head *list)
1222 {
1223     unsigned long val = (unsigned long)list;
1224 
1225     return (struct list_head *)(val & ~RB_FLAG_MASK);
1226 }
1227 
1228 /*
1229  * rb_is_head_page - test if the given page is the head page
1230  *
1231  * Because the reader may move the head_page pointer, we can
1232  * not trust what the head page is (it may be pointing to
1233  * the reader page). But if the next page is a header page,
1234  * its flags will be non zero.
1235  */
1236 static inline int
1237 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1238 {
1239     unsigned long val;
1240 
1241     val = (unsigned long)list->next;
1242 
1243     if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1244         return RB_PAGE_MOVED;
1245 
1246     return val & RB_FLAG_MASK;
1247 }
1248 
1249 /*
1250  * rb_is_reader_page
1251  *
1252  * The unique thing about the reader page, is that, if the
1253  * writer is ever on it, the previous pointer never points
1254  * back to the reader page.
1255  */
1256 static bool rb_is_reader_page(struct buffer_page *page)
1257 {
1258     struct list_head *list = page->list.prev;
1259 
1260     return rb_list_head(list->next) != &page->list;
1261 }
1262 
1263 /*
1264  * rb_set_list_to_head - set a list_head to be pointing to head.
1265  */
1266 static void rb_set_list_to_head(struct list_head *list)
1267 {
1268     unsigned long *ptr;
1269 
1270     ptr = (unsigned long *)&list->next;
1271     *ptr |= RB_PAGE_HEAD;
1272     *ptr &= ~RB_PAGE_UPDATE;
1273 }
1274 
1275 /*
1276  * rb_head_page_activate - sets up head page
1277  */
1278 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1279 {
1280     struct buffer_page *head;
1281 
1282     head = cpu_buffer->head_page;
1283     if (!head)
1284         return;
1285 
1286     /*
1287      * Set the previous list pointer to have the HEAD flag.
1288      */
1289     rb_set_list_to_head(head->list.prev);
1290 }
1291 
1292 static void rb_list_head_clear(struct list_head *list)
1293 {
1294     unsigned long *ptr = (unsigned long *)&list->next;
1295 
1296     *ptr &= ~RB_FLAG_MASK;
1297 }
1298 
1299 /*
1300  * rb_head_page_deactivate - clears head page ptr (for free list)
1301  */
1302 static void
1303 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1304 {
1305     struct list_head *hd;
1306 
1307     /* Go through the whole list and clear any pointers found. */
1308     rb_list_head_clear(cpu_buffer->pages);
1309 
1310     list_for_each(hd, cpu_buffer->pages)
1311         rb_list_head_clear(hd);
1312 }
1313 
1314 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1315                 struct buffer_page *head,
1316                 struct buffer_page *prev,
1317                 int old_flag, int new_flag)
1318 {
1319     struct list_head *list;
1320     unsigned long val = (unsigned long)&head->list;
1321     unsigned long ret;
1322 
1323     list = &prev->list;
1324 
1325     val &= ~RB_FLAG_MASK;
1326 
1327     ret = cmpxchg((unsigned long *)&list->next,
1328               val | old_flag, val | new_flag);
1329 
1330     /* check if the reader took the page */
1331     if ((ret & ~RB_FLAG_MASK) != val)
1332         return RB_PAGE_MOVED;
1333 
1334     return ret & RB_FLAG_MASK;
1335 }
1336 
1337 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1338                    struct buffer_page *head,
1339                    struct buffer_page *prev,
1340                    int old_flag)
1341 {
1342     return rb_head_page_set(cpu_buffer, head, prev,
1343                 old_flag, RB_PAGE_UPDATE);
1344 }
1345 
1346 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1347                  struct buffer_page *head,
1348                  struct buffer_page *prev,
1349                  int old_flag)
1350 {
1351     return rb_head_page_set(cpu_buffer, head, prev,
1352                 old_flag, RB_PAGE_HEAD);
1353 }
1354 
1355 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1356                    struct buffer_page *head,
1357                    struct buffer_page *prev,
1358                    int old_flag)
1359 {
1360     return rb_head_page_set(cpu_buffer, head, prev,
1361                 old_flag, RB_PAGE_NORMAL);
1362 }
1363 
1364 static inline void rb_inc_page(struct buffer_page **bpage)
1365 {
1366     struct list_head *p = rb_list_head((*bpage)->list.next);
1367 
1368     *bpage = list_entry(p, struct buffer_page, list);
1369 }
1370 
1371 static struct buffer_page *
1372 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374     struct buffer_page *head;
1375     struct buffer_page *page;
1376     struct list_head *list;
1377     int i;
1378 
1379     if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1380         return NULL;
1381 
1382     /* sanity check */
1383     list = cpu_buffer->pages;
1384     if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1385         return NULL;
1386 
1387     page = head = cpu_buffer->head_page;
1388     /*
1389      * It is possible that the writer moves the header behind
1390      * where we started, and we miss in one loop.
1391      * A second loop should grab the header, but we'll do
1392      * three loops just because I'm paranoid.
1393      */
1394     for (i = 0; i < 3; i++) {
1395         do {
1396             if (rb_is_head_page(page, page->list.prev)) {
1397                 cpu_buffer->head_page = page;
1398                 return page;
1399             }
1400             rb_inc_page(&page);
1401         } while (page != head);
1402     }
1403 
1404     RB_WARN_ON(cpu_buffer, 1);
1405 
1406     return NULL;
1407 }
1408 
1409 static int rb_head_page_replace(struct buffer_page *old,
1410                 struct buffer_page *new)
1411 {
1412     unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1413     unsigned long val;
1414     unsigned long ret;
1415 
1416     val = *ptr & ~RB_FLAG_MASK;
1417     val |= RB_PAGE_HEAD;
1418 
1419     ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1420 
1421     return ret == val;
1422 }
1423 
1424 /*
1425  * rb_tail_page_update - move the tail page forward
1426  */
1427 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1428                    struct buffer_page *tail_page,
1429                    struct buffer_page *next_page)
1430 {
1431     unsigned long old_entries;
1432     unsigned long old_write;
1433 
1434     /*
1435      * The tail page now needs to be moved forward.
1436      *
1437      * We need to reset the tail page, but without messing
1438      * with possible erasing of data brought in by interrupts
1439      * that have moved the tail page and are currently on it.
1440      *
1441      * We add a counter to the write field to denote this.
1442      */
1443     old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1444     old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1445 
1446     local_inc(&cpu_buffer->pages_touched);
1447     /*
1448      * Just make sure we have seen our old_write and synchronize
1449      * with any interrupts that come in.
1450      */
1451     barrier();
1452 
1453     /*
1454      * If the tail page is still the same as what we think
1455      * it is, then it is up to us to update the tail
1456      * pointer.
1457      */
1458     if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1459         /* Zero the write counter */
1460         unsigned long val = old_write & ~RB_WRITE_MASK;
1461         unsigned long eval = old_entries & ~RB_WRITE_MASK;
1462 
1463         /*
1464          * This will only succeed if an interrupt did
1465          * not come in and change it. In which case, we
1466          * do not want to modify it.
1467          *
1468          * We add (void) to let the compiler know that we do not care
1469          * about the return value of these functions. We use the
1470          * cmpxchg to only update if an interrupt did not already
1471          * do it for us. If the cmpxchg fails, we don't care.
1472          */
1473         (void)local_cmpxchg(&next_page->write, old_write, val);
1474         (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1475 
1476         /*
1477          * No need to worry about races with clearing out the commit.
1478          * it only can increment when a commit takes place. But that
1479          * only happens in the outer most nested commit.
1480          */
1481         local_set(&next_page->page->commit, 0);
1482 
1483         /* Again, either we update tail_page or an interrupt does */
1484         (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1485     }
1486 }
1487 
1488 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1489               struct buffer_page *bpage)
1490 {
1491     unsigned long val = (unsigned long)bpage;
1492 
1493     if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1494         return 1;
1495 
1496     return 0;
1497 }
1498 
1499 /**
1500  * rb_check_list - make sure a pointer to a list has the last bits zero
1501  */
1502 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1503              struct list_head *list)
1504 {
1505     if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1506         return 1;
1507     if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1508         return 1;
1509     return 0;
1510 }
1511 
1512 /**
1513  * rb_check_pages - integrity check of buffer pages
1514  * @cpu_buffer: CPU buffer with pages to test
1515  *
1516  * As a safety measure we check to make sure the data pages have not
1517  * been corrupted.
1518  */
1519 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1520 {
1521     struct list_head *head = cpu_buffer->pages;
1522     struct buffer_page *bpage, *tmp;
1523 
1524     /* Reset the head page if it exists */
1525     if (cpu_buffer->head_page)
1526         rb_set_head_page(cpu_buffer);
1527 
1528     rb_head_page_deactivate(cpu_buffer);
1529 
1530     if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1531         return -1;
1532     if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1533         return -1;
1534 
1535     if (rb_check_list(cpu_buffer, head))
1536         return -1;
1537 
1538     list_for_each_entry_safe(bpage, tmp, head, list) {
1539         if (RB_WARN_ON(cpu_buffer,
1540                    bpage->list.next->prev != &bpage->list))
1541             return -1;
1542         if (RB_WARN_ON(cpu_buffer,
1543                    bpage->list.prev->next != &bpage->list))
1544             return -1;
1545         if (rb_check_list(cpu_buffer, &bpage->list))
1546             return -1;
1547     }
1548 
1549     rb_head_page_activate(cpu_buffer);
1550 
1551     return 0;
1552 }
1553 
1554 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1555         long nr_pages, struct list_head *pages)
1556 {
1557     struct buffer_page *bpage, *tmp;
1558     bool user_thread = current->mm != NULL;
1559     gfp_t mflags;
1560     long i;
1561 
1562     /*
1563      * Check if the available memory is there first.
1564      * Note, si_mem_available() only gives us a rough estimate of available
1565      * memory. It may not be accurate. But we don't care, we just want
1566      * to prevent doing any allocation when it is obvious that it is
1567      * not going to succeed.
1568      */
1569     i = si_mem_available();
1570     if (i < nr_pages)
1571         return -ENOMEM;
1572 
1573     /*
1574      * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1575      * gracefully without invoking oom-killer and the system is not
1576      * destabilized.
1577      */
1578     mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1579 
1580     /*
1581      * If a user thread allocates too much, and si_mem_available()
1582      * reports there's enough memory, even though there is not.
1583      * Make sure the OOM killer kills this thread. This can happen
1584      * even with RETRY_MAYFAIL because another task may be doing
1585      * an allocation after this task has taken all memory.
1586      * This is the task the OOM killer needs to take out during this
1587      * loop, even if it was triggered by an allocation somewhere else.
1588      */
1589     if (user_thread)
1590         set_current_oom_origin();
1591     for (i = 0; i < nr_pages; i++) {
1592         struct page *page;
1593 
1594         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1595                     mflags, cpu_to_node(cpu_buffer->cpu));
1596         if (!bpage)
1597             goto free_pages;
1598 
1599         rb_check_bpage(cpu_buffer, bpage);
1600 
1601         list_add(&bpage->list, pages);
1602 
1603         page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1604         if (!page)
1605             goto free_pages;
1606         bpage->page = page_address(page);
1607         rb_init_page(bpage->page);
1608 
1609         if (user_thread && fatal_signal_pending(current))
1610             goto free_pages;
1611     }
1612     if (user_thread)
1613         clear_current_oom_origin();
1614 
1615     return 0;
1616 
1617 free_pages:
1618     list_for_each_entry_safe(bpage, tmp, pages, list) {
1619         list_del_init(&bpage->list);
1620         free_buffer_page(bpage);
1621     }
1622     if (user_thread)
1623         clear_current_oom_origin();
1624 
1625     return -ENOMEM;
1626 }
1627 
1628 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1629                  unsigned long nr_pages)
1630 {
1631     LIST_HEAD(pages);
1632 
1633     WARN_ON(!nr_pages);
1634 
1635     if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1636         return -ENOMEM;
1637 
1638     /*
1639      * The ring buffer page list is a circular list that does not
1640      * start and end with a list head. All page list items point to
1641      * other pages.
1642      */
1643     cpu_buffer->pages = pages.next;
1644     list_del(&pages);
1645 
1646     cpu_buffer->nr_pages = nr_pages;
1647 
1648     rb_check_pages(cpu_buffer);
1649 
1650     return 0;
1651 }
1652 
1653 static struct ring_buffer_per_cpu *
1654 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1655 {
1656     struct ring_buffer_per_cpu *cpu_buffer;
1657     struct buffer_page *bpage;
1658     struct page *page;
1659     int ret;
1660 
1661     cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1662                   GFP_KERNEL, cpu_to_node(cpu));
1663     if (!cpu_buffer)
1664         return NULL;
1665 
1666     cpu_buffer->cpu = cpu;
1667     cpu_buffer->buffer = buffer;
1668     raw_spin_lock_init(&cpu_buffer->reader_lock);
1669     lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1670     cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1671     INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1672     init_completion(&cpu_buffer->update_done);
1673     init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1674     init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1675     init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1676 
1677     bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1678                 GFP_KERNEL, cpu_to_node(cpu));
1679     if (!bpage)
1680         goto fail_free_buffer;
1681 
1682     rb_check_bpage(cpu_buffer, bpage);
1683 
1684     cpu_buffer->reader_page = bpage;
1685     page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1686     if (!page)
1687         goto fail_free_reader;
1688     bpage->page = page_address(page);
1689     rb_init_page(bpage->page);
1690 
1691     INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1692     INIT_LIST_HEAD(&cpu_buffer->new_pages);
1693 
1694     ret = rb_allocate_pages(cpu_buffer, nr_pages);
1695     if (ret < 0)
1696         goto fail_free_reader;
1697 
1698     cpu_buffer->head_page
1699         = list_entry(cpu_buffer->pages, struct buffer_page, list);
1700     cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1701 
1702     rb_head_page_activate(cpu_buffer);
1703 
1704     return cpu_buffer;
1705 
1706  fail_free_reader:
1707     free_buffer_page(cpu_buffer->reader_page);
1708 
1709  fail_free_buffer:
1710     kfree(cpu_buffer);
1711     return NULL;
1712 }
1713 
1714 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1715 {
1716     struct list_head *head = cpu_buffer->pages;
1717     struct buffer_page *bpage, *tmp;
1718 
1719     free_buffer_page(cpu_buffer->reader_page);
1720 
1721     rb_head_page_deactivate(cpu_buffer);
1722 
1723     if (head) {
1724         list_for_each_entry_safe(bpage, tmp, head, list) {
1725             list_del_init(&bpage->list);
1726             free_buffer_page(bpage);
1727         }
1728         bpage = list_entry(head, struct buffer_page, list);
1729         free_buffer_page(bpage);
1730     }
1731 
1732     kfree(cpu_buffer);
1733 }
1734 
1735 /**
1736  * __ring_buffer_alloc - allocate a new ring_buffer
1737  * @size: the size in bytes per cpu that is needed.
1738  * @flags: attributes to set for the ring buffer.
1739  * @key: ring buffer reader_lock_key.
1740  *
1741  * Currently the only flag that is available is the RB_FL_OVERWRITE
1742  * flag. This flag means that the buffer will overwrite old data
1743  * when the buffer wraps. If this flag is not set, the buffer will
1744  * drop data when the tail hits the head.
1745  */
1746 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1747                     struct lock_class_key *key)
1748 {
1749     struct trace_buffer *buffer;
1750     long nr_pages;
1751     int bsize;
1752     int cpu;
1753     int ret;
1754 
1755     /* keep it in its own cache line */
1756     buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1757              GFP_KERNEL);
1758     if (!buffer)
1759         return NULL;
1760 
1761     if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1762         goto fail_free_buffer;
1763 
1764     nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1765     buffer->flags = flags;
1766     buffer->clock = trace_clock_local;
1767     buffer->reader_lock_key = key;
1768 
1769     init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1770     init_waitqueue_head(&buffer->irq_work.waiters);
1771 
1772     /* need at least two pages */
1773     if (nr_pages < 2)
1774         nr_pages = 2;
1775 
1776     buffer->cpus = nr_cpu_ids;
1777 
1778     bsize = sizeof(void *) * nr_cpu_ids;
1779     buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1780                   GFP_KERNEL);
1781     if (!buffer->buffers)
1782         goto fail_free_cpumask;
1783 
1784     cpu = raw_smp_processor_id();
1785     cpumask_set_cpu(cpu, buffer->cpumask);
1786     buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1787     if (!buffer->buffers[cpu])
1788         goto fail_free_buffers;
1789 
1790     ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1791     if (ret < 0)
1792         goto fail_free_buffers;
1793 
1794     mutex_init(&buffer->mutex);
1795 
1796     return buffer;
1797 
1798  fail_free_buffers:
1799     for_each_buffer_cpu(buffer, cpu) {
1800         if (buffer->buffers[cpu])
1801             rb_free_cpu_buffer(buffer->buffers[cpu]);
1802     }
1803     kfree(buffer->buffers);
1804 
1805  fail_free_cpumask:
1806     free_cpumask_var(buffer->cpumask);
1807 
1808  fail_free_buffer:
1809     kfree(buffer);
1810     return NULL;
1811 }
1812 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1813 
1814 /**
1815  * ring_buffer_free - free a ring buffer.
1816  * @buffer: the buffer to free.
1817  */
1818 void
1819 ring_buffer_free(struct trace_buffer *buffer)
1820 {
1821     int cpu;
1822 
1823     cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1824 
1825     for_each_buffer_cpu(buffer, cpu)
1826         rb_free_cpu_buffer(buffer->buffers[cpu]);
1827 
1828     kfree(buffer->buffers);
1829     free_cpumask_var(buffer->cpumask);
1830 
1831     kfree(buffer);
1832 }
1833 EXPORT_SYMBOL_GPL(ring_buffer_free);
1834 
1835 void ring_buffer_set_clock(struct trace_buffer *buffer,
1836                u64 (*clock)(void))
1837 {
1838     buffer->clock = clock;
1839 }
1840 
1841 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1842 {
1843     buffer->time_stamp_abs = abs;
1844 }
1845 
1846 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1847 {
1848     return buffer->time_stamp_abs;
1849 }
1850 
1851 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1852 
1853 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1854 {
1855     return local_read(&bpage->entries) & RB_WRITE_MASK;
1856 }
1857 
1858 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1859 {
1860     return local_read(&bpage->write) & RB_WRITE_MASK;
1861 }
1862 
1863 static int
1864 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1865 {
1866     struct list_head *tail_page, *to_remove, *next_page;
1867     struct buffer_page *to_remove_page, *tmp_iter_page;
1868     struct buffer_page *last_page, *first_page;
1869     unsigned long nr_removed;
1870     unsigned long head_bit;
1871     int page_entries;
1872 
1873     head_bit = 0;
1874 
1875     raw_spin_lock_irq(&cpu_buffer->reader_lock);
1876     atomic_inc(&cpu_buffer->record_disabled);
1877     /*
1878      * We don't race with the readers since we have acquired the reader
1879      * lock. We also don't race with writers after disabling recording.
1880      * This makes it easy to figure out the first and the last page to be
1881      * removed from the list. We unlink all the pages in between including
1882      * the first and last pages. This is done in a busy loop so that we
1883      * lose the least number of traces.
1884      * The pages are freed after we restart recording and unlock readers.
1885      */
1886     tail_page = &cpu_buffer->tail_page->list;
1887 
1888     /*
1889      * tail page might be on reader page, we remove the next page
1890      * from the ring buffer
1891      */
1892     if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1893         tail_page = rb_list_head(tail_page->next);
1894     to_remove = tail_page;
1895 
1896     /* start of pages to remove */
1897     first_page = list_entry(rb_list_head(to_remove->next),
1898                 struct buffer_page, list);
1899 
1900     for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1901         to_remove = rb_list_head(to_remove)->next;
1902         head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1903     }
1904 
1905     next_page = rb_list_head(to_remove)->next;
1906 
1907     /*
1908      * Now we remove all pages between tail_page and next_page.
1909      * Make sure that we have head_bit value preserved for the
1910      * next page
1911      */
1912     tail_page->next = (struct list_head *)((unsigned long)next_page |
1913                         head_bit);
1914     next_page = rb_list_head(next_page);
1915     next_page->prev = tail_page;
1916 
1917     /* make sure pages points to a valid page in the ring buffer */
1918     cpu_buffer->pages = next_page;
1919 
1920     /* update head page */
1921     if (head_bit)
1922         cpu_buffer->head_page = list_entry(next_page,
1923                         struct buffer_page, list);
1924 
1925     /*
1926      * change read pointer to make sure any read iterators reset
1927      * themselves
1928      */
1929     cpu_buffer->read = 0;
1930 
1931     /* pages are removed, resume tracing and then free the pages */
1932     atomic_dec(&cpu_buffer->record_disabled);
1933     raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1934 
1935     RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1936 
1937     /* last buffer page to remove */
1938     last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1939                 list);
1940     tmp_iter_page = first_page;
1941 
1942     do {
1943         cond_resched();
1944 
1945         to_remove_page = tmp_iter_page;
1946         rb_inc_page(&tmp_iter_page);
1947 
1948         /* update the counters */
1949         page_entries = rb_page_entries(to_remove_page);
1950         if (page_entries) {
1951             /*
1952              * If something was added to this page, it was full
1953              * since it is not the tail page. So we deduct the
1954              * bytes consumed in ring buffer from here.
1955              * Increment overrun to account for the lost events.
1956              */
1957             local_add(page_entries, &cpu_buffer->overrun);
1958             local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1959         }
1960 
1961         /*
1962          * We have already removed references to this list item, just
1963          * free up the buffer_page and its page
1964          */
1965         free_buffer_page(to_remove_page);
1966         nr_removed--;
1967 
1968     } while (to_remove_page != last_page);
1969 
1970     RB_WARN_ON(cpu_buffer, nr_removed);
1971 
1972     return nr_removed == 0;
1973 }
1974 
1975 static int
1976 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1977 {
1978     struct list_head *pages = &cpu_buffer->new_pages;
1979     int retries, success;
1980 
1981     raw_spin_lock_irq(&cpu_buffer->reader_lock);
1982     /*
1983      * We are holding the reader lock, so the reader page won't be swapped
1984      * in the ring buffer. Now we are racing with the writer trying to
1985      * move head page and the tail page.
1986      * We are going to adapt the reader page update process where:
1987      * 1. We first splice the start and end of list of new pages between
1988      *    the head page and its previous page.
1989      * 2. We cmpxchg the prev_page->next to point from head page to the
1990      *    start of new pages list.
1991      * 3. Finally, we update the head->prev to the end of new list.
1992      *
1993      * We will try this process 10 times, to make sure that we don't keep
1994      * spinning.
1995      */
1996     retries = 10;
1997     success = 0;
1998     while (retries--) {
1999         struct list_head *head_page, *prev_page, *r;
2000         struct list_head *last_page, *first_page;
2001         struct list_head *head_page_with_bit;
2002 
2003         head_page = &rb_set_head_page(cpu_buffer)->list;
2004         if (!head_page)
2005             break;
2006         prev_page = head_page->prev;
2007 
2008         first_page = pages->next;
2009         last_page  = pages->prev;
2010 
2011         head_page_with_bit = (struct list_head *)
2012                      ((unsigned long)head_page | RB_PAGE_HEAD);
2013 
2014         last_page->next = head_page_with_bit;
2015         first_page->prev = prev_page;
2016 
2017         r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2018 
2019         if (r == head_page_with_bit) {
2020             /*
2021              * yay, we replaced the page pointer to our new list,
2022              * now, we just have to update to head page's prev
2023              * pointer to point to end of list
2024              */
2025             head_page->prev = last_page;
2026             success = 1;
2027             break;
2028         }
2029     }
2030 
2031     if (success)
2032         INIT_LIST_HEAD(pages);
2033     /*
2034      * If we weren't successful in adding in new pages, warn and stop
2035      * tracing
2036      */
2037     RB_WARN_ON(cpu_buffer, !success);
2038     raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2039 
2040     /* free pages if they weren't inserted */
2041     if (!success) {
2042         struct buffer_page *bpage, *tmp;
2043         list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2044                      list) {
2045             list_del_init(&bpage->list);
2046             free_buffer_page(bpage);
2047         }
2048     }
2049     return success;
2050 }
2051 
2052 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2053 {
2054     int success;
2055 
2056     if (cpu_buffer->nr_pages_to_update > 0)
2057         success = rb_insert_pages(cpu_buffer);
2058     else
2059         success = rb_remove_pages(cpu_buffer,
2060                     -cpu_buffer->nr_pages_to_update);
2061 
2062     if (success)
2063         cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2064 }
2065 
2066 static void update_pages_handler(struct work_struct *work)
2067 {
2068     struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2069             struct ring_buffer_per_cpu, update_pages_work);
2070     rb_update_pages(cpu_buffer);
2071     complete(&cpu_buffer->update_done);
2072 }
2073 
2074 /**
2075  * ring_buffer_resize - resize the ring buffer
2076  * @buffer: the buffer to resize.
2077  * @size: the new size.
2078  * @cpu_id: the cpu buffer to resize
2079  *
2080  * Minimum size is 2 * BUF_PAGE_SIZE.
2081  *
2082  * Returns 0 on success and < 0 on failure.
2083  */
2084 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2085             int cpu_id)
2086 {
2087     struct ring_buffer_per_cpu *cpu_buffer;
2088     unsigned long nr_pages;
2089     int cpu, err;
2090 
2091     /*
2092      * Always succeed at resizing a non-existent buffer:
2093      */
2094     if (!buffer)
2095         return 0;
2096 
2097     /* Make sure the requested buffer exists */
2098     if (cpu_id != RING_BUFFER_ALL_CPUS &&
2099         !cpumask_test_cpu(cpu_id, buffer->cpumask))
2100         return 0;
2101 
2102     nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2103 
2104     /* we need a minimum of two pages */
2105     if (nr_pages < 2)
2106         nr_pages = 2;
2107 
2108     /* prevent another thread from changing buffer sizes */
2109     mutex_lock(&buffer->mutex);
2110 
2111 
2112     if (cpu_id == RING_BUFFER_ALL_CPUS) {
2113         /*
2114          * Don't succeed if resizing is disabled, as a reader might be
2115          * manipulating the ring buffer and is expecting a sane state while
2116          * this is true.
2117          */
2118         for_each_buffer_cpu(buffer, cpu) {
2119             cpu_buffer = buffer->buffers[cpu];
2120             if (atomic_read(&cpu_buffer->resize_disabled)) {
2121                 err = -EBUSY;
2122                 goto out_err_unlock;
2123             }
2124         }
2125 
2126         /* calculate the pages to update */
2127         for_each_buffer_cpu(buffer, cpu) {
2128             cpu_buffer = buffer->buffers[cpu];
2129 
2130             cpu_buffer->nr_pages_to_update = nr_pages -
2131                             cpu_buffer->nr_pages;
2132             /*
2133              * nothing more to do for removing pages or no update
2134              */
2135             if (cpu_buffer->nr_pages_to_update <= 0)
2136                 continue;
2137             /*
2138              * to add pages, make sure all new pages can be
2139              * allocated without receiving ENOMEM
2140              */
2141             INIT_LIST_HEAD(&cpu_buffer->new_pages);
2142             if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2143                         &cpu_buffer->new_pages)) {
2144                 /* not enough memory for new pages */
2145                 err = -ENOMEM;
2146                 goto out_err;
2147             }
2148         }
2149 
2150         cpus_read_lock();
2151         /*
2152          * Fire off all the required work handlers
2153          * We can't schedule on offline CPUs, but it's not necessary
2154          * since we can change their buffer sizes without any race.
2155          */
2156         for_each_buffer_cpu(buffer, cpu) {
2157             cpu_buffer = buffer->buffers[cpu];
2158             if (!cpu_buffer->nr_pages_to_update)
2159                 continue;
2160 
2161             /* Can't run something on an offline CPU. */
2162             if (!cpu_online(cpu)) {
2163                 rb_update_pages(cpu_buffer);
2164                 cpu_buffer->nr_pages_to_update = 0;
2165             } else {
2166                 schedule_work_on(cpu,
2167                         &cpu_buffer->update_pages_work);
2168             }
2169         }
2170 
2171         /* wait for all the updates to complete */
2172         for_each_buffer_cpu(buffer, cpu) {
2173             cpu_buffer = buffer->buffers[cpu];
2174             if (!cpu_buffer->nr_pages_to_update)
2175                 continue;
2176 
2177             if (cpu_online(cpu))
2178                 wait_for_completion(&cpu_buffer->update_done);
2179             cpu_buffer->nr_pages_to_update = 0;
2180         }
2181 
2182         cpus_read_unlock();
2183     } else {
2184         cpu_buffer = buffer->buffers[cpu_id];
2185 
2186         if (nr_pages == cpu_buffer->nr_pages)
2187             goto out;
2188 
2189         /*
2190          * Don't succeed if resizing is disabled, as a reader might be
2191          * manipulating the ring buffer and is expecting a sane state while
2192          * this is true.
2193          */
2194         if (atomic_read(&cpu_buffer->resize_disabled)) {
2195             err = -EBUSY;
2196             goto out_err_unlock;
2197         }
2198 
2199         cpu_buffer->nr_pages_to_update = nr_pages -
2200                         cpu_buffer->nr_pages;
2201 
2202         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203         if (cpu_buffer->nr_pages_to_update > 0 &&
2204             __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2205                         &cpu_buffer->new_pages)) {
2206             err = -ENOMEM;
2207             goto out_err;
2208         }
2209 
2210         cpus_read_lock();
2211 
2212         /* Can't run something on an offline CPU. */
2213         if (!cpu_online(cpu_id))
2214             rb_update_pages(cpu_buffer);
2215         else {
2216             schedule_work_on(cpu_id,
2217                      &cpu_buffer->update_pages_work);
2218             wait_for_completion(&cpu_buffer->update_done);
2219         }
2220 
2221         cpu_buffer->nr_pages_to_update = 0;
2222         cpus_read_unlock();
2223     }
2224 
2225  out:
2226     /*
2227      * The ring buffer resize can happen with the ring buffer
2228      * enabled, so that the update disturbs the tracing as little
2229      * as possible. But if the buffer is disabled, we do not need
2230      * to worry about that, and we can take the time to verify
2231      * that the buffer is not corrupt.
2232      */
2233     if (atomic_read(&buffer->record_disabled)) {
2234         atomic_inc(&buffer->record_disabled);
2235         /*
2236          * Even though the buffer was disabled, we must make sure
2237          * that it is truly disabled before calling rb_check_pages.
2238          * There could have been a race between checking
2239          * record_disable and incrementing it.
2240          */
2241         synchronize_rcu();
2242         for_each_buffer_cpu(buffer, cpu) {
2243             cpu_buffer = buffer->buffers[cpu];
2244             rb_check_pages(cpu_buffer);
2245         }
2246         atomic_dec(&buffer->record_disabled);
2247     }
2248 
2249     mutex_unlock(&buffer->mutex);
2250     return 0;
2251 
2252  out_err:
2253     for_each_buffer_cpu(buffer, cpu) {
2254         struct buffer_page *bpage, *tmp;
2255 
2256         cpu_buffer = buffer->buffers[cpu];
2257         cpu_buffer->nr_pages_to_update = 0;
2258 
2259         if (list_empty(&cpu_buffer->new_pages))
2260             continue;
2261 
2262         list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2263                     list) {
2264             list_del_init(&bpage->list);
2265             free_buffer_page(bpage);
2266         }
2267     }
2268  out_err_unlock:
2269     mutex_unlock(&buffer->mutex);
2270     return err;
2271 }
2272 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2273 
2274 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2275 {
2276     mutex_lock(&buffer->mutex);
2277     if (val)
2278         buffer->flags |= RB_FL_OVERWRITE;
2279     else
2280         buffer->flags &= ~RB_FL_OVERWRITE;
2281     mutex_unlock(&buffer->mutex);
2282 }
2283 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2284 
2285 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2286 {
2287     return bpage->page->data + index;
2288 }
2289 
2290 static __always_inline struct ring_buffer_event *
2291 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2292 {
2293     return __rb_page_index(cpu_buffer->reader_page,
2294                    cpu_buffer->reader_page->read);
2295 }
2296 
2297 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2298 {
2299     return local_read(&bpage->page->commit);
2300 }
2301 
2302 static struct ring_buffer_event *
2303 rb_iter_head_event(struct ring_buffer_iter *iter)
2304 {
2305     struct ring_buffer_event *event;
2306     struct buffer_page *iter_head_page = iter->head_page;
2307     unsigned long commit;
2308     unsigned length;
2309 
2310     if (iter->head != iter->next_event)
2311         return iter->event;
2312 
2313     /*
2314      * When the writer goes across pages, it issues a cmpxchg which
2315      * is a mb(), which will synchronize with the rmb here.
2316      * (see rb_tail_page_update() and __rb_reserve_next())
2317      */
2318     commit = rb_page_commit(iter_head_page);
2319     smp_rmb();
2320     event = __rb_page_index(iter_head_page, iter->head);
2321     length = rb_event_length(event);
2322 
2323     /*
2324      * READ_ONCE() doesn't work on functions and we don't want the
2325      * compiler doing any crazy optimizations with length.
2326      */
2327     barrier();
2328 
2329     if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2330         /* Writer corrupted the read? */
2331         goto reset;
2332 
2333     memcpy(iter->event, event, length);
2334     /*
2335      * If the page stamp is still the same after this rmb() then the
2336      * event was safely copied without the writer entering the page.
2337      */
2338     smp_rmb();
2339 
2340     /* Make sure the page didn't change since we read this */
2341     if (iter->page_stamp != iter_head_page->page->time_stamp ||
2342         commit > rb_page_commit(iter_head_page))
2343         goto reset;
2344 
2345     iter->next_event = iter->head + length;
2346     return iter->event;
2347  reset:
2348     /* Reset to the beginning */
2349     iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2350     iter->head = 0;
2351     iter->next_event = 0;
2352     iter->missed_events = 1;
2353     return NULL;
2354 }
2355 
2356 /* Size is determined by what has been committed */
2357 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2358 {
2359     return rb_page_commit(bpage);
2360 }
2361 
2362 static __always_inline unsigned
2363 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2364 {
2365     return rb_page_commit(cpu_buffer->commit_page);
2366 }
2367 
2368 static __always_inline unsigned
2369 rb_event_index(struct ring_buffer_event *event)
2370 {
2371     unsigned long addr = (unsigned long)event;
2372 
2373     return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2374 }
2375 
2376 static void rb_inc_iter(struct ring_buffer_iter *iter)
2377 {
2378     struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2379 
2380     /*
2381      * The iterator could be on the reader page (it starts there).
2382      * But the head could have moved, since the reader was
2383      * found. Check for this case and assign the iterator
2384      * to the head page instead of next.
2385      */
2386     if (iter->head_page == cpu_buffer->reader_page)
2387         iter->head_page = rb_set_head_page(cpu_buffer);
2388     else
2389         rb_inc_page(&iter->head_page);
2390 
2391     iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2392     iter->head = 0;
2393     iter->next_event = 0;
2394 }
2395 
2396 /*
2397  * rb_handle_head_page - writer hit the head page
2398  *
2399  * Returns: +1 to retry page
2400  *           0 to continue
2401  *          -1 on error
2402  */
2403 static int
2404 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2405             struct buffer_page *tail_page,
2406             struct buffer_page *next_page)
2407 {
2408     struct buffer_page *new_head;
2409     int entries;
2410     int type;
2411     int ret;
2412 
2413     entries = rb_page_entries(next_page);
2414 
2415     /*
2416      * The hard part is here. We need to move the head
2417      * forward, and protect against both readers on
2418      * other CPUs and writers coming in via interrupts.
2419      */
2420     type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2421                        RB_PAGE_HEAD);
2422 
2423     /*
2424      * type can be one of four:
2425      *  NORMAL - an interrupt already moved it for us
2426      *  HEAD   - we are the first to get here.
2427      *  UPDATE - we are the interrupt interrupting
2428      *           a current move.
2429      *  MOVED  - a reader on another CPU moved the next
2430      *           pointer to its reader page. Give up
2431      *           and try again.
2432      */
2433 
2434     switch (type) {
2435     case RB_PAGE_HEAD:
2436         /*
2437          * We changed the head to UPDATE, thus
2438          * it is our responsibility to update
2439          * the counters.
2440          */
2441         local_add(entries, &cpu_buffer->overrun);
2442         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2443 
2444         /*
2445          * The entries will be zeroed out when we move the
2446          * tail page.
2447          */
2448 
2449         /* still more to do */
2450         break;
2451 
2452     case RB_PAGE_UPDATE:
2453         /*
2454          * This is an interrupt that interrupt the
2455          * previous update. Still more to do.
2456          */
2457         break;
2458     case RB_PAGE_NORMAL:
2459         /*
2460          * An interrupt came in before the update
2461          * and processed this for us.
2462          * Nothing left to do.
2463          */
2464         return 1;
2465     case RB_PAGE_MOVED:
2466         /*
2467          * The reader is on another CPU and just did
2468          * a swap with our next_page.
2469          * Try again.
2470          */
2471         return 1;
2472     default:
2473         RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2474         return -1;
2475     }
2476 
2477     /*
2478      * Now that we are here, the old head pointer is
2479      * set to UPDATE. This will keep the reader from
2480      * swapping the head page with the reader page.
2481      * The reader (on another CPU) will spin till
2482      * we are finished.
2483      *
2484      * We just need to protect against interrupts
2485      * doing the job. We will set the next pointer
2486      * to HEAD. After that, we set the old pointer
2487      * to NORMAL, but only if it was HEAD before.
2488      * otherwise we are an interrupt, and only
2489      * want the outer most commit to reset it.
2490      */
2491     new_head = next_page;
2492     rb_inc_page(&new_head);
2493 
2494     ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2495                     RB_PAGE_NORMAL);
2496 
2497     /*
2498      * Valid returns are:
2499      *  HEAD   - an interrupt came in and already set it.
2500      *  NORMAL - One of two things:
2501      *            1) We really set it.
2502      *            2) A bunch of interrupts came in and moved
2503      *               the page forward again.
2504      */
2505     switch (ret) {
2506     case RB_PAGE_HEAD:
2507     case RB_PAGE_NORMAL:
2508         /* OK */
2509         break;
2510     default:
2511         RB_WARN_ON(cpu_buffer, 1);
2512         return -1;
2513     }
2514 
2515     /*
2516      * It is possible that an interrupt came in,
2517      * set the head up, then more interrupts came in
2518      * and moved it again. When we get back here,
2519      * the page would have been set to NORMAL but we
2520      * just set it back to HEAD.
2521      *
2522      * How do you detect this? Well, if that happened
2523      * the tail page would have moved.
2524      */
2525     if (ret == RB_PAGE_NORMAL) {
2526         struct buffer_page *buffer_tail_page;
2527 
2528         buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2529         /*
2530          * If the tail had moved passed next, then we need
2531          * to reset the pointer.
2532          */
2533         if (buffer_tail_page != tail_page &&
2534             buffer_tail_page != next_page)
2535             rb_head_page_set_normal(cpu_buffer, new_head,
2536                         next_page,
2537                         RB_PAGE_HEAD);
2538     }
2539 
2540     /*
2541      * If this was the outer most commit (the one that
2542      * changed the original pointer from HEAD to UPDATE),
2543      * then it is up to us to reset it to NORMAL.
2544      */
2545     if (type == RB_PAGE_HEAD) {
2546         ret = rb_head_page_set_normal(cpu_buffer, next_page,
2547                           tail_page,
2548                           RB_PAGE_UPDATE);
2549         if (RB_WARN_ON(cpu_buffer,
2550                    ret != RB_PAGE_UPDATE))
2551             return -1;
2552     }
2553 
2554     return 0;
2555 }
2556 
2557 static inline void
2558 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2559           unsigned long tail, struct rb_event_info *info)
2560 {
2561     struct buffer_page *tail_page = info->tail_page;
2562     struct ring_buffer_event *event;
2563     unsigned long length = info->length;
2564 
2565     /*
2566      * Only the event that crossed the page boundary
2567      * must fill the old tail_page with padding.
2568      */
2569     if (tail >= BUF_PAGE_SIZE) {
2570         /*
2571          * If the page was filled, then we still need
2572          * to update the real_end. Reset it to zero
2573          * and the reader will ignore it.
2574          */
2575         if (tail == BUF_PAGE_SIZE)
2576             tail_page->real_end = 0;
2577 
2578         local_sub(length, &tail_page->write);
2579         return;
2580     }
2581 
2582     event = __rb_page_index(tail_page, tail);
2583 
2584     /* account for padding bytes */
2585     local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2586 
2587     /*
2588      * Save the original length to the meta data.
2589      * This will be used by the reader to add lost event
2590      * counter.
2591      */
2592     tail_page->real_end = tail;
2593 
2594     /*
2595      * If this event is bigger than the minimum size, then
2596      * we need to be careful that we don't subtract the
2597      * write counter enough to allow another writer to slip
2598      * in on this page.
2599      * We put in a discarded commit instead, to make sure
2600      * that this space is not used again.
2601      *
2602      * If we are less than the minimum size, we don't need to
2603      * worry about it.
2604      */
2605     if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2606         /* No room for any events */
2607 
2608         /* Mark the rest of the page with padding */
2609         rb_event_set_padding(event);
2610 
2611         /* Set the write back to the previous setting */
2612         local_sub(length, &tail_page->write);
2613         return;
2614     }
2615 
2616     /* Put in a discarded event */
2617     event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2618     event->type_len = RINGBUF_TYPE_PADDING;
2619     /* time delta must be non zero */
2620     event->time_delta = 1;
2621 
2622     /* Set write to end of buffer */
2623     length = (tail + length) - BUF_PAGE_SIZE;
2624     local_sub(length, &tail_page->write);
2625 }
2626 
2627 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2628 
2629 /*
2630  * This is the slow path, force gcc not to inline it.
2631  */
2632 static noinline struct ring_buffer_event *
2633 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2634          unsigned long tail, struct rb_event_info *info)
2635 {
2636     struct buffer_page *tail_page = info->tail_page;
2637     struct buffer_page *commit_page = cpu_buffer->commit_page;
2638     struct trace_buffer *buffer = cpu_buffer->buffer;
2639     struct buffer_page *next_page;
2640     int ret;
2641 
2642     next_page = tail_page;
2643 
2644     rb_inc_page(&next_page);
2645 
2646     /*
2647      * If for some reason, we had an interrupt storm that made
2648      * it all the way around the buffer, bail, and warn
2649      * about it.
2650      */
2651     if (unlikely(next_page == commit_page)) {
2652         local_inc(&cpu_buffer->commit_overrun);
2653         goto out_reset;
2654     }
2655 
2656     /*
2657      * This is where the fun begins!
2658      *
2659      * We are fighting against races between a reader that
2660      * could be on another CPU trying to swap its reader
2661      * page with the buffer head.
2662      *
2663      * We are also fighting against interrupts coming in and
2664      * moving the head or tail on us as well.
2665      *
2666      * If the next page is the head page then we have filled
2667      * the buffer, unless the commit page is still on the
2668      * reader page.
2669      */
2670     if (rb_is_head_page(next_page, &tail_page->list)) {
2671 
2672         /*
2673          * If the commit is not on the reader page, then
2674          * move the header page.
2675          */
2676         if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2677             /*
2678              * If we are not in overwrite mode,
2679              * this is easy, just stop here.
2680              */
2681             if (!(buffer->flags & RB_FL_OVERWRITE)) {
2682                 local_inc(&cpu_buffer->dropped_events);
2683                 goto out_reset;
2684             }
2685 
2686             ret = rb_handle_head_page(cpu_buffer,
2687                           tail_page,
2688                           next_page);
2689             if (ret < 0)
2690                 goto out_reset;
2691             if (ret)
2692                 goto out_again;
2693         } else {
2694             /*
2695              * We need to be careful here too. The
2696              * commit page could still be on the reader
2697              * page. We could have a small buffer, and
2698              * have filled up the buffer with events
2699              * from interrupts and such, and wrapped.
2700              *
2701              * Note, if the tail page is also on the
2702              * reader_page, we let it move out.
2703              */
2704             if (unlikely((cpu_buffer->commit_page !=
2705                       cpu_buffer->tail_page) &&
2706                      (cpu_buffer->commit_page ==
2707                       cpu_buffer->reader_page))) {
2708                 local_inc(&cpu_buffer->commit_overrun);
2709                 goto out_reset;
2710             }
2711         }
2712     }
2713 
2714     rb_tail_page_update(cpu_buffer, tail_page, next_page);
2715 
2716  out_again:
2717 
2718     rb_reset_tail(cpu_buffer, tail, info);
2719 
2720     /* Commit what we have for now. */
2721     rb_end_commit(cpu_buffer);
2722     /* rb_end_commit() decs committing */
2723     local_inc(&cpu_buffer->committing);
2724 
2725     /* fail and let the caller try again */
2726     return ERR_PTR(-EAGAIN);
2727 
2728  out_reset:
2729     /* reset write */
2730     rb_reset_tail(cpu_buffer, tail, info);
2731 
2732     return NULL;
2733 }
2734 
2735 /* Slow path */
2736 static struct ring_buffer_event *
2737 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2738 {
2739     if (abs)
2740         event->type_len = RINGBUF_TYPE_TIME_STAMP;
2741     else
2742         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2743 
2744     /* Not the first event on the page, or not delta? */
2745     if (abs || rb_event_index(event)) {
2746         event->time_delta = delta & TS_MASK;
2747         event->array[0] = delta >> TS_SHIFT;
2748     } else {
2749         /* nope, just zero it */
2750         event->time_delta = 0;
2751         event->array[0] = 0;
2752     }
2753 
2754     return skip_time_extend(event);
2755 }
2756 
2757 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2758 static inline bool sched_clock_stable(void)
2759 {
2760     return true;
2761 }
2762 #endif
2763 
2764 static void
2765 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2766            struct rb_event_info *info)
2767 {
2768     u64 write_stamp;
2769 
2770     WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2771           (unsigned long long)info->delta,
2772           (unsigned long long)info->ts,
2773           (unsigned long long)info->before,
2774           (unsigned long long)info->after,
2775           (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2776           sched_clock_stable() ? "" :
2777           "If you just came from a suspend/resume,\n"
2778           "please switch to the trace global clock:\n"
2779           "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2780           "or add trace_clock=global to the kernel command line\n");
2781 }
2782 
2783 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2784                       struct ring_buffer_event **event,
2785                       struct rb_event_info *info,
2786                       u64 *delta,
2787                       unsigned int *length)
2788 {
2789     bool abs = info->add_timestamp &
2790         (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2791 
2792     if (unlikely(info->delta > (1ULL << 59))) {
2793         /*
2794          * Some timers can use more than 59 bits, and when a timestamp
2795          * is added to the buffer, it will lose those bits.
2796          */
2797         if (abs && (info->ts & TS_MSB)) {
2798             info->delta &= ABS_TS_MASK;
2799 
2800         /* did the clock go backwards */
2801         } else if (info->before == info->after && info->before > info->ts) {
2802             /* not interrupted */
2803             static int once;
2804 
2805             /*
2806              * This is possible with a recalibrating of the TSC.
2807              * Do not produce a call stack, but just report it.
2808              */
2809             if (!once) {
2810                 once++;
2811                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2812                     info->before, info->ts);
2813             }
2814         } else
2815             rb_check_timestamp(cpu_buffer, info);
2816         if (!abs)
2817             info->delta = 0;
2818     }
2819     *event = rb_add_time_stamp(*event, info->delta, abs);
2820     *length -= RB_LEN_TIME_EXTEND;
2821     *delta = 0;
2822 }
2823 
2824 /**
2825  * rb_update_event - update event type and data
2826  * @cpu_buffer: The per cpu buffer of the @event
2827  * @event: the event to update
2828  * @info: The info to update the @event with (contains length and delta)
2829  *
2830  * Update the type and data fields of the @event. The length
2831  * is the actual size that is written to the ring buffer,
2832  * and with this, we can determine what to place into the
2833  * data field.
2834  */
2835 static void
2836 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2837         struct ring_buffer_event *event,
2838         struct rb_event_info *info)
2839 {
2840     unsigned length = info->length;
2841     u64 delta = info->delta;
2842     unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2843 
2844     if (!WARN_ON_ONCE(nest >= MAX_NEST))
2845         cpu_buffer->event_stamp[nest] = info->ts;
2846 
2847     /*
2848      * If we need to add a timestamp, then we
2849      * add it to the start of the reserved space.
2850      */
2851     if (unlikely(info->add_timestamp))
2852         rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2853 
2854     event->time_delta = delta;
2855     length -= RB_EVNT_HDR_SIZE;
2856     if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2857         event->type_len = 0;
2858         event->array[0] = length;
2859     } else
2860         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2861 }
2862 
2863 static unsigned rb_calculate_event_length(unsigned length)
2864 {
2865     struct ring_buffer_event event; /* Used only for sizeof array */
2866 
2867     /* zero length can cause confusions */
2868     if (!length)
2869         length++;
2870 
2871     if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2872         length += sizeof(event.array[0]);
2873 
2874     length += RB_EVNT_HDR_SIZE;
2875     length = ALIGN(length, RB_ARCH_ALIGNMENT);
2876 
2877     /*
2878      * In case the time delta is larger than the 27 bits for it
2879      * in the header, we need to add a timestamp. If another
2880      * event comes in when trying to discard this one to increase
2881      * the length, then the timestamp will be added in the allocated
2882      * space of this event. If length is bigger than the size needed
2883      * for the TIME_EXTEND, then padding has to be used. The events
2884      * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2885      * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2886      * As length is a multiple of 4, we only need to worry if it
2887      * is 12 (RB_LEN_TIME_EXTEND + 4).
2888      */
2889     if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2890         length += RB_ALIGNMENT;
2891 
2892     return length;
2893 }
2894 
2895 static u64 rb_time_delta(struct ring_buffer_event *event)
2896 {
2897     switch (event->type_len) {
2898     case RINGBUF_TYPE_PADDING:
2899         return 0;
2900 
2901     case RINGBUF_TYPE_TIME_EXTEND:
2902         return rb_event_time_stamp(event);
2903 
2904     case RINGBUF_TYPE_TIME_STAMP:
2905         return 0;
2906 
2907     case RINGBUF_TYPE_DATA:
2908         return event->time_delta;
2909     default:
2910         return 0;
2911     }
2912 }
2913 
2914 static inline int
2915 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2916           struct ring_buffer_event *event)
2917 {
2918     unsigned long new_index, old_index;
2919     struct buffer_page *bpage;
2920     unsigned long index;
2921     unsigned long addr;
2922     u64 write_stamp;
2923     u64 delta;
2924 
2925     new_index = rb_event_index(event);
2926     old_index = new_index + rb_event_ts_length(event);
2927     addr = (unsigned long)event;
2928     addr &= PAGE_MASK;
2929 
2930     bpage = READ_ONCE(cpu_buffer->tail_page);
2931 
2932     delta = rb_time_delta(event);
2933 
2934     if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2935         return 0;
2936 
2937     /* Make sure the write stamp is read before testing the location */
2938     barrier();
2939 
2940     if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2941         unsigned long write_mask =
2942             local_read(&bpage->write) & ~RB_WRITE_MASK;
2943         unsigned long event_length = rb_event_length(event);
2944 
2945         /* Something came in, can't discard */
2946         if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2947                        write_stamp, write_stamp - delta))
2948             return 0;
2949 
2950         /*
2951          * It's possible that the event time delta is zero
2952          * (has the same time stamp as the previous event)
2953          * in which case write_stamp and before_stamp could
2954          * be the same. In such a case, force before_stamp
2955          * to be different than write_stamp. It doesn't
2956          * matter what it is, as long as its different.
2957          */
2958         if (!delta)
2959             rb_time_set(&cpu_buffer->before_stamp, 0);
2960 
2961         /*
2962          * If an event were to come in now, it would see that the
2963          * write_stamp and the before_stamp are different, and assume
2964          * that this event just added itself before updating
2965          * the write stamp. The interrupting event will fix the
2966          * write stamp for us, and use the before stamp as its delta.
2967          */
2968 
2969         /*
2970          * This is on the tail page. It is possible that
2971          * a write could come in and move the tail page
2972          * and write to the next page. That is fine
2973          * because we just shorten what is on this page.
2974          */
2975         old_index += write_mask;
2976         new_index += write_mask;
2977         index = local_cmpxchg(&bpage->write, old_index, new_index);
2978         if (index == old_index) {
2979             /* update counters */
2980             local_sub(event_length, &cpu_buffer->entries_bytes);
2981             return 1;
2982         }
2983     }
2984 
2985     /* could not discard */
2986     return 0;
2987 }
2988 
2989 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2990 {
2991     local_inc(&cpu_buffer->committing);
2992     local_inc(&cpu_buffer->commits);
2993 }
2994 
2995 static __always_inline void
2996 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2997 {
2998     unsigned long max_count;
2999 
3000     /*
3001      * We only race with interrupts and NMIs on this CPU.
3002      * If we own the commit event, then we can commit
3003      * all others that interrupted us, since the interruptions
3004      * are in stack format (they finish before they come
3005      * back to us). This allows us to do a simple loop to
3006      * assign the commit to the tail.
3007      */
3008  again:
3009     max_count = cpu_buffer->nr_pages * 100;
3010 
3011     while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3012         if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3013             return;
3014         if (RB_WARN_ON(cpu_buffer,
3015                    rb_is_reader_page(cpu_buffer->tail_page)))
3016             return;
3017         local_set(&cpu_buffer->commit_page->page->commit,
3018               rb_page_write(cpu_buffer->commit_page));
3019         rb_inc_page(&cpu_buffer->commit_page);
3020         /* add barrier to keep gcc from optimizing too much */
3021         barrier();
3022     }
3023     while (rb_commit_index(cpu_buffer) !=
3024            rb_page_write(cpu_buffer->commit_page)) {
3025 
3026         local_set(&cpu_buffer->commit_page->page->commit,
3027               rb_page_write(cpu_buffer->commit_page));
3028         RB_WARN_ON(cpu_buffer,
3029                local_read(&cpu_buffer->commit_page->page->commit) &
3030                ~RB_WRITE_MASK);
3031         barrier();
3032     }
3033 
3034     /* again, keep gcc from optimizing */
3035     barrier();
3036 
3037     /*
3038      * If an interrupt came in just after the first while loop
3039      * and pushed the tail page forward, we will be left with
3040      * a dangling commit that will never go forward.
3041      */
3042     if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3043         goto again;
3044 }
3045 
3046 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048     unsigned long commits;
3049 
3050     if (RB_WARN_ON(cpu_buffer,
3051                !local_read(&cpu_buffer->committing)))
3052         return;
3053 
3054  again:
3055     commits = local_read(&cpu_buffer->commits);
3056     /* synchronize with interrupts */
3057     barrier();
3058     if (local_read(&cpu_buffer->committing) == 1)
3059         rb_set_commit_to_write(cpu_buffer);
3060 
3061     local_dec(&cpu_buffer->committing);
3062 
3063     /* synchronize with interrupts */
3064     barrier();
3065 
3066     /*
3067      * Need to account for interrupts coming in between the
3068      * updating of the commit page and the clearing of the
3069      * committing counter.
3070      */
3071     if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3072         !local_read(&cpu_buffer->committing)) {
3073         local_inc(&cpu_buffer->committing);
3074         goto again;
3075     }
3076 }
3077 
3078 static inline void rb_event_discard(struct ring_buffer_event *event)
3079 {
3080     if (extended_time(event))
3081         event = skip_time_extend(event);
3082 
3083     /* array[0] holds the actual length for the discarded event */
3084     event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3085     event->type_len = RINGBUF_TYPE_PADDING;
3086     /* time delta must be non zero */
3087     if (!event->time_delta)
3088         event->time_delta = 1;
3089 }
3090 
3091 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3092               struct ring_buffer_event *event)
3093 {
3094     local_inc(&cpu_buffer->entries);
3095     rb_end_commit(cpu_buffer);
3096 }
3097 
3098 static __always_inline void
3099 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3100 {
3101     size_t nr_pages;
3102     size_t dirty;
3103     size_t full;
3104 
3105     if (buffer->irq_work.waiters_pending) {
3106         buffer->irq_work.waiters_pending = false;
3107         /* irq_work_queue() supplies it's own memory barriers */
3108         irq_work_queue(&buffer->irq_work.work);
3109     }
3110 
3111     if (cpu_buffer->irq_work.waiters_pending) {
3112         cpu_buffer->irq_work.waiters_pending = false;
3113         /* irq_work_queue() supplies it's own memory barriers */
3114         irq_work_queue(&cpu_buffer->irq_work.work);
3115     }
3116 
3117     if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3118         return;
3119 
3120     if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3121         return;
3122 
3123     if (!cpu_buffer->irq_work.full_waiters_pending)
3124         return;
3125 
3126     cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3127 
3128     full = cpu_buffer->shortest_full;
3129     nr_pages = cpu_buffer->nr_pages;
3130     dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3131     if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3132         return;
3133 
3134     cpu_buffer->irq_work.wakeup_full = true;
3135     cpu_buffer->irq_work.full_waiters_pending = false;
3136     /* irq_work_queue() supplies it's own memory barriers */
3137     irq_work_queue(&cpu_buffer->irq_work.work);
3138 }
3139 
3140 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3141 # define do_ring_buffer_record_recursion()  \
3142     do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3143 #else
3144 # define do_ring_buffer_record_recursion() do { } while (0)
3145 #endif
3146 
3147 /*
3148  * The lock and unlock are done within a preempt disable section.
3149  * The current_context per_cpu variable can only be modified
3150  * by the current task between lock and unlock. But it can
3151  * be modified more than once via an interrupt. To pass this
3152  * information from the lock to the unlock without having to
3153  * access the 'in_interrupt()' functions again (which do show
3154  * a bit of overhead in something as critical as function tracing,
3155  * we use a bitmask trick.
3156  *
3157  *  bit 1 =  NMI context
3158  *  bit 2 =  IRQ context
3159  *  bit 3 =  SoftIRQ context
3160  *  bit 4 =  normal context.
3161  *
3162  * This works because this is the order of contexts that can
3163  * preempt other contexts. A SoftIRQ never preempts an IRQ
3164  * context.
3165  *
3166  * When the context is determined, the corresponding bit is
3167  * checked and set (if it was set, then a recursion of that context
3168  * happened).
3169  *
3170  * On unlock, we need to clear this bit. To do so, just subtract
3171  * 1 from the current_context and AND it to itself.
3172  *
3173  * (binary)
3174  *  101 - 1 = 100
3175  *  101 & 100 = 100 (clearing bit zero)
3176  *
3177  *  1010 - 1 = 1001
3178  *  1010 & 1001 = 1000 (clearing bit 1)
3179  *
3180  * The least significant bit can be cleared this way, and it
3181  * just so happens that it is the same bit corresponding to
3182  * the current context.
3183  *
3184  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3185  * is set when a recursion is detected at the current context, and if
3186  * the TRANSITION bit is already set, it will fail the recursion.
3187  * This is needed because there's a lag between the changing of
3188  * interrupt context and updating the preempt count. In this case,
3189  * a false positive will be found. To handle this, one extra recursion
3190  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3191  * bit is already set, then it is considered a recursion and the function
3192  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3193  *
3194  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3195  * to be cleared. Even if it wasn't the context that set it. That is,
3196  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3197  * is called before preempt_count() is updated, since the check will
3198  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3199  * NMI then comes in, it will set the NMI bit, but when the NMI code
3200  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3201  * and leave the NMI bit set. But this is fine, because the interrupt
3202  * code that set the TRANSITION bit will then clear the NMI bit when it
3203  * calls trace_recursive_unlock(). If another NMI comes in, it will
3204  * set the TRANSITION bit and continue.
3205  *
3206  * Note: The TRANSITION bit only handles a single transition between context.
3207  */
3208 
3209 static __always_inline int
3210 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3211 {
3212     unsigned int val = cpu_buffer->current_context;
3213     int bit = interrupt_context_level();
3214 
3215     bit = RB_CTX_NORMAL - bit;
3216 
3217     if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3218         /*
3219          * It is possible that this was called by transitioning
3220          * between interrupt context, and preempt_count() has not
3221          * been updated yet. In this case, use the TRANSITION bit.
3222          */
3223         bit = RB_CTX_TRANSITION;
3224         if (val & (1 << (bit + cpu_buffer->nest))) {
3225             do_ring_buffer_record_recursion();
3226             return 1;
3227         }
3228     }
3229 
3230     val |= (1 << (bit + cpu_buffer->nest));
3231     cpu_buffer->current_context = val;
3232 
3233     return 0;
3234 }
3235 
3236 static __always_inline void
3237 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3238 {
3239     cpu_buffer->current_context &=
3240         cpu_buffer->current_context - (1 << cpu_buffer->nest);
3241 }
3242 
3243 /* The recursive locking above uses 5 bits */
3244 #define NESTED_BITS 5
3245 
3246 /**
3247  * ring_buffer_nest_start - Allow to trace while nested
3248  * @buffer: The ring buffer to modify
3249  *
3250  * The ring buffer has a safety mechanism to prevent recursion.
3251  * But there may be a case where a trace needs to be done while
3252  * tracing something else. In this case, calling this function
3253  * will allow this function to nest within a currently active
3254  * ring_buffer_lock_reserve().
3255  *
3256  * Call this function before calling another ring_buffer_lock_reserve() and
3257  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3258  */
3259 void ring_buffer_nest_start(struct trace_buffer *buffer)
3260 {
3261     struct ring_buffer_per_cpu *cpu_buffer;
3262     int cpu;
3263 
3264     /* Enabled by ring_buffer_nest_end() */
3265     preempt_disable_notrace();
3266     cpu = raw_smp_processor_id();
3267     cpu_buffer = buffer->buffers[cpu];
3268     /* This is the shift value for the above recursive locking */
3269     cpu_buffer->nest += NESTED_BITS;
3270 }
3271 
3272 /**
3273  * ring_buffer_nest_end - Allow to trace while nested
3274  * @buffer: The ring buffer to modify
3275  *
3276  * Must be called after ring_buffer_nest_start() and after the
3277  * ring_buffer_unlock_commit().
3278  */
3279 void ring_buffer_nest_end(struct trace_buffer *buffer)
3280 {
3281     struct ring_buffer_per_cpu *cpu_buffer;
3282     int cpu;
3283 
3284     /* disabled by ring_buffer_nest_start() */
3285     cpu = raw_smp_processor_id();
3286     cpu_buffer = buffer->buffers[cpu];
3287     /* This is the shift value for the above recursive locking */
3288     cpu_buffer->nest -= NESTED_BITS;
3289     preempt_enable_notrace();
3290 }
3291 
3292 /**
3293  * ring_buffer_unlock_commit - commit a reserved
3294  * @buffer: The buffer to commit to
3295  * @event: The event pointer to commit.
3296  *
3297  * This commits the data to the ring buffer, and releases any locks held.
3298  *
3299  * Must be paired with ring_buffer_lock_reserve.
3300  */
3301 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3302                   struct ring_buffer_event *event)
3303 {
3304     struct ring_buffer_per_cpu *cpu_buffer;
3305     int cpu = raw_smp_processor_id();
3306 
3307     cpu_buffer = buffer->buffers[cpu];
3308 
3309     rb_commit(cpu_buffer, event);
3310 
3311     rb_wakeups(buffer, cpu_buffer);
3312 
3313     trace_recursive_unlock(cpu_buffer);
3314 
3315     preempt_enable_notrace();
3316 
3317     return 0;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3320 
3321 /* Special value to validate all deltas on a page. */
3322 #define CHECK_FULL_PAGE     1L
3323 
3324 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3325 static void dump_buffer_page(struct buffer_data_page *bpage,
3326                  struct rb_event_info *info,
3327                  unsigned long tail)
3328 {
3329     struct ring_buffer_event *event;
3330     u64 ts, delta;
3331     int e;
3332 
3333     ts = bpage->time_stamp;
3334     pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3335 
3336     for (e = 0; e < tail; e += rb_event_length(event)) {
3337 
3338         event = (struct ring_buffer_event *)(bpage->data + e);
3339 
3340         switch (event->type_len) {
3341 
3342         case RINGBUF_TYPE_TIME_EXTEND:
3343             delta = rb_event_time_stamp(event);
3344             ts += delta;
3345             pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3346             break;
3347 
3348         case RINGBUF_TYPE_TIME_STAMP:
3349             delta = rb_event_time_stamp(event);
3350             ts = rb_fix_abs_ts(delta, ts);
3351             pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3352             break;
3353 
3354         case RINGBUF_TYPE_PADDING:
3355             ts += event->time_delta;
3356             pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3357             break;
3358 
3359         case RINGBUF_TYPE_DATA:
3360             ts += event->time_delta;
3361             pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3362             break;
3363 
3364         default:
3365             break;
3366         }
3367     }
3368 }
3369 
3370 static DEFINE_PER_CPU(atomic_t, checking);
3371 static atomic_t ts_dump;
3372 
3373 /*
3374  * Check if the current event time stamp matches the deltas on
3375  * the buffer page.
3376  */
3377 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3378              struct rb_event_info *info,
3379              unsigned long tail)
3380 {
3381     struct ring_buffer_event *event;
3382     struct buffer_data_page *bpage;
3383     u64 ts, delta;
3384     bool full = false;
3385     int e;
3386 
3387     bpage = info->tail_page->page;
3388 
3389     if (tail == CHECK_FULL_PAGE) {
3390         full = true;
3391         tail = local_read(&bpage->commit);
3392     } else if (info->add_timestamp &
3393            (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3394         /* Ignore events with absolute time stamps */
3395         return;
3396     }
3397 
3398     /*
3399      * Do not check the first event (skip possible extends too).
3400      * Also do not check if previous events have not been committed.
3401      */
3402     if (tail <= 8 || tail > local_read(&bpage->commit))
3403         return;
3404 
3405     /*
3406      * If this interrupted another event, 
3407      */
3408     if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3409         goto out;
3410 
3411     ts = bpage->time_stamp;
3412 
3413     for (e = 0; e < tail; e += rb_event_length(event)) {
3414 
3415         event = (struct ring_buffer_event *)(bpage->data + e);
3416 
3417         switch (event->type_len) {
3418 
3419         case RINGBUF_TYPE_TIME_EXTEND:
3420             delta = rb_event_time_stamp(event);
3421             ts += delta;
3422             break;
3423 
3424         case RINGBUF_TYPE_TIME_STAMP:
3425             delta = rb_event_time_stamp(event);
3426             ts = rb_fix_abs_ts(delta, ts);
3427             break;
3428 
3429         case RINGBUF_TYPE_PADDING:
3430             if (event->time_delta == 1)
3431                 break;
3432             fallthrough;
3433         case RINGBUF_TYPE_DATA:
3434             ts += event->time_delta;
3435             break;
3436 
3437         default:
3438             RB_WARN_ON(cpu_buffer, 1);
3439         }
3440     }
3441     if ((full && ts > info->ts) ||
3442         (!full && ts + info->delta != info->ts)) {
3443         /* If another report is happening, ignore this one */
3444         if (atomic_inc_return(&ts_dump) != 1) {
3445             atomic_dec(&ts_dump);
3446             goto out;
3447         }
3448         atomic_inc(&cpu_buffer->record_disabled);
3449         /* There's some cases in boot up that this can happen */
3450         WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3451         pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3452             cpu_buffer->cpu,
3453             ts + info->delta, info->ts, info->delta,
3454             info->before, info->after,
3455             full ? " (full)" : "");
3456         dump_buffer_page(bpage, info, tail);
3457         atomic_dec(&ts_dump);
3458         /* Do not re-enable checking */
3459         return;
3460     }
3461 out:
3462     atomic_dec(this_cpu_ptr(&checking));
3463 }
3464 #else
3465 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3466              struct rb_event_info *info,
3467              unsigned long tail)
3468 {
3469 }
3470 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3471 
3472 static struct ring_buffer_event *
3473 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3474           struct rb_event_info *info)
3475 {
3476     struct ring_buffer_event *event;
3477     struct buffer_page *tail_page;
3478     unsigned long tail, write, w;
3479     bool a_ok;
3480     bool b_ok;
3481 
3482     /* Don't let the compiler play games with cpu_buffer->tail_page */
3483     tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3484 
3485  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3486     barrier();
3487     b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3488     a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3489     barrier();
3490     info->ts = rb_time_stamp(cpu_buffer->buffer);
3491 
3492     if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3493         info->delta = info->ts;
3494     } else {
3495         /*
3496          * If interrupting an event time update, we may need an
3497          * absolute timestamp.
3498          * Don't bother if this is the start of a new page (w == 0).
3499          */
3500         if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3501             info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3502             info->length += RB_LEN_TIME_EXTEND;
3503         } else {
3504             info->delta = info->ts - info->after;
3505             if (unlikely(test_time_stamp(info->delta))) {
3506                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3507                 info->length += RB_LEN_TIME_EXTEND;
3508             }
3509         }
3510     }
3511 
3512  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3513 
3514  /*C*/  write = local_add_return(info->length, &tail_page->write);
3515 
3516     /* set write to only the index of the write */
3517     write &= RB_WRITE_MASK;
3518 
3519     tail = write - info->length;
3520 
3521     /* See if we shot pass the end of this buffer page */
3522     if (unlikely(write > BUF_PAGE_SIZE)) {
3523         /* before and after may now different, fix it up*/
3524         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3525         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3526         if (a_ok && b_ok && info->before != info->after)
3527             (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3528                           info->before, info->after);
3529         if (a_ok && b_ok)
3530             check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3531         return rb_move_tail(cpu_buffer, tail, info);
3532     }
3533 
3534     if (likely(tail == w)) {
3535         u64 save_before;
3536         bool s_ok;
3537 
3538         /* Nothing interrupted us between A and C */
3539  /*D*/      rb_time_set(&cpu_buffer->write_stamp, info->ts);
3540         barrier();
3541  /*E*/      s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3542         RB_WARN_ON(cpu_buffer, !s_ok);
3543         if (likely(!(info->add_timestamp &
3544                  (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3545             /* This did not interrupt any time update */
3546             info->delta = info->ts - info->after;
3547         else
3548             /* Just use full timestamp for interrupting event */
3549             info->delta = info->ts;
3550         barrier();
3551         check_buffer(cpu_buffer, info, tail);
3552         if (unlikely(info->ts != save_before)) {
3553             /* SLOW PATH - Interrupted between C and E */
3554 
3555             a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3556             RB_WARN_ON(cpu_buffer, !a_ok);
3557 
3558             /* Write stamp must only go forward */
3559             if (save_before > info->after) {
3560                 /*
3561                  * We do not care about the result, only that
3562                  * it gets updated atomically.
3563                  */
3564                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3565                               info->after, save_before);
3566             }
3567         }
3568     } else {
3569         u64 ts;
3570         /* SLOW PATH - Interrupted between A and C */
3571         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3572         /* Was interrupted before here, write_stamp must be valid */
3573         RB_WARN_ON(cpu_buffer, !a_ok);
3574         ts = rb_time_stamp(cpu_buffer->buffer);
3575         barrier();
3576  /*E*/      if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3577             info->after < ts &&
3578             rb_time_cmpxchg(&cpu_buffer->write_stamp,
3579                     info->after, ts)) {
3580             /* Nothing came after this event between C and E */
3581             info->delta = ts - info->after;
3582         } else {
3583             /*
3584              * Interrupted between C and E:
3585              * Lost the previous events time stamp. Just set the
3586              * delta to zero, and this will be the same time as
3587              * the event this event interrupted. And the events that
3588              * came after this will still be correct (as they would
3589              * have built their delta on the previous event.
3590              */
3591             info->delta = 0;
3592         }
3593         info->ts = ts;
3594         info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3595     }
3596 
3597     /*
3598      * If this is the first commit on the page, then it has the same
3599      * timestamp as the page itself.
3600      */
3601     if (unlikely(!tail && !(info->add_timestamp &
3602                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3603         info->delta = 0;
3604 
3605     /* We reserved something on the buffer */
3606 
3607     event = __rb_page_index(tail_page, tail);
3608     rb_update_event(cpu_buffer, event, info);
3609 
3610     local_inc(&tail_page->entries);
3611 
3612     /*
3613      * If this is the first commit on the page, then update
3614      * its timestamp.
3615      */
3616     if (unlikely(!tail))
3617         tail_page->page->time_stamp = info->ts;
3618 
3619     /* account for these added bytes */
3620     local_add(info->length, &cpu_buffer->entries_bytes);
3621 
3622     return event;
3623 }
3624 
3625 static __always_inline struct ring_buffer_event *
3626 rb_reserve_next_event(struct trace_buffer *buffer,
3627               struct ring_buffer_per_cpu *cpu_buffer,
3628               unsigned long length)
3629 {
3630     struct ring_buffer_event *event;
3631     struct rb_event_info info;
3632     int nr_loops = 0;
3633     int add_ts_default;
3634 
3635     rb_start_commit(cpu_buffer);
3636     /* The commit page can not change after this */
3637 
3638 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3639     /*
3640      * Due to the ability to swap a cpu buffer from a buffer
3641      * it is possible it was swapped before we committed.
3642      * (committing stops a swap). We check for it here and
3643      * if it happened, we have to fail the write.
3644      */
3645     barrier();
3646     if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3647         local_dec(&cpu_buffer->committing);
3648         local_dec(&cpu_buffer->commits);
3649         return NULL;
3650     }
3651 #endif
3652 
3653     info.length = rb_calculate_event_length(length);
3654 
3655     if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3656         add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3657         info.length += RB_LEN_TIME_EXTEND;
3658     } else {
3659         add_ts_default = RB_ADD_STAMP_NONE;
3660     }
3661 
3662  again:
3663     info.add_timestamp = add_ts_default;
3664     info.delta = 0;
3665 
3666     /*
3667      * We allow for interrupts to reenter here and do a trace.
3668      * If one does, it will cause this original code to loop
3669      * back here. Even with heavy interrupts happening, this
3670      * should only happen a few times in a row. If this happens
3671      * 1000 times in a row, there must be either an interrupt
3672      * storm or we have something buggy.
3673      * Bail!
3674      */
3675     if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3676         goto out_fail;
3677 
3678     event = __rb_reserve_next(cpu_buffer, &info);
3679 
3680     if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3681         if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3682             info.length -= RB_LEN_TIME_EXTEND;
3683         goto again;
3684     }
3685 
3686     if (likely(event))
3687         return event;
3688  out_fail:
3689     rb_end_commit(cpu_buffer);
3690     return NULL;
3691 }
3692 
3693 /**
3694  * ring_buffer_lock_reserve - reserve a part of the buffer
3695  * @buffer: the ring buffer to reserve from
3696  * @length: the length of the data to reserve (excluding event header)
3697  *
3698  * Returns a reserved event on the ring buffer to copy directly to.
3699  * The user of this interface will need to get the body to write into
3700  * and can use the ring_buffer_event_data() interface.
3701  *
3702  * The length is the length of the data needed, not the event length
3703  * which also includes the event header.
3704  *
3705  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3706  * If NULL is returned, then nothing has been allocated or locked.
3707  */
3708 struct ring_buffer_event *
3709 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3710 {
3711     struct ring_buffer_per_cpu *cpu_buffer;
3712     struct ring_buffer_event *event;
3713     int cpu;
3714 
3715     /* If we are tracing schedule, we don't want to recurse */
3716     preempt_disable_notrace();
3717 
3718     if (unlikely(atomic_read(&buffer->record_disabled)))
3719         goto out;
3720 
3721     cpu = raw_smp_processor_id();
3722 
3723     if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3724         goto out;
3725 
3726     cpu_buffer = buffer->buffers[cpu];
3727 
3728     if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3729         goto out;
3730 
3731     if (unlikely(length > BUF_MAX_DATA_SIZE))
3732         goto out;
3733 
3734     if (unlikely(trace_recursive_lock(cpu_buffer)))
3735         goto out;
3736 
3737     event = rb_reserve_next_event(buffer, cpu_buffer, length);
3738     if (!event)
3739         goto out_unlock;
3740 
3741     return event;
3742 
3743  out_unlock:
3744     trace_recursive_unlock(cpu_buffer);
3745  out:
3746     preempt_enable_notrace();
3747     return NULL;
3748 }
3749 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3750 
3751 /*
3752  * Decrement the entries to the page that an event is on.
3753  * The event does not even need to exist, only the pointer
3754  * to the page it is on. This may only be called before the commit
3755  * takes place.
3756  */
3757 static inline void
3758 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3759            struct ring_buffer_event *event)
3760 {
3761     unsigned long addr = (unsigned long)event;
3762     struct buffer_page *bpage = cpu_buffer->commit_page;
3763     struct buffer_page *start;
3764 
3765     addr &= PAGE_MASK;
3766 
3767     /* Do the likely case first */
3768     if (likely(bpage->page == (void *)addr)) {
3769         local_dec(&bpage->entries);
3770         return;
3771     }
3772 
3773     /*
3774      * Because the commit page may be on the reader page we
3775      * start with the next page and check the end loop there.
3776      */
3777     rb_inc_page(&bpage);
3778     start = bpage;
3779     do {
3780         if (bpage->page == (void *)addr) {
3781             local_dec(&bpage->entries);
3782             return;
3783         }
3784         rb_inc_page(&bpage);
3785     } while (bpage != start);
3786 
3787     /* commit not part of this buffer?? */
3788     RB_WARN_ON(cpu_buffer, 1);
3789 }
3790 
3791 /**
3792  * ring_buffer_discard_commit - discard an event that has not been committed
3793  * @buffer: the ring buffer
3794  * @event: non committed event to discard
3795  *
3796  * Sometimes an event that is in the ring buffer needs to be ignored.
3797  * This function lets the user discard an event in the ring buffer
3798  * and then that event will not be read later.
3799  *
3800  * This function only works if it is called before the item has been
3801  * committed. It will try to free the event from the ring buffer
3802  * if another event has not been added behind it.
3803  *
3804  * If another event has been added behind it, it will set the event
3805  * up as discarded, and perform the commit.
3806  *
3807  * If this function is called, do not call ring_buffer_unlock_commit on
3808  * the event.
3809  */
3810 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3811                 struct ring_buffer_event *event)
3812 {
3813     struct ring_buffer_per_cpu *cpu_buffer;
3814     int cpu;
3815 
3816     /* The event is discarded regardless */
3817     rb_event_discard(event);
3818 
3819     cpu = smp_processor_id();
3820     cpu_buffer = buffer->buffers[cpu];
3821 
3822     /*
3823      * This must only be called if the event has not been
3824      * committed yet. Thus we can assume that preemption
3825      * is still disabled.
3826      */
3827     RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3828 
3829     rb_decrement_entry(cpu_buffer, event);
3830     if (rb_try_to_discard(cpu_buffer, event))
3831         goto out;
3832 
3833  out:
3834     rb_end_commit(cpu_buffer);
3835 
3836     trace_recursive_unlock(cpu_buffer);
3837 
3838     preempt_enable_notrace();
3839 
3840 }
3841 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3842 
3843 /**
3844  * ring_buffer_write - write data to the buffer without reserving
3845  * @buffer: The ring buffer to write to.
3846  * @length: The length of the data being written (excluding the event header)
3847  * @data: The data to write to the buffer.
3848  *
3849  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3850  * one function. If you already have the data to write to the buffer, it
3851  * may be easier to simply call this function.
3852  *
3853  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3854  * and not the length of the event which would hold the header.
3855  */
3856 int ring_buffer_write(struct trace_buffer *buffer,
3857               unsigned long length,
3858               void *data)
3859 {
3860     struct ring_buffer_per_cpu *cpu_buffer;
3861     struct ring_buffer_event *event;
3862     void *body;
3863     int ret = -EBUSY;
3864     int cpu;
3865 
3866     preempt_disable_notrace();
3867 
3868     if (atomic_read(&buffer->record_disabled))
3869         goto out;
3870 
3871     cpu = raw_smp_processor_id();
3872 
3873     if (!cpumask_test_cpu(cpu, buffer->cpumask))
3874         goto out;
3875 
3876     cpu_buffer = buffer->buffers[cpu];
3877 
3878     if (atomic_read(&cpu_buffer->record_disabled))
3879         goto out;
3880 
3881     if (length > BUF_MAX_DATA_SIZE)
3882         goto out;
3883 
3884     if (unlikely(trace_recursive_lock(cpu_buffer)))
3885         goto out;
3886 
3887     event = rb_reserve_next_event(buffer, cpu_buffer, length);
3888     if (!event)
3889         goto out_unlock;
3890 
3891     body = rb_event_data(event);
3892 
3893     memcpy(body, data, length);
3894 
3895     rb_commit(cpu_buffer, event);
3896 
3897     rb_wakeups(buffer, cpu_buffer);
3898 
3899     ret = 0;
3900 
3901  out_unlock:
3902     trace_recursive_unlock(cpu_buffer);
3903 
3904  out:
3905     preempt_enable_notrace();
3906 
3907     return ret;
3908 }
3909 EXPORT_SYMBOL_GPL(ring_buffer_write);
3910 
3911 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3912 {
3913     struct buffer_page *reader = cpu_buffer->reader_page;
3914     struct buffer_page *head = rb_set_head_page(cpu_buffer);
3915     struct buffer_page *commit = cpu_buffer->commit_page;
3916 
3917     /* In case of error, head will be NULL */
3918     if (unlikely(!head))
3919         return true;
3920 
3921     /* Reader should exhaust content in reader page */
3922     if (reader->read != rb_page_commit(reader))
3923         return false;
3924 
3925     /*
3926      * If writers are committing on the reader page, knowing all
3927      * committed content has been read, the ring buffer is empty.
3928      */
3929     if (commit == reader)
3930         return true;
3931 
3932     /*
3933      * If writers are committing on a page other than reader page
3934      * and head page, there should always be content to read.
3935      */
3936     if (commit != head)
3937         return false;
3938 
3939     /*
3940      * Writers are committing on the head page, we just need
3941      * to care about there're committed data, and the reader will
3942      * swap reader page with head page when it is to read data.
3943      */
3944     return rb_page_commit(commit) == 0;
3945 }
3946 
3947 /**
3948  * ring_buffer_record_disable - stop all writes into the buffer
3949  * @buffer: The ring buffer to stop writes to.
3950  *
3951  * This prevents all writes to the buffer. Any attempt to write
3952  * to the buffer after this will fail and return NULL.
3953  *
3954  * The caller should call synchronize_rcu() after this.
3955  */
3956 void ring_buffer_record_disable(struct trace_buffer *buffer)
3957 {
3958     atomic_inc(&buffer->record_disabled);
3959 }
3960 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3961 
3962 /**
3963  * ring_buffer_record_enable - enable writes to the buffer
3964  * @buffer: The ring buffer to enable writes
3965  *
3966  * Note, multiple disables will need the same number of enables
3967  * to truly enable the writing (much like preempt_disable).
3968  */
3969 void ring_buffer_record_enable(struct trace_buffer *buffer)
3970 {
3971     atomic_dec(&buffer->record_disabled);
3972 }
3973 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3974 
3975 /**
3976  * ring_buffer_record_off - stop all writes into the buffer
3977  * @buffer: The ring buffer to stop writes to.
3978  *
3979  * This prevents all writes to the buffer. Any attempt to write
3980  * to the buffer after this will fail and return NULL.
3981  *
3982  * This is different than ring_buffer_record_disable() as
3983  * it works like an on/off switch, where as the disable() version
3984  * must be paired with a enable().
3985  */
3986 void ring_buffer_record_off(struct trace_buffer *buffer)
3987 {
3988     unsigned int rd;
3989     unsigned int new_rd;
3990 
3991     do {
3992         rd = atomic_read(&buffer->record_disabled);
3993         new_rd = rd | RB_BUFFER_OFF;
3994     } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3997 
3998 /**
3999  * ring_buffer_record_on - restart writes into the buffer
4000  * @buffer: The ring buffer to start writes to.
4001  *
4002  * This enables all writes to the buffer that was disabled by
4003  * ring_buffer_record_off().
4004  *
4005  * This is different than ring_buffer_record_enable() as
4006  * it works like an on/off switch, where as the enable() version
4007  * must be paired with a disable().
4008  */
4009 void ring_buffer_record_on(struct trace_buffer *buffer)
4010 {
4011     unsigned int rd;
4012     unsigned int new_rd;
4013 
4014     do {
4015         rd = atomic_read(&buffer->record_disabled);
4016         new_rd = rd & ~RB_BUFFER_OFF;
4017     } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4020 
4021 /**
4022  * ring_buffer_record_is_on - return true if the ring buffer can write
4023  * @buffer: The ring buffer to see if write is enabled
4024  *
4025  * Returns true if the ring buffer is in a state that it accepts writes.
4026  */
4027 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4028 {
4029     return !atomic_read(&buffer->record_disabled);
4030 }
4031 
4032 /**
4033  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4034  * @buffer: The ring buffer to see if write is set enabled
4035  *
4036  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4037  * Note that this does NOT mean it is in a writable state.
4038  *
4039  * It may return true when the ring buffer has been disabled by
4040  * ring_buffer_record_disable(), as that is a temporary disabling of
4041  * the ring buffer.
4042  */
4043 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4044 {
4045     return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4046 }
4047 
4048 /**
4049  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4050  * @buffer: The ring buffer to stop writes to.
4051  * @cpu: The CPU buffer to stop
4052  *
4053  * This prevents all writes to the buffer. Any attempt to write
4054  * to the buffer after this will fail and return NULL.
4055  *
4056  * The caller should call synchronize_rcu() after this.
4057  */
4058 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4059 {
4060     struct ring_buffer_per_cpu *cpu_buffer;
4061 
4062     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4063         return;
4064 
4065     cpu_buffer = buffer->buffers[cpu];
4066     atomic_inc(&cpu_buffer->record_disabled);
4067 }
4068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4069 
4070 /**
4071  * ring_buffer_record_enable_cpu - enable writes to the buffer
4072  * @buffer: The ring buffer to enable writes
4073  * @cpu: The CPU to enable.
4074  *
4075  * Note, multiple disables will need the same number of enables
4076  * to truly enable the writing (much like preempt_disable).
4077  */
4078 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4079 {
4080     struct ring_buffer_per_cpu *cpu_buffer;
4081 
4082     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4083         return;
4084 
4085     cpu_buffer = buffer->buffers[cpu];
4086     atomic_dec(&cpu_buffer->record_disabled);
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4089 
4090 /*
4091  * The total entries in the ring buffer is the running counter
4092  * of entries entered into the ring buffer, minus the sum of
4093  * the entries read from the ring buffer and the number of
4094  * entries that were overwritten.
4095  */
4096 static inline unsigned long
4097 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4098 {
4099     return local_read(&cpu_buffer->entries) -
4100         (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4101 }
4102 
4103 /**
4104  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4105  * @buffer: The ring buffer
4106  * @cpu: The per CPU buffer to read from.
4107  */
4108 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4109 {
4110     unsigned long flags;
4111     struct ring_buffer_per_cpu *cpu_buffer;
4112     struct buffer_page *bpage;
4113     u64 ret = 0;
4114 
4115     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116         return 0;
4117 
4118     cpu_buffer = buffer->buffers[cpu];
4119     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4120     /*
4121      * if the tail is on reader_page, oldest time stamp is on the reader
4122      * page
4123      */
4124     if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4125         bpage = cpu_buffer->reader_page;
4126     else
4127         bpage = rb_set_head_page(cpu_buffer);
4128     if (bpage)
4129         ret = bpage->page->time_stamp;
4130     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4131 
4132     return ret;
4133 }
4134 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4135 
4136 /**
4137  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4138  * @buffer: The ring buffer
4139  * @cpu: The per CPU buffer to read from.
4140  */
4141 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4142 {
4143     struct ring_buffer_per_cpu *cpu_buffer;
4144     unsigned long ret;
4145 
4146     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4147         return 0;
4148 
4149     cpu_buffer = buffer->buffers[cpu];
4150     ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4151 
4152     return ret;
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4155 
4156 /**
4157  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4158  * @buffer: The ring buffer
4159  * @cpu: The per CPU buffer to get the entries from.
4160  */
4161 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4162 {
4163     struct ring_buffer_per_cpu *cpu_buffer;
4164 
4165     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166         return 0;
4167 
4168     cpu_buffer = buffer->buffers[cpu];
4169 
4170     return rb_num_of_entries(cpu_buffer);
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4173 
4174 /**
4175  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4176  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4177  * @buffer: The ring buffer
4178  * @cpu: The per CPU buffer to get the number of overruns from
4179  */
4180 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4181 {
4182     struct ring_buffer_per_cpu *cpu_buffer;
4183     unsigned long ret;
4184 
4185     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4186         return 0;
4187 
4188     cpu_buffer = buffer->buffers[cpu];
4189     ret = local_read(&cpu_buffer->overrun);
4190 
4191     return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4194 
4195 /**
4196  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4197  * commits failing due to the buffer wrapping around while there are uncommitted
4198  * events, such as during an interrupt storm.
4199  * @buffer: The ring buffer
4200  * @cpu: The per CPU buffer to get the number of overruns from
4201  */
4202 unsigned long
4203 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4204 {
4205     struct ring_buffer_per_cpu *cpu_buffer;
4206     unsigned long ret;
4207 
4208     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209         return 0;
4210 
4211     cpu_buffer = buffer->buffers[cpu];
4212     ret = local_read(&cpu_buffer->commit_overrun);
4213 
4214     return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4217 
4218 /**
4219  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4220  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4221  * @buffer: The ring buffer
4222  * @cpu: The per CPU buffer to get the number of overruns from
4223  */
4224 unsigned long
4225 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4226 {
4227     struct ring_buffer_per_cpu *cpu_buffer;
4228     unsigned long ret;
4229 
4230     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4231         return 0;
4232 
4233     cpu_buffer = buffer->buffers[cpu];
4234     ret = local_read(&cpu_buffer->dropped_events);
4235 
4236     return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4239 
4240 /**
4241  * ring_buffer_read_events_cpu - get the number of events successfully read
4242  * @buffer: The ring buffer
4243  * @cpu: The per CPU buffer to get the number of events read
4244  */
4245 unsigned long
4246 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4247 {
4248     struct ring_buffer_per_cpu *cpu_buffer;
4249 
4250     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251         return 0;
4252 
4253     cpu_buffer = buffer->buffers[cpu];
4254     return cpu_buffer->read;
4255 }
4256 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4257 
4258 /**
4259  * ring_buffer_entries - get the number of entries in a buffer
4260  * @buffer: The ring buffer
4261  *
4262  * Returns the total number of entries in the ring buffer
4263  * (all CPU entries)
4264  */
4265 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4266 {
4267     struct ring_buffer_per_cpu *cpu_buffer;
4268     unsigned long entries = 0;
4269     int cpu;
4270 
4271     /* if you care about this being correct, lock the buffer */
4272     for_each_buffer_cpu(buffer, cpu) {
4273         cpu_buffer = buffer->buffers[cpu];
4274         entries += rb_num_of_entries(cpu_buffer);
4275     }
4276 
4277     return entries;
4278 }
4279 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4280 
4281 /**
4282  * ring_buffer_overruns - get the number of overruns in buffer
4283  * @buffer: The ring buffer
4284  *
4285  * Returns the total number of overruns in the ring buffer
4286  * (all CPU entries)
4287  */
4288 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4289 {
4290     struct ring_buffer_per_cpu *cpu_buffer;
4291     unsigned long overruns = 0;
4292     int cpu;
4293 
4294     /* if you care about this being correct, lock the buffer */
4295     for_each_buffer_cpu(buffer, cpu) {
4296         cpu_buffer = buffer->buffers[cpu];
4297         overruns += local_read(&cpu_buffer->overrun);
4298     }
4299 
4300     return overruns;
4301 }
4302 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4303 
4304 static void rb_iter_reset(struct ring_buffer_iter *iter)
4305 {
4306     struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4307 
4308     /* Iterator usage is expected to have record disabled */
4309     iter->head_page = cpu_buffer->reader_page;
4310     iter->head = cpu_buffer->reader_page->read;
4311     iter->next_event = iter->head;
4312 
4313     iter->cache_reader_page = iter->head_page;
4314     iter->cache_read = cpu_buffer->read;
4315 
4316     if (iter->head) {
4317         iter->read_stamp = cpu_buffer->read_stamp;
4318         iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4319     } else {
4320         iter->read_stamp = iter->head_page->page->time_stamp;
4321         iter->page_stamp = iter->read_stamp;
4322     }
4323 }
4324 
4325 /**
4326  * ring_buffer_iter_reset - reset an iterator
4327  * @iter: The iterator to reset
4328  *
4329  * Resets the iterator, so that it will start from the beginning
4330  * again.
4331  */
4332 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4333 {
4334     struct ring_buffer_per_cpu *cpu_buffer;
4335     unsigned long flags;
4336 
4337     if (!iter)
4338         return;
4339 
4340     cpu_buffer = iter->cpu_buffer;
4341 
4342     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4343     rb_iter_reset(iter);
4344     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4345 }
4346 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4347 
4348 /**
4349  * ring_buffer_iter_empty - check if an iterator has no more to read
4350  * @iter: The iterator to check
4351  */
4352 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4353 {
4354     struct ring_buffer_per_cpu *cpu_buffer;
4355     struct buffer_page *reader;
4356     struct buffer_page *head_page;
4357     struct buffer_page *commit_page;
4358     struct buffer_page *curr_commit_page;
4359     unsigned commit;
4360     u64 curr_commit_ts;
4361     u64 commit_ts;
4362 
4363     cpu_buffer = iter->cpu_buffer;
4364     reader = cpu_buffer->reader_page;
4365     head_page = cpu_buffer->head_page;
4366     commit_page = cpu_buffer->commit_page;
4367     commit_ts = commit_page->page->time_stamp;
4368 
4369     /*
4370      * When the writer goes across pages, it issues a cmpxchg which
4371      * is a mb(), which will synchronize with the rmb here.
4372      * (see rb_tail_page_update())
4373      */
4374     smp_rmb();
4375     commit = rb_page_commit(commit_page);
4376     /* We want to make sure that the commit page doesn't change */
4377     smp_rmb();
4378 
4379     /* Make sure commit page didn't change */
4380     curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4381     curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4382 
4383     /* If the commit page changed, then there's more data */
4384     if (curr_commit_page != commit_page ||
4385         curr_commit_ts != commit_ts)
4386         return 0;
4387 
4388     /* Still racy, as it may return a false positive, but that's OK */
4389     return ((iter->head_page == commit_page && iter->head >= commit) ||
4390         (iter->head_page == reader && commit_page == head_page &&
4391          head_page->read == commit &&
4392          iter->head == rb_page_commit(cpu_buffer->reader_page)));
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4395 
4396 static void
4397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4398              struct ring_buffer_event *event)
4399 {
4400     u64 delta;
4401 
4402     switch (event->type_len) {
4403     case RINGBUF_TYPE_PADDING:
4404         return;
4405 
4406     case RINGBUF_TYPE_TIME_EXTEND:
4407         delta = rb_event_time_stamp(event);
4408         cpu_buffer->read_stamp += delta;
4409         return;
4410 
4411     case RINGBUF_TYPE_TIME_STAMP:
4412         delta = rb_event_time_stamp(event);
4413         delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4414         cpu_buffer->read_stamp = delta;
4415         return;
4416 
4417     case RINGBUF_TYPE_DATA:
4418         cpu_buffer->read_stamp += event->time_delta;
4419         return;
4420 
4421     default:
4422         RB_WARN_ON(cpu_buffer, 1);
4423     }
4424     return;
4425 }
4426 
4427 static void
4428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4429               struct ring_buffer_event *event)
4430 {
4431     u64 delta;
4432 
4433     switch (event->type_len) {
4434     case RINGBUF_TYPE_PADDING:
4435         return;
4436 
4437     case RINGBUF_TYPE_TIME_EXTEND:
4438         delta = rb_event_time_stamp(event);
4439         iter->read_stamp += delta;
4440         return;
4441 
4442     case RINGBUF_TYPE_TIME_STAMP:
4443         delta = rb_event_time_stamp(event);
4444         delta = rb_fix_abs_ts(delta, iter->read_stamp);
4445         iter->read_stamp = delta;
4446         return;
4447 
4448     case RINGBUF_TYPE_DATA:
4449         iter->read_stamp += event->time_delta;
4450         return;
4451 
4452     default:
4453         RB_WARN_ON(iter->cpu_buffer, 1);
4454     }
4455     return;
4456 }
4457 
4458 static struct buffer_page *
4459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4460 {
4461     struct buffer_page *reader = NULL;
4462     unsigned long overwrite;
4463     unsigned long flags;
4464     int nr_loops = 0;
4465     int ret;
4466 
4467     local_irq_save(flags);
4468     arch_spin_lock(&cpu_buffer->lock);
4469 
4470  again:
4471     /*
4472      * This should normally only loop twice. But because the
4473      * start of the reader inserts an empty page, it causes
4474      * a case where we will loop three times. There should be no
4475      * reason to loop four times (that I know of).
4476      */
4477     if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4478         reader = NULL;
4479         goto out;
4480     }
4481 
4482     reader = cpu_buffer->reader_page;
4483 
4484     /* If there's more to read, return this page */
4485     if (cpu_buffer->reader_page->read < rb_page_size(reader))
4486         goto out;
4487 
4488     /* Never should we have an index greater than the size */
4489     if (RB_WARN_ON(cpu_buffer,
4490                cpu_buffer->reader_page->read > rb_page_size(reader)))
4491         goto out;
4492 
4493     /* check if we caught up to the tail */
4494     reader = NULL;
4495     if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4496         goto out;
4497 
4498     /* Don't bother swapping if the ring buffer is empty */
4499     if (rb_num_of_entries(cpu_buffer) == 0)
4500         goto out;
4501 
4502     /*
4503      * Reset the reader page to size zero.
4504      */
4505     local_set(&cpu_buffer->reader_page->write, 0);
4506     local_set(&cpu_buffer->reader_page->entries, 0);
4507     local_set(&cpu_buffer->reader_page->page->commit, 0);
4508     cpu_buffer->reader_page->real_end = 0;
4509 
4510  spin:
4511     /*
4512      * Splice the empty reader page into the list around the head.
4513      */
4514     reader = rb_set_head_page(cpu_buffer);
4515     if (!reader)
4516         goto out;
4517     cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4518     cpu_buffer->reader_page->list.prev = reader->list.prev;
4519 
4520     /*
4521      * cpu_buffer->pages just needs to point to the buffer, it
4522      *  has no specific buffer page to point to. Lets move it out
4523      *  of our way so we don't accidentally swap it.
4524      */
4525     cpu_buffer->pages = reader->list.prev;
4526 
4527     /* The reader page will be pointing to the new head */
4528     rb_set_list_to_head(&cpu_buffer->reader_page->list);
4529 
4530     /*
4531      * We want to make sure we read the overruns after we set up our
4532      * pointers to the next object. The writer side does a
4533      * cmpxchg to cross pages which acts as the mb on the writer
4534      * side. Note, the reader will constantly fail the swap
4535      * while the writer is updating the pointers, so this
4536      * guarantees that the overwrite recorded here is the one we
4537      * want to compare with the last_overrun.
4538      */
4539     smp_mb();
4540     overwrite = local_read(&(cpu_buffer->overrun));
4541 
4542     /*
4543      * Here's the tricky part.
4544      *
4545      * We need to move the pointer past the header page.
4546      * But we can only do that if a writer is not currently
4547      * moving it. The page before the header page has the
4548      * flag bit '1' set if it is pointing to the page we want.
4549      * but if the writer is in the process of moving it
4550      * than it will be '2' or already moved '0'.
4551      */
4552 
4553     ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4554 
4555     /*
4556      * If we did not convert it, then we must try again.
4557      */
4558     if (!ret)
4559         goto spin;
4560 
4561     /*
4562      * Yay! We succeeded in replacing the page.
4563      *
4564      * Now make the new head point back to the reader page.
4565      */
4566     rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4567     rb_inc_page(&cpu_buffer->head_page);
4568 
4569     local_inc(&cpu_buffer->pages_read);
4570 
4571     /* Finally update the reader page to the new head */
4572     cpu_buffer->reader_page = reader;
4573     cpu_buffer->reader_page->read = 0;
4574 
4575     if (overwrite != cpu_buffer->last_overrun) {
4576         cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4577         cpu_buffer->last_overrun = overwrite;
4578     }
4579 
4580     goto again;
4581 
4582  out:
4583     /* Update the read_stamp on the first event */
4584     if (reader && reader->read == 0)
4585         cpu_buffer->read_stamp = reader->page->time_stamp;
4586 
4587     arch_spin_unlock(&cpu_buffer->lock);
4588     local_irq_restore(flags);
4589 
4590     return reader;
4591 }
4592 
4593 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4594 {
4595     struct ring_buffer_event *event;
4596     struct buffer_page *reader;
4597     unsigned length;
4598 
4599     reader = rb_get_reader_page(cpu_buffer);
4600 
4601     /* This function should not be called when buffer is empty */
4602     if (RB_WARN_ON(cpu_buffer, !reader))
4603         return;
4604 
4605     event = rb_reader_event(cpu_buffer);
4606 
4607     if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4608         cpu_buffer->read++;
4609 
4610     rb_update_read_stamp(cpu_buffer, event);
4611 
4612     length = rb_event_length(event);
4613     cpu_buffer->reader_page->read += length;
4614 }
4615 
4616 static void rb_advance_iter(struct ring_buffer_iter *iter)
4617 {
4618     struct ring_buffer_per_cpu *cpu_buffer;
4619 
4620     cpu_buffer = iter->cpu_buffer;
4621 
4622     /* If head == next_event then we need to jump to the next event */
4623     if (iter->head == iter->next_event) {
4624         /* If the event gets overwritten again, there's nothing to do */
4625         if (rb_iter_head_event(iter) == NULL)
4626             return;
4627     }
4628 
4629     iter->head = iter->next_event;
4630 
4631     /*
4632      * Check if we are at the end of the buffer.
4633      */
4634     if (iter->next_event >= rb_page_size(iter->head_page)) {
4635         /* discarded commits can make the page empty */
4636         if (iter->head_page == cpu_buffer->commit_page)
4637             return;
4638         rb_inc_iter(iter);
4639         return;
4640     }
4641 
4642     rb_update_iter_read_stamp(iter, iter->event);
4643 }
4644 
4645 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4646 {
4647     return cpu_buffer->lost_events;
4648 }
4649 
4650 static struct ring_buffer_event *
4651 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4652            unsigned long *lost_events)
4653 {
4654     struct ring_buffer_event *event;
4655     struct buffer_page *reader;
4656     int nr_loops = 0;
4657 
4658     if (ts)
4659         *ts = 0;
4660  again:
4661     /*
4662      * We repeat when a time extend is encountered.
4663      * Since the time extend is always attached to a data event,
4664      * we should never loop more than once.
4665      * (We never hit the following condition more than twice).
4666      */
4667     if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4668         return NULL;
4669 
4670     reader = rb_get_reader_page(cpu_buffer);
4671     if (!reader)
4672         return NULL;
4673 
4674     event = rb_reader_event(cpu_buffer);
4675 
4676     switch (event->type_len) {
4677     case RINGBUF_TYPE_PADDING:
4678         if (rb_null_event(event))
4679             RB_WARN_ON(cpu_buffer, 1);
4680         /*
4681          * Because the writer could be discarding every
4682          * event it creates (which would probably be bad)
4683          * if we were to go back to "again" then we may never
4684          * catch up, and will trigger the warn on, or lock
4685          * the box. Return the padding, and we will release
4686          * the current locks, and try again.
4687          */
4688         return event;
4689 
4690     case RINGBUF_TYPE_TIME_EXTEND:
4691         /* Internal data, OK to advance */
4692         rb_advance_reader(cpu_buffer);
4693         goto again;
4694 
4695     case RINGBUF_TYPE_TIME_STAMP:
4696         if (ts) {
4697             *ts = rb_event_time_stamp(event);
4698             *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4699             ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4700                              cpu_buffer->cpu, ts);
4701         }
4702         /* Internal data, OK to advance */
4703         rb_advance_reader(cpu_buffer);
4704         goto again;
4705 
4706     case RINGBUF_TYPE_DATA:
4707         if (ts && !(*ts)) {
4708             *ts = cpu_buffer->read_stamp + event->time_delta;
4709             ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4710                              cpu_buffer->cpu, ts);
4711         }
4712         if (lost_events)
4713             *lost_events = rb_lost_events(cpu_buffer);
4714         return event;
4715 
4716     default:
4717         RB_WARN_ON(cpu_buffer, 1);
4718     }
4719 
4720     return NULL;
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4723 
4724 static struct ring_buffer_event *
4725 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4726 {
4727     struct trace_buffer *buffer;
4728     struct ring_buffer_per_cpu *cpu_buffer;
4729     struct ring_buffer_event *event;
4730     int nr_loops = 0;
4731 
4732     if (ts)
4733         *ts = 0;
4734 
4735     cpu_buffer = iter->cpu_buffer;
4736     buffer = cpu_buffer->buffer;
4737 
4738     /*
4739      * Check if someone performed a consuming read to
4740      * the buffer. A consuming read invalidates the iterator
4741      * and we need to reset the iterator in this case.
4742      */
4743     if (unlikely(iter->cache_read != cpu_buffer->read ||
4744              iter->cache_reader_page != cpu_buffer->reader_page))
4745         rb_iter_reset(iter);
4746 
4747  again:
4748     if (ring_buffer_iter_empty(iter))
4749         return NULL;
4750 
4751     /*
4752      * As the writer can mess with what the iterator is trying
4753      * to read, just give up if we fail to get an event after
4754      * three tries. The iterator is not as reliable when reading
4755      * the ring buffer with an active write as the consumer is.
4756      * Do not warn if the three failures is reached.
4757      */
4758     if (++nr_loops > 3)
4759         return NULL;
4760 
4761     if (rb_per_cpu_empty(cpu_buffer))
4762         return NULL;
4763 
4764     if (iter->head >= rb_page_size(iter->head_page)) {
4765         rb_inc_iter(iter);
4766         goto again;
4767     }
4768 
4769     event = rb_iter_head_event(iter);
4770     if (!event)
4771         goto again;
4772 
4773     switch (event->type_len) {
4774     case RINGBUF_TYPE_PADDING:
4775         if (rb_null_event(event)) {
4776             rb_inc_iter(iter);
4777             goto again;
4778         }
4779         rb_advance_iter(iter);
4780         return event;
4781 
4782     case RINGBUF_TYPE_TIME_EXTEND:
4783         /* Internal data, OK to advance */
4784         rb_advance_iter(iter);
4785         goto again;
4786 
4787     case RINGBUF_TYPE_TIME_STAMP:
4788         if (ts) {
4789             *ts = rb_event_time_stamp(event);
4790             *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4791             ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4792                              cpu_buffer->cpu, ts);
4793         }
4794         /* Internal data, OK to advance */
4795         rb_advance_iter(iter);
4796         goto again;
4797 
4798     case RINGBUF_TYPE_DATA:
4799         if (ts && !(*ts)) {
4800             *ts = iter->read_stamp + event->time_delta;
4801             ring_buffer_normalize_time_stamp(buffer,
4802                              cpu_buffer->cpu, ts);
4803         }
4804         return event;
4805 
4806     default:
4807         RB_WARN_ON(cpu_buffer, 1);
4808     }
4809 
4810     return NULL;
4811 }
4812 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4813 
4814 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4815 {
4816     if (likely(!in_nmi())) {
4817         raw_spin_lock(&cpu_buffer->reader_lock);
4818         return true;
4819     }
4820 
4821     /*
4822      * If an NMI die dumps out the content of the ring buffer
4823      * trylock must be used to prevent a deadlock if the NMI
4824      * preempted a task that holds the ring buffer locks. If
4825      * we get the lock then all is fine, if not, then continue
4826      * to do the read, but this can corrupt the ring buffer,
4827      * so it must be permanently disabled from future writes.
4828      * Reading from NMI is a oneshot deal.
4829      */
4830     if (raw_spin_trylock(&cpu_buffer->reader_lock))
4831         return true;
4832 
4833     /* Continue without locking, but disable the ring buffer */
4834     atomic_inc(&cpu_buffer->record_disabled);
4835     return false;
4836 }
4837 
4838 static inline void
4839 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4840 {
4841     if (likely(locked))
4842         raw_spin_unlock(&cpu_buffer->reader_lock);
4843     return;
4844 }
4845 
4846 /**
4847  * ring_buffer_peek - peek at the next event to be read
4848  * @buffer: The ring buffer to read
4849  * @cpu: The cpu to peak at
4850  * @ts: The timestamp counter of this event.
4851  * @lost_events: a variable to store if events were lost (may be NULL)
4852  *
4853  * This will return the event that will be read next, but does
4854  * not consume the data.
4855  */
4856 struct ring_buffer_event *
4857 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4858          unsigned long *lost_events)
4859 {
4860     struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4861     struct ring_buffer_event *event;
4862     unsigned long flags;
4863     bool dolock;
4864 
4865     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4866         return NULL;
4867 
4868  again:
4869     local_irq_save(flags);
4870     dolock = rb_reader_lock(cpu_buffer);
4871     event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4872     if (event && event->type_len == RINGBUF_TYPE_PADDING)
4873         rb_advance_reader(cpu_buffer);
4874     rb_reader_unlock(cpu_buffer, dolock);
4875     local_irq_restore(flags);
4876 
4877     if (event && event->type_len == RINGBUF_TYPE_PADDING)
4878         goto again;
4879 
4880     return event;
4881 }
4882 
4883 /** ring_buffer_iter_dropped - report if there are dropped events
4884  * @iter: The ring buffer iterator
4885  *
4886  * Returns true if there was dropped events since the last peek.
4887  */
4888 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4889 {
4890     bool ret = iter->missed_events != 0;
4891 
4892     iter->missed_events = 0;
4893     return ret;
4894 }
4895 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4896 
4897 /**
4898  * ring_buffer_iter_peek - peek at the next event to be read
4899  * @iter: The ring buffer iterator
4900  * @ts: The timestamp counter of this event.
4901  *
4902  * This will return the event that will be read next, but does
4903  * not increment the iterator.
4904  */
4905 struct ring_buffer_event *
4906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4907 {
4908     struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4909     struct ring_buffer_event *event;
4910     unsigned long flags;
4911 
4912  again:
4913     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4914     event = rb_iter_peek(iter, ts);
4915     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4916 
4917     if (event && event->type_len == RINGBUF_TYPE_PADDING)
4918         goto again;
4919 
4920     return event;
4921 }
4922 
4923 /**
4924  * ring_buffer_consume - return an event and consume it
4925  * @buffer: The ring buffer to get the next event from
4926  * @cpu: the cpu to read the buffer from
4927  * @ts: a variable to store the timestamp (may be NULL)
4928  * @lost_events: a variable to store if events were lost (may be NULL)
4929  *
4930  * Returns the next event in the ring buffer, and that event is consumed.
4931  * Meaning, that sequential reads will keep returning a different event,
4932  * and eventually empty the ring buffer if the producer is slower.
4933  */
4934 struct ring_buffer_event *
4935 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4936             unsigned long *lost_events)
4937 {
4938     struct ring_buffer_per_cpu *cpu_buffer;
4939     struct ring_buffer_event *event = NULL;
4940     unsigned long flags;
4941     bool dolock;
4942 
4943  again:
4944     /* might be called in atomic */
4945     preempt_disable();
4946 
4947     if (!cpumask_test_cpu(cpu, buffer->cpumask))
4948         goto out;
4949 
4950     cpu_buffer = buffer->buffers[cpu];
4951     local_irq_save(flags);
4952     dolock = rb_reader_lock(cpu_buffer);
4953 
4954     event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4955     if (event) {
4956         cpu_buffer->lost_events = 0;
4957         rb_advance_reader(cpu_buffer);
4958     }
4959 
4960     rb_reader_unlock(cpu_buffer, dolock);
4961     local_irq_restore(flags);
4962 
4963  out:
4964     preempt_enable();
4965 
4966     if (event && event->type_len == RINGBUF_TYPE_PADDING)
4967         goto again;
4968 
4969     return event;
4970 }
4971 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4972 
4973 /**
4974  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4975  * @buffer: The ring buffer to read from
4976  * @cpu: The cpu buffer to iterate over
4977  * @flags: gfp flags to use for memory allocation
4978  *
4979  * This performs the initial preparations necessary to iterate
4980  * through the buffer.  Memory is allocated, buffer recording
4981  * is disabled, and the iterator pointer is returned to the caller.
4982  *
4983  * Disabling buffer recording prevents the reading from being
4984  * corrupted. This is not a consuming read, so a producer is not
4985  * expected.
4986  *
4987  * After a sequence of ring_buffer_read_prepare calls, the user is
4988  * expected to make at least one call to ring_buffer_read_prepare_sync.
4989  * Afterwards, ring_buffer_read_start is invoked to get things going
4990  * for real.
4991  *
4992  * This overall must be paired with ring_buffer_read_finish.
4993  */
4994 struct ring_buffer_iter *
4995 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4996 {
4997     struct ring_buffer_per_cpu *cpu_buffer;
4998     struct ring_buffer_iter *iter;
4999 
5000     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5001         return NULL;
5002 
5003     iter = kzalloc(sizeof(*iter), flags);
5004     if (!iter)
5005         return NULL;
5006 
5007     iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5008     if (!iter->event) {
5009         kfree(iter);
5010         return NULL;
5011     }
5012 
5013     cpu_buffer = buffer->buffers[cpu];
5014 
5015     iter->cpu_buffer = cpu_buffer;
5016 
5017     atomic_inc(&cpu_buffer->resize_disabled);
5018 
5019     return iter;
5020 }
5021 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5022 
5023 /**
5024  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5025  *
5026  * All previously invoked ring_buffer_read_prepare calls to prepare
5027  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5028  * calls on those iterators are allowed.
5029  */
5030 void
5031 ring_buffer_read_prepare_sync(void)
5032 {
5033     synchronize_rcu();
5034 }
5035 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5036 
5037 /**
5038  * ring_buffer_read_start - start a non consuming read of the buffer
5039  * @iter: The iterator returned by ring_buffer_read_prepare
5040  *
5041  * This finalizes the startup of an iteration through the buffer.
5042  * The iterator comes from a call to ring_buffer_read_prepare and
5043  * an intervening ring_buffer_read_prepare_sync must have been
5044  * performed.
5045  *
5046  * Must be paired with ring_buffer_read_finish.
5047  */
5048 void
5049 ring_buffer_read_start(struct ring_buffer_iter *iter)
5050 {
5051     struct ring_buffer_per_cpu *cpu_buffer;
5052     unsigned long flags;
5053 
5054     if (!iter)
5055         return;
5056 
5057     cpu_buffer = iter->cpu_buffer;
5058 
5059     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5060     arch_spin_lock(&cpu_buffer->lock);
5061     rb_iter_reset(iter);
5062     arch_spin_unlock(&cpu_buffer->lock);
5063     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5064 }
5065 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5066 
5067 /**
5068  * ring_buffer_read_finish - finish reading the iterator of the buffer
5069  * @iter: The iterator retrieved by ring_buffer_start
5070  *
5071  * This re-enables the recording to the buffer, and frees the
5072  * iterator.
5073  */
5074 void
5075 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5076 {
5077     struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5078     unsigned long flags;
5079 
5080     /*
5081      * Ring buffer is disabled from recording, here's a good place
5082      * to check the integrity of the ring buffer.
5083      * Must prevent readers from trying to read, as the check
5084      * clears the HEAD page and readers require it.
5085      */
5086     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5087     rb_check_pages(cpu_buffer);
5088     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5089 
5090     atomic_dec(&cpu_buffer->resize_disabled);
5091     kfree(iter->event);
5092     kfree(iter);
5093 }
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5095 
5096 /**
5097  * ring_buffer_iter_advance - advance the iterator to the next location
5098  * @iter: The ring buffer iterator
5099  *
5100  * Move the location of the iterator such that the next read will
5101  * be the next location of the iterator.
5102  */
5103 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5104 {
5105     struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5106     unsigned long flags;
5107 
5108     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5109 
5110     rb_advance_iter(iter);
5111 
5112     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5113 }
5114 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5115 
5116 /**
5117  * ring_buffer_size - return the size of the ring buffer (in bytes)
5118  * @buffer: The ring buffer.
5119  * @cpu: The CPU to get ring buffer size from.
5120  */
5121 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5122 {
5123     /*
5124      * Earlier, this method returned
5125      *  BUF_PAGE_SIZE * buffer->nr_pages
5126      * Since the nr_pages field is now removed, we have converted this to
5127      * return the per cpu buffer value.
5128      */
5129     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5130         return 0;
5131 
5132     return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5133 }
5134 EXPORT_SYMBOL_GPL(ring_buffer_size);
5135 
5136 static void
5137 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5138 {
5139     rb_head_page_deactivate(cpu_buffer);
5140 
5141     cpu_buffer->head_page
5142         = list_entry(cpu_buffer->pages, struct buffer_page, list);
5143     local_set(&cpu_buffer->head_page->write, 0);
5144     local_set(&cpu_buffer->head_page->entries, 0);
5145     local_set(&cpu_buffer->head_page->page->commit, 0);
5146 
5147     cpu_buffer->head_page->read = 0;
5148 
5149     cpu_buffer->tail_page = cpu_buffer->head_page;
5150     cpu_buffer->commit_page = cpu_buffer->head_page;
5151 
5152     INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5153     INIT_LIST_HEAD(&cpu_buffer->new_pages);
5154     local_set(&cpu_buffer->reader_page->write, 0);
5155     local_set(&cpu_buffer->reader_page->entries, 0);
5156     local_set(&cpu_buffer->reader_page->page->commit, 0);
5157     cpu_buffer->reader_page->read = 0;
5158 
5159     local_set(&cpu_buffer->entries_bytes, 0);
5160     local_set(&cpu_buffer->overrun, 0);
5161     local_set(&cpu_buffer->commit_overrun, 0);
5162     local_set(&cpu_buffer->dropped_events, 0);
5163     local_set(&cpu_buffer->entries, 0);
5164     local_set(&cpu_buffer->committing, 0);
5165     local_set(&cpu_buffer->commits, 0);
5166     local_set(&cpu_buffer->pages_touched, 0);
5167     local_set(&cpu_buffer->pages_read, 0);
5168     cpu_buffer->last_pages_touch = 0;
5169     cpu_buffer->shortest_full = 0;
5170     cpu_buffer->read = 0;
5171     cpu_buffer->read_bytes = 0;
5172 
5173     rb_time_set(&cpu_buffer->write_stamp, 0);
5174     rb_time_set(&cpu_buffer->before_stamp, 0);
5175 
5176     memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5177 
5178     cpu_buffer->lost_events = 0;
5179     cpu_buffer->last_overrun = 0;
5180 
5181     rb_head_page_activate(cpu_buffer);
5182 }
5183 
5184 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5185 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5186 {
5187     unsigned long flags;
5188 
5189     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5190 
5191     if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5192         goto out;
5193 
5194     arch_spin_lock(&cpu_buffer->lock);
5195 
5196     rb_reset_cpu(cpu_buffer);
5197 
5198     arch_spin_unlock(&cpu_buffer->lock);
5199 
5200  out:
5201     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5202 }
5203 
5204 /**
5205  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5206  * @buffer: The ring buffer to reset a per cpu buffer of
5207  * @cpu: The CPU buffer to be reset
5208  */
5209 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5210 {
5211     struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5212 
5213     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5214         return;
5215 
5216     /* prevent another thread from changing buffer sizes */
5217     mutex_lock(&buffer->mutex);
5218 
5219     atomic_inc(&cpu_buffer->resize_disabled);
5220     atomic_inc(&cpu_buffer->record_disabled);
5221 
5222     /* Make sure all commits have finished */
5223     synchronize_rcu();
5224 
5225     reset_disabled_cpu_buffer(cpu_buffer);
5226 
5227     atomic_dec(&cpu_buffer->record_disabled);
5228     atomic_dec(&cpu_buffer->resize_disabled);
5229 
5230     mutex_unlock(&buffer->mutex);
5231 }
5232 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5233 
5234 /**
5235  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5236  * @buffer: The ring buffer to reset a per cpu buffer of
5237  * @cpu: The CPU buffer to be reset
5238  */
5239 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5240 {
5241     struct ring_buffer_per_cpu *cpu_buffer;
5242     int cpu;
5243 
5244     /* prevent another thread from changing buffer sizes */
5245     mutex_lock(&buffer->mutex);
5246 
5247     for_each_online_buffer_cpu(buffer, cpu) {
5248         cpu_buffer = buffer->buffers[cpu];
5249 
5250         atomic_inc(&cpu_buffer->resize_disabled);
5251         atomic_inc(&cpu_buffer->record_disabled);
5252     }
5253 
5254     /* Make sure all commits have finished */
5255     synchronize_rcu();
5256 
5257     for_each_online_buffer_cpu(buffer, cpu) {
5258         cpu_buffer = buffer->buffers[cpu];
5259 
5260         reset_disabled_cpu_buffer(cpu_buffer);
5261 
5262         atomic_dec(&cpu_buffer->record_disabled);
5263         atomic_dec(&cpu_buffer->resize_disabled);
5264     }
5265 
5266     mutex_unlock(&buffer->mutex);
5267 }
5268 
5269 /**
5270  * ring_buffer_reset - reset a ring buffer
5271  * @buffer: The ring buffer to reset all cpu buffers
5272  */
5273 void ring_buffer_reset(struct trace_buffer *buffer)
5274 {
5275     struct ring_buffer_per_cpu *cpu_buffer;
5276     int cpu;
5277 
5278     /* prevent another thread from changing buffer sizes */
5279     mutex_lock(&buffer->mutex);
5280 
5281     for_each_buffer_cpu(buffer, cpu) {
5282         cpu_buffer = buffer->buffers[cpu];
5283 
5284         atomic_inc(&cpu_buffer->resize_disabled);
5285         atomic_inc(&cpu_buffer->record_disabled);
5286     }
5287 
5288     /* Make sure all commits have finished */
5289     synchronize_rcu();
5290 
5291     for_each_buffer_cpu(buffer, cpu) {
5292         cpu_buffer = buffer->buffers[cpu];
5293 
5294         reset_disabled_cpu_buffer(cpu_buffer);
5295 
5296         atomic_dec(&cpu_buffer->record_disabled);
5297         atomic_dec(&cpu_buffer->resize_disabled);
5298     }
5299 
5300     mutex_unlock(&buffer->mutex);
5301 }
5302 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5303 
5304 /**
5305  * rind_buffer_empty - is the ring buffer empty?
5306  * @buffer: The ring buffer to test
5307  */
5308 bool ring_buffer_empty(struct trace_buffer *buffer)
5309 {
5310     struct ring_buffer_per_cpu *cpu_buffer;
5311     unsigned long flags;
5312     bool dolock;
5313     int cpu;
5314     int ret;
5315 
5316     /* yes this is racy, but if you don't like the race, lock the buffer */
5317     for_each_buffer_cpu(buffer, cpu) {
5318         cpu_buffer = buffer->buffers[cpu];
5319         local_irq_save(flags);
5320         dolock = rb_reader_lock(cpu_buffer);
5321         ret = rb_per_cpu_empty(cpu_buffer);
5322         rb_reader_unlock(cpu_buffer, dolock);
5323         local_irq_restore(flags);
5324 
5325         if (!ret)
5326             return false;
5327     }
5328 
5329     return true;
5330 }
5331 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5332 
5333 /**
5334  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5335  * @buffer: The ring buffer
5336  * @cpu: The CPU buffer to test
5337  */
5338 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5339 {
5340     struct ring_buffer_per_cpu *cpu_buffer;
5341     unsigned long flags;
5342     bool dolock;
5343     int ret;
5344 
5345     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5346         return true;
5347 
5348     cpu_buffer = buffer->buffers[cpu];
5349     local_irq_save(flags);
5350     dolock = rb_reader_lock(cpu_buffer);
5351     ret = rb_per_cpu_empty(cpu_buffer);
5352     rb_reader_unlock(cpu_buffer, dolock);
5353     local_irq_restore(flags);
5354 
5355     return ret;
5356 }
5357 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5358 
5359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5360 /**
5361  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5362  * @buffer_a: One buffer to swap with
5363  * @buffer_b: The other buffer to swap with
5364  * @cpu: the CPU of the buffers to swap
5365  *
5366  * This function is useful for tracers that want to take a "snapshot"
5367  * of a CPU buffer and has another back up buffer lying around.
5368  * it is expected that the tracer handles the cpu buffer not being
5369  * used at the moment.
5370  */
5371 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5372              struct trace_buffer *buffer_b, int cpu)
5373 {
5374     struct ring_buffer_per_cpu *cpu_buffer_a;
5375     struct ring_buffer_per_cpu *cpu_buffer_b;
5376     int ret = -EINVAL;
5377 
5378     if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5379         !cpumask_test_cpu(cpu, buffer_b->cpumask))
5380         goto out;
5381 
5382     cpu_buffer_a = buffer_a->buffers[cpu];
5383     cpu_buffer_b = buffer_b->buffers[cpu];
5384 
5385     /* At least make sure the two buffers are somewhat the same */
5386     if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5387         goto out;
5388 
5389     ret = -EAGAIN;
5390 
5391     if (atomic_read(&buffer_a->record_disabled))
5392         goto out;
5393 
5394     if (atomic_read(&buffer_b->record_disabled))
5395         goto out;
5396 
5397     if (atomic_read(&cpu_buffer_a->record_disabled))
5398         goto out;
5399 
5400     if (atomic_read(&cpu_buffer_b->record_disabled))
5401         goto out;
5402 
5403     /*
5404      * We can't do a synchronize_rcu here because this
5405      * function can be called in atomic context.
5406      * Normally this will be called from the same CPU as cpu.
5407      * If not it's up to the caller to protect this.
5408      */
5409     atomic_inc(&cpu_buffer_a->record_disabled);
5410     atomic_inc(&cpu_buffer_b->record_disabled);
5411 
5412     ret = -EBUSY;
5413     if (local_read(&cpu_buffer_a->committing))
5414         goto out_dec;
5415     if (local_read(&cpu_buffer_b->committing))
5416         goto out_dec;
5417 
5418     buffer_a->buffers[cpu] = cpu_buffer_b;
5419     buffer_b->buffers[cpu] = cpu_buffer_a;
5420 
5421     cpu_buffer_b->buffer = buffer_a;
5422     cpu_buffer_a->buffer = buffer_b;
5423 
5424     ret = 0;
5425 
5426 out_dec:
5427     atomic_dec(&cpu_buffer_a->record_disabled);
5428     atomic_dec(&cpu_buffer_b->record_disabled);
5429 out:
5430     return ret;
5431 }
5432 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5433 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5434 
5435 /**
5436  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5437  * @buffer: the buffer to allocate for.
5438  * @cpu: the cpu buffer to allocate.
5439  *
5440  * This function is used in conjunction with ring_buffer_read_page.
5441  * When reading a full page from the ring buffer, these functions
5442  * can be used to speed up the process. The calling function should
5443  * allocate a few pages first with this function. Then when it
5444  * needs to get pages from the ring buffer, it passes the result
5445  * of this function into ring_buffer_read_page, which will swap
5446  * the page that was allocated, with the read page of the buffer.
5447  *
5448  * Returns:
5449  *  The page allocated, or ERR_PTR
5450  */
5451 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5452 {
5453     struct ring_buffer_per_cpu *cpu_buffer;
5454     struct buffer_data_page *bpage = NULL;
5455     unsigned long flags;
5456     struct page *page;
5457 
5458     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5459         return ERR_PTR(-ENODEV);
5460 
5461     cpu_buffer = buffer->buffers[cpu];
5462     local_irq_save(flags);
5463     arch_spin_lock(&cpu_buffer->lock);
5464 
5465     if (cpu_buffer->free_page) {
5466         bpage = cpu_buffer->free_page;
5467         cpu_buffer->free_page = NULL;
5468     }
5469 
5470     arch_spin_unlock(&cpu_buffer->lock);
5471     local_irq_restore(flags);
5472 
5473     if (bpage)
5474         goto out;
5475 
5476     page = alloc_pages_node(cpu_to_node(cpu),
5477                 GFP_KERNEL | __GFP_NORETRY, 0);
5478     if (!page)
5479         return ERR_PTR(-ENOMEM);
5480 
5481     bpage = page_address(page);
5482 
5483  out:
5484     rb_init_page(bpage);
5485 
5486     return bpage;
5487 }
5488 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5489 
5490 /**
5491  * ring_buffer_free_read_page - free an allocated read page
5492  * @buffer: the buffer the page was allocate for
5493  * @cpu: the cpu buffer the page came from
5494  * @data: the page to free
5495  *
5496  * Free a page allocated from ring_buffer_alloc_read_page.
5497  */
5498 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5499 {
5500     struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5501     struct buffer_data_page *bpage = data;
5502     struct page *page = virt_to_page(bpage);
5503     unsigned long flags;
5504 
5505     /* If the page is still in use someplace else, we can't reuse it */
5506     if (page_ref_count(page) > 1)
5507         goto out;
5508 
5509     local_irq_save(flags);
5510     arch_spin_lock(&cpu_buffer->lock);
5511 
5512     if (!cpu_buffer->free_page) {
5513         cpu_buffer->free_page = bpage;
5514         bpage = NULL;
5515     }
5516 
5517     arch_spin_unlock(&cpu_buffer->lock);
5518     local_irq_restore(flags);
5519 
5520  out:
5521     free_page((unsigned long)bpage);
5522 }
5523 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5524 
5525 /**
5526  * ring_buffer_read_page - extract a page from the ring buffer
5527  * @buffer: buffer to extract from
5528  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5529  * @len: amount to extract
5530  * @cpu: the cpu of the buffer to extract
5531  * @full: should the extraction only happen when the page is full.
5532  *
5533  * This function will pull out a page from the ring buffer and consume it.
5534  * @data_page must be the address of the variable that was returned
5535  * from ring_buffer_alloc_read_page. This is because the page might be used
5536  * to swap with a page in the ring buffer.
5537  *
5538  * for example:
5539  *  rpage = ring_buffer_alloc_read_page(buffer, cpu);
5540  *  if (IS_ERR(rpage))
5541  *      return PTR_ERR(rpage);
5542  *  ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5543  *  if (ret >= 0)
5544  *      process_page(rpage, ret);
5545  *
5546  * When @full is set, the function will not return true unless
5547  * the writer is off the reader page.
5548  *
5549  * Note: it is up to the calling functions to handle sleeps and wakeups.
5550  *  The ring buffer can be used anywhere in the kernel and can not
5551  *  blindly call wake_up. The layer that uses the ring buffer must be
5552  *  responsible for that.
5553  *
5554  * Returns:
5555  *  >=0 if data has been transferred, returns the offset of consumed data.
5556  *  <0 if no data has been transferred.
5557  */
5558 int ring_buffer_read_page(struct trace_buffer *buffer,
5559               void **data_page, size_t len, int cpu, int full)
5560 {
5561     struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5562     struct ring_buffer_event *event;
5563     struct buffer_data_page *bpage;
5564     struct buffer_page *reader;
5565     unsigned long missed_events;
5566     unsigned long flags;
5567     unsigned int commit;
5568     unsigned int read;
5569     u64 save_timestamp;
5570     int ret = -1;
5571 
5572     if (!cpumask_test_cpu(cpu, buffer->cpumask))
5573         goto out;
5574 
5575     /*
5576      * If len is not big enough to hold the page header, then
5577      * we can not copy anything.
5578      */
5579     if (len <= BUF_PAGE_HDR_SIZE)
5580         goto out;
5581 
5582     len -= BUF_PAGE_HDR_SIZE;
5583 
5584     if (!data_page)
5585         goto out;
5586 
5587     bpage = *data_page;
5588     if (!bpage)
5589         goto out;
5590 
5591     raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5592 
5593     reader = rb_get_reader_page(cpu_buffer);
5594     if (!reader)
5595         goto out_unlock;
5596 
5597     event = rb_reader_event(cpu_buffer);
5598 
5599     read = reader->read;
5600     commit = rb_page_commit(reader);
5601 
5602     /* Check if any events were dropped */
5603     missed_events = cpu_buffer->lost_events;
5604 
5605     /*
5606      * If this page has been partially read or
5607      * if len is not big enough to read the rest of the page or
5608      * a writer is still on the page, then
5609      * we must copy the data from the page to the buffer.
5610      * Otherwise, we can simply swap the page with the one passed in.
5611      */
5612     if (read || (len < (commit - read)) ||
5613         cpu_buffer->reader_page == cpu_buffer->commit_page) {
5614         struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5615         unsigned int rpos = read;
5616         unsigned int pos = 0;
5617         unsigned int size;
5618 
5619         if (full)
5620             goto out_unlock;
5621 
5622         if (len > (commit - read))
5623             len = (commit - read);
5624 
5625         /* Always keep the time extend and data together */
5626         size = rb_event_ts_length(event);
5627 
5628         if (len < size)
5629             goto out_unlock;
5630 
5631         /* save the current timestamp, since the user will need it */
5632         save_timestamp = cpu_buffer->read_stamp;
5633 
5634         /* Need to copy one event at a time */
5635         do {
5636             /* We need the size of one event, because
5637              * rb_advance_reader only advances by one event,
5638              * whereas rb_event_ts_length may include the size of
5639              * one or two events.
5640              * We have already ensured there's enough space if this
5641              * is a time extend. */
5642             size = rb_event_length(event);
5643             memcpy(bpage->data + pos, rpage->data + rpos, size);
5644 
5645             len -= size;
5646 
5647             rb_advance_reader(cpu_buffer);
5648             rpos = reader->read;
5649             pos += size;
5650 
5651             if (rpos >= commit)
5652                 break;
5653 
5654             event = rb_reader_event(cpu_buffer);
5655             /* Always keep the time extend and data together */
5656             size = rb_event_ts_length(event);
5657         } while (len >= size);
5658 
5659         /* update bpage */
5660         local_set(&bpage->commit, pos);
5661         bpage->time_stamp = save_timestamp;
5662 
5663         /* we copied everything to the beginning */
5664         read = 0;
5665     } else {
5666         /* update the entry counter */
5667         cpu_buffer->read += rb_page_entries(reader);
5668         cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5669 
5670         /* swap the pages */
5671         rb_init_page(bpage);
5672         bpage = reader->page;
5673         reader->page = *data_page;
5674         local_set(&reader->write, 0);
5675         local_set(&reader->entries, 0);
5676         reader->read = 0;
5677         *data_page = bpage;
5678 
5679         /*
5680          * Use the real_end for the data size,
5681          * This gives us a chance to store the lost events
5682          * on the page.
5683          */
5684         if (reader->real_end)
5685             local_set(&bpage->commit, reader->real_end);
5686     }
5687     ret = read;
5688 
5689     cpu_buffer->lost_events = 0;
5690 
5691     commit = local_read(&bpage->commit);
5692     /*
5693      * Set a flag in the commit field if we lost events
5694      */
5695     if (missed_events) {
5696         /* If there is room at the end of the page to save the
5697          * missed events, then record it there.
5698          */
5699         if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5700             memcpy(&bpage->data[commit], &missed_events,
5701                    sizeof(missed_events));
5702             local_add(RB_MISSED_STORED, &bpage->commit);
5703             commit += sizeof(missed_events);
5704         }
5705         local_add(RB_MISSED_EVENTS, &bpage->commit);
5706     }
5707 
5708     /*
5709      * This page may be off to user land. Zero it out here.
5710      */
5711     if (commit < BUF_PAGE_SIZE)
5712         memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5713 
5714  out_unlock:
5715     raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5716 
5717  out:
5718     return ret;
5719 }
5720 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5721 
5722 /*
5723  * We only allocate new buffers, never free them if the CPU goes down.
5724  * If we were to free the buffer, then the user would lose any trace that was in
5725  * the buffer.
5726  */
5727 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5728 {
5729     struct trace_buffer *buffer;
5730     long nr_pages_same;
5731     int cpu_i;
5732     unsigned long nr_pages;
5733 
5734     buffer = container_of(node, struct trace_buffer, node);
5735     if (cpumask_test_cpu(cpu, buffer->cpumask))
5736         return 0;
5737 
5738     nr_pages = 0;
5739     nr_pages_same = 1;
5740     /* check if all cpu sizes are same */
5741     for_each_buffer_cpu(buffer, cpu_i) {
5742         /* fill in the size from first enabled cpu */
5743         if (nr_pages == 0)
5744             nr_pages = buffer->buffers[cpu_i]->nr_pages;
5745         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5746             nr_pages_same = 0;
5747             break;
5748         }
5749     }
5750     /* allocate minimum pages, user can later expand it */
5751     if (!nr_pages_same)
5752         nr_pages = 2;
5753     buffer->buffers[cpu] =
5754         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5755     if (!buffer->buffers[cpu]) {
5756         WARN(1, "failed to allocate ring buffer on CPU %u\n",
5757              cpu);
5758         return -ENOMEM;
5759     }
5760     smp_wmb();
5761     cpumask_set_cpu(cpu, buffer->cpumask);
5762     return 0;
5763 }
5764 
5765 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5766 /*
5767  * This is a basic integrity check of the ring buffer.
5768  * Late in the boot cycle this test will run when configured in.
5769  * It will kick off a thread per CPU that will go into a loop
5770  * writing to the per cpu ring buffer various sizes of data.
5771  * Some of the data will be large items, some small.
5772  *
5773  * Another thread is created that goes into a spin, sending out
5774  * IPIs to the other CPUs to also write into the ring buffer.
5775  * this is to test the nesting ability of the buffer.
5776  *
5777  * Basic stats are recorded and reported. If something in the
5778  * ring buffer should happen that's not expected, a big warning
5779  * is displayed and all ring buffers are disabled.
5780  */
5781 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5782 
5783 struct rb_test_data {
5784     struct trace_buffer *buffer;
5785     unsigned long       events;
5786     unsigned long       bytes_written;
5787     unsigned long       bytes_alloc;
5788     unsigned long       bytes_dropped;
5789     unsigned long       events_nested;
5790     unsigned long       bytes_written_nested;
5791     unsigned long       bytes_alloc_nested;
5792     unsigned long       bytes_dropped_nested;
5793     int         min_size_nested;
5794     int         max_size_nested;
5795     int         max_size;
5796     int         min_size;
5797     int         cpu;
5798     int         cnt;
5799 };
5800 
5801 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5802 
5803 /* 1 meg per cpu */
5804 #define RB_TEST_BUFFER_SIZE 1048576
5805 
5806 static char rb_string[] __initdata =
5807     "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5808     "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5809     "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5810 
5811 static bool rb_test_started __initdata;
5812 
5813 struct rb_item {
5814     int size;
5815     char str[];
5816 };
5817 
5818 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5819 {
5820     struct ring_buffer_event *event;
5821     struct rb_item *item;
5822     bool started;
5823     int event_len;
5824     int size;
5825     int len;
5826     int cnt;
5827 
5828     /* Have nested writes different that what is written */
5829     cnt = data->cnt + (nested ? 27 : 0);
5830 
5831     /* Multiply cnt by ~e, to make some unique increment */
5832     size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5833 
5834     len = size + sizeof(struct rb_item);
5835 
5836     started = rb_test_started;
5837     /* read rb_test_started before checking buffer enabled */
5838     smp_rmb();
5839 
5840     event = ring_buffer_lock_reserve(data->buffer, len);
5841     if (!event) {
5842         /* Ignore dropped events before test starts. */
5843         if (started) {
5844             if (nested)
5845                 data->bytes_dropped += len;
5846             else
5847                 data->bytes_dropped_nested += len;
5848         }
5849         return len;
5850     }
5851 
5852     event_len = ring_buffer_event_length(event);
5853 
5854     if (RB_WARN_ON(data->buffer, event_len < len))
5855         goto out;
5856 
5857     item = ring_buffer_event_data(event);
5858     item->size = size;
5859     memcpy(item->str, rb_string, size);
5860 
5861     if (nested) {
5862         data->bytes_alloc_nested += event_len;
5863         data->bytes_written_nested += len;
5864         data->events_nested++;
5865         if (!data->min_size_nested || len < data->min_size_nested)
5866             data->min_size_nested = len;
5867         if (len > data->max_size_nested)
5868             data->max_size_nested = len;
5869     } else {
5870         data->bytes_alloc += event_len;
5871         data->bytes_written += len;
5872         data->events++;
5873         if (!data->min_size || len < data->min_size)
5874             data->max_size = len;
5875         if (len > data->max_size)
5876             data->max_size = len;
5877     }
5878 
5879  out:
5880     ring_buffer_unlock_commit(data->buffer, event);
5881 
5882     return 0;
5883 }
5884 
5885 static __init int rb_test(void *arg)
5886 {
5887     struct rb_test_data *data = arg;
5888 
5889     while (!kthread_should_stop()) {
5890         rb_write_something(data, false);
5891         data->cnt++;
5892 
5893         set_current_state(TASK_INTERRUPTIBLE);
5894         /* Now sleep between a min of 100-300us and a max of 1ms */
5895         usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5896     }
5897 
5898     return 0;
5899 }
5900 
5901 static __init void rb_ipi(void *ignore)
5902 {
5903     struct rb_test_data *data;
5904     int cpu = smp_processor_id();
5905 
5906     data = &rb_data[cpu];
5907     rb_write_something(data, true);
5908 }
5909 
5910 static __init int rb_hammer_test(void *arg)
5911 {
5912     while (!kthread_should_stop()) {
5913 
5914         /* Send an IPI to all cpus to write data! */
5915         smp_call_function(rb_ipi, NULL, 1);
5916         /* No sleep, but for non preempt, let others run */
5917         schedule();
5918     }
5919 
5920     return 0;
5921 }
5922 
5923 static __init int test_ringbuffer(void)
5924 {
5925     struct task_struct *rb_hammer;
5926     struct trace_buffer *buffer;
5927     int cpu;
5928     int ret = 0;
5929 
5930     if (security_locked_down(LOCKDOWN_TRACEFS)) {
5931         pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5932         return 0;
5933     }
5934 
5935     pr_info("Running ring buffer tests...\n");
5936 
5937     buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5938     if (WARN_ON(!buffer))
5939         return 0;
5940 
5941     /* Disable buffer so that threads can't write to it yet */
5942     ring_buffer_record_off(buffer);
5943 
5944     for_each_online_cpu(cpu) {
5945         rb_data[cpu].buffer = buffer;
5946         rb_data[cpu].cpu = cpu;
5947         rb_data[cpu].cnt = cpu;
5948         rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
5949                              cpu, "rbtester/%u");
5950         if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5951             pr_cont("FAILED\n");
5952             ret = PTR_ERR(rb_threads[cpu]);
5953             goto out_free;
5954         }
5955     }
5956 
5957     /* Now create the rb hammer! */
5958     rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5959     if (WARN_ON(IS_ERR(rb_hammer))) {
5960         pr_cont("FAILED\n");
5961         ret = PTR_ERR(rb_hammer);
5962         goto out_free;
5963     }
5964 
5965     ring_buffer_record_on(buffer);
5966     /*
5967      * Show buffer is enabled before setting rb_test_started.
5968      * Yes there's a small race window where events could be
5969      * dropped and the thread wont catch it. But when a ring
5970      * buffer gets enabled, there will always be some kind of
5971      * delay before other CPUs see it. Thus, we don't care about
5972      * those dropped events. We care about events dropped after
5973      * the threads see that the buffer is active.
5974      */
5975     smp_wmb();
5976     rb_test_started = true;
5977 
5978     set_current_state(TASK_INTERRUPTIBLE);
5979     /* Just run for 10 seconds */;
5980     schedule_timeout(10 * HZ);
5981 
5982     kthread_stop(rb_hammer);
5983 
5984  out_free:
5985     for_each_online_cpu(cpu) {
5986         if (!rb_threads[cpu])
5987             break;
5988         kthread_stop(rb_threads[cpu]);
5989     }
5990     if (ret) {
5991         ring_buffer_free(buffer);
5992         return ret;
5993     }
5994 
5995     /* Report! */
5996     pr_info("finished\n");
5997     for_each_online_cpu(cpu) {
5998         struct ring_buffer_event *event;
5999         struct rb_test_data *data = &rb_data[cpu];
6000         struct rb_item *item;
6001         unsigned long total_events;
6002         unsigned long total_dropped;
6003         unsigned long total_written;
6004         unsigned long total_alloc;
6005         unsigned long total_read = 0;
6006         unsigned long total_size = 0;
6007         unsigned long total_len = 0;
6008         unsigned long total_lost = 0;
6009         unsigned long lost;
6010         int big_event_size;
6011         int small_event_size;
6012 
6013         ret = -1;
6014 
6015         total_events = data->events + data->events_nested;
6016         total_written = data->bytes_written + data->bytes_written_nested;
6017         total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6018         total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6019 
6020         big_event_size = data->max_size + data->max_size_nested;
6021         small_event_size = data->min_size + data->min_size_nested;
6022 
6023         pr_info("CPU %d:\n", cpu);
6024         pr_info("              events:    %ld\n", total_events);
6025         pr_info("       dropped bytes:    %ld\n", total_dropped);
6026         pr_info("       alloced bytes:    %ld\n", total_alloc);
6027         pr_info("       written bytes:    %ld\n", total_written);
6028         pr_info("       biggest event:    %d\n", big_event_size);
6029         pr_info("      smallest event:    %d\n", small_event_size);
6030 
6031         if (RB_WARN_ON(buffer, total_dropped))
6032             break;
6033 
6034         ret = 0;
6035 
6036         while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6037             total_lost += lost;
6038             item = ring_buffer_event_data(event);
6039             total_len += ring_buffer_event_length(event);
6040             total_size += item->size + sizeof(struct rb_item);
6041             if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6042                 pr_info("FAILED!\n");
6043                 pr_info("buffer had: %.*s\n", item->size, item->str);
6044                 pr_info("expected:   %.*s\n", item->size, rb_string);
6045                 RB_WARN_ON(buffer, 1);
6046                 ret = -1;
6047                 break;
6048             }
6049             total_read++;
6050         }
6051         if (ret)
6052             break;
6053 
6054         ret = -1;
6055 
6056         pr_info("         read events:   %ld\n", total_read);
6057         pr_info("         lost events:   %ld\n", total_lost);
6058         pr_info("        total events:   %ld\n", total_lost + total_read);
6059         pr_info("  recorded len bytes:   %ld\n", total_len);
6060         pr_info(" recorded size bytes:   %ld\n", total_size);
6061         if (total_lost) {
6062             pr_info(" With dropped events, record len and size may not match\n"
6063                 " alloced and written from above\n");
6064         } else {
6065             if (RB_WARN_ON(buffer, total_len != total_alloc ||
6066                        total_size != total_written))
6067                 break;
6068         }
6069         if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6070             break;
6071 
6072         ret = 0;
6073     }
6074     if (!ret)
6075         pr_info("Ring buffer PASSED!\n");
6076 
6077     ring_buffer_free(buffer);
6078     return 0;
6079 }
6080 
6081 late_initcall(test_ringbuffer);
6082 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */