Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  Kernel internal timers
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  *
0007  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
0008  *
0009  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
0010  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
0011  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
0012  *              serialize accesses to xtime/lost_ticks).
0013  *                              Copyright (C) 1998  Andrea Arcangeli
0014  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
0015  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
0016  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
0017  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
0018  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
0019  */
0020 
0021 #include <linux/kernel_stat.h>
0022 #include <linux/export.h>
0023 #include <linux/interrupt.h>
0024 #include <linux/percpu.h>
0025 #include <linux/init.h>
0026 #include <linux/mm.h>
0027 #include <linux/swap.h>
0028 #include <linux/pid_namespace.h>
0029 #include <linux/notifier.h>
0030 #include <linux/thread_info.h>
0031 #include <linux/time.h>
0032 #include <linux/jiffies.h>
0033 #include <linux/posix-timers.h>
0034 #include <linux/cpu.h>
0035 #include <linux/syscalls.h>
0036 #include <linux/delay.h>
0037 #include <linux/tick.h>
0038 #include <linux/kallsyms.h>
0039 #include <linux/irq_work.h>
0040 #include <linux/sched/signal.h>
0041 #include <linux/sched/sysctl.h>
0042 #include <linux/sched/nohz.h>
0043 #include <linux/sched/debug.h>
0044 #include <linux/slab.h>
0045 #include <linux/compat.h>
0046 #include <linux/random.h>
0047 #include <linux/sysctl.h>
0048 
0049 #include <linux/uaccess.h>
0050 #include <asm/unistd.h>
0051 #include <asm/div64.h>
0052 #include <asm/timex.h>
0053 #include <asm/io.h>
0054 
0055 #include "tick-internal.h"
0056 
0057 #define CREATE_TRACE_POINTS
0058 #include <trace/events/timer.h>
0059 
0060 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
0061 
0062 EXPORT_SYMBOL(jiffies_64);
0063 
0064 /*
0065  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
0066  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
0067  * level has a different granularity.
0068  *
0069  * The level granularity is:        LVL_CLK_DIV ^ lvl
0070  * The level clock frequency is:    HZ / (LVL_CLK_DIV ^ level)
0071  *
0072  * The array level of a newly armed timer depends on the relative expiry
0073  * time. The farther the expiry time is away the higher the array level and
0074  * therefor the granularity becomes.
0075  *
0076  * Contrary to the original timer wheel implementation, which aims for 'exact'
0077  * expiry of the timers, this implementation removes the need for recascading
0078  * the timers into the lower array levels. The previous 'classic' timer wheel
0079  * implementation of the kernel already violated the 'exact' expiry by adding
0080  * slack to the expiry time to provide batched expiration. The granularity
0081  * levels provide implicit batching.
0082  *
0083  * This is an optimization of the original timer wheel implementation for the
0084  * majority of the timer wheel use cases: timeouts. The vast majority of
0085  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
0086  * the timeout expires it indicates that normal operation is disturbed, so it
0087  * does not matter much whether the timeout comes with a slight delay.
0088  *
0089  * The only exception to this are networking timers with a small expiry
0090  * time. They rely on the granularity. Those fit into the first wheel level,
0091  * which has HZ granularity.
0092  *
0093  * We don't have cascading anymore. timers with a expiry time above the
0094  * capacity of the last wheel level are force expired at the maximum timeout
0095  * value of the last wheel level. From data sampling we know that the maximum
0096  * value observed is 5 days (network connection tracking), so this should not
0097  * be an issue.
0098  *
0099  * The currently chosen array constants values are a good compromise between
0100  * array size and granularity.
0101  *
0102  * This results in the following granularity and range levels:
0103  *
0104  * HZ 1000 steps
0105  * Level Offset  Granularity            Range
0106  *  0      0         1 ms                0 ms -         63 ms
0107  *  1     64         8 ms               64 ms -        511 ms
0108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
0109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
0110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
0111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
0112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
0113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
0114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
0115  *
0116  * HZ  300
0117  * Level Offset  Granularity            Range
0118  *  0      0         3 ms                0 ms -        210 ms
0119  *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
0120  *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
0121  *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
0122  *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
0123  *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
0124  *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
0125  *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
0126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
0127  *
0128  * HZ  250
0129  * Level Offset  Granularity            Range
0130  *  0      0         4 ms                0 ms -        255 ms
0131  *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
0132  *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
0133  *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
0134  *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
0135  *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
0136  *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
0137  *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
0138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
0139  *
0140  * HZ  100
0141  * Level Offset  Granularity            Range
0142  *  0      0         10 ms               0 ms -        630 ms
0143  *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
0144  *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
0145  *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
0146  *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
0147  *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
0148  *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
0149  *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
0150  */
0151 
0152 /* Clock divisor for the next level */
0153 #define LVL_CLK_SHIFT   3
0154 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
0155 #define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
0156 #define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
0157 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
0158 
0159 /*
0160  * The time start value for each level to select the bucket at enqueue
0161  * time. We start from the last possible delta of the previous level
0162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
0163  */
0164 #define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
0165 
0166 /* Size of each clock level */
0167 #define LVL_BITS    6
0168 #define LVL_SIZE    (1UL << LVL_BITS)
0169 #define LVL_MASK    (LVL_SIZE - 1)
0170 #define LVL_OFFS(n) ((n) * LVL_SIZE)
0171 
0172 /* Level depth */
0173 #if HZ > 100
0174 # define LVL_DEPTH  9
0175 # else
0176 # define LVL_DEPTH  8
0177 #endif
0178 
0179 /* The cutoff (max. capacity of the wheel) */
0180 #define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
0181 #define WHEEL_TIMEOUT_MAX   (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
0182 
0183 /*
0184  * The resulting wheel size. If NOHZ is configured we allocate two
0185  * wheels so we have a separate storage for the deferrable timers.
0186  */
0187 #define WHEEL_SIZE  (LVL_SIZE * LVL_DEPTH)
0188 
0189 #ifdef CONFIG_NO_HZ_COMMON
0190 # define NR_BASES   2
0191 # define BASE_STD   0
0192 # define BASE_DEF   1
0193 #else
0194 # define NR_BASES   1
0195 # define BASE_STD   0
0196 # define BASE_DEF   0
0197 #endif
0198 
0199 struct timer_base {
0200     raw_spinlock_t      lock;
0201     struct timer_list   *running_timer;
0202 #ifdef CONFIG_PREEMPT_RT
0203     spinlock_t      expiry_lock;
0204     atomic_t        timer_waiters;
0205 #endif
0206     unsigned long       clk;
0207     unsigned long       next_expiry;
0208     unsigned int        cpu;
0209     bool            next_expiry_recalc;
0210     bool            is_idle;
0211     bool            timers_pending;
0212     DECLARE_BITMAP(pending_map, WHEEL_SIZE);
0213     struct hlist_head   vectors[WHEEL_SIZE];
0214 } ____cacheline_aligned;
0215 
0216 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
0217 
0218 #ifdef CONFIG_NO_HZ_COMMON
0219 
0220 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
0221 static DEFINE_MUTEX(timer_keys_mutex);
0222 
0223 static void timer_update_keys(struct work_struct *work);
0224 static DECLARE_WORK(timer_update_work, timer_update_keys);
0225 
0226 #ifdef CONFIG_SMP
0227 static unsigned int sysctl_timer_migration = 1;
0228 
0229 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
0230 
0231 static void timers_update_migration(void)
0232 {
0233     if (sysctl_timer_migration && tick_nohz_active)
0234         static_branch_enable(&timers_migration_enabled);
0235     else
0236         static_branch_disable(&timers_migration_enabled);
0237 }
0238 
0239 #ifdef CONFIG_SYSCTL
0240 static int timer_migration_handler(struct ctl_table *table, int write,
0241                 void *buffer, size_t *lenp, loff_t *ppos)
0242 {
0243     int ret;
0244 
0245     mutex_lock(&timer_keys_mutex);
0246     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0247     if (!ret && write)
0248         timers_update_migration();
0249     mutex_unlock(&timer_keys_mutex);
0250     return ret;
0251 }
0252 
0253 static struct ctl_table timer_sysctl[] = {
0254     {
0255         .procname   = "timer_migration",
0256         .data       = &sysctl_timer_migration,
0257         .maxlen     = sizeof(unsigned int),
0258         .mode       = 0644,
0259         .proc_handler   = timer_migration_handler,
0260         .extra1     = SYSCTL_ZERO,
0261         .extra2     = SYSCTL_ONE,
0262     },
0263     {}
0264 };
0265 
0266 static int __init timer_sysctl_init(void)
0267 {
0268     register_sysctl("kernel", timer_sysctl);
0269     return 0;
0270 }
0271 device_initcall(timer_sysctl_init);
0272 #endif /* CONFIG_SYSCTL */
0273 #else /* CONFIG_SMP */
0274 static inline void timers_update_migration(void) { }
0275 #endif /* !CONFIG_SMP */
0276 
0277 static void timer_update_keys(struct work_struct *work)
0278 {
0279     mutex_lock(&timer_keys_mutex);
0280     timers_update_migration();
0281     static_branch_enable(&timers_nohz_active);
0282     mutex_unlock(&timer_keys_mutex);
0283 }
0284 
0285 void timers_update_nohz(void)
0286 {
0287     schedule_work(&timer_update_work);
0288 }
0289 
0290 static inline bool is_timers_nohz_active(void)
0291 {
0292     return static_branch_unlikely(&timers_nohz_active);
0293 }
0294 #else
0295 static inline bool is_timers_nohz_active(void) { return false; }
0296 #endif /* NO_HZ_COMMON */
0297 
0298 static unsigned long round_jiffies_common(unsigned long j, int cpu,
0299         bool force_up)
0300 {
0301     int rem;
0302     unsigned long original = j;
0303 
0304     /*
0305      * We don't want all cpus firing their timers at once hitting the
0306      * same lock or cachelines, so we skew each extra cpu with an extra
0307      * 3 jiffies. This 3 jiffies came originally from the mm/ code which
0308      * already did this.
0309      * The skew is done by adding 3*cpunr, then round, then subtract this
0310      * extra offset again.
0311      */
0312     j += cpu * 3;
0313 
0314     rem = j % HZ;
0315 
0316     /*
0317      * If the target jiffie is just after a whole second (which can happen
0318      * due to delays of the timer irq, long irq off times etc etc) then
0319      * we should round down to the whole second, not up. Use 1/4th second
0320      * as cutoff for this rounding as an extreme upper bound for this.
0321      * But never round down if @force_up is set.
0322      */
0323     if (rem < HZ/4 && !force_up) /* round down */
0324         j = j - rem;
0325     else /* round up */
0326         j = j - rem + HZ;
0327 
0328     /* now that we have rounded, subtract the extra skew again */
0329     j -= cpu * 3;
0330 
0331     /*
0332      * Make sure j is still in the future. Otherwise return the
0333      * unmodified value.
0334      */
0335     return time_is_after_jiffies(j) ? j : original;
0336 }
0337 
0338 /**
0339  * __round_jiffies - function to round jiffies to a full second
0340  * @j: the time in (absolute) jiffies that should be rounded
0341  * @cpu: the processor number on which the timeout will happen
0342  *
0343  * __round_jiffies() rounds an absolute time in the future (in jiffies)
0344  * up or down to (approximately) full seconds. This is useful for timers
0345  * for which the exact time they fire does not matter too much, as long as
0346  * they fire approximately every X seconds.
0347  *
0348  * By rounding these timers to whole seconds, all such timers will fire
0349  * at the same time, rather than at various times spread out. The goal
0350  * of this is to have the CPU wake up less, which saves power.
0351  *
0352  * The exact rounding is skewed for each processor to avoid all
0353  * processors firing at the exact same time, which could lead
0354  * to lock contention or spurious cache line bouncing.
0355  *
0356  * The return value is the rounded version of the @j parameter.
0357  */
0358 unsigned long __round_jiffies(unsigned long j, int cpu)
0359 {
0360     return round_jiffies_common(j, cpu, false);
0361 }
0362 EXPORT_SYMBOL_GPL(__round_jiffies);
0363 
0364 /**
0365  * __round_jiffies_relative - function to round jiffies to a full second
0366  * @j: the time in (relative) jiffies that should be rounded
0367  * @cpu: the processor number on which the timeout will happen
0368  *
0369  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
0370  * up or down to (approximately) full seconds. This is useful for timers
0371  * for which the exact time they fire does not matter too much, as long as
0372  * they fire approximately every X seconds.
0373  *
0374  * By rounding these timers to whole seconds, all such timers will fire
0375  * at the same time, rather than at various times spread out. The goal
0376  * of this is to have the CPU wake up less, which saves power.
0377  *
0378  * The exact rounding is skewed for each processor to avoid all
0379  * processors firing at the exact same time, which could lead
0380  * to lock contention or spurious cache line bouncing.
0381  *
0382  * The return value is the rounded version of the @j parameter.
0383  */
0384 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
0385 {
0386     unsigned long j0 = jiffies;
0387 
0388     /* Use j0 because jiffies might change while we run */
0389     return round_jiffies_common(j + j0, cpu, false) - j0;
0390 }
0391 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
0392 
0393 /**
0394  * round_jiffies - function to round jiffies to a full second
0395  * @j: the time in (absolute) jiffies that should be rounded
0396  *
0397  * round_jiffies() rounds an absolute time in the future (in jiffies)
0398  * up or down to (approximately) full seconds. This is useful for timers
0399  * for which the exact time they fire does not matter too much, as long as
0400  * they fire approximately every X seconds.
0401  *
0402  * By rounding these timers to whole seconds, all such timers will fire
0403  * at the same time, rather than at various times spread out. The goal
0404  * of this is to have the CPU wake up less, which saves power.
0405  *
0406  * The return value is the rounded version of the @j parameter.
0407  */
0408 unsigned long round_jiffies(unsigned long j)
0409 {
0410     return round_jiffies_common(j, raw_smp_processor_id(), false);
0411 }
0412 EXPORT_SYMBOL_GPL(round_jiffies);
0413 
0414 /**
0415  * round_jiffies_relative - function to round jiffies to a full second
0416  * @j: the time in (relative) jiffies that should be rounded
0417  *
0418  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
0419  * up or down to (approximately) full seconds. This is useful for timers
0420  * for which the exact time they fire does not matter too much, as long as
0421  * they fire approximately every X seconds.
0422  *
0423  * By rounding these timers to whole seconds, all such timers will fire
0424  * at the same time, rather than at various times spread out. The goal
0425  * of this is to have the CPU wake up less, which saves power.
0426  *
0427  * The return value is the rounded version of the @j parameter.
0428  */
0429 unsigned long round_jiffies_relative(unsigned long j)
0430 {
0431     return __round_jiffies_relative(j, raw_smp_processor_id());
0432 }
0433 EXPORT_SYMBOL_GPL(round_jiffies_relative);
0434 
0435 /**
0436  * __round_jiffies_up - function to round jiffies up to a full second
0437  * @j: the time in (absolute) jiffies that should be rounded
0438  * @cpu: the processor number on which the timeout will happen
0439  *
0440  * This is the same as __round_jiffies() except that it will never
0441  * round down.  This is useful for timeouts for which the exact time
0442  * of firing does not matter too much, as long as they don't fire too
0443  * early.
0444  */
0445 unsigned long __round_jiffies_up(unsigned long j, int cpu)
0446 {
0447     return round_jiffies_common(j, cpu, true);
0448 }
0449 EXPORT_SYMBOL_GPL(__round_jiffies_up);
0450 
0451 /**
0452  * __round_jiffies_up_relative - function to round jiffies up to a full second
0453  * @j: the time in (relative) jiffies that should be rounded
0454  * @cpu: the processor number on which the timeout will happen
0455  *
0456  * This is the same as __round_jiffies_relative() except that it will never
0457  * round down.  This is useful for timeouts for which the exact time
0458  * of firing does not matter too much, as long as they don't fire too
0459  * early.
0460  */
0461 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
0462 {
0463     unsigned long j0 = jiffies;
0464 
0465     /* Use j0 because jiffies might change while we run */
0466     return round_jiffies_common(j + j0, cpu, true) - j0;
0467 }
0468 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
0469 
0470 /**
0471  * round_jiffies_up - function to round jiffies up to a full second
0472  * @j: the time in (absolute) jiffies that should be rounded
0473  *
0474  * This is the same as round_jiffies() except that it will never
0475  * round down.  This is useful for timeouts for which the exact time
0476  * of firing does not matter too much, as long as they don't fire too
0477  * early.
0478  */
0479 unsigned long round_jiffies_up(unsigned long j)
0480 {
0481     return round_jiffies_common(j, raw_smp_processor_id(), true);
0482 }
0483 EXPORT_SYMBOL_GPL(round_jiffies_up);
0484 
0485 /**
0486  * round_jiffies_up_relative - function to round jiffies up to a full second
0487  * @j: the time in (relative) jiffies that should be rounded
0488  *
0489  * This is the same as round_jiffies_relative() except that it will never
0490  * round down.  This is useful for timeouts for which the exact time
0491  * of firing does not matter too much, as long as they don't fire too
0492  * early.
0493  */
0494 unsigned long round_jiffies_up_relative(unsigned long j)
0495 {
0496     return __round_jiffies_up_relative(j, raw_smp_processor_id());
0497 }
0498 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
0499 
0500 
0501 static inline unsigned int timer_get_idx(struct timer_list *timer)
0502 {
0503     return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
0504 }
0505 
0506 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
0507 {
0508     timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
0509             idx << TIMER_ARRAYSHIFT;
0510 }
0511 
0512 /*
0513  * Helper function to calculate the array index for a given expiry
0514  * time.
0515  */
0516 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
0517                   unsigned long *bucket_expiry)
0518 {
0519 
0520     /*
0521      * The timer wheel has to guarantee that a timer does not fire
0522      * early. Early expiry can happen due to:
0523      * - Timer is armed at the edge of a tick
0524      * - Truncation of the expiry time in the outer wheel levels
0525      *
0526      * Round up with level granularity to prevent this.
0527      */
0528     expires = (expires >> LVL_SHIFT(lvl)) + 1;
0529     *bucket_expiry = expires << LVL_SHIFT(lvl);
0530     return LVL_OFFS(lvl) + (expires & LVL_MASK);
0531 }
0532 
0533 static int calc_wheel_index(unsigned long expires, unsigned long clk,
0534                 unsigned long *bucket_expiry)
0535 {
0536     unsigned long delta = expires - clk;
0537     unsigned int idx;
0538 
0539     if (delta < LVL_START(1)) {
0540         idx = calc_index(expires, 0, bucket_expiry);
0541     } else if (delta < LVL_START(2)) {
0542         idx = calc_index(expires, 1, bucket_expiry);
0543     } else if (delta < LVL_START(3)) {
0544         idx = calc_index(expires, 2, bucket_expiry);
0545     } else if (delta < LVL_START(4)) {
0546         idx = calc_index(expires, 3, bucket_expiry);
0547     } else if (delta < LVL_START(5)) {
0548         idx = calc_index(expires, 4, bucket_expiry);
0549     } else if (delta < LVL_START(6)) {
0550         idx = calc_index(expires, 5, bucket_expiry);
0551     } else if (delta < LVL_START(7)) {
0552         idx = calc_index(expires, 6, bucket_expiry);
0553     } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
0554         idx = calc_index(expires, 7, bucket_expiry);
0555     } else if ((long) delta < 0) {
0556         idx = clk & LVL_MASK;
0557         *bucket_expiry = clk;
0558     } else {
0559         /*
0560          * Force expire obscene large timeouts to expire at the
0561          * capacity limit of the wheel.
0562          */
0563         if (delta >= WHEEL_TIMEOUT_CUTOFF)
0564             expires = clk + WHEEL_TIMEOUT_MAX;
0565 
0566         idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
0567     }
0568     return idx;
0569 }
0570 
0571 static void
0572 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
0573 {
0574     if (!is_timers_nohz_active())
0575         return;
0576 
0577     /*
0578      * TODO: This wants some optimizing similar to the code below, but we
0579      * will do that when we switch from push to pull for deferrable timers.
0580      */
0581     if (timer->flags & TIMER_DEFERRABLE) {
0582         if (tick_nohz_full_cpu(base->cpu))
0583             wake_up_nohz_cpu(base->cpu);
0584         return;
0585     }
0586 
0587     /*
0588      * We might have to IPI the remote CPU if the base is idle and the
0589      * timer is not deferrable. If the other CPU is on the way to idle
0590      * then it can't set base->is_idle as we hold the base lock:
0591      */
0592     if (base->is_idle)
0593         wake_up_nohz_cpu(base->cpu);
0594 }
0595 
0596 /*
0597  * Enqueue the timer into the hash bucket, mark it pending in
0598  * the bitmap, store the index in the timer flags then wake up
0599  * the target CPU if needed.
0600  */
0601 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
0602               unsigned int idx, unsigned long bucket_expiry)
0603 {
0604 
0605     hlist_add_head(&timer->entry, base->vectors + idx);
0606     __set_bit(idx, base->pending_map);
0607     timer_set_idx(timer, idx);
0608 
0609     trace_timer_start(timer, timer->expires, timer->flags);
0610 
0611     /*
0612      * Check whether this is the new first expiring timer. The
0613      * effective expiry time of the timer is required here
0614      * (bucket_expiry) instead of timer->expires.
0615      */
0616     if (time_before(bucket_expiry, base->next_expiry)) {
0617         /*
0618          * Set the next expiry time and kick the CPU so it
0619          * can reevaluate the wheel:
0620          */
0621         base->next_expiry = bucket_expiry;
0622         base->timers_pending = true;
0623         base->next_expiry_recalc = false;
0624         trigger_dyntick_cpu(base, timer);
0625     }
0626 }
0627 
0628 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
0629 {
0630     unsigned long bucket_expiry;
0631     unsigned int idx;
0632 
0633     idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
0634     enqueue_timer(base, timer, idx, bucket_expiry);
0635 }
0636 
0637 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
0638 
0639 static const struct debug_obj_descr timer_debug_descr;
0640 
0641 struct timer_hint {
0642     void    (*function)(struct timer_list *t);
0643     long    offset;
0644 };
0645 
0646 #define TIMER_HINT(fn, container, timr, hintfn)         \
0647     {                           \
0648         .function = fn,                 \
0649         .offset   = offsetof(container, hintfn) -   \
0650                 offsetof(container, timr)       \
0651     }
0652 
0653 static const struct timer_hint timer_hints[] = {
0654     TIMER_HINT(delayed_work_timer_fn,
0655            struct delayed_work, timer, work.func),
0656     TIMER_HINT(kthread_delayed_work_timer_fn,
0657            struct kthread_delayed_work, timer, work.func),
0658 };
0659 
0660 static void *timer_debug_hint(void *addr)
0661 {
0662     struct timer_list *timer = addr;
0663     int i;
0664 
0665     for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
0666         if (timer_hints[i].function == timer->function) {
0667             void (**fn)(void) = addr + timer_hints[i].offset;
0668 
0669             return *fn;
0670         }
0671     }
0672 
0673     return timer->function;
0674 }
0675 
0676 static bool timer_is_static_object(void *addr)
0677 {
0678     struct timer_list *timer = addr;
0679 
0680     return (timer->entry.pprev == NULL &&
0681         timer->entry.next == TIMER_ENTRY_STATIC);
0682 }
0683 
0684 /*
0685  * fixup_init is called when:
0686  * - an active object is initialized
0687  */
0688 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
0689 {
0690     struct timer_list *timer = addr;
0691 
0692     switch (state) {
0693     case ODEBUG_STATE_ACTIVE:
0694         del_timer_sync(timer);
0695         debug_object_init(timer, &timer_debug_descr);
0696         return true;
0697     default:
0698         return false;
0699     }
0700 }
0701 
0702 /* Stub timer callback for improperly used timers. */
0703 static void stub_timer(struct timer_list *unused)
0704 {
0705     WARN_ON(1);
0706 }
0707 
0708 /*
0709  * fixup_activate is called when:
0710  * - an active object is activated
0711  * - an unknown non-static object is activated
0712  */
0713 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
0714 {
0715     struct timer_list *timer = addr;
0716 
0717     switch (state) {
0718     case ODEBUG_STATE_NOTAVAILABLE:
0719         timer_setup(timer, stub_timer, 0);
0720         return true;
0721 
0722     case ODEBUG_STATE_ACTIVE:
0723         WARN_ON(1);
0724         fallthrough;
0725     default:
0726         return false;
0727     }
0728 }
0729 
0730 /*
0731  * fixup_free is called when:
0732  * - an active object is freed
0733  */
0734 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
0735 {
0736     struct timer_list *timer = addr;
0737 
0738     switch (state) {
0739     case ODEBUG_STATE_ACTIVE:
0740         del_timer_sync(timer);
0741         debug_object_free(timer, &timer_debug_descr);
0742         return true;
0743     default:
0744         return false;
0745     }
0746 }
0747 
0748 /*
0749  * fixup_assert_init is called when:
0750  * - an untracked/uninit-ed object is found
0751  */
0752 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
0753 {
0754     struct timer_list *timer = addr;
0755 
0756     switch (state) {
0757     case ODEBUG_STATE_NOTAVAILABLE:
0758         timer_setup(timer, stub_timer, 0);
0759         return true;
0760     default:
0761         return false;
0762     }
0763 }
0764 
0765 static const struct debug_obj_descr timer_debug_descr = {
0766     .name           = "timer_list",
0767     .debug_hint     = timer_debug_hint,
0768     .is_static_object   = timer_is_static_object,
0769     .fixup_init     = timer_fixup_init,
0770     .fixup_activate     = timer_fixup_activate,
0771     .fixup_free     = timer_fixup_free,
0772     .fixup_assert_init  = timer_fixup_assert_init,
0773 };
0774 
0775 static inline void debug_timer_init(struct timer_list *timer)
0776 {
0777     debug_object_init(timer, &timer_debug_descr);
0778 }
0779 
0780 static inline void debug_timer_activate(struct timer_list *timer)
0781 {
0782     debug_object_activate(timer, &timer_debug_descr);
0783 }
0784 
0785 static inline void debug_timer_deactivate(struct timer_list *timer)
0786 {
0787     debug_object_deactivate(timer, &timer_debug_descr);
0788 }
0789 
0790 static inline void debug_timer_assert_init(struct timer_list *timer)
0791 {
0792     debug_object_assert_init(timer, &timer_debug_descr);
0793 }
0794 
0795 static void do_init_timer(struct timer_list *timer,
0796               void (*func)(struct timer_list *),
0797               unsigned int flags,
0798               const char *name, struct lock_class_key *key);
0799 
0800 void init_timer_on_stack_key(struct timer_list *timer,
0801                  void (*func)(struct timer_list *),
0802                  unsigned int flags,
0803                  const char *name, struct lock_class_key *key)
0804 {
0805     debug_object_init_on_stack(timer, &timer_debug_descr);
0806     do_init_timer(timer, func, flags, name, key);
0807 }
0808 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
0809 
0810 void destroy_timer_on_stack(struct timer_list *timer)
0811 {
0812     debug_object_free(timer, &timer_debug_descr);
0813 }
0814 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
0815 
0816 #else
0817 static inline void debug_timer_init(struct timer_list *timer) { }
0818 static inline void debug_timer_activate(struct timer_list *timer) { }
0819 static inline void debug_timer_deactivate(struct timer_list *timer) { }
0820 static inline void debug_timer_assert_init(struct timer_list *timer) { }
0821 #endif
0822 
0823 static inline void debug_init(struct timer_list *timer)
0824 {
0825     debug_timer_init(timer);
0826     trace_timer_init(timer);
0827 }
0828 
0829 static inline void debug_deactivate(struct timer_list *timer)
0830 {
0831     debug_timer_deactivate(timer);
0832     trace_timer_cancel(timer);
0833 }
0834 
0835 static inline void debug_assert_init(struct timer_list *timer)
0836 {
0837     debug_timer_assert_init(timer);
0838 }
0839 
0840 static void do_init_timer(struct timer_list *timer,
0841               void (*func)(struct timer_list *),
0842               unsigned int flags,
0843               const char *name, struct lock_class_key *key)
0844 {
0845     timer->entry.pprev = NULL;
0846     timer->function = func;
0847     if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
0848         flags &= TIMER_INIT_FLAGS;
0849     timer->flags = flags | raw_smp_processor_id();
0850     lockdep_init_map(&timer->lockdep_map, name, key, 0);
0851 }
0852 
0853 /**
0854  * init_timer_key - initialize a timer
0855  * @timer: the timer to be initialized
0856  * @func: timer callback function
0857  * @flags: timer flags
0858  * @name: name of the timer
0859  * @key: lockdep class key of the fake lock used for tracking timer
0860  *       sync lock dependencies
0861  *
0862  * init_timer_key() must be done to a timer prior calling *any* of the
0863  * other timer functions.
0864  */
0865 void init_timer_key(struct timer_list *timer,
0866             void (*func)(struct timer_list *), unsigned int flags,
0867             const char *name, struct lock_class_key *key)
0868 {
0869     debug_init(timer);
0870     do_init_timer(timer, func, flags, name, key);
0871 }
0872 EXPORT_SYMBOL(init_timer_key);
0873 
0874 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
0875 {
0876     struct hlist_node *entry = &timer->entry;
0877 
0878     debug_deactivate(timer);
0879 
0880     __hlist_del(entry);
0881     if (clear_pending)
0882         entry->pprev = NULL;
0883     entry->next = LIST_POISON2;
0884 }
0885 
0886 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
0887                  bool clear_pending)
0888 {
0889     unsigned idx = timer_get_idx(timer);
0890 
0891     if (!timer_pending(timer))
0892         return 0;
0893 
0894     if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
0895         __clear_bit(idx, base->pending_map);
0896         base->next_expiry_recalc = true;
0897     }
0898 
0899     detach_timer(timer, clear_pending);
0900     return 1;
0901 }
0902 
0903 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
0904 {
0905     struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
0906 
0907     /*
0908      * If the timer is deferrable and NO_HZ_COMMON is set then we need
0909      * to use the deferrable base.
0910      */
0911     if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
0912         base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
0913     return base;
0914 }
0915 
0916 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
0917 {
0918     struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
0919 
0920     /*
0921      * If the timer is deferrable and NO_HZ_COMMON is set then we need
0922      * to use the deferrable base.
0923      */
0924     if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
0925         base = this_cpu_ptr(&timer_bases[BASE_DEF]);
0926     return base;
0927 }
0928 
0929 static inline struct timer_base *get_timer_base(u32 tflags)
0930 {
0931     return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
0932 }
0933 
0934 static inline struct timer_base *
0935 get_target_base(struct timer_base *base, unsigned tflags)
0936 {
0937 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
0938     if (static_branch_likely(&timers_migration_enabled) &&
0939         !(tflags & TIMER_PINNED))
0940         return get_timer_cpu_base(tflags, get_nohz_timer_target());
0941 #endif
0942     return get_timer_this_cpu_base(tflags);
0943 }
0944 
0945 static inline void forward_timer_base(struct timer_base *base)
0946 {
0947     unsigned long jnow = READ_ONCE(jiffies);
0948 
0949     /*
0950      * No need to forward if we are close enough below jiffies.
0951      * Also while executing timers, base->clk is 1 offset ahead
0952      * of jiffies to avoid endless requeuing to current jiffies.
0953      */
0954     if ((long)(jnow - base->clk) < 1)
0955         return;
0956 
0957     /*
0958      * If the next expiry value is > jiffies, then we fast forward to
0959      * jiffies otherwise we forward to the next expiry value.
0960      */
0961     if (time_after(base->next_expiry, jnow)) {
0962         base->clk = jnow;
0963     } else {
0964         if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
0965             return;
0966         base->clk = base->next_expiry;
0967     }
0968 }
0969 
0970 
0971 /*
0972  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
0973  * that all timers which are tied to this base are locked, and the base itself
0974  * is locked too.
0975  *
0976  * So __run_timers/migrate_timers can safely modify all timers which could
0977  * be found in the base->vectors array.
0978  *
0979  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
0980  * to wait until the migration is done.
0981  */
0982 static struct timer_base *lock_timer_base(struct timer_list *timer,
0983                       unsigned long *flags)
0984     __acquires(timer->base->lock)
0985 {
0986     for (;;) {
0987         struct timer_base *base;
0988         u32 tf;
0989 
0990         /*
0991          * We need to use READ_ONCE() here, otherwise the compiler
0992          * might re-read @tf between the check for TIMER_MIGRATING
0993          * and spin_lock().
0994          */
0995         tf = READ_ONCE(timer->flags);
0996 
0997         if (!(tf & TIMER_MIGRATING)) {
0998             base = get_timer_base(tf);
0999             raw_spin_lock_irqsave(&base->lock, *flags);
1000             if (timer->flags == tf)
1001                 return base;
1002             raw_spin_unlock_irqrestore(&base->lock, *flags);
1003         }
1004         cpu_relax();
1005     }
1006 }
1007 
1008 #define MOD_TIMER_PENDING_ONLY      0x01
1009 #define MOD_TIMER_REDUCE        0x02
1010 #define MOD_TIMER_NOTPENDING        0x04
1011 
1012 static inline int
1013 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1014 {
1015     unsigned long clk = 0, flags, bucket_expiry;
1016     struct timer_base *base, *new_base;
1017     unsigned int idx = UINT_MAX;
1018     int ret = 0;
1019 
1020     BUG_ON(!timer->function);
1021 
1022     /*
1023      * This is a common optimization triggered by the networking code - if
1024      * the timer is re-modified to have the same timeout or ends up in the
1025      * same array bucket then just return:
1026      */
1027     if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1028         /*
1029          * The downside of this optimization is that it can result in
1030          * larger granularity than you would get from adding a new
1031          * timer with this expiry.
1032          */
1033         long diff = timer->expires - expires;
1034 
1035         if (!diff)
1036             return 1;
1037         if (options & MOD_TIMER_REDUCE && diff <= 0)
1038             return 1;
1039 
1040         /*
1041          * We lock timer base and calculate the bucket index right
1042          * here. If the timer ends up in the same bucket, then we
1043          * just update the expiry time and avoid the whole
1044          * dequeue/enqueue dance.
1045          */
1046         base = lock_timer_base(timer, &flags);
1047         forward_timer_base(base);
1048 
1049         if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1050             time_before_eq(timer->expires, expires)) {
1051             ret = 1;
1052             goto out_unlock;
1053         }
1054 
1055         clk = base->clk;
1056         idx = calc_wheel_index(expires, clk, &bucket_expiry);
1057 
1058         /*
1059          * Retrieve and compare the array index of the pending
1060          * timer. If it matches set the expiry to the new value so a
1061          * subsequent call will exit in the expires check above.
1062          */
1063         if (idx == timer_get_idx(timer)) {
1064             if (!(options & MOD_TIMER_REDUCE))
1065                 timer->expires = expires;
1066             else if (time_after(timer->expires, expires))
1067                 timer->expires = expires;
1068             ret = 1;
1069             goto out_unlock;
1070         }
1071     } else {
1072         base = lock_timer_base(timer, &flags);
1073         forward_timer_base(base);
1074     }
1075 
1076     ret = detach_if_pending(timer, base, false);
1077     if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1078         goto out_unlock;
1079 
1080     new_base = get_target_base(base, timer->flags);
1081 
1082     if (base != new_base) {
1083         /*
1084          * We are trying to schedule the timer on the new base.
1085          * However we can't change timer's base while it is running,
1086          * otherwise del_timer_sync() can't detect that the timer's
1087          * handler yet has not finished. This also guarantees that the
1088          * timer is serialized wrt itself.
1089          */
1090         if (likely(base->running_timer != timer)) {
1091             /* See the comment in lock_timer_base() */
1092             timer->flags |= TIMER_MIGRATING;
1093 
1094             raw_spin_unlock(&base->lock);
1095             base = new_base;
1096             raw_spin_lock(&base->lock);
1097             WRITE_ONCE(timer->flags,
1098                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1099             forward_timer_base(base);
1100         }
1101     }
1102 
1103     debug_timer_activate(timer);
1104 
1105     timer->expires = expires;
1106     /*
1107      * If 'idx' was calculated above and the base time did not advance
1108      * between calculating 'idx' and possibly switching the base, only
1109      * enqueue_timer() is required. Otherwise we need to (re)calculate
1110      * the wheel index via internal_add_timer().
1111      */
1112     if (idx != UINT_MAX && clk == base->clk)
1113         enqueue_timer(base, timer, idx, bucket_expiry);
1114     else
1115         internal_add_timer(base, timer);
1116 
1117 out_unlock:
1118     raw_spin_unlock_irqrestore(&base->lock, flags);
1119 
1120     return ret;
1121 }
1122 
1123 /**
1124  * mod_timer_pending - modify a pending timer's timeout
1125  * @timer: the pending timer to be modified
1126  * @expires: new timeout in jiffies
1127  *
1128  * mod_timer_pending() is the same for pending timers as mod_timer(),
1129  * but will not re-activate and modify already deleted timers.
1130  *
1131  * It is useful for unserialized use of timers.
1132  */
1133 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1134 {
1135     return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1136 }
1137 EXPORT_SYMBOL(mod_timer_pending);
1138 
1139 /**
1140  * mod_timer - modify a timer's timeout
1141  * @timer: the timer to be modified
1142  * @expires: new timeout in jiffies
1143  *
1144  * mod_timer() is a more efficient way to update the expire field of an
1145  * active timer (if the timer is inactive it will be activated)
1146  *
1147  * mod_timer(timer, expires) is equivalent to:
1148  *
1149  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1150  *
1151  * Note that if there are multiple unserialized concurrent users of the
1152  * same timer, then mod_timer() is the only safe way to modify the timeout,
1153  * since add_timer() cannot modify an already running timer.
1154  *
1155  * The function returns whether it has modified a pending timer or not.
1156  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1157  * active timer returns 1.)
1158  */
1159 int mod_timer(struct timer_list *timer, unsigned long expires)
1160 {
1161     return __mod_timer(timer, expires, 0);
1162 }
1163 EXPORT_SYMBOL(mod_timer);
1164 
1165 /**
1166  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1167  * @timer:  The timer to be modified
1168  * @expires:    New timeout in jiffies
1169  *
1170  * timer_reduce() is very similar to mod_timer(), except that it will only
1171  * modify a running timer if that would reduce the expiration time (it will
1172  * start a timer that isn't running).
1173  */
1174 int timer_reduce(struct timer_list *timer, unsigned long expires)
1175 {
1176     return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1177 }
1178 EXPORT_SYMBOL(timer_reduce);
1179 
1180 /**
1181  * add_timer - start a timer
1182  * @timer: the timer to be added
1183  *
1184  * The kernel will do a ->function(@timer) callback from the
1185  * timer interrupt at the ->expires point in the future. The
1186  * current time is 'jiffies'.
1187  *
1188  * The timer's ->expires, ->function fields must be set prior calling this
1189  * function.
1190  *
1191  * Timers with an ->expires field in the past will be executed in the next
1192  * timer tick.
1193  */
1194 void add_timer(struct timer_list *timer)
1195 {
1196     BUG_ON(timer_pending(timer));
1197     __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1198 }
1199 EXPORT_SYMBOL(add_timer);
1200 
1201 /**
1202  * add_timer_on - start a timer on a particular CPU
1203  * @timer: the timer to be added
1204  * @cpu: the CPU to start it on
1205  *
1206  * This is not very scalable on SMP. Double adds are not possible.
1207  */
1208 void add_timer_on(struct timer_list *timer, int cpu)
1209 {
1210     struct timer_base *new_base, *base;
1211     unsigned long flags;
1212 
1213     BUG_ON(timer_pending(timer) || !timer->function);
1214 
1215     new_base = get_timer_cpu_base(timer->flags, cpu);
1216 
1217     /*
1218      * If @timer was on a different CPU, it should be migrated with the
1219      * old base locked to prevent other operations proceeding with the
1220      * wrong base locked.  See lock_timer_base().
1221      */
1222     base = lock_timer_base(timer, &flags);
1223     if (base != new_base) {
1224         timer->flags |= TIMER_MIGRATING;
1225 
1226         raw_spin_unlock(&base->lock);
1227         base = new_base;
1228         raw_spin_lock(&base->lock);
1229         WRITE_ONCE(timer->flags,
1230                (timer->flags & ~TIMER_BASEMASK) | cpu);
1231     }
1232     forward_timer_base(base);
1233 
1234     debug_timer_activate(timer);
1235     internal_add_timer(base, timer);
1236     raw_spin_unlock_irqrestore(&base->lock, flags);
1237 }
1238 EXPORT_SYMBOL_GPL(add_timer_on);
1239 
1240 /**
1241  * del_timer - deactivate a timer.
1242  * @timer: the timer to be deactivated
1243  *
1244  * del_timer() deactivates a timer - this works on both active and inactive
1245  * timers.
1246  *
1247  * The function returns whether it has deactivated a pending timer or not.
1248  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1249  * active timer returns 1.)
1250  */
1251 int del_timer(struct timer_list *timer)
1252 {
1253     struct timer_base *base;
1254     unsigned long flags;
1255     int ret = 0;
1256 
1257     debug_assert_init(timer);
1258 
1259     if (timer_pending(timer)) {
1260         base = lock_timer_base(timer, &flags);
1261         ret = detach_if_pending(timer, base, true);
1262         raw_spin_unlock_irqrestore(&base->lock, flags);
1263     }
1264 
1265     return ret;
1266 }
1267 EXPORT_SYMBOL(del_timer);
1268 
1269 /**
1270  * try_to_del_timer_sync - Try to deactivate a timer
1271  * @timer: timer to delete
1272  *
1273  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1274  * exit the timer is not queued and the handler is not running on any CPU.
1275  */
1276 int try_to_del_timer_sync(struct timer_list *timer)
1277 {
1278     struct timer_base *base;
1279     unsigned long flags;
1280     int ret = -1;
1281 
1282     debug_assert_init(timer);
1283 
1284     base = lock_timer_base(timer, &flags);
1285 
1286     if (base->running_timer != timer)
1287         ret = detach_if_pending(timer, base, true);
1288 
1289     raw_spin_unlock_irqrestore(&base->lock, flags);
1290 
1291     return ret;
1292 }
1293 EXPORT_SYMBOL(try_to_del_timer_sync);
1294 
1295 #ifdef CONFIG_PREEMPT_RT
1296 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1297 {
1298     spin_lock_init(&base->expiry_lock);
1299 }
1300 
1301 static inline void timer_base_lock_expiry(struct timer_base *base)
1302 {
1303     spin_lock(&base->expiry_lock);
1304 }
1305 
1306 static inline void timer_base_unlock_expiry(struct timer_base *base)
1307 {
1308     spin_unlock(&base->expiry_lock);
1309 }
1310 
1311 /*
1312  * The counterpart to del_timer_wait_running().
1313  *
1314  * If there is a waiter for base->expiry_lock, then it was waiting for the
1315  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1316  * the waiter to acquire the lock and make progress.
1317  */
1318 static void timer_sync_wait_running(struct timer_base *base)
1319 {
1320     if (atomic_read(&base->timer_waiters)) {
1321         raw_spin_unlock_irq(&base->lock);
1322         spin_unlock(&base->expiry_lock);
1323         spin_lock(&base->expiry_lock);
1324         raw_spin_lock_irq(&base->lock);
1325     }
1326 }
1327 
1328 /*
1329  * This function is called on PREEMPT_RT kernels when the fast path
1330  * deletion of a timer failed because the timer callback function was
1331  * running.
1332  *
1333  * This prevents priority inversion, if the softirq thread on a remote CPU
1334  * got preempted, and it prevents a life lock when the task which tries to
1335  * delete a timer preempted the softirq thread running the timer callback
1336  * function.
1337  */
1338 static void del_timer_wait_running(struct timer_list *timer)
1339 {
1340     u32 tf;
1341 
1342     tf = READ_ONCE(timer->flags);
1343     if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1344         struct timer_base *base = get_timer_base(tf);
1345 
1346         /*
1347          * Mark the base as contended and grab the expiry lock,
1348          * which is held by the softirq across the timer
1349          * callback. Drop the lock immediately so the softirq can
1350          * expire the next timer. In theory the timer could already
1351          * be running again, but that's more than unlikely and just
1352          * causes another wait loop.
1353          */
1354         atomic_inc(&base->timer_waiters);
1355         spin_lock_bh(&base->expiry_lock);
1356         atomic_dec(&base->timer_waiters);
1357         spin_unlock_bh(&base->expiry_lock);
1358     }
1359 }
1360 #else
1361 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1362 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1363 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1364 static inline void timer_sync_wait_running(struct timer_base *base) { }
1365 static inline void del_timer_wait_running(struct timer_list *timer) { }
1366 #endif
1367 
1368 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1369 /**
1370  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1371  * @timer: the timer to be deactivated
1372  *
1373  * This function only differs from del_timer() on SMP: besides deactivating
1374  * the timer it also makes sure the handler has finished executing on other
1375  * CPUs.
1376  *
1377  * Synchronization rules: Callers must prevent restarting of the timer,
1378  * otherwise this function is meaningless. It must not be called from
1379  * interrupt contexts unless the timer is an irqsafe one. The caller must
1380  * not hold locks which would prevent completion of the timer's
1381  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1382  * timer is not queued and the handler is not running on any CPU.
1383  *
1384  * Note: For !irqsafe timers, you must not hold locks that are held in
1385  *   interrupt context while calling this function. Even if the lock has
1386  *   nothing to do with the timer in question.  Here's why::
1387  *
1388  *    CPU0                             CPU1
1389  *    ----                             ----
1390  *                                     <SOFTIRQ>
1391  *                                       call_timer_fn();
1392  *                                       base->running_timer = mytimer;
1393  *    spin_lock_irq(somelock);
1394  *                                     <IRQ>
1395  *                                        spin_lock(somelock);
1396  *    del_timer_sync(mytimer);
1397  *    while (base->running_timer == mytimer);
1398  *
1399  * Now del_timer_sync() will never return and never release somelock.
1400  * The interrupt on the other CPU is waiting to grab somelock but
1401  * it has interrupted the softirq that CPU0 is waiting to finish.
1402  *
1403  * The function returns whether it has deactivated a pending timer or not.
1404  */
1405 int del_timer_sync(struct timer_list *timer)
1406 {
1407     int ret;
1408 
1409 #ifdef CONFIG_LOCKDEP
1410     unsigned long flags;
1411 
1412     /*
1413      * If lockdep gives a backtrace here, please reference
1414      * the synchronization rules above.
1415      */
1416     local_irq_save(flags);
1417     lock_map_acquire(&timer->lockdep_map);
1418     lock_map_release(&timer->lockdep_map);
1419     local_irq_restore(flags);
1420 #endif
1421     /*
1422      * don't use it in hardirq context, because it
1423      * could lead to deadlock.
1424      */
1425     WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1426 
1427     /*
1428      * Must be able to sleep on PREEMPT_RT because of the slowpath in
1429      * del_timer_wait_running().
1430      */
1431     if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1432         lockdep_assert_preemption_enabled();
1433 
1434     do {
1435         ret = try_to_del_timer_sync(timer);
1436 
1437         if (unlikely(ret < 0)) {
1438             del_timer_wait_running(timer);
1439             cpu_relax();
1440         }
1441     } while (ret < 0);
1442 
1443     return ret;
1444 }
1445 EXPORT_SYMBOL(del_timer_sync);
1446 #endif
1447 
1448 static void call_timer_fn(struct timer_list *timer,
1449               void (*fn)(struct timer_list *),
1450               unsigned long baseclk)
1451 {
1452     int count = preempt_count();
1453 
1454 #ifdef CONFIG_LOCKDEP
1455     /*
1456      * It is permissible to free the timer from inside the
1457      * function that is called from it, this we need to take into
1458      * account for lockdep too. To avoid bogus "held lock freed"
1459      * warnings as well as problems when looking into
1460      * timer->lockdep_map, make a copy and use that here.
1461      */
1462     struct lockdep_map lockdep_map;
1463 
1464     lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1465 #endif
1466     /*
1467      * Couple the lock chain with the lock chain at
1468      * del_timer_sync() by acquiring the lock_map around the fn()
1469      * call here and in del_timer_sync().
1470      */
1471     lock_map_acquire(&lockdep_map);
1472 
1473     trace_timer_expire_entry(timer, baseclk);
1474     fn(timer);
1475     trace_timer_expire_exit(timer);
1476 
1477     lock_map_release(&lockdep_map);
1478 
1479     if (count != preempt_count()) {
1480         WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1481               fn, count, preempt_count());
1482         /*
1483          * Restore the preempt count. That gives us a decent
1484          * chance to survive and extract information. If the
1485          * callback kept a lock held, bad luck, but not worse
1486          * than the BUG() we had.
1487          */
1488         preempt_count_set(count);
1489     }
1490 }
1491 
1492 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1493 {
1494     /*
1495      * This value is required only for tracing. base->clk was
1496      * incremented directly before expire_timers was called. But expiry
1497      * is related to the old base->clk value.
1498      */
1499     unsigned long baseclk = base->clk - 1;
1500 
1501     while (!hlist_empty(head)) {
1502         struct timer_list *timer;
1503         void (*fn)(struct timer_list *);
1504 
1505         timer = hlist_entry(head->first, struct timer_list, entry);
1506 
1507         base->running_timer = timer;
1508         detach_timer(timer, true);
1509 
1510         fn = timer->function;
1511 
1512         if (timer->flags & TIMER_IRQSAFE) {
1513             raw_spin_unlock(&base->lock);
1514             call_timer_fn(timer, fn, baseclk);
1515             raw_spin_lock(&base->lock);
1516             base->running_timer = NULL;
1517         } else {
1518             raw_spin_unlock_irq(&base->lock);
1519             call_timer_fn(timer, fn, baseclk);
1520             raw_spin_lock_irq(&base->lock);
1521             base->running_timer = NULL;
1522             timer_sync_wait_running(base);
1523         }
1524     }
1525 }
1526 
1527 static int collect_expired_timers(struct timer_base *base,
1528                   struct hlist_head *heads)
1529 {
1530     unsigned long clk = base->clk = base->next_expiry;
1531     struct hlist_head *vec;
1532     int i, levels = 0;
1533     unsigned int idx;
1534 
1535     for (i = 0; i < LVL_DEPTH; i++) {
1536         idx = (clk & LVL_MASK) + i * LVL_SIZE;
1537 
1538         if (__test_and_clear_bit(idx, base->pending_map)) {
1539             vec = base->vectors + idx;
1540             hlist_move_list(vec, heads++);
1541             levels++;
1542         }
1543         /* Is it time to look at the next level? */
1544         if (clk & LVL_CLK_MASK)
1545             break;
1546         /* Shift clock for the next level granularity */
1547         clk >>= LVL_CLK_SHIFT;
1548     }
1549     return levels;
1550 }
1551 
1552 /*
1553  * Find the next pending bucket of a level. Search from level start (@offset)
1554  * + @clk upwards and if nothing there, search from start of the level
1555  * (@offset) up to @offset + clk.
1556  */
1557 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1558                    unsigned clk)
1559 {
1560     unsigned pos, start = offset + clk;
1561     unsigned end = offset + LVL_SIZE;
1562 
1563     pos = find_next_bit(base->pending_map, end, start);
1564     if (pos < end)
1565         return pos - start;
1566 
1567     pos = find_next_bit(base->pending_map, start, offset);
1568     return pos < start ? pos + LVL_SIZE - start : -1;
1569 }
1570 
1571 /*
1572  * Search the first expiring timer in the various clock levels. Caller must
1573  * hold base->lock.
1574  */
1575 static unsigned long __next_timer_interrupt(struct timer_base *base)
1576 {
1577     unsigned long clk, next, adj;
1578     unsigned lvl, offset = 0;
1579 
1580     next = base->clk + NEXT_TIMER_MAX_DELTA;
1581     clk = base->clk;
1582     for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1583         int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1584         unsigned long lvl_clk = clk & LVL_CLK_MASK;
1585 
1586         if (pos >= 0) {
1587             unsigned long tmp = clk + (unsigned long) pos;
1588 
1589             tmp <<= LVL_SHIFT(lvl);
1590             if (time_before(tmp, next))
1591                 next = tmp;
1592 
1593             /*
1594              * If the next expiration happens before we reach
1595              * the next level, no need to check further.
1596              */
1597             if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1598                 break;
1599         }
1600         /*
1601          * Clock for the next level. If the current level clock lower
1602          * bits are zero, we look at the next level as is. If not we
1603          * need to advance it by one because that's going to be the
1604          * next expiring bucket in that level. base->clk is the next
1605          * expiring jiffie. So in case of:
1606          *
1607          * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1608          *  0    0    0    0    0    0
1609          *
1610          * we have to look at all levels @index 0. With
1611          *
1612          * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1613          *  0    0    0    0    0    2
1614          *
1615          * LVL0 has the next expiring bucket @index 2. The upper
1616          * levels have the next expiring bucket @index 1.
1617          *
1618          * In case that the propagation wraps the next level the same
1619          * rules apply:
1620          *
1621          * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1622          *  0    0    0    0    F    2
1623          *
1624          * So after looking at LVL0 we get:
1625          *
1626          * LVL5 LVL4 LVL3 LVL2 LVL1
1627          *  0    0    0    1    0
1628          *
1629          * So no propagation from LVL1 to LVL2 because that happened
1630          * with the add already, but then we need to propagate further
1631          * from LVL2 to LVL3.
1632          *
1633          * So the simple check whether the lower bits of the current
1634          * level are 0 or not is sufficient for all cases.
1635          */
1636         adj = lvl_clk ? 1 : 0;
1637         clk >>= LVL_CLK_SHIFT;
1638         clk += adj;
1639     }
1640 
1641     base->next_expiry_recalc = false;
1642     base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1643 
1644     return next;
1645 }
1646 
1647 #ifdef CONFIG_NO_HZ_COMMON
1648 /*
1649  * Check, if the next hrtimer event is before the next timer wheel
1650  * event:
1651  */
1652 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1653 {
1654     u64 nextevt = hrtimer_get_next_event();
1655 
1656     /*
1657      * If high resolution timers are enabled
1658      * hrtimer_get_next_event() returns KTIME_MAX.
1659      */
1660     if (expires <= nextevt)
1661         return expires;
1662 
1663     /*
1664      * If the next timer is already expired, return the tick base
1665      * time so the tick is fired immediately.
1666      */
1667     if (nextevt <= basem)
1668         return basem;
1669 
1670     /*
1671      * Round up to the next jiffie. High resolution timers are
1672      * off, so the hrtimers are expired in the tick and we need to
1673      * make sure that this tick really expires the timer to avoid
1674      * a ping pong of the nohz stop code.
1675      *
1676      * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1677      */
1678     return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1679 }
1680 
1681 /**
1682  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1683  * @basej:  base time jiffies
1684  * @basem:  base time clock monotonic
1685  *
1686  * Returns the tick aligned clock monotonic time of the next pending
1687  * timer or KTIME_MAX if no timer is pending.
1688  */
1689 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1690 {
1691     struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1692     u64 expires = KTIME_MAX;
1693     unsigned long nextevt;
1694 
1695     /*
1696      * Pretend that there is no timer pending if the cpu is offline.
1697      * Possible pending timers will be migrated later to an active cpu.
1698      */
1699     if (cpu_is_offline(smp_processor_id()))
1700         return expires;
1701 
1702     raw_spin_lock(&base->lock);
1703     if (base->next_expiry_recalc)
1704         base->next_expiry = __next_timer_interrupt(base);
1705     nextevt = base->next_expiry;
1706 
1707     /*
1708      * We have a fresh next event. Check whether we can forward the
1709      * base. We can only do that when @basej is past base->clk
1710      * otherwise we might rewind base->clk.
1711      */
1712     if (time_after(basej, base->clk)) {
1713         if (time_after(nextevt, basej))
1714             base->clk = basej;
1715         else if (time_after(nextevt, base->clk))
1716             base->clk = nextevt;
1717     }
1718 
1719     if (time_before_eq(nextevt, basej)) {
1720         expires = basem;
1721         base->is_idle = false;
1722     } else {
1723         if (base->timers_pending)
1724             expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1725         /*
1726          * If we expect to sleep more than a tick, mark the base idle.
1727          * Also the tick is stopped so any added timer must forward
1728          * the base clk itself to keep granularity small. This idle
1729          * logic is only maintained for the BASE_STD base, deferrable
1730          * timers may still see large granularity skew (by design).
1731          */
1732         if ((expires - basem) > TICK_NSEC)
1733             base->is_idle = true;
1734     }
1735     raw_spin_unlock(&base->lock);
1736 
1737     return cmp_next_hrtimer_event(basem, expires);
1738 }
1739 
1740 /**
1741  * timer_clear_idle - Clear the idle state of the timer base
1742  *
1743  * Called with interrupts disabled
1744  */
1745 void timer_clear_idle(void)
1746 {
1747     struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1748 
1749     /*
1750      * We do this unlocked. The worst outcome is a remote enqueue sending
1751      * a pointless IPI, but taking the lock would just make the window for
1752      * sending the IPI a few instructions smaller for the cost of taking
1753      * the lock in the exit from idle path.
1754      */
1755     base->is_idle = false;
1756 }
1757 #endif
1758 
1759 /**
1760  * __run_timers - run all expired timers (if any) on this CPU.
1761  * @base: the timer vector to be processed.
1762  */
1763 static inline void __run_timers(struct timer_base *base)
1764 {
1765     struct hlist_head heads[LVL_DEPTH];
1766     int levels;
1767 
1768     if (time_before(jiffies, base->next_expiry))
1769         return;
1770 
1771     timer_base_lock_expiry(base);
1772     raw_spin_lock_irq(&base->lock);
1773 
1774     while (time_after_eq(jiffies, base->clk) &&
1775            time_after_eq(jiffies, base->next_expiry)) {
1776         levels = collect_expired_timers(base, heads);
1777         /*
1778          * The two possible reasons for not finding any expired
1779          * timer at this clk are that all matching timers have been
1780          * dequeued or no timer has been queued since
1781          * base::next_expiry was set to base::clk +
1782          * NEXT_TIMER_MAX_DELTA.
1783          */
1784         WARN_ON_ONCE(!levels && !base->next_expiry_recalc
1785                  && base->timers_pending);
1786         base->clk++;
1787         base->next_expiry = __next_timer_interrupt(base);
1788 
1789         while (levels--)
1790             expire_timers(base, heads + levels);
1791     }
1792     raw_spin_unlock_irq(&base->lock);
1793     timer_base_unlock_expiry(base);
1794 }
1795 
1796 /*
1797  * This function runs timers and the timer-tq in bottom half context.
1798  */
1799 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1800 {
1801     struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1802 
1803     __run_timers(base);
1804     if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1805         __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1806 }
1807 
1808 /*
1809  * Called by the local, per-CPU timer interrupt on SMP.
1810  */
1811 static void run_local_timers(void)
1812 {
1813     struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1814 
1815     hrtimer_run_queues();
1816     /* Raise the softirq only if required. */
1817     if (time_before(jiffies, base->next_expiry)) {
1818         if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1819             return;
1820         /* CPU is awake, so check the deferrable base. */
1821         base++;
1822         if (time_before(jiffies, base->next_expiry))
1823             return;
1824     }
1825     raise_softirq(TIMER_SOFTIRQ);
1826 }
1827 
1828 /*
1829  * Called from the timer interrupt handler to charge one tick to the current
1830  * process.  user_tick is 1 if the tick is user time, 0 for system.
1831  */
1832 void update_process_times(int user_tick)
1833 {
1834     struct task_struct *p = current;
1835 
1836     /* Note: this timer irq context must be accounted for as well. */
1837     account_process_tick(p, user_tick);
1838     run_local_timers();
1839     rcu_sched_clock_irq(user_tick);
1840 #ifdef CONFIG_IRQ_WORK
1841     if (in_irq())
1842         irq_work_tick();
1843 #endif
1844     scheduler_tick();
1845     if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1846         run_posix_cpu_timers();
1847 }
1848 
1849 /*
1850  * Since schedule_timeout()'s timer is defined on the stack, it must store
1851  * the target task on the stack as well.
1852  */
1853 struct process_timer {
1854     struct timer_list timer;
1855     struct task_struct *task;
1856 };
1857 
1858 static void process_timeout(struct timer_list *t)
1859 {
1860     struct process_timer *timeout = from_timer(timeout, t, timer);
1861 
1862     wake_up_process(timeout->task);
1863 }
1864 
1865 /**
1866  * schedule_timeout - sleep until timeout
1867  * @timeout: timeout value in jiffies
1868  *
1869  * Make the current task sleep until @timeout jiffies have elapsed.
1870  * The function behavior depends on the current task state
1871  * (see also set_current_state() description):
1872  *
1873  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1874  * at all. That happens because sched_submit_work() does nothing for
1875  * tasks in %TASK_RUNNING state.
1876  *
1877  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1878  * pass before the routine returns unless the current task is explicitly
1879  * woken up, (e.g. by wake_up_process()).
1880  *
1881  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1882  * delivered to the current task or the current task is explicitly woken
1883  * up.
1884  *
1885  * The current task state is guaranteed to be %TASK_RUNNING when this
1886  * routine returns.
1887  *
1888  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1889  * the CPU away without a bound on the timeout. In this case the return
1890  * value will be %MAX_SCHEDULE_TIMEOUT.
1891  *
1892  * Returns 0 when the timer has expired otherwise the remaining time in
1893  * jiffies will be returned. In all cases the return value is guaranteed
1894  * to be non-negative.
1895  */
1896 signed long __sched schedule_timeout(signed long timeout)
1897 {
1898     struct process_timer timer;
1899     unsigned long expire;
1900 
1901     switch (timeout)
1902     {
1903     case MAX_SCHEDULE_TIMEOUT:
1904         /*
1905          * These two special cases are useful to be comfortable
1906          * in the caller. Nothing more. We could take
1907          * MAX_SCHEDULE_TIMEOUT from one of the negative value
1908          * but I' d like to return a valid offset (>=0) to allow
1909          * the caller to do everything it want with the retval.
1910          */
1911         schedule();
1912         goto out;
1913     default:
1914         /*
1915          * Another bit of PARANOID. Note that the retval will be
1916          * 0 since no piece of kernel is supposed to do a check
1917          * for a negative retval of schedule_timeout() (since it
1918          * should never happens anyway). You just have the printk()
1919          * that will tell you if something is gone wrong and where.
1920          */
1921         if (timeout < 0) {
1922             printk(KERN_ERR "schedule_timeout: wrong timeout "
1923                 "value %lx\n", timeout);
1924             dump_stack();
1925             __set_current_state(TASK_RUNNING);
1926             goto out;
1927         }
1928     }
1929 
1930     expire = timeout + jiffies;
1931 
1932     timer.task = current;
1933     timer_setup_on_stack(&timer.timer, process_timeout, 0);
1934     __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1935     schedule();
1936     del_singleshot_timer_sync(&timer.timer);
1937 
1938     /* Remove the timer from the object tracker */
1939     destroy_timer_on_stack(&timer.timer);
1940 
1941     timeout = expire - jiffies;
1942 
1943  out:
1944     return timeout < 0 ? 0 : timeout;
1945 }
1946 EXPORT_SYMBOL(schedule_timeout);
1947 
1948 /*
1949  * We can use __set_current_state() here because schedule_timeout() calls
1950  * schedule() unconditionally.
1951  */
1952 signed long __sched schedule_timeout_interruptible(signed long timeout)
1953 {
1954     __set_current_state(TASK_INTERRUPTIBLE);
1955     return schedule_timeout(timeout);
1956 }
1957 EXPORT_SYMBOL(schedule_timeout_interruptible);
1958 
1959 signed long __sched schedule_timeout_killable(signed long timeout)
1960 {
1961     __set_current_state(TASK_KILLABLE);
1962     return schedule_timeout(timeout);
1963 }
1964 EXPORT_SYMBOL(schedule_timeout_killable);
1965 
1966 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1967 {
1968     __set_current_state(TASK_UNINTERRUPTIBLE);
1969     return schedule_timeout(timeout);
1970 }
1971 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1972 
1973 /*
1974  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1975  * to load average.
1976  */
1977 signed long __sched schedule_timeout_idle(signed long timeout)
1978 {
1979     __set_current_state(TASK_IDLE);
1980     return schedule_timeout(timeout);
1981 }
1982 EXPORT_SYMBOL(schedule_timeout_idle);
1983 
1984 #ifdef CONFIG_HOTPLUG_CPU
1985 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1986 {
1987     struct timer_list *timer;
1988     int cpu = new_base->cpu;
1989 
1990     while (!hlist_empty(head)) {
1991         timer = hlist_entry(head->first, struct timer_list, entry);
1992         detach_timer(timer, false);
1993         timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1994         internal_add_timer(new_base, timer);
1995     }
1996 }
1997 
1998 int timers_prepare_cpu(unsigned int cpu)
1999 {
2000     struct timer_base *base;
2001     int b;
2002 
2003     for (b = 0; b < NR_BASES; b++) {
2004         base = per_cpu_ptr(&timer_bases[b], cpu);
2005         base->clk = jiffies;
2006         base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2007         base->next_expiry_recalc = false;
2008         base->timers_pending = false;
2009         base->is_idle = false;
2010     }
2011     return 0;
2012 }
2013 
2014 int timers_dead_cpu(unsigned int cpu)
2015 {
2016     struct timer_base *old_base;
2017     struct timer_base *new_base;
2018     int b, i;
2019 
2020     BUG_ON(cpu_online(cpu));
2021 
2022     for (b = 0; b < NR_BASES; b++) {
2023         old_base = per_cpu_ptr(&timer_bases[b], cpu);
2024         new_base = get_cpu_ptr(&timer_bases[b]);
2025         /*
2026          * The caller is globally serialized and nobody else
2027          * takes two locks at once, deadlock is not possible.
2028          */
2029         raw_spin_lock_irq(&new_base->lock);
2030         raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2031 
2032         /*
2033          * The current CPUs base clock might be stale. Update it
2034          * before moving the timers over.
2035          */
2036         forward_timer_base(new_base);
2037 
2038         BUG_ON(old_base->running_timer);
2039 
2040         for (i = 0; i < WHEEL_SIZE; i++)
2041             migrate_timer_list(new_base, old_base->vectors + i);
2042 
2043         raw_spin_unlock(&old_base->lock);
2044         raw_spin_unlock_irq(&new_base->lock);
2045         put_cpu_ptr(&timer_bases);
2046     }
2047     return 0;
2048 }
2049 
2050 #endif /* CONFIG_HOTPLUG_CPU */
2051 
2052 static void __init init_timer_cpu(int cpu)
2053 {
2054     struct timer_base *base;
2055     int i;
2056 
2057     for (i = 0; i < NR_BASES; i++) {
2058         base = per_cpu_ptr(&timer_bases[i], cpu);
2059         base->cpu = cpu;
2060         raw_spin_lock_init(&base->lock);
2061         base->clk = jiffies;
2062         base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2063         timer_base_init_expiry_lock(base);
2064     }
2065 }
2066 
2067 static void __init init_timer_cpus(void)
2068 {
2069     int cpu;
2070 
2071     for_each_possible_cpu(cpu)
2072         init_timer_cpu(cpu);
2073 }
2074 
2075 void __init init_timers(void)
2076 {
2077     init_timer_cpus();
2078     posix_cputimers_init_work();
2079     open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2080 }
2081 
2082 /**
2083  * msleep - sleep safely even with waitqueue interruptions
2084  * @msecs: Time in milliseconds to sleep for
2085  */
2086 void msleep(unsigned int msecs)
2087 {
2088     unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2089 
2090     while (timeout)
2091         timeout = schedule_timeout_uninterruptible(timeout);
2092 }
2093 
2094 EXPORT_SYMBOL(msleep);
2095 
2096 /**
2097  * msleep_interruptible - sleep waiting for signals
2098  * @msecs: Time in milliseconds to sleep for
2099  */
2100 unsigned long msleep_interruptible(unsigned int msecs)
2101 {
2102     unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2103 
2104     while (timeout && !signal_pending(current))
2105         timeout = schedule_timeout_interruptible(timeout);
2106     return jiffies_to_msecs(timeout);
2107 }
2108 
2109 EXPORT_SYMBOL(msleep_interruptible);
2110 
2111 /**
2112  * usleep_range_state - Sleep for an approximate time in a given state
2113  * @min:    Minimum time in usecs to sleep
2114  * @max:    Maximum time in usecs to sleep
2115  * @state:  State of the current task that will be while sleeping
2116  *
2117  * In non-atomic context where the exact wakeup time is flexible, use
2118  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2119  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2120  * power usage by allowing hrtimers to take advantage of an already-
2121  * scheduled interrupt instead of scheduling a new one just for this sleep.
2122  */
2123 void __sched usleep_range_state(unsigned long min, unsigned long max,
2124                 unsigned int state)
2125 {
2126     ktime_t exp = ktime_add_us(ktime_get(), min);
2127     u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2128 
2129     for (;;) {
2130         __set_current_state(state);
2131         /* Do not return before the requested sleep time has elapsed */
2132         if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2133             break;
2134     }
2135 }
2136 EXPORT_SYMBOL(usleep_range_state);