Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
0003  * Copyright (c) 2016 Facebook
0004  */
0005 #include <linux/kernel.h>
0006 #include <linux/types.h>
0007 #include <linux/slab.h>
0008 #include <linux/bpf.h>
0009 #include <linux/bpf_perf_event.h>
0010 #include <linux/btf.h>
0011 #include <linux/filter.h>
0012 #include <linux/uaccess.h>
0013 #include <linux/ctype.h>
0014 #include <linux/kprobes.h>
0015 #include <linux/spinlock.h>
0016 #include <linux/syscalls.h>
0017 #include <linux/error-injection.h>
0018 #include <linux/btf_ids.h>
0019 #include <linux/bpf_lsm.h>
0020 #include <linux/fprobe.h>
0021 #include <linux/bsearch.h>
0022 #include <linux/sort.h>
0023 
0024 #include <net/bpf_sk_storage.h>
0025 
0026 #include <uapi/linux/bpf.h>
0027 #include <uapi/linux/btf.h>
0028 
0029 #include <asm/tlb.h>
0030 
0031 #include "trace_probe.h"
0032 #include "trace.h"
0033 
0034 #define CREATE_TRACE_POINTS
0035 #include "bpf_trace.h"
0036 
0037 #define bpf_event_rcu_dereference(p)                    \
0038     rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
0039 
0040 #ifdef CONFIG_MODULES
0041 struct bpf_trace_module {
0042     struct module *module;
0043     struct list_head list;
0044 };
0045 
0046 static LIST_HEAD(bpf_trace_modules);
0047 static DEFINE_MUTEX(bpf_module_mutex);
0048 
0049 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
0050 {
0051     struct bpf_raw_event_map *btp, *ret = NULL;
0052     struct bpf_trace_module *btm;
0053     unsigned int i;
0054 
0055     mutex_lock(&bpf_module_mutex);
0056     list_for_each_entry(btm, &bpf_trace_modules, list) {
0057         for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
0058             btp = &btm->module->bpf_raw_events[i];
0059             if (!strcmp(btp->tp->name, name)) {
0060                 if (try_module_get(btm->module))
0061                     ret = btp;
0062                 goto out;
0063             }
0064         }
0065     }
0066 out:
0067     mutex_unlock(&bpf_module_mutex);
0068     return ret;
0069 }
0070 #else
0071 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
0072 {
0073     return NULL;
0074 }
0075 #endif /* CONFIG_MODULES */
0076 
0077 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
0078 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
0079 
0080 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
0081                   u64 flags, const struct btf **btf,
0082                   s32 *btf_id);
0083 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
0084 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
0085 
0086 /**
0087  * trace_call_bpf - invoke BPF program
0088  * @call: tracepoint event
0089  * @ctx: opaque context pointer
0090  *
0091  * kprobe handlers execute BPF programs via this helper.
0092  * Can be used from static tracepoints in the future.
0093  *
0094  * Return: BPF programs always return an integer which is interpreted by
0095  * kprobe handler as:
0096  * 0 - return from kprobe (event is filtered out)
0097  * 1 - store kprobe event into ring buffer
0098  * Other values are reserved and currently alias to 1
0099  */
0100 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
0101 {
0102     unsigned int ret;
0103 
0104     cant_sleep();
0105 
0106     if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
0107         /*
0108          * since some bpf program is already running on this cpu,
0109          * don't call into another bpf program (same or different)
0110          * and don't send kprobe event into ring-buffer,
0111          * so return zero here
0112          */
0113         ret = 0;
0114         goto out;
0115     }
0116 
0117     /*
0118      * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
0119      * to all call sites, we did a bpf_prog_array_valid() there to check
0120      * whether call->prog_array is empty or not, which is
0121      * a heuristic to speed up execution.
0122      *
0123      * If bpf_prog_array_valid() fetched prog_array was
0124      * non-NULL, we go into trace_call_bpf() and do the actual
0125      * proper rcu_dereference() under RCU lock.
0126      * If it turns out that prog_array is NULL then, we bail out.
0127      * For the opposite, if the bpf_prog_array_valid() fetched pointer
0128      * was NULL, you'll skip the prog_array with the risk of missing
0129      * out of events when it was updated in between this and the
0130      * rcu_dereference() which is accepted risk.
0131      */
0132     rcu_read_lock();
0133     ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
0134                  ctx, bpf_prog_run);
0135     rcu_read_unlock();
0136 
0137  out:
0138     __this_cpu_dec(bpf_prog_active);
0139 
0140     return ret;
0141 }
0142 
0143 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
0144 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
0145 {
0146     regs_set_return_value(regs, rc);
0147     override_function_with_return(regs);
0148     return 0;
0149 }
0150 
0151 static const struct bpf_func_proto bpf_override_return_proto = {
0152     .func       = bpf_override_return,
0153     .gpl_only   = true,
0154     .ret_type   = RET_INTEGER,
0155     .arg1_type  = ARG_PTR_TO_CTX,
0156     .arg2_type  = ARG_ANYTHING,
0157 };
0158 #endif
0159 
0160 static __always_inline int
0161 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
0162 {
0163     int ret;
0164 
0165     ret = copy_from_user_nofault(dst, unsafe_ptr, size);
0166     if (unlikely(ret < 0))
0167         memset(dst, 0, size);
0168     return ret;
0169 }
0170 
0171 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
0172        const void __user *, unsafe_ptr)
0173 {
0174     return bpf_probe_read_user_common(dst, size, unsafe_ptr);
0175 }
0176 
0177 const struct bpf_func_proto bpf_probe_read_user_proto = {
0178     .func       = bpf_probe_read_user,
0179     .gpl_only   = true,
0180     .ret_type   = RET_INTEGER,
0181     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0182     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0183     .arg3_type  = ARG_ANYTHING,
0184 };
0185 
0186 static __always_inline int
0187 bpf_probe_read_user_str_common(void *dst, u32 size,
0188                    const void __user *unsafe_ptr)
0189 {
0190     int ret;
0191 
0192     /*
0193      * NB: We rely on strncpy_from_user() not copying junk past the NUL
0194      * terminator into `dst`.
0195      *
0196      * strncpy_from_user() does long-sized strides in the fast path. If the
0197      * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
0198      * then there could be junk after the NUL in `dst`. If user takes `dst`
0199      * and keys a hash map with it, then semantically identical strings can
0200      * occupy multiple entries in the map.
0201      */
0202     ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
0203     if (unlikely(ret < 0))
0204         memset(dst, 0, size);
0205     return ret;
0206 }
0207 
0208 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
0209        const void __user *, unsafe_ptr)
0210 {
0211     return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
0212 }
0213 
0214 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
0215     .func       = bpf_probe_read_user_str,
0216     .gpl_only   = true,
0217     .ret_type   = RET_INTEGER,
0218     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0219     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0220     .arg3_type  = ARG_ANYTHING,
0221 };
0222 
0223 static __always_inline int
0224 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
0225 {
0226     int ret;
0227 
0228     ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
0229     if (unlikely(ret < 0))
0230         memset(dst, 0, size);
0231     return ret;
0232 }
0233 
0234 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
0235        const void *, unsafe_ptr)
0236 {
0237     return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
0238 }
0239 
0240 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
0241     .func       = bpf_probe_read_kernel,
0242     .gpl_only   = true,
0243     .ret_type   = RET_INTEGER,
0244     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0245     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0246     .arg3_type  = ARG_ANYTHING,
0247 };
0248 
0249 static __always_inline int
0250 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
0251 {
0252     int ret;
0253 
0254     /*
0255      * The strncpy_from_kernel_nofault() call will likely not fill the
0256      * entire buffer, but that's okay in this circumstance as we're probing
0257      * arbitrary memory anyway similar to bpf_probe_read_*() and might
0258      * as well probe the stack. Thus, memory is explicitly cleared
0259      * only in error case, so that improper users ignoring return
0260      * code altogether don't copy garbage; otherwise length of string
0261      * is returned that can be used for bpf_perf_event_output() et al.
0262      */
0263     ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
0264     if (unlikely(ret < 0))
0265         memset(dst, 0, size);
0266     return ret;
0267 }
0268 
0269 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
0270        const void *, unsafe_ptr)
0271 {
0272     return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
0273 }
0274 
0275 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
0276     .func       = bpf_probe_read_kernel_str,
0277     .gpl_only   = true,
0278     .ret_type   = RET_INTEGER,
0279     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0280     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0281     .arg3_type  = ARG_ANYTHING,
0282 };
0283 
0284 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
0285 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
0286        const void *, unsafe_ptr)
0287 {
0288     if ((unsigned long)unsafe_ptr < TASK_SIZE) {
0289         return bpf_probe_read_user_common(dst, size,
0290                 (__force void __user *)unsafe_ptr);
0291     }
0292     return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
0293 }
0294 
0295 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
0296     .func       = bpf_probe_read_compat,
0297     .gpl_only   = true,
0298     .ret_type   = RET_INTEGER,
0299     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0300     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0301     .arg3_type  = ARG_ANYTHING,
0302 };
0303 
0304 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
0305        const void *, unsafe_ptr)
0306 {
0307     if ((unsigned long)unsafe_ptr < TASK_SIZE) {
0308         return bpf_probe_read_user_str_common(dst, size,
0309                 (__force void __user *)unsafe_ptr);
0310     }
0311     return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
0312 }
0313 
0314 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
0315     .func       = bpf_probe_read_compat_str,
0316     .gpl_only   = true,
0317     .ret_type   = RET_INTEGER,
0318     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0319     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0320     .arg3_type  = ARG_ANYTHING,
0321 };
0322 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
0323 
0324 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
0325        u32, size)
0326 {
0327     /*
0328      * Ensure we're in user context which is safe for the helper to
0329      * run. This helper has no business in a kthread.
0330      *
0331      * access_ok() should prevent writing to non-user memory, but in
0332      * some situations (nommu, temporary switch, etc) access_ok() does
0333      * not provide enough validation, hence the check on KERNEL_DS.
0334      *
0335      * nmi_uaccess_okay() ensures the probe is not run in an interim
0336      * state, when the task or mm are switched. This is specifically
0337      * required to prevent the use of temporary mm.
0338      */
0339 
0340     if (unlikely(in_interrupt() ||
0341              current->flags & (PF_KTHREAD | PF_EXITING)))
0342         return -EPERM;
0343     if (unlikely(!nmi_uaccess_okay()))
0344         return -EPERM;
0345 
0346     return copy_to_user_nofault(unsafe_ptr, src, size);
0347 }
0348 
0349 static const struct bpf_func_proto bpf_probe_write_user_proto = {
0350     .func       = bpf_probe_write_user,
0351     .gpl_only   = true,
0352     .ret_type   = RET_INTEGER,
0353     .arg1_type  = ARG_ANYTHING,
0354     .arg2_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0355     .arg3_type  = ARG_CONST_SIZE,
0356 };
0357 
0358 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
0359 {
0360     if (!capable(CAP_SYS_ADMIN))
0361         return NULL;
0362 
0363     pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
0364                 current->comm, task_pid_nr(current));
0365 
0366     return &bpf_probe_write_user_proto;
0367 }
0368 
0369 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
0370 
0371 #define MAX_TRACE_PRINTK_VARARGS    3
0372 #define BPF_TRACE_PRINTK_SIZE       1024
0373 
0374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
0375        u64, arg2, u64, arg3)
0376 {
0377     u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
0378     u32 *bin_args;
0379     static char buf[BPF_TRACE_PRINTK_SIZE];
0380     unsigned long flags;
0381     int ret;
0382 
0383     ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
0384                   MAX_TRACE_PRINTK_VARARGS);
0385     if (ret < 0)
0386         return ret;
0387 
0388     raw_spin_lock_irqsave(&trace_printk_lock, flags);
0389     ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
0390 
0391     trace_bpf_trace_printk(buf);
0392     raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
0393 
0394     bpf_bprintf_cleanup();
0395 
0396     return ret;
0397 }
0398 
0399 static const struct bpf_func_proto bpf_trace_printk_proto = {
0400     .func       = bpf_trace_printk,
0401     .gpl_only   = true,
0402     .ret_type   = RET_INTEGER,
0403     .arg1_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0404     .arg2_type  = ARG_CONST_SIZE,
0405 };
0406 
0407 static void __set_printk_clr_event(void)
0408 {
0409     /*
0410      * This program might be calling bpf_trace_printk,
0411      * so enable the associated bpf_trace/bpf_trace_printk event.
0412      * Repeat this each time as it is possible a user has
0413      * disabled bpf_trace_printk events.  By loading a program
0414      * calling bpf_trace_printk() however the user has expressed
0415      * the intent to see such events.
0416      */
0417     if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
0418         pr_warn_ratelimited("could not enable bpf_trace_printk events");
0419 }
0420 
0421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
0422 {
0423     __set_printk_clr_event();
0424     return &bpf_trace_printk_proto;
0425 }
0426 
0427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data,
0428        u32, data_len)
0429 {
0430     static char buf[BPF_TRACE_PRINTK_SIZE];
0431     unsigned long flags;
0432     int ret, num_args;
0433     u32 *bin_args;
0434 
0435     if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
0436         (data_len && !data))
0437         return -EINVAL;
0438     num_args = data_len / 8;
0439 
0440     ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
0441     if (ret < 0)
0442         return ret;
0443 
0444     raw_spin_lock_irqsave(&trace_printk_lock, flags);
0445     ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
0446 
0447     trace_bpf_trace_printk(buf);
0448     raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
0449 
0450     bpf_bprintf_cleanup();
0451 
0452     return ret;
0453 }
0454 
0455 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
0456     .func       = bpf_trace_vprintk,
0457     .gpl_only   = true,
0458     .ret_type   = RET_INTEGER,
0459     .arg1_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0460     .arg2_type  = ARG_CONST_SIZE,
0461     .arg3_type  = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
0462     .arg4_type  = ARG_CONST_SIZE_OR_ZERO,
0463 };
0464 
0465 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
0466 {
0467     __set_printk_clr_event();
0468     return &bpf_trace_vprintk_proto;
0469 }
0470 
0471 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
0472        const void *, data, u32, data_len)
0473 {
0474     int err, num_args;
0475     u32 *bin_args;
0476 
0477     if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
0478         (data_len && !data))
0479         return -EINVAL;
0480     num_args = data_len / 8;
0481 
0482     err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
0483     if (err < 0)
0484         return err;
0485 
0486     seq_bprintf(m, fmt, bin_args);
0487 
0488     bpf_bprintf_cleanup();
0489 
0490     return seq_has_overflowed(m) ? -EOVERFLOW : 0;
0491 }
0492 
0493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
0494 
0495 static const struct bpf_func_proto bpf_seq_printf_proto = {
0496     .func       = bpf_seq_printf,
0497     .gpl_only   = true,
0498     .ret_type   = RET_INTEGER,
0499     .arg1_type  = ARG_PTR_TO_BTF_ID,
0500     .arg1_btf_id    = &btf_seq_file_ids[0],
0501     .arg2_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0502     .arg3_type  = ARG_CONST_SIZE,
0503     .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
0504     .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
0505 };
0506 
0507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
0508 {
0509     return seq_write(m, data, len) ? -EOVERFLOW : 0;
0510 }
0511 
0512 static const struct bpf_func_proto bpf_seq_write_proto = {
0513     .func       = bpf_seq_write,
0514     .gpl_only   = true,
0515     .ret_type   = RET_INTEGER,
0516     .arg1_type  = ARG_PTR_TO_BTF_ID,
0517     .arg1_btf_id    = &btf_seq_file_ids[0],
0518     .arg2_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0519     .arg3_type  = ARG_CONST_SIZE_OR_ZERO,
0520 };
0521 
0522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
0523        u32, btf_ptr_size, u64, flags)
0524 {
0525     const struct btf *btf;
0526     s32 btf_id;
0527     int ret;
0528 
0529     ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
0530     if (ret)
0531         return ret;
0532 
0533     return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
0534 }
0535 
0536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
0537     .func       = bpf_seq_printf_btf,
0538     .gpl_only   = true,
0539     .ret_type   = RET_INTEGER,
0540     .arg1_type  = ARG_PTR_TO_BTF_ID,
0541     .arg1_btf_id    = &btf_seq_file_ids[0],
0542     .arg2_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0543     .arg3_type  = ARG_CONST_SIZE_OR_ZERO,
0544     .arg4_type  = ARG_ANYTHING,
0545 };
0546 
0547 static __always_inline int
0548 get_map_perf_counter(struct bpf_map *map, u64 flags,
0549              u64 *value, u64 *enabled, u64 *running)
0550 {
0551     struct bpf_array *array = container_of(map, struct bpf_array, map);
0552     unsigned int cpu = smp_processor_id();
0553     u64 index = flags & BPF_F_INDEX_MASK;
0554     struct bpf_event_entry *ee;
0555 
0556     if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
0557         return -EINVAL;
0558     if (index == BPF_F_CURRENT_CPU)
0559         index = cpu;
0560     if (unlikely(index >= array->map.max_entries))
0561         return -E2BIG;
0562 
0563     ee = READ_ONCE(array->ptrs[index]);
0564     if (!ee)
0565         return -ENOENT;
0566 
0567     return perf_event_read_local(ee->event, value, enabled, running);
0568 }
0569 
0570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
0571 {
0572     u64 value = 0;
0573     int err;
0574 
0575     err = get_map_perf_counter(map, flags, &value, NULL, NULL);
0576     /*
0577      * this api is ugly since we miss [-22..-2] range of valid
0578      * counter values, but that's uapi
0579      */
0580     if (err)
0581         return err;
0582     return value;
0583 }
0584 
0585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
0586     .func       = bpf_perf_event_read,
0587     .gpl_only   = true,
0588     .ret_type   = RET_INTEGER,
0589     .arg1_type  = ARG_CONST_MAP_PTR,
0590     .arg2_type  = ARG_ANYTHING,
0591 };
0592 
0593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
0594        struct bpf_perf_event_value *, buf, u32, size)
0595 {
0596     int err = -EINVAL;
0597 
0598     if (unlikely(size != sizeof(struct bpf_perf_event_value)))
0599         goto clear;
0600     err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
0601                    &buf->running);
0602     if (unlikely(err))
0603         goto clear;
0604     return 0;
0605 clear:
0606     memset(buf, 0, size);
0607     return err;
0608 }
0609 
0610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
0611     .func       = bpf_perf_event_read_value,
0612     .gpl_only   = true,
0613     .ret_type   = RET_INTEGER,
0614     .arg1_type  = ARG_CONST_MAP_PTR,
0615     .arg2_type  = ARG_ANYTHING,
0616     .arg3_type  = ARG_PTR_TO_UNINIT_MEM,
0617     .arg4_type  = ARG_CONST_SIZE,
0618 };
0619 
0620 static __always_inline u64
0621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
0622             u64 flags, struct perf_sample_data *sd)
0623 {
0624     struct bpf_array *array = container_of(map, struct bpf_array, map);
0625     unsigned int cpu = smp_processor_id();
0626     u64 index = flags & BPF_F_INDEX_MASK;
0627     struct bpf_event_entry *ee;
0628     struct perf_event *event;
0629 
0630     if (index == BPF_F_CURRENT_CPU)
0631         index = cpu;
0632     if (unlikely(index >= array->map.max_entries))
0633         return -E2BIG;
0634 
0635     ee = READ_ONCE(array->ptrs[index]);
0636     if (!ee)
0637         return -ENOENT;
0638 
0639     event = ee->event;
0640     if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
0641              event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
0642         return -EINVAL;
0643 
0644     if (unlikely(event->oncpu != cpu))
0645         return -EOPNOTSUPP;
0646 
0647     return perf_event_output(event, sd, regs);
0648 }
0649 
0650 /*
0651  * Support executing tracepoints in normal, irq, and nmi context that each call
0652  * bpf_perf_event_output
0653  */
0654 struct bpf_trace_sample_data {
0655     struct perf_sample_data sds[3];
0656 };
0657 
0658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
0659 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
0660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
0661        u64, flags, void *, data, u64, size)
0662 {
0663     struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
0664     int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
0665     struct perf_raw_record raw = {
0666         .frag = {
0667             .size = size,
0668             .data = data,
0669         },
0670     };
0671     struct perf_sample_data *sd;
0672     int err;
0673 
0674     if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
0675         err = -EBUSY;
0676         goto out;
0677     }
0678 
0679     sd = &sds->sds[nest_level - 1];
0680 
0681     if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
0682         err = -EINVAL;
0683         goto out;
0684     }
0685 
0686     perf_sample_data_init(sd, 0, 0);
0687     sd->raw = &raw;
0688 
0689     err = __bpf_perf_event_output(regs, map, flags, sd);
0690 
0691 out:
0692     this_cpu_dec(bpf_trace_nest_level);
0693     return err;
0694 }
0695 
0696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
0697     .func       = bpf_perf_event_output,
0698     .gpl_only   = true,
0699     .ret_type   = RET_INTEGER,
0700     .arg1_type  = ARG_PTR_TO_CTX,
0701     .arg2_type  = ARG_CONST_MAP_PTR,
0702     .arg3_type  = ARG_ANYTHING,
0703     .arg4_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0704     .arg5_type  = ARG_CONST_SIZE_OR_ZERO,
0705 };
0706 
0707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
0708 struct bpf_nested_pt_regs {
0709     struct pt_regs regs[3];
0710 };
0711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
0712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
0713 
0714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
0715              void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
0716 {
0717     int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
0718     struct perf_raw_frag frag = {
0719         .copy       = ctx_copy,
0720         .size       = ctx_size,
0721         .data       = ctx,
0722     };
0723     struct perf_raw_record raw = {
0724         .frag = {
0725             {
0726                 .next   = ctx_size ? &frag : NULL,
0727             },
0728             .size   = meta_size,
0729             .data   = meta,
0730         },
0731     };
0732     struct perf_sample_data *sd;
0733     struct pt_regs *regs;
0734     u64 ret;
0735 
0736     if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
0737         ret = -EBUSY;
0738         goto out;
0739     }
0740     sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
0741     regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
0742 
0743     perf_fetch_caller_regs(regs);
0744     perf_sample_data_init(sd, 0, 0);
0745     sd->raw = &raw;
0746 
0747     ret = __bpf_perf_event_output(regs, map, flags, sd);
0748 out:
0749     this_cpu_dec(bpf_event_output_nest_level);
0750     return ret;
0751 }
0752 
0753 BPF_CALL_0(bpf_get_current_task)
0754 {
0755     return (long) current;
0756 }
0757 
0758 const struct bpf_func_proto bpf_get_current_task_proto = {
0759     .func       = bpf_get_current_task,
0760     .gpl_only   = true,
0761     .ret_type   = RET_INTEGER,
0762 };
0763 
0764 BPF_CALL_0(bpf_get_current_task_btf)
0765 {
0766     return (unsigned long) current;
0767 }
0768 
0769 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
0770     .func       = bpf_get_current_task_btf,
0771     .gpl_only   = true,
0772     .ret_type   = RET_PTR_TO_BTF_ID,
0773     .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
0774 };
0775 
0776 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
0777 {
0778     return (unsigned long) task_pt_regs(task);
0779 }
0780 
0781 BTF_ID_LIST(bpf_task_pt_regs_ids)
0782 BTF_ID(struct, pt_regs)
0783 
0784 const struct bpf_func_proto bpf_task_pt_regs_proto = {
0785     .func       = bpf_task_pt_regs,
0786     .gpl_only   = true,
0787     .arg1_type  = ARG_PTR_TO_BTF_ID,
0788     .arg1_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
0789     .ret_type   = RET_PTR_TO_BTF_ID,
0790     .ret_btf_id = &bpf_task_pt_regs_ids[0],
0791 };
0792 
0793 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
0794 {
0795     struct bpf_array *array = container_of(map, struct bpf_array, map);
0796     struct cgroup *cgrp;
0797 
0798     if (unlikely(idx >= array->map.max_entries))
0799         return -E2BIG;
0800 
0801     cgrp = READ_ONCE(array->ptrs[idx]);
0802     if (unlikely(!cgrp))
0803         return -EAGAIN;
0804 
0805     return task_under_cgroup_hierarchy(current, cgrp);
0806 }
0807 
0808 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
0809     .func           = bpf_current_task_under_cgroup,
0810     .gpl_only       = false,
0811     .ret_type       = RET_INTEGER,
0812     .arg1_type      = ARG_CONST_MAP_PTR,
0813     .arg2_type      = ARG_ANYTHING,
0814 };
0815 
0816 struct send_signal_irq_work {
0817     struct irq_work irq_work;
0818     struct task_struct *task;
0819     u32 sig;
0820     enum pid_type type;
0821 };
0822 
0823 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
0824 
0825 static void do_bpf_send_signal(struct irq_work *entry)
0826 {
0827     struct send_signal_irq_work *work;
0828 
0829     work = container_of(entry, struct send_signal_irq_work, irq_work);
0830     group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
0831 }
0832 
0833 static int bpf_send_signal_common(u32 sig, enum pid_type type)
0834 {
0835     struct send_signal_irq_work *work = NULL;
0836 
0837     /* Similar to bpf_probe_write_user, task needs to be
0838      * in a sound condition and kernel memory access be
0839      * permitted in order to send signal to the current
0840      * task.
0841      */
0842     if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
0843         return -EPERM;
0844     if (unlikely(!nmi_uaccess_okay()))
0845         return -EPERM;
0846 
0847     if (irqs_disabled()) {
0848         /* Do an early check on signal validity. Otherwise,
0849          * the error is lost in deferred irq_work.
0850          */
0851         if (unlikely(!valid_signal(sig)))
0852             return -EINVAL;
0853 
0854         work = this_cpu_ptr(&send_signal_work);
0855         if (irq_work_is_busy(&work->irq_work))
0856             return -EBUSY;
0857 
0858         /* Add the current task, which is the target of sending signal,
0859          * to the irq_work. The current task may change when queued
0860          * irq works get executed.
0861          */
0862         work->task = current;
0863         work->sig = sig;
0864         work->type = type;
0865         irq_work_queue(&work->irq_work);
0866         return 0;
0867     }
0868 
0869     return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
0870 }
0871 
0872 BPF_CALL_1(bpf_send_signal, u32, sig)
0873 {
0874     return bpf_send_signal_common(sig, PIDTYPE_TGID);
0875 }
0876 
0877 static const struct bpf_func_proto bpf_send_signal_proto = {
0878     .func       = bpf_send_signal,
0879     .gpl_only   = false,
0880     .ret_type   = RET_INTEGER,
0881     .arg1_type  = ARG_ANYTHING,
0882 };
0883 
0884 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
0885 {
0886     return bpf_send_signal_common(sig, PIDTYPE_PID);
0887 }
0888 
0889 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
0890     .func       = bpf_send_signal_thread,
0891     .gpl_only   = false,
0892     .ret_type   = RET_INTEGER,
0893     .arg1_type  = ARG_ANYTHING,
0894 };
0895 
0896 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
0897 {
0898     long len;
0899     char *p;
0900 
0901     if (!sz)
0902         return 0;
0903 
0904     p = d_path(path, buf, sz);
0905     if (IS_ERR(p)) {
0906         len = PTR_ERR(p);
0907     } else {
0908         len = buf + sz - p;
0909         memmove(buf, p, len);
0910     }
0911 
0912     return len;
0913 }
0914 
0915 BTF_SET_START(btf_allowlist_d_path)
0916 #ifdef CONFIG_SECURITY
0917 BTF_ID(func, security_file_permission)
0918 BTF_ID(func, security_inode_getattr)
0919 BTF_ID(func, security_file_open)
0920 #endif
0921 #ifdef CONFIG_SECURITY_PATH
0922 BTF_ID(func, security_path_truncate)
0923 #endif
0924 BTF_ID(func, vfs_truncate)
0925 BTF_ID(func, vfs_fallocate)
0926 BTF_ID(func, dentry_open)
0927 BTF_ID(func, vfs_getattr)
0928 BTF_ID(func, filp_close)
0929 BTF_SET_END(btf_allowlist_d_path)
0930 
0931 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
0932 {
0933     if (prog->type == BPF_PROG_TYPE_TRACING &&
0934         prog->expected_attach_type == BPF_TRACE_ITER)
0935         return true;
0936 
0937     if (prog->type == BPF_PROG_TYPE_LSM)
0938         return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
0939 
0940     return btf_id_set_contains(&btf_allowlist_d_path,
0941                    prog->aux->attach_btf_id);
0942 }
0943 
0944 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
0945 
0946 static const struct bpf_func_proto bpf_d_path_proto = {
0947     .func       = bpf_d_path,
0948     .gpl_only   = false,
0949     .ret_type   = RET_INTEGER,
0950     .arg1_type  = ARG_PTR_TO_BTF_ID,
0951     .arg1_btf_id    = &bpf_d_path_btf_ids[0],
0952     .arg2_type  = ARG_PTR_TO_MEM,
0953     .arg3_type  = ARG_CONST_SIZE_OR_ZERO,
0954     .allowed    = bpf_d_path_allowed,
0955 };
0956 
0957 #define BTF_F_ALL   (BTF_F_COMPACT  | BTF_F_NONAME | \
0958              BTF_F_PTR_RAW | BTF_F_ZERO)
0959 
0960 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
0961                   u64 flags, const struct btf **btf,
0962                   s32 *btf_id)
0963 {
0964     const struct btf_type *t;
0965 
0966     if (unlikely(flags & ~(BTF_F_ALL)))
0967         return -EINVAL;
0968 
0969     if (btf_ptr_size != sizeof(struct btf_ptr))
0970         return -EINVAL;
0971 
0972     *btf = bpf_get_btf_vmlinux();
0973 
0974     if (IS_ERR_OR_NULL(*btf))
0975         return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
0976 
0977     if (ptr->type_id > 0)
0978         *btf_id = ptr->type_id;
0979     else
0980         return -EINVAL;
0981 
0982     if (*btf_id > 0)
0983         t = btf_type_by_id(*btf, *btf_id);
0984     if (*btf_id <= 0 || !t)
0985         return -ENOENT;
0986 
0987     return 0;
0988 }
0989 
0990 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
0991        u32, btf_ptr_size, u64, flags)
0992 {
0993     const struct btf *btf;
0994     s32 btf_id;
0995     int ret;
0996 
0997     ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
0998     if (ret)
0999         return ret;
1000 
1001     return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1002                       flags);
1003 }
1004 
1005 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1006     .func       = bpf_snprintf_btf,
1007     .gpl_only   = false,
1008     .ret_type   = RET_INTEGER,
1009     .arg1_type  = ARG_PTR_TO_MEM,
1010     .arg2_type  = ARG_CONST_SIZE,
1011     .arg3_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
1012     .arg4_type  = ARG_CONST_SIZE,
1013     .arg5_type  = ARG_ANYTHING,
1014 };
1015 
1016 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1017 {
1018     /* This helper call is inlined by verifier. */
1019     return ((u64 *)ctx)[-2];
1020 }
1021 
1022 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1023     .func       = bpf_get_func_ip_tracing,
1024     .gpl_only   = true,
1025     .ret_type   = RET_INTEGER,
1026     .arg1_type  = ARG_PTR_TO_CTX,
1027 };
1028 
1029 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1030 {
1031     struct kprobe *kp = kprobe_running();
1032 
1033     return kp ? (uintptr_t)kp->addr : 0;
1034 }
1035 
1036 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1037     .func       = bpf_get_func_ip_kprobe,
1038     .gpl_only   = true,
1039     .ret_type   = RET_INTEGER,
1040     .arg1_type  = ARG_PTR_TO_CTX,
1041 };
1042 
1043 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1044 {
1045     return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1046 }
1047 
1048 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1049     .func       = bpf_get_func_ip_kprobe_multi,
1050     .gpl_only   = false,
1051     .ret_type   = RET_INTEGER,
1052     .arg1_type  = ARG_PTR_TO_CTX,
1053 };
1054 
1055 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1056 {
1057     return bpf_kprobe_multi_cookie(current->bpf_ctx);
1058 }
1059 
1060 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1061     .func       = bpf_get_attach_cookie_kprobe_multi,
1062     .gpl_only   = false,
1063     .ret_type   = RET_INTEGER,
1064     .arg1_type  = ARG_PTR_TO_CTX,
1065 };
1066 
1067 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1068 {
1069     struct bpf_trace_run_ctx *run_ctx;
1070 
1071     run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1072     return run_ctx->bpf_cookie;
1073 }
1074 
1075 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1076     .func       = bpf_get_attach_cookie_trace,
1077     .gpl_only   = false,
1078     .ret_type   = RET_INTEGER,
1079     .arg1_type  = ARG_PTR_TO_CTX,
1080 };
1081 
1082 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1083 {
1084     return ctx->event->bpf_cookie;
1085 }
1086 
1087 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1088     .func       = bpf_get_attach_cookie_pe,
1089     .gpl_only   = false,
1090     .ret_type   = RET_INTEGER,
1091     .arg1_type  = ARG_PTR_TO_CTX,
1092 };
1093 
1094 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1095 {
1096     struct bpf_trace_run_ctx *run_ctx;
1097 
1098     run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1099     return run_ctx->bpf_cookie;
1100 }
1101 
1102 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1103     .func       = bpf_get_attach_cookie_tracing,
1104     .gpl_only   = false,
1105     .ret_type   = RET_INTEGER,
1106     .arg1_type  = ARG_PTR_TO_CTX,
1107 };
1108 
1109 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1110 {
1111 #ifndef CONFIG_X86
1112     return -ENOENT;
1113 #else
1114     static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1115     u32 entry_cnt = size / br_entry_size;
1116 
1117     entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1118 
1119     if (unlikely(flags))
1120         return -EINVAL;
1121 
1122     if (!entry_cnt)
1123         return -ENOENT;
1124 
1125     return entry_cnt * br_entry_size;
1126 #endif
1127 }
1128 
1129 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1130     .func       = bpf_get_branch_snapshot,
1131     .gpl_only   = true,
1132     .ret_type   = RET_INTEGER,
1133     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
1134     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
1135 };
1136 
1137 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1138 {
1139     /* This helper call is inlined by verifier. */
1140     u64 nr_args = ((u64 *)ctx)[-1];
1141 
1142     if ((u64) n >= nr_args)
1143         return -EINVAL;
1144     *value = ((u64 *)ctx)[n];
1145     return 0;
1146 }
1147 
1148 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1149     .func       = get_func_arg,
1150     .ret_type   = RET_INTEGER,
1151     .arg1_type  = ARG_PTR_TO_CTX,
1152     .arg2_type  = ARG_ANYTHING,
1153     .arg3_type  = ARG_PTR_TO_LONG,
1154 };
1155 
1156 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1157 {
1158     /* This helper call is inlined by verifier. */
1159     u64 nr_args = ((u64 *)ctx)[-1];
1160 
1161     *value = ((u64 *)ctx)[nr_args];
1162     return 0;
1163 }
1164 
1165 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1166     .func       = get_func_ret,
1167     .ret_type   = RET_INTEGER,
1168     .arg1_type  = ARG_PTR_TO_CTX,
1169     .arg2_type  = ARG_PTR_TO_LONG,
1170 };
1171 
1172 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1173 {
1174     /* This helper call is inlined by verifier. */
1175     return ((u64 *)ctx)[-1];
1176 }
1177 
1178 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1179     .func       = get_func_arg_cnt,
1180     .ret_type   = RET_INTEGER,
1181     .arg1_type  = ARG_PTR_TO_CTX,
1182 };
1183 
1184 static const struct bpf_func_proto *
1185 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1186 {
1187     switch (func_id) {
1188     case BPF_FUNC_map_lookup_elem:
1189         return &bpf_map_lookup_elem_proto;
1190     case BPF_FUNC_map_update_elem:
1191         return &bpf_map_update_elem_proto;
1192     case BPF_FUNC_map_delete_elem:
1193         return &bpf_map_delete_elem_proto;
1194     case BPF_FUNC_map_push_elem:
1195         return &bpf_map_push_elem_proto;
1196     case BPF_FUNC_map_pop_elem:
1197         return &bpf_map_pop_elem_proto;
1198     case BPF_FUNC_map_peek_elem:
1199         return &bpf_map_peek_elem_proto;
1200     case BPF_FUNC_map_lookup_percpu_elem:
1201         return &bpf_map_lookup_percpu_elem_proto;
1202     case BPF_FUNC_ktime_get_ns:
1203         return &bpf_ktime_get_ns_proto;
1204     case BPF_FUNC_ktime_get_boot_ns:
1205         return &bpf_ktime_get_boot_ns_proto;
1206     case BPF_FUNC_tail_call:
1207         return &bpf_tail_call_proto;
1208     case BPF_FUNC_get_current_pid_tgid:
1209         return &bpf_get_current_pid_tgid_proto;
1210     case BPF_FUNC_get_current_task:
1211         return &bpf_get_current_task_proto;
1212     case BPF_FUNC_get_current_task_btf:
1213         return &bpf_get_current_task_btf_proto;
1214     case BPF_FUNC_task_pt_regs:
1215         return &bpf_task_pt_regs_proto;
1216     case BPF_FUNC_get_current_uid_gid:
1217         return &bpf_get_current_uid_gid_proto;
1218     case BPF_FUNC_get_current_comm:
1219         return &bpf_get_current_comm_proto;
1220     case BPF_FUNC_trace_printk:
1221         return bpf_get_trace_printk_proto();
1222     case BPF_FUNC_get_smp_processor_id:
1223         return &bpf_get_smp_processor_id_proto;
1224     case BPF_FUNC_get_numa_node_id:
1225         return &bpf_get_numa_node_id_proto;
1226     case BPF_FUNC_perf_event_read:
1227         return &bpf_perf_event_read_proto;
1228     case BPF_FUNC_current_task_under_cgroup:
1229         return &bpf_current_task_under_cgroup_proto;
1230     case BPF_FUNC_get_prandom_u32:
1231         return &bpf_get_prandom_u32_proto;
1232     case BPF_FUNC_probe_write_user:
1233         return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1234                NULL : bpf_get_probe_write_proto();
1235     case BPF_FUNC_probe_read_user:
1236         return &bpf_probe_read_user_proto;
1237     case BPF_FUNC_probe_read_kernel:
1238         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1239                NULL : &bpf_probe_read_kernel_proto;
1240     case BPF_FUNC_probe_read_user_str:
1241         return &bpf_probe_read_user_str_proto;
1242     case BPF_FUNC_probe_read_kernel_str:
1243         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1244                NULL : &bpf_probe_read_kernel_str_proto;
1245 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1246     case BPF_FUNC_probe_read:
1247         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1248                NULL : &bpf_probe_read_compat_proto;
1249     case BPF_FUNC_probe_read_str:
1250         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1251                NULL : &bpf_probe_read_compat_str_proto;
1252 #endif
1253 #ifdef CONFIG_CGROUPS
1254     case BPF_FUNC_get_current_cgroup_id:
1255         return &bpf_get_current_cgroup_id_proto;
1256     case BPF_FUNC_get_current_ancestor_cgroup_id:
1257         return &bpf_get_current_ancestor_cgroup_id_proto;
1258 #endif
1259     case BPF_FUNC_send_signal:
1260         return &bpf_send_signal_proto;
1261     case BPF_FUNC_send_signal_thread:
1262         return &bpf_send_signal_thread_proto;
1263     case BPF_FUNC_perf_event_read_value:
1264         return &bpf_perf_event_read_value_proto;
1265     case BPF_FUNC_get_ns_current_pid_tgid:
1266         return &bpf_get_ns_current_pid_tgid_proto;
1267     case BPF_FUNC_ringbuf_output:
1268         return &bpf_ringbuf_output_proto;
1269     case BPF_FUNC_ringbuf_reserve:
1270         return &bpf_ringbuf_reserve_proto;
1271     case BPF_FUNC_ringbuf_submit:
1272         return &bpf_ringbuf_submit_proto;
1273     case BPF_FUNC_ringbuf_discard:
1274         return &bpf_ringbuf_discard_proto;
1275     case BPF_FUNC_ringbuf_query:
1276         return &bpf_ringbuf_query_proto;
1277     case BPF_FUNC_jiffies64:
1278         return &bpf_jiffies64_proto;
1279     case BPF_FUNC_get_task_stack:
1280         return &bpf_get_task_stack_proto;
1281     case BPF_FUNC_copy_from_user:
1282         return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1283     case BPF_FUNC_copy_from_user_task:
1284         return prog->aux->sleepable ? &bpf_copy_from_user_task_proto : NULL;
1285     case BPF_FUNC_snprintf_btf:
1286         return &bpf_snprintf_btf_proto;
1287     case BPF_FUNC_per_cpu_ptr:
1288         return &bpf_per_cpu_ptr_proto;
1289     case BPF_FUNC_this_cpu_ptr:
1290         return &bpf_this_cpu_ptr_proto;
1291     case BPF_FUNC_task_storage_get:
1292         return &bpf_task_storage_get_proto;
1293     case BPF_FUNC_task_storage_delete:
1294         return &bpf_task_storage_delete_proto;
1295     case BPF_FUNC_for_each_map_elem:
1296         return &bpf_for_each_map_elem_proto;
1297     case BPF_FUNC_snprintf:
1298         return &bpf_snprintf_proto;
1299     case BPF_FUNC_get_func_ip:
1300         return &bpf_get_func_ip_proto_tracing;
1301     case BPF_FUNC_get_branch_snapshot:
1302         return &bpf_get_branch_snapshot_proto;
1303     case BPF_FUNC_find_vma:
1304         return &bpf_find_vma_proto;
1305     case BPF_FUNC_trace_vprintk:
1306         return bpf_get_trace_vprintk_proto();
1307     default:
1308         return bpf_base_func_proto(func_id);
1309     }
1310 }
1311 
1312 static const struct bpf_func_proto *
1313 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1314 {
1315     switch (func_id) {
1316     case BPF_FUNC_perf_event_output:
1317         return &bpf_perf_event_output_proto;
1318     case BPF_FUNC_get_stackid:
1319         return &bpf_get_stackid_proto;
1320     case BPF_FUNC_get_stack:
1321         return &bpf_get_stack_proto;
1322 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1323     case BPF_FUNC_override_return:
1324         return &bpf_override_return_proto;
1325 #endif
1326     case BPF_FUNC_get_func_ip:
1327         return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1328             &bpf_get_func_ip_proto_kprobe_multi :
1329             &bpf_get_func_ip_proto_kprobe;
1330     case BPF_FUNC_get_attach_cookie:
1331         return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1332             &bpf_get_attach_cookie_proto_kmulti :
1333             &bpf_get_attach_cookie_proto_trace;
1334     default:
1335         return bpf_tracing_func_proto(func_id, prog);
1336     }
1337 }
1338 
1339 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1340 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1341                     const struct bpf_prog *prog,
1342                     struct bpf_insn_access_aux *info)
1343 {
1344     if (off < 0 || off >= sizeof(struct pt_regs))
1345         return false;
1346     if (type != BPF_READ)
1347         return false;
1348     if (off % size != 0)
1349         return false;
1350     /*
1351      * Assertion for 32 bit to make sure last 8 byte access
1352      * (BPF_DW) to the last 4 byte member is disallowed.
1353      */
1354     if (off + size > sizeof(struct pt_regs))
1355         return false;
1356 
1357     return true;
1358 }
1359 
1360 const struct bpf_verifier_ops kprobe_verifier_ops = {
1361     .get_func_proto  = kprobe_prog_func_proto,
1362     .is_valid_access = kprobe_prog_is_valid_access,
1363 };
1364 
1365 const struct bpf_prog_ops kprobe_prog_ops = {
1366 };
1367 
1368 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1369        u64, flags, void *, data, u64, size)
1370 {
1371     struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1372 
1373     /*
1374      * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1375      * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1376      * from there and call the same bpf_perf_event_output() helper inline.
1377      */
1378     return ____bpf_perf_event_output(regs, map, flags, data, size);
1379 }
1380 
1381 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1382     .func       = bpf_perf_event_output_tp,
1383     .gpl_only   = true,
1384     .ret_type   = RET_INTEGER,
1385     .arg1_type  = ARG_PTR_TO_CTX,
1386     .arg2_type  = ARG_CONST_MAP_PTR,
1387     .arg3_type  = ARG_ANYTHING,
1388     .arg4_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
1389     .arg5_type  = ARG_CONST_SIZE_OR_ZERO,
1390 };
1391 
1392 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1393        u64, flags)
1394 {
1395     struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1396 
1397     /*
1398      * Same comment as in bpf_perf_event_output_tp(), only that this time
1399      * the other helper's function body cannot be inlined due to being
1400      * external, thus we need to call raw helper function.
1401      */
1402     return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1403                    flags, 0, 0);
1404 }
1405 
1406 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1407     .func       = bpf_get_stackid_tp,
1408     .gpl_only   = true,
1409     .ret_type   = RET_INTEGER,
1410     .arg1_type  = ARG_PTR_TO_CTX,
1411     .arg2_type  = ARG_CONST_MAP_PTR,
1412     .arg3_type  = ARG_ANYTHING,
1413 };
1414 
1415 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1416        u64, flags)
1417 {
1418     struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1419 
1420     return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1421                  (unsigned long) size, flags, 0);
1422 }
1423 
1424 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1425     .func       = bpf_get_stack_tp,
1426     .gpl_only   = true,
1427     .ret_type   = RET_INTEGER,
1428     .arg1_type  = ARG_PTR_TO_CTX,
1429     .arg2_type  = ARG_PTR_TO_UNINIT_MEM,
1430     .arg3_type  = ARG_CONST_SIZE_OR_ZERO,
1431     .arg4_type  = ARG_ANYTHING,
1432 };
1433 
1434 static const struct bpf_func_proto *
1435 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1436 {
1437     switch (func_id) {
1438     case BPF_FUNC_perf_event_output:
1439         return &bpf_perf_event_output_proto_tp;
1440     case BPF_FUNC_get_stackid:
1441         return &bpf_get_stackid_proto_tp;
1442     case BPF_FUNC_get_stack:
1443         return &bpf_get_stack_proto_tp;
1444     case BPF_FUNC_get_attach_cookie:
1445         return &bpf_get_attach_cookie_proto_trace;
1446     default:
1447         return bpf_tracing_func_proto(func_id, prog);
1448     }
1449 }
1450 
1451 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1452                     const struct bpf_prog *prog,
1453                     struct bpf_insn_access_aux *info)
1454 {
1455     if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1456         return false;
1457     if (type != BPF_READ)
1458         return false;
1459     if (off % size != 0)
1460         return false;
1461 
1462     BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1463     return true;
1464 }
1465 
1466 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1467     .get_func_proto  = tp_prog_func_proto,
1468     .is_valid_access = tp_prog_is_valid_access,
1469 };
1470 
1471 const struct bpf_prog_ops tracepoint_prog_ops = {
1472 };
1473 
1474 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1475        struct bpf_perf_event_value *, buf, u32, size)
1476 {
1477     int err = -EINVAL;
1478 
1479     if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1480         goto clear;
1481     err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1482                     &buf->running);
1483     if (unlikely(err))
1484         goto clear;
1485     return 0;
1486 clear:
1487     memset(buf, 0, size);
1488     return err;
1489 }
1490 
1491 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1492          .func           = bpf_perf_prog_read_value,
1493          .gpl_only       = true,
1494          .ret_type       = RET_INTEGER,
1495          .arg1_type      = ARG_PTR_TO_CTX,
1496          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1497          .arg3_type      = ARG_CONST_SIZE,
1498 };
1499 
1500 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1501        void *, buf, u32, size, u64, flags)
1502 {
1503     static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1504     struct perf_branch_stack *br_stack = ctx->data->br_stack;
1505     u32 to_copy;
1506 
1507     if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1508         return -EINVAL;
1509 
1510     if (unlikely(!br_stack))
1511         return -ENOENT;
1512 
1513     if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1514         return br_stack->nr * br_entry_size;
1515 
1516     if (!buf || (size % br_entry_size != 0))
1517         return -EINVAL;
1518 
1519     to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1520     memcpy(buf, br_stack->entries, to_copy);
1521 
1522     return to_copy;
1523 }
1524 
1525 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1526     .func           = bpf_read_branch_records,
1527     .gpl_only       = true,
1528     .ret_type       = RET_INTEGER,
1529     .arg1_type      = ARG_PTR_TO_CTX,
1530     .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1531     .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1532     .arg4_type      = ARG_ANYTHING,
1533 };
1534 
1535 static const struct bpf_func_proto *
1536 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1537 {
1538     switch (func_id) {
1539     case BPF_FUNC_perf_event_output:
1540         return &bpf_perf_event_output_proto_tp;
1541     case BPF_FUNC_get_stackid:
1542         return &bpf_get_stackid_proto_pe;
1543     case BPF_FUNC_get_stack:
1544         return &bpf_get_stack_proto_pe;
1545     case BPF_FUNC_perf_prog_read_value:
1546         return &bpf_perf_prog_read_value_proto;
1547     case BPF_FUNC_read_branch_records:
1548         return &bpf_read_branch_records_proto;
1549     case BPF_FUNC_get_attach_cookie:
1550         return &bpf_get_attach_cookie_proto_pe;
1551     default:
1552         return bpf_tracing_func_proto(func_id, prog);
1553     }
1554 }
1555 
1556 /*
1557  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1558  * to avoid potential recursive reuse issue when/if tracepoints are added
1559  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1560  *
1561  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1562  * in normal, irq, and nmi context.
1563  */
1564 struct bpf_raw_tp_regs {
1565     struct pt_regs regs[3];
1566 };
1567 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1568 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1569 static struct pt_regs *get_bpf_raw_tp_regs(void)
1570 {
1571     struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1572     int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1573 
1574     if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1575         this_cpu_dec(bpf_raw_tp_nest_level);
1576         return ERR_PTR(-EBUSY);
1577     }
1578 
1579     return &tp_regs->regs[nest_level - 1];
1580 }
1581 
1582 static void put_bpf_raw_tp_regs(void)
1583 {
1584     this_cpu_dec(bpf_raw_tp_nest_level);
1585 }
1586 
1587 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1588        struct bpf_map *, map, u64, flags, void *, data, u64, size)
1589 {
1590     struct pt_regs *regs = get_bpf_raw_tp_regs();
1591     int ret;
1592 
1593     if (IS_ERR(regs))
1594         return PTR_ERR(regs);
1595 
1596     perf_fetch_caller_regs(regs);
1597     ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1598 
1599     put_bpf_raw_tp_regs();
1600     return ret;
1601 }
1602 
1603 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1604     .func       = bpf_perf_event_output_raw_tp,
1605     .gpl_only   = true,
1606     .ret_type   = RET_INTEGER,
1607     .arg1_type  = ARG_PTR_TO_CTX,
1608     .arg2_type  = ARG_CONST_MAP_PTR,
1609     .arg3_type  = ARG_ANYTHING,
1610     .arg4_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
1611     .arg5_type  = ARG_CONST_SIZE_OR_ZERO,
1612 };
1613 
1614 extern const struct bpf_func_proto bpf_skb_output_proto;
1615 extern const struct bpf_func_proto bpf_xdp_output_proto;
1616 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1617 
1618 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1619        struct bpf_map *, map, u64, flags)
1620 {
1621     struct pt_regs *regs = get_bpf_raw_tp_regs();
1622     int ret;
1623 
1624     if (IS_ERR(regs))
1625         return PTR_ERR(regs);
1626 
1627     perf_fetch_caller_regs(regs);
1628     /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1629     ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1630                   flags, 0, 0);
1631     put_bpf_raw_tp_regs();
1632     return ret;
1633 }
1634 
1635 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1636     .func       = bpf_get_stackid_raw_tp,
1637     .gpl_only   = true,
1638     .ret_type   = RET_INTEGER,
1639     .arg1_type  = ARG_PTR_TO_CTX,
1640     .arg2_type  = ARG_CONST_MAP_PTR,
1641     .arg3_type  = ARG_ANYTHING,
1642 };
1643 
1644 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1645        void *, buf, u32, size, u64, flags)
1646 {
1647     struct pt_regs *regs = get_bpf_raw_tp_regs();
1648     int ret;
1649 
1650     if (IS_ERR(regs))
1651         return PTR_ERR(regs);
1652 
1653     perf_fetch_caller_regs(regs);
1654     ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1655                 (unsigned long) size, flags, 0);
1656     put_bpf_raw_tp_regs();
1657     return ret;
1658 }
1659 
1660 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1661     .func       = bpf_get_stack_raw_tp,
1662     .gpl_only   = true,
1663     .ret_type   = RET_INTEGER,
1664     .arg1_type  = ARG_PTR_TO_CTX,
1665     .arg2_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
1666     .arg3_type  = ARG_CONST_SIZE_OR_ZERO,
1667     .arg4_type  = ARG_ANYTHING,
1668 };
1669 
1670 static const struct bpf_func_proto *
1671 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1672 {
1673     switch (func_id) {
1674     case BPF_FUNC_perf_event_output:
1675         return &bpf_perf_event_output_proto_raw_tp;
1676     case BPF_FUNC_get_stackid:
1677         return &bpf_get_stackid_proto_raw_tp;
1678     case BPF_FUNC_get_stack:
1679         return &bpf_get_stack_proto_raw_tp;
1680     default:
1681         return bpf_tracing_func_proto(func_id, prog);
1682     }
1683 }
1684 
1685 const struct bpf_func_proto *
1686 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1687 {
1688     const struct bpf_func_proto *fn;
1689 
1690     switch (func_id) {
1691 #ifdef CONFIG_NET
1692     case BPF_FUNC_skb_output:
1693         return &bpf_skb_output_proto;
1694     case BPF_FUNC_xdp_output:
1695         return &bpf_xdp_output_proto;
1696     case BPF_FUNC_skc_to_tcp6_sock:
1697         return &bpf_skc_to_tcp6_sock_proto;
1698     case BPF_FUNC_skc_to_tcp_sock:
1699         return &bpf_skc_to_tcp_sock_proto;
1700     case BPF_FUNC_skc_to_tcp_timewait_sock:
1701         return &bpf_skc_to_tcp_timewait_sock_proto;
1702     case BPF_FUNC_skc_to_tcp_request_sock:
1703         return &bpf_skc_to_tcp_request_sock_proto;
1704     case BPF_FUNC_skc_to_udp6_sock:
1705         return &bpf_skc_to_udp6_sock_proto;
1706     case BPF_FUNC_skc_to_unix_sock:
1707         return &bpf_skc_to_unix_sock_proto;
1708     case BPF_FUNC_skc_to_mptcp_sock:
1709         return &bpf_skc_to_mptcp_sock_proto;
1710     case BPF_FUNC_sk_storage_get:
1711         return &bpf_sk_storage_get_tracing_proto;
1712     case BPF_FUNC_sk_storage_delete:
1713         return &bpf_sk_storage_delete_tracing_proto;
1714     case BPF_FUNC_sock_from_file:
1715         return &bpf_sock_from_file_proto;
1716     case BPF_FUNC_get_socket_cookie:
1717         return &bpf_get_socket_ptr_cookie_proto;
1718     case BPF_FUNC_xdp_get_buff_len:
1719         return &bpf_xdp_get_buff_len_trace_proto;
1720 #endif
1721     case BPF_FUNC_seq_printf:
1722         return prog->expected_attach_type == BPF_TRACE_ITER ?
1723                &bpf_seq_printf_proto :
1724                NULL;
1725     case BPF_FUNC_seq_write:
1726         return prog->expected_attach_type == BPF_TRACE_ITER ?
1727                &bpf_seq_write_proto :
1728                NULL;
1729     case BPF_FUNC_seq_printf_btf:
1730         return prog->expected_attach_type == BPF_TRACE_ITER ?
1731                &bpf_seq_printf_btf_proto :
1732                NULL;
1733     case BPF_FUNC_d_path:
1734         return &bpf_d_path_proto;
1735     case BPF_FUNC_get_func_arg:
1736         return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1737     case BPF_FUNC_get_func_ret:
1738         return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1739     case BPF_FUNC_get_func_arg_cnt:
1740         return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1741     case BPF_FUNC_get_attach_cookie:
1742         return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1743     default:
1744         fn = raw_tp_prog_func_proto(func_id, prog);
1745         if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1746             fn = bpf_iter_get_func_proto(func_id, prog);
1747         return fn;
1748     }
1749 }
1750 
1751 static bool raw_tp_prog_is_valid_access(int off, int size,
1752                     enum bpf_access_type type,
1753                     const struct bpf_prog *prog,
1754                     struct bpf_insn_access_aux *info)
1755 {
1756     return bpf_tracing_ctx_access(off, size, type);
1757 }
1758 
1759 static bool tracing_prog_is_valid_access(int off, int size,
1760                      enum bpf_access_type type,
1761                      const struct bpf_prog *prog,
1762                      struct bpf_insn_access_aux *info)
1763 {
1764     return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1765 }
1766 
1767 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1768                      const union bpf_attr *kattr,
1769                      union bpf_attr __user *uattr)
1770 {
1771     return -ENOTSUPP;
1772 }
1773 
1774 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1775     .get_func_proto  = raw_tp_prog_func_proto,
1776     .is_valid_access = raw_tp_prog_is_valid_access,
1777 };
1778 
1779 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1780 #ifdef CONFIG_NET
1781     .test_run = bpf_prog_test_run_raw_tp,
1782 #endif
1783 };
1784 
1785 const struct bpf_verifier_ops tracing_verifier_ops = {
1786     .get_func_proto  = tracing_prog_func_proto,
1787     .is_valid_access = tracing_prog_is_valid_access,
1788 };
1789 
1790 const struct bpf_prog_ops tracing_prog_ops = {
1791     .test_run = bpf_prog_test_run_tracing,
1792 };
1793 
1794 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1795                          enum bpf_access_type type,
1796                          const struct bpf_prog *prog,
1797                          struct bpf_insn_access_aux *info)
1798 {
1799     if (off == 0) {
1800         if (size != sizeof(u64) || type != BPF_READ)
1801             return false;
1802         info->reg_type = PTR_TO_TP_BUFFER;
1803     }
1804     return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1805 }
1806 
1807 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1808     .get_func_proto  = raw_tp_prog_func_proto,
1809     .is_valid_access = raw_tp_writable_prog_is_valid_access,
1810 };
1811 
1812 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1813 };
1814 
1815 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1816                     const struct bpf_prog *prog,
1817                     struct bpf_insn_access_aux *info)
1818 {
1819     const int size_u64 = sizeof(u64);
1820 
1821     if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1822         return false;
1823     if (type != BPF_READ)
1824         return false;
1825     if (off % size != 0) {
1826         if (sizeof(unsigned long) != 4)
1827             return false;
1828         if (size != 8)
1829             return false;
1830         if (off % size != 4)
1831             return false;
1832     }
1833 
1834     switch (off) {
1835     case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1836         bpf_ctx_record_field_size(info, size_u64);
1837         if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1838             return false;
1839         break;
1840     case bpf_ctx_range(struct bpf_perf_event_data, addr):
1841         bpf_ctx_record_field_size(info, size_u64);
1842         if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1843             return false;
1844         break;
1845     default:
1846         if (size != sizeof(long))
1847             return false;
1848     }
1849 
1850     return true;
1851 }
1852 
1853 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1854                       const struct bpf_insn *si,
1855                       struct bpf_insn *insn_buf,
1856                       struct bpf_prog *prog, u32 *target_size)
1857 {
1858     struct bpf_insn *insn = insn_buf;
1859 
1860     switch (si->off) {
1861     case offsetof(struct bpf_perf_event_data, sample_period):
1862         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1863                                data), si->dst_reg, si->src_reg,
1864                       offsetof(struct bpf_perf_event_data_kern, data));
1865         *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1866                       bpf_target_off(struct perf_sample_data, period, 8,
1867                              target_size));
1868         break;
1869     case offsetof(struct bpf_perf_event_data, addr):
1870         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1871                                data), si->dst_reg, si->src_reg,
1872                       offsetof(struct bpf_perf_event_data_kern, data));
1873         *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1874                       bpf_target_off(struct perf_sample_data, addr, 8,
1875                              target_size));
1876         break;
1877     default:
1878         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1879                                regs), si->dst_reg, si->src_reg,
1880                       offsetof(struct bpf_perf_event_data_kern, regs));
1881         *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1882                       si->off);
1883         break;
1884     }
1885 
1886     return insn - insn_buf;
1887 }
1888 
1889 const struct bpf_verifier_ops perf_event_verifier_ops = {
1890     .get_func_proto     = pe_prog_func_proto,
1891     .is_valid_access    = pe_prog_is_valid_access,
1892     .convert_ctx_access = pe_prog_convert_ctx_access,
1893 };
1894 
1895 const struct bpf_prog_ops perf_event_prog_ops = {
1896 };
1897 
1898 static DEFINE_MUTEX(bpf_event_mutex);
1899 
1900 #define BPF_TRACE_MAX_PROGS 64
1901 
1902 int perf_event_attach_bpf_prog(struct perf_event *event,
1903                    struct bpf_prog *prog,
1904                    u64 bpf_cookie)
1905 {
1906     struct bpf_prog_array *old_array;
1907     struct bpf_prog_array *new_array;
1908     int ret = -EEXIST;
1909 
1910     /*
1911      * Kprobe override only works if they are on the function entry,
1912      * and only if they are on the opt-in list.
1913      */
1914     if (prog->kprobe_override &&
1915         (!trace_kprobe_on_func_entry(event->tp_event) ||
1916          !trace_kprobe_error_injectable(event->tp_event)))
1917         return -EINVAL;
1918 
1919     mutex_lock(&bpf_event_mutex);
1920 
1921     if (event->prog)
1922         goto unlock;
1923 
1924     old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1925     if (old_array &&
1926         bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1927         ret = -E2BIG;
1928         goto unlock;
1929     }
1930 
1931     ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1932     if (ret < 0)
1933         goto unlock;
1934 
1935     /* set the new array to event->tp_event and set event->prog */
1936     event->prog = prog;
1937     event->bpf_cookie = bpf_cookie;
1938     rcu_assign_pointer(event->tp_event->prog_array, new_array);
1939     bpf_prog_array_free_sleepable(old_array);
1940 
1941 unlock:
1942     mutex_unlock(&bpf_event_mutex);
1943     return ret;
1944 }
1945 
1946 void perf_event_detach_bpf_prog(struct perf_event *event)
1947 {
1948     struct bpf_prog_array *old_array;
1949     struct bpf_prog_array *new_array;
1950     int ret;
1951 
1952     mutex_lock(&bpf_event_mutex);
1953 
1954     if (!event->prog)
1955         goto unlock;
1956 
1957     old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1958     ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1959     if (ret == -ENOENT)
1960         goto unlock;
1961     if (ret < 0) {
1962         bpf_prog_array_delete_safe(old_array, event->prog);
1963     } else {
1964         rcu_assign_pointer(event->tp_event->prog_array, new_array);
1965         bpf_prog_array_free_sleepable(old_array);
1966     }
1967 
1968     bpf_prog_put(event->prog);
1969     event->prog = NULL;
1970 
1971 unlock:
1972     mutex_unlock(&bpf_event_mutex);
1973 }
1974 
1975 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1976 {
1977     struct perf_event_query_bpf __user *uquery = info;
1978     struct perf_event_query_bpf query = {};
1979     struct bpf_prog_array *progs;
1980     u32 *ids, prog_cnt, ids_len;
1981     int ret;
1982 
1983     if (!perfmon_capable())
1984         return -EPERM;
1985     if (event->attr.type != PERF_TYPE_TRACEPOINT)
1986         return -EINVAL;
1987     if (copy_from_user(&query, uquery, sizeof(query)))
1988         return -EFAULT;
1989 
1990     ids_len = query.ids_len;
1991     if (ids_len > BPF_TRACE_MAX_PROGS)
1992         return -E2BIG;
1993     ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1994     if (!ids)
1995         return -ENOMEM;
1996     /*
1997      * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1998      * is required when user only wants to check for uquery->prog_cnt.
1999      * There is no need to check for it since the case is handled
2000      * gracefully in bpf_prog_array_copy_info.
2001      */
2002 
2003     mutex_lock(&bpf_event_mutex);
2004     progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2005     ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2006     mutex_unlock(&bpf_event_mutex);
2007 
2008     if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2009         copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2010         ret = -EFAULT;
2011 
2012     kfree(ids);
2013     return ret;
2014 }
2015 
2016 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2017 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2018 
2019 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2020 {
2021     struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2022 
2023     for (; btp < __stop__bpf_raw_tp; btp++) {
2024         if (!strcmp(btp->tp->name, name))
2025             return btp;
2026     }
2027 
2028     return bpf_get_raw_tracepoint_module(name);
2029 }
2030 
2031 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2032 {
2033     struct module *mod;
2034 
2035     preempt_disable();
2036     mod = __module_address((unsigned long)btp);
2037     module_put(mod);
2038     preempt_enable();
2039 }
2040 
2041 static __always_inline
2042 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2043 {
2044     cant_sleep();
2045     rcu_read_lock();
2046     (void) bpf_prog_run(prog, args);
2047     rcu_read_unlock();
2048 }
2049 
2050 #define UNPACK(...)         __VA_ARGS__
2051 #define REPEAT_1(FN, DL, X, ...)    FN(X)
2052 #define REPEAT_2(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2053 #define REPEAT_3(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2054 #define REPEAT_4(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2055 #define REPEAT_5(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2056 #define REPEAT_6(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2057 #define REPEAT_7(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2058 #define REPEAT_8(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2059 #define REPEAT_9(FN, DL, X, ...)    FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2060 #define REPEAT_10(FN, DL, X, ...)   FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2061 #define REPEAT_11(FN, DL, X, ...)   FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2062 #define REPEAT_12(FN, DL, X, ...)   FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2063 #define REPEAT(X, FN, DL, ...)      REPEAT_##X(FN, DL, __VA_ARGS__)
2064 
2065 #define SARG(X)     u64 arg##X
2066 #define COPY(X)     args[X] = arg##X
2067 
2068 #define __DL_COM    (,)
2069 #define __DL_SEM    (;)
2070 
2071 #define __SEQ_0_11  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2072 
2073 #define BPF_TRACE_DEFN_x(x)                     \
2074     void bpf_trace_run##x(struct bpf_prog *prog,            \
2075                   REPEAT(x, SARG, __DL_COM, __SEQ_0_11))    \
2076     {                               \
2077         u64 args[x];                        \
2078         REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);          \
2079         __bpf_trace_run(prog, args);                \
2080     }                               \
2081     EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2082 BPF_TRACE_DEFN_x(1);
2083 BPF_TRACE_DEFN_x(2);
2084 BPF_TRACE_DEFN_x(3);
2085 BPF_TRACE_DEFN_x(4);
2086 BPF_TRACE_DEFN_x(5);
2087 BPF_TRACE_DEFN_x(6);
2088 BPF_TRACE_DEFN_x(7);
2089 BPF_TRACE_DEFN_x(8);
2090 BPF_TRACE_DEFN_x(9);
2091 BPF_TRACE_DEFN_x(10);
2092 BPF_TRACE_DEFN_x(11);
2093 BPF_TRACE_DEFN_x(12);
2094 
2095 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2096 {
2097     struct tracepoint *tp = btp->tp;
2098 
2099     /*
2100      * check that program doesn't access arguments beyond what's
2101      * available in this tracepoint
2102      */
2103     if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2104         return -EINVAL;
2105 
2106     if (prog->aux->max_tp_access > btp->writable_size)
2107         return -EINVAL;
2108 
2109     return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2110                            prog);
2111 }
2112 
2113 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2114 {
2115     return __bpf_probe_register(btp, prog);
2116 }
2117 
2118 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2119 {
2120     return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2121 }
2122 
2123 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2124                 u32 *fd_type, const char **buf,
2125                 u64 *probe_offset, u64 *probe_addr)
2126 {
2127     bool is_tracepoint, is_syscall_tp;
2128     struct bpf_prog *prog;
2129     int flags, err = 0;
2130 
2131     prog = event->prog;
2132     if (!prog)
2133         return -ENOENT;
2134 
2135     /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2136     if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2137         return -EOPNOTSUPP;
2138 
2139     *prog_id = prog->aux->id;
2140     flags = event->tp_event->flags;
2141     is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2142     is_syscall_tp = is_syscall_trace_event(event->tp_event);
2143 
2144     if (is_tracepoint || is_syscall_tp) {
2145         *buf = is_tracepoint ? event->tp_event->tp->name
2146                      : event->tp_event->name;
2147         *fd_type = BPF_FD_TYPE_TRACEPOINT;
2148         *probe_offset = 0x0;
2149         *probe_addr = 0x0;
2150     } else {
2151         /* kprobe/uprobe */
2152         err = -EOPNOTSUPP;
2153 #ifdef CONFIG_KPROBE_EVENTS
2154         if (flags & TRACE_EVENT_FL_KPROBE)
2155             err = bpf_get_kprobe_info(event, fd_type, buf,
2156                           probe_offset, probe_addr,
2157                           event->attr.type == PERF_TYPE_TRACEPOINT);
2158 #endif
2159 #ifdef CONFIG_UPROBE_EVENTS
2160         if (flags & TRACE_EVENT_FL_UPROBE)
2161             err = bpf_get_uprobe_info(event, fd_type, buf,
2162                           probe_offset,
2163                           event->attr.type == PERF_TYPE_TRACEPOINT);
2164 #endif
2165     }
2166 
2167     return err;
2168 }
2169 
2170 static int __init send_signal_irq_work_init(void)
2171 {
2172     int cpu;
2173     struct send_signal_irq_work *work;
2174 
2175     for_each_possible_cpu(cpu) {
2176         work = per_cpu_ptr(&send_signal_work, cpu);
2177         init_irq_work(&work->irq_work, do_bpf_send_signal);
2178     }
2179     return 0;
2180 }
2181 
2182 subsys_initcall(send_signal_irq_work_init);
2183 
2184 #ifdef CONFIG_MODULES
2185 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2186                 void *module)
2187 {
2188     struct bpf_trace_module *btm, *tmp;
2189     struct module *mod = module;
2190     int ret = 0;
2191 
2192     if (mod->num_bpf_raw_events == 0 ||
2193         (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2194         goto out;
2195 
2196     mutex_lock(&bpf_module_mutex);
2197 
2198     switch (op) {
2199     case MODULE_STATE_COMING:
2200         btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2201         if (btm) {
2202             btm->module = module;
2203             list_add(&btm->list, &bpf_trace_modules);
2204         } else {
2205             ret = -ENOMEM;
2206         }
2207         break;
2208     case MODULE_STATE_GOING:
2209         list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2210             if (btm->module == module) {
2211                 list_del(&btm->list);
2212                 kfree(btm);
2213                 break;
2214             }
2215         }
2216         break;
2217     }
2218 
2219     mutex_unlock(&bpf_module_mutex);
2220 
2221 out:
2222     return notifier_from_errno(ret);
2223 }
2224 
2225 static struct notifier_block bpf_module_nb = {
2226     .notifier_call = bpf_event_notify,
2227 };
2228 
2229 static int __init bpf_event_init(void)
2230 {
2231     register_module_notifier(&bpf_module_nb);
2232     return 0;
2233 }
2234 
2235 fs_initcall(bpf_event_init);
2236 #endif /* CONFIG_MODULES */
2237 
2238 #ifdef CONFIG_FPROBE
2239 struct bpf_kprobe_multi_link {
2240     struct bpf_link link;
2241     struct fprobe fp;
2242     unsigned long *addrs;
2243     u64 *cookies;
2244     u32 cnt;
2245 };
2246 
2247 struct bpf_kprobe_multi_run_ctx {
2248     struct bpf_run_ctx run_ctx;
2249     struct bpf_kprobe_multi_link *link;
2250     unsigned long entry_ip;
2251 };
2252 
2253 struct user_syms {
2254     const char **syms;
2255     char *buf;
2256 };
2257 
2258 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2259 {
2260     unsigned long __user usymbol;
2261     const char **syms = NULL;
2262     char *buf = NULL, *p;
2263     int err = -ENOMEM;
2264     unsigned int i;
2265 
2266     syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2267     if (!syms)
2268         goto error;
2269 
2270     buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2271     if (!buf)
2272         goto error;
2273 
2274     for (p = buf, i = 0; i < cnt; i++) {
2275         if (__get_user(usymbol, usyms + i)) {
2276             err = -EFAULT;
2277             goto error;
2278         }
2279         err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2280         if (err == KSYM_NAME_LEN)
2281             err = -E2BIG;
2282         if (err < 0)
2283             goto error;
2284         syms[i] = p;
2285         p += err + 1;
2286     }
2287 
2288     us->syms = syms;
2289     us->buf = buf;
2290     return 0;
2291 
2292 error:
2293     if (err) {
2294         kvfree(syms);
2295         kvfree(buf);
2296     }
2297     return err;
2298 }
2299 
2300 static void free_user_syms(struct user_syms *us)
2301 {
2302     kvfree(us->syms);
2303     kvfree(us->buf);
2304 }
2305 
2306 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2307 {
2308     struct bpf_kprobe_multi_link *kmulti_link;
2309 
2310     kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2311     unregister_fprobe(&kmulti_link->fp);
2312 }
2313 
2314 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2315 {
2316     struct bpf_kprobe_multi_link *kmulti_link;
2317 
2318     kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2319     kvfree(kmulti_link->addrs);
2320     kvfree(kmulti_link->cookies);
2321     kfree(kmulti_link);
2322 }
2323 
2324 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2325     .release = bpf_kprobe_multi_link_release,
2326     .dealloc = bpf_kprobe_multi_link_dealloc,
2327 };
2328 
2329 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2330 {
2331     const struct bpf_kprobe_multi_link *link = priv;
2332     unsigned long *addr_a = a, *addr_b = b;
2333     u64 *cookie_a, *cookie_b;
2334 
2335     cookie_a = link->cookies + (addr_a - link->addrs);
2336     cookie_b = link->cookies + (addr_b - link->addrs);
2337 
2338     /* swap addr_a/addr_b and cookie_a/cookie_b values */
2339     swap(*addr_a, *addr_b);
2340     swap(*cookie_a, *cookie_b);
2341 }
2342 
2343 static int __bpf_kprobe_multi_cookie_cmp(const void *a, const void *b)
2344 {
2345     const unsigned long *addr_a = a, *addr_b = b;
2346 
2347     if (*addr_a == *addr_b)
2348         return 0;
2349     return *addr_a < *addr_b ? -1 : 1;
2350 }
2351 
2352 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2353 {
2354     return __bpf_kprobe_multi_cookie_cmp(a, b);
2355 }
2356 
2357 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2358 {
2359     struct bpf_kprobe_multi_run_ctx *run_ctx;
2360     struct bpf_kprobe_multi_link *link;
2361     u64 *cookie, entry_ip;
2362     unsigned long *addr;
2363 
2364     if (WARN_ON_ONCE(!ctx))
2365         return 0;
2366     run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2367     link = run_ctx->link;
2368     if (!link->cookies)
2369         return 0;
2370     entry_ip = run_ctx->entry_ip;
2371     addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2372                __bpf_kprobe_multi_cookie_cmp);
2373     if (!addr)
2374         return 0;
2375     cookie = link->cookies + (addr - link->addrs);
2376     return *cookie;
2377 }
2378 
2379 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2380 {
2381     struct bpf_kprobe_multi_run_ctx *run_ctx;
2382 
2383     run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2384     return run_ctx->entry_ip;
2385 }
2386 
2387 static int
2388 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2389                unsigned long entry_ip, struct pt_regs *regs)
2390 {
2391     struct bpf_kprobe_multi_run_ctx run_ctx = {
2392         .link = link,
2393         .entry_ip = entry_ip,
2394     };
2395     struct bpf_run_ctx *old_run_ctx;
2396     int err;
2397 
2398     if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2399         err = 0;
2400         goto out;
2401     }
2402 
2403     migrate_disable();
2404     rcu_read_lock();
2405     old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2406     err = bpf_prog_run(link->link.prog, regs);
2407     bpf_reset_run_ctx(old_run_ctx);
2408     rcu_read_unlock();
2409     migrate_enable();
2410 
2411  out:
2412     __this_cpu_dec(bpf_prog_active);
2413     return err;
2414 }
2415 
2416 static void
2417 kprobe_multi_link_handler(struct fprobe *fp, unsigned long entry_ip,
2418               struct pt_regs *regs)
2419 {
2420     struct bpf_kprobe_multi_link *link;
2421 
2422     link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2423     kprobe_multi_link_prog_run(link, entry_ip, regs);
2424 }
2425 
2426 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2427 {
2428     const char **str_a = (const char **) a;
2429     const char **str_b = (const char **) b;
2430 
2431     return strcmp(*str_a, *str_b);
2432 }
2433 
2434 struct multi_symbols_sort {
2435     const char **funcs;
2436     u64 *cookies;
2437 };
2438 
2439 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2440 {
2441     const struct multi_symbols_sort *data = priv;
2442     const char **name_a = a, **name_b = b;
2443 
2444     swap(*name_a, *name_b);
2445 
2446     /* If defined, swap also related cookies. */
2447     if (data->cookies) {
2448         u64 *cookie_a, *cookie_b;
2449 
2450         cookie_a = data->cookies + (name_a - data->funcs);
2451         cookie_b = data->cookies + (name_b - data->funcs);
2452         swap(*cookie_a, *cookie_b);
2453     }
2454 }
2455 
2456 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2457 {
2458     struct bpf_kprobe_multi_link *link = NULL;
2459     struct bpf_link_primer link_primer;
2460     void __user *ucookies;
2461     unsigned long *addrs;
2462     u32 flags, cnt, size;
2463     void __user *uaddrs;
2464     u64 *cookies = NULL;
2465     void __user *usyms;
2466     int err;
2467 
2468     /* no support for 32bit archs yet */
2469     if (sizeof(u64) != sizeof(void *))
2470         return -EOPNOTSUPP;
2471 
2472     if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2473         return -EINVAL;
2474 
2475     flags = attr->link_create.kprobe_multi.flags;
2476     if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2477         return -EINVAL;
2478 
2479     uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2480     usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2481     if (!!uaddrs == !!usyms)
2482         return -EINVAL;
2483 
2484     cnt = attr->link_create.kprobe_multi.cnt;
2485     if (!cnt)
2486         return -EINVAL;
2487 
2488     size = cnt * sizeof(*addrs);
2489     addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2490     if (!addrs)
2491         return -ENOMEM;
2492 
2493     ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2494     if (ucookies) {
2495         cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2496         if (!cookies) {
2497             err = -ENOMEM;
2498             goto error;
2499         }
2500         if (copy_from_user(cookies, ucookies, size)) {
2501             err = -EFAULT;
2502             goto error;
2503         }
2504     }
2505 
2506     if (uaddrs) {
2507         if (copy_from_user(addrs, uaddrs, size)) {
2508             err = -EFAULT;
2509             goto error;
2510         }
2511     } else {
2512         struct multi_symbols_sort data = {
2513             .cookies = cookies,
2514         };
2515         struct user_syms us;
2516 
2517         err = copy_user_syms(&us, usyms, cnt);
2518         if (err)
2519             goto error;
2520 
2521         if (cookies)
2522             data.funcs = us.syms;
2523 
2524         sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2525                symbols_swap_r, &data);
2526 
2527         err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2528         free_user_syms(&us);
2529         if (err)
2530             goto error;
2531     }
2532 
2533     link = kzalloc(sizeof(*link), GFP_KERNEL);
2534     if (!link) {
2535         err = -ENOMEM;
2536         goto error;
2537     }
2538 
2539     bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2540               &bpf_kprobe_multi_link_lops, prog);
2541 
2542     err = bpf_link_prime(&link->link, &link_primer);
2543     if (err)
2544         goto error;
2545 
2546     if (flags & BPF_F_KPROBE_MULTI_RETURN)
2547         link->fp.exit_handler = kprobe_multi_link_handler;
2548     else
2549         link->fp.entry_handler = kprobe_multi_link_handler;
2550 
2551     link->addrs = addrs;
2552     link->cookies = cookies;
2553     link->cnt = cnt;
2554 
2555     if (cookies) {
2556         /*
2557          * Sorting addresses will trigger sorting cookies as well
2558          * (check bpf_kprobe_multi_cookie_swap). This way we can
2559          * find cookie based on the address in bpf_get_attach_cookie
2560          * helper.
2561          */
2562         sort_r(addrs, cnt, sizeof(*addrs),
2563                bpf_kprobe_multi_cookie_cmp,
2564                bpf_kprobe_multi_cookie_swap,
2565                link);
2566     }
2567 
2568     err = register_fprobe_ips(&link->fp, addrs, cnt);
2569     if (err) {
2570         bpf_link_cleanup(&link_primer);
2571         return err;
2572     }
2573 
2574     return bpf_link_settle(&link_primer);
2575 
2576 error:
2577     kfree(link);
2578     kvfree(addrs);
2579     kvfree(cookies);
2580     return err;
2581 }
2582 #else /* !CONFIG_FPROBE */
2583 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2584 {
2585     return -EOPNOTSUPP;
2586 }
2587 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2588 {
2589     return 0;
2590 }
2591 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2592 {
2593     return 0;
2594 }
2595 #endif