Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  Kernel timekeeping code and accessor functions. Based on code from
0004  *  timer.c, moved in commit 8524070b7982.
0005  */
0006 #include <linux/timekeeper_internal.h>
0007 #include <linux/module.h>
0008 #include <linux/interrupt.h>
0009 #include <linux/percpu.h>
0010 #include <linux/init.h>
0011 #include <linux/mm.h>
0012 #include <linux/nmi.h>
0013 #include <linux/sched.h>
0014 #include <linux/sched/loadavg.h>
0015 #include <linux/sched/clock.h>
0016 #include <linux/syscore_ops.h>
0017 #include <linux/clocksource.h>
0018 #include <linux/jiffies.h>
0019 #include <linux/time.h>
0020 #include <linux/timex.h>
0021 #include <linux/tick.h>
0022 #include <linux/stop_machine.h>
0023 #include <linux/pvclock_gtod.h>
0024 #include <linux/compiler.h>
0025 #include <linux/audit.h>
0026 #include <linux/random.h>
0027 
0028 #include "tick-internal.h"
0029 #include "ntp_internal.h"
0030 #include "timekeeping_internal.h"
0031 
0032 #define TK_CLEAR_NTP        (1 << 0)
0033 #define TK_MIRROR       (1 << 1)
0034 #define TK_CLOCK_WAS_SET    (1 << 2)
0035 
0036 enum timekeeping_adv_mode {
0037     /* Update timekeeper when a tick has passed */
0038     TK_ADV_TICK,
0039 
0040     /* Update timekeeper on a direct frequency change */
0041     TK_ADV_FREQ
0042 };
0043 
0044 DEFINE_RAW_SPINLOCK(timekeeper_lock);
0045 
0046 /*
0047  * The most important data for readout fits into a single 64 byte
0048  * cache line.
0049  */
0050 static struct {
0051     seqcount_raw_spinlock_t seq;
0052     struct timekeeper   timekeeper;
0053 } tk_core ____cacheline_aligned = {
0054     .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
0055 };
0056 
0057 static struct timekeeper shadow_timekeeper;
0058 
0059 /* flag for if timekeeping is suspended */
0060 int __read_mostly timekeeping_suspended;
0061 
0062 /**
0063  * struct tk_fast - NMI safe timekeeper
0064  * @seq:    Sequence counter for protecting updates. The lowest bit
0065  *      is the index for the tk_read_base array
0066  * @base:   tk_read_base array. Access is indexed by the lowest bit of
0067  *      @seq.
0068  *
0069  * See @update_fast_timekeeper() below.
0070  */
0071 struct tk_fast {
0072     seqcount_latch_t    seq;
0073     struct tk_read_base base[2];
0074 };
0075 
0076 /* Suspend-time cycles value for halted fast timekeeper. */
0077 static u64 cycles_at_suspend;
0078 
0079 static u64 dummy_clock_read(struct clocksource *cs)
0080 {
0081     if (timekeeping_suspended)
0082         return cycles_at_suspend;
0083     return local_clock();
0084 }
0085 
0086 static struct clocksource dummy_clock = {
0087     .read = dummy_clock_read,
0088 };
0089 
0090 /*
0091  * Boot time initialization which allows local_clock() to be utilized
0092  * during early boot when clocksources are not available. local_clock()
0093  * returns nanoseconds already so no conversion is required, hence mult=1
0094  * and shift=0. When the first proper clocksource is installed then
0095  * the fast time keepers are updated with the correct values.
0096  */
0097 #define FAST_TK_INIT                        \
0098     {                           \
0099         .clock      = &dummy_clock,         \
0100         .mask       = CLOCKSOURCE_MASK(64),     \
0101         .mult       = 1,                \
0102         .shift      = 0,                \
0103     }
0104 
0105 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
0106     .seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
0107     .base[0] = FAST_TK_INIT,
0108     .base[1] = FAST_TK_INIT,
0109 };
0110 
0111 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
0112     .seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
0113     .base[0] = FAST_TK_INIT,
0114     .base[1] = FAST_TK_INIT,
0115 };
0116 
0117 static inline void tk_normalize_xtime(struct timekeeper *tk)
0118 {
0119     while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
0120         tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
0121         tk->xtime_sec++;
0122     }
0123     while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
0124         tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
0125         tk->raw_sec++;
0126     }
0127 }
0128 
0129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
0130 {
0131     struct timespec64 ts;
0132 
0133     ts.tv_sec = tk->xtime_sec;
0134     ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
0135     return ts;
0136 }
0137 
0138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
0139 {
0140     tk->xtime_sec = ts->tv_sec;
0141     tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
0142 }
0143 
0144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
0145 {
0146     tk->xtime_sec += ts->tv_sec;
0147     tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
0148     tk_normalize_xtime(tk);
0149 }
0150 
0151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
0152 {
0153     struct timespec64 tmp;
0154 
0155     /*
0156      * Verify consistency of: offset_real = -wall_to_monotonic
0157      * before modifying anything
0158      */
0159     set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
0160                     -tk->wall_to_monotonic.tv_nsec);
0161     WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
0162     tk->wall_to_monotonic = wtm;
0163     set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
0164     tk->offs_real = timespec64_to_ktime(tmp);
0165     tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
0166 }
0167 
0168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
0169 {
0170     tk->offs_boot = ktime_add(tk->offs_boot, delta);
0171     /*
0172      * Timespec representation for VDSO update to avoid 64bit division
0173      * on every update.
0174      */
0175     tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
0176 }
0177 
0178 /*
0179  * tk_clock_read - atomic clocksource read() helper
0180  *
0181  * This helper is necessary to use in the read paths because, while the
0182  * seqcount ensures we don't return a bad value while structures are updated,
0183  * it doesn't protect from potential crashes. There is the possibility that
0184  * the tkr's clocksource may change between the read reference, and the
0185  * clock reference passed to the read function.  This can cause crashes if
0186  * the wrong clocksource is passed to the wrong read function.
0187  * This isn't necessary to use when holding the timekeeper_lock or doing
0188  * a read of the fast-timekeeper tkrs (which is protected by its own locking
0189  * and update logic).
0190  */
0191 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
0192 {
0193     struct clocksource *clock = READ_ONCE(tkr->clock);
0194 
0195     return clock->read(clock);
0196 }
0197 
0198 #ifdef CONFIG_DEBUG_TIMEKEEPING
0199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
0200 
0201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
0202 {
0203 
0204     u64 max_cycles = tk->tkr_mono.clock->max_cycles;
0205     const char *name = tk->tkr_mono.clock->name;
0206 
0207     if (offset > max_cycles) {
0208         printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
0209                 offset, name, max_cycles);
0210         printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
0211     } else {
0212         if (offset > (max_cycles >> 1)) {
0213             printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
0214                     offset, name, max_cycles >> 1);
0215             printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
0216         }
0217     }
0218 
0219     if (tk->underflow_seen) {
0220         if (jiffies - tk->last_warning > WARNING_FREQ) {
0221             printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
0222             printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
0223             printk_deferred("         Your kernel is probably still fine.\n");
0224             tk->last_warning = jiffies;
0225         }
0226         tk->underflow_seen = 0;
0227     }
0228 
0229     if (tk->overflow_seen) {
0230         if (jiffies - tk->last_warning > WARNING_FREQ) {
0231             printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
0232             printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
0233             printk_deferred("         Your kernel is probably still fine.\n");
0234             tk->last_warning = jiffies;
0235         }
0236         tk->overflow_seen = 0;
0237     }
0238 }
0239 
0240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
0241 {
0242     struct timekeeper *tk = &tk_core.timekeeper;
0243     u64 now, last, mask, max, delta;
0244     unsigned int seq;
0245 
0246     /*
0247      * Since we're called holding a seqcount, the data may shift
0248      * under us while we're doing the calculation. This can cause
0249      * false positives, since we'd note a problem but throw the
0250      * results away. So nest another seqcount here to atomically
0251      * grab the points we are checking with.
0252      */
0253     do {
0254         seq = read_seqcount_begin(&tk_core.seq);
0255         now = tk_clock_read(tkr);
0256         last = tkr->cycle_last;
0257         mask = tkr->mask;
0258         max = tkr->clock->max_cycles;
0259     } while (read_seqcount_retry(&tk_core.seq, seq));
0260 
0261     delta = clocksource_delta(now, last, mask);
0262 
0263     /*
0264      * Try to catch underflows by checking if we are seeing small
0265      * mask-relative negative values.
0266      */
0267     if (unlikely((~delta & mask) < (mask >> 3))) {
0268         tk->underflow_seen = 1;
0269         delta = 0;
0270     }
0271 
0272     /* Cap delta value to the max_cycles values to avoid mult overflows */
0273     if (unlikely(delta > max)) {
0274         tk->overflow_seen = 1;
0275         delta = tkr->clock->max_cycles;
0276     }
0277 
0278     return delta;
0279 }
0280 #else
0281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
0282 {
0283 }
0284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
0285 {
0286     u64 cycle_now, delta;
0287 
0288     /* read clocksource */
0289     cycle_now = tk_clock_read(tkr);
0290 
0291     /* calculate the delta since the last update_wall_time */
0292     delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
0293 
0294     return delta;
0295 }
0296 #endif
0297 
0298 /**
0299  * tk_setup_internals - Set up internals to use clocksource clock.
0300  *
0301  * @tk:     The target timekeeper to setup.
0302  * @clock:      Pointer to clocksource.
0303  *
0304  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
0305  * pair and interval request.
0306  *
0307  * Unless you're the timekeeping code, you should not be using this!
0308  */
0309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
0310 {
0311     u64 interval;
0312     u64 tmp, ntpinterval;
0313     struct clocksource *old_clock;
0314 
0315     ++tk->cs_was_changed_seq;
0316     old_clock = tk->tkr_mono.clock;
0317     tk->tkr_mono.clock = clock;
0318     tk->tkr_mono.mask = clock->mask;
0319     tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
0320 
0321     tk->tkr_raw.clock = clock;
0322     tk->tkr_raw.mask = clock->mask;
0323     tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
0324 
0325     /* Do the ns -> cycle conversion first, using original mult */
0326     tmp = NTP_INTERVAL_LENGTH;
0327     tmp <<= clock->shift;
0328     ntpinterval = tmp;
0329     tmp += clock->mult/2;
0330     do_div(tmp, clock->mult);
0331     if (tmp == 0)
0332         tmp = 1;
0333 
0334     interval = (u64) tmp;
0335     tk->cycle_interval = interval;
0336 
0337     /* Go back from cycles -> shifted ns */
0338     tk->xtime_interval = interval * clock->mult;
0339     tk->xtime_remainder = ntpinterval - tk->xtime_interval;
0340     tk->raw_interval = interval * clock->mult;
0341 
0342      /* if changing clocks, convert xtime_nsec shift units */
0343     if (old_clock) {
0344         int shift_change = clock->shift - old_clock->shift;
0345         if (shift_change < 0) {
0346             tk->tkr_mono.xtime_nsec >>= -shift_change;
0347             tk->tkr_raw.xtime_nsec >>= -shift_change;
0348         } else {
0349             tk->tkr_mono.xtime_nsec <<= shift_change;
0350             tk->tkr_raw.xtime_nsec <<= shift_change;
0351         }
0352     }
0353 
0354     tk->tkr_mono.shift = clock->shift;
0355     tk->tkr_raw.shift = clock->shift;
0356 
0357     tk->ntp_error = 0;
0358     tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0359     tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0360 
0361     /*
0362      * The timekeeper keeps its own mult values for the currently
0363      * active clocksource. These value will be adjusted via NTP
0364      * to counteract clock drifting.
0365      */
0366     tk->tkr_mono.mult = clock->mult;
0367     tk->tkr_raw.mult = clock->mult;
0368     tk->ntp_err_mult = 0;
0369     tk->skip_second_overflow = 0;
0370 }
0371 
0372 /* Timekeeper helper functions. */
0373 
0374 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
0375 {
0376     u64 nsec;
0377 
0378     nsec = delta * tkr->mult + tkr->xtime_nsec;
0379     nsec >>= tkr->shift;
0380 
0381     return nsec;
0382 }
0383 
0384 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
0385 {
0386     u64 delta;
0387 
0388     delta = timekeeping_get_delta(tkr);
0389     return timekeeping_delta_to_ns(tkr, delta);
0390 }
0391 
0392 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
0393 {
0394     u64 delta;
0395 
0396     /* calculate the delta since the last update_wall_time */
0397     delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
0398     return timekeeping_delta_to_ns(tkr, delta);
0399 }
0400 
0401 /**
0402  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
0403  * @tkr: Timekeeping readout base from which we take the update
0404  * @tkf: Pointer to NMI safe timekeeper
0405  *
0406  * We want to use this from any context including NMI and tracing /
0407  * instrumenting the timekeeping code itself.
0408  *
0409  * Employ the latch technique; see @raw_write_seqcount_latch.
0410  *
0411  * So if a NMI hits the update of base[0] then it will use base[1]
0412  * which is still consistent. In the worst case this can result is a
0413  * slightly wrong timestamp (a few nanoseconds). See
0414  * @ktime_get_mono_fast_ns.
0415  */
0416 static void update_fast_timekeeper(const struct tk_read_base *tkr,
0417                    struct tk_fast *tkf)
0418 {
0419     struct tk_read_base *base = tkf->base;
0420 
0421     /* Force readers off to base[1] */
0422     raw_write_seqcount_latch(&tkf->seq);
0423 
0424     /* Update base[0] */
0425     memcpy(base, tkr, sizeof(*base));
0426 
0427     /* Force readers back to base[0] */
0428     raw_write_seqcount_latch(&tkf->seq);
0429 
0430     /* Update base[1] */
0431     memcpy(base + 1, base, sizeof(*base));
0432 }
0433 
0434 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
0435 {
0436     u64 delta, cycles = tk_clock_read(tkr);
0437 
0438     delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
0439     return timekeeping_delta_to_ns(tkr, delta);
0440 }
0441 
0442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
0443 {
0444     struct tk_read_base *tkr;
0445     unsigned int seq;
0446     u64 now;
0447 
0448     do {
0449         seq = raw_read_seqcount_latch(&tkf->seq);
0450         tkr = tkf->base + (seq & 0x01);
0451         now = ktime_to_ns(tkr->base);
0452         now += fast_tk_get_delta_ns(tkr);
0453     } while (read_seqcount_latch_retry(&tkf->seq, seq));
0454 
0455     return now;
0456 }
0457 
0458 /**
0459  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
0460  *
0461  * This timestamp is not guaranteed to be monotonic across an update.
0462  * The timestamp is calculated by:
0463  *
0464  *  now = base_mono + clock_delta * slope
0465  *
0466  * So if the update lowers the slope, readers who are forced to the
0467  * not yet updated second array are still using the old steeper slope.
0468  *
0469  * tmono
0470  * ^
0471  * |    o  n
0472  * |   o n
0473  * |  u
0474  * | o
0475  * |o
0476  * |12345678---> reader order
0477  *
0478  * o = old slope
0479  * u = update
0480  * n = new slope
0481  *
0482  * So reader 6 will observe time going backwards versus reader 5.
0483  *
0484  * While other CPUs are likely to be able to observe that, the only way
0485  * for a CPU local observation is when an NMI hits in the middle of
0486  * the update. Timestamps taken from that NMI context might be ahead
0487  * of the following timestamps. Callers need to be aware of that and
0488  * deal with it.
0489  */
0490 u64 notrace ktime_get_mono_fast_ns(void)
0491 {
0492     return __ktime_get_fast_ns(&tk_fast_mono);
0493 }
0494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
0495 
0496 /**
0497  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
0498  *
0499  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
0500  * conversion factor is not affected by NTP/PTP correction.
0501  */
0502 u64 notrace ktime_get_raw_fast_ns(void)
0503 {
0504     return __ktime_get_fast_ns(&tk_fast_raw);
0505 }
0506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
0507 
0508 /**
0509  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
0510  *
0511  * To keep it NMI safe since we're accessing from tracing, we're not using a
0512  * separate timekeeper with updates to monotonic clock and boot offset
0513  * protected with seqcounts. This has the following minor side effects:
0514  *
0515  * (1) Its possible that a timestamp be taken after the boot offset is updated
0516  * but before the timekeeper is updated. If this happens, the new boot offset
0517  * is added to the old timekeeping making the clock appear to update slightly
0518  * earlier:
0519  *    CPU 0                                        CPU 1
0520  *    timekeeping_inject_sleeptime64()
0521  *    __timekeeping_inject_sleeptime(tk, delta);
0522  *                                                 timestamp();
0523  *    timekeeping_update(tk, TK_CLEAR_NTP...);
0524  *
0525  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
0526  * partially updated.  Since the tk->offs_boot update is a rare event, this
0527  * should be a rare occurrence which postprocessing should be able to handle.
0528  *
0529  * The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
0530  * apply as well.
0531  */
0532 u64 notrace ktime_get_boot_fast_ns(void)
0533 {
0534     struct timekeeper *tk = &tk_core.timekeeper;
0535 
0536     return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
0537 }
0538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
0539 
0540 /**
0541  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
0542  *
0543  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
0544  * mono time and the TAI offset are not read atomically which may yield wrong
0545  * readouts. However, an update of the TAI offset is an rare event e.g., caused
0546  * by settime or adjtimex with an offset. The user of this function has to deal
0547  * with the possibility of wrong timestamps in post processing.
0548  */
0549 u64 notrace ktime_get_tai_fast_ns(void)
0550 {
0551     struct timekeeper *tk = &tk_core.timekeeper;
0552 
0553     return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
0554 }
0555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
0556 
0557 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
0558 {
0559     struct tk_read_base *tkr;
0560     u64 basem, baser, delta;
0561     unsigned int seq;
0562 
0563     do {
0564         seq = raw_read_seqcount_latch(&tkf->seq);
0565         tkr = tkf->base + (seq & 0x01);
0566         basem = ktime_to_ns(tkr->base);
0567         baser = ktime_to_ns(tkr->base_real);
0568         delta = fast_tk_get_delta_ns(tkr);
0569     } while (read_seqcount_latch_retry(&tkf->seq, seq));
0570 
0571     if (mono)
0572         *mono = basem + delta;
0573     return baser + delta;
0574 }
0575 
0576 /**
0577  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
0578  *
0579  * See ktime_get_fast_ns() for documentation of the time stamp ordering.
0580  */
0581 u64 ktime_get_real_fast_ns(void)
0582 {
0583     return __ktime_get_real_fast(&tk_fast_mono, NULL);
0584 }
0585 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
0586 
0587 /**
0588  * ktime_get_fast_timestamps: - NMI safe timestamps
0589  * @snapshot:   Pointer to timestamp storage
0590  *
0591  * Stores clock monotonic, boottime and realtime timestamps.
0592  *
0593  * Boot time is a racy access on 32bit systems if the sleep time injection
0594  * happens late during resume and not in timekeeping_resume(). That could
0595  * be avoided by expanding struct tk_read_base with boot offset for 32bit
0596  * and adding more overhead to the update. As this is a hard to observe
0597  * once per resume event which can be filtered with reasonable effort using
0598  * the accurate mono/real timestamps, it's probably not worth the trouble.
0599  *
0600  * Aside of that it might be possible on 32 and 64 bit to observe the
0601  * following when the sleep time injection happens late:
0602  *
0603  * CPU 0                CPU 1
0604  * timekeeping_resume()
0605  * ktime_get_fast_timestamps()
0606  *  mono, real = __ktime_get_real_fast()
0607  *                  inject_sleep_time()
0608  *                     update boot offset
0609  *  boot = mono + bootoffset;
0610  *
0611  * That means that boot time already has the sleep time adjustment, but
0612  * real time does not. On the next readout both are in sync again.
0613  *
0614  * Preventing this for 64bit is not really feasible without destroying the
0615  * careful cache layout of the timekeeper because the sequence count and
0616  * struct tk_read_base would then need two cache lines instead of one.
0617  *
0618  * Access to the time keeper clock source is disabled across the innermost
0619  * steps of suspend/resume. The accessors still work, but the timestamps
0620  * are frozen until time keeping is resumed which happens very early.
0621  *
0622  * For regular suspend/resume there is no observable difference vs. sched
0623  * clock, but it might affect some of the nasty low level debug printks.
0624  *
0625  * OTOH, access to sched clock is not guaranteed across suspend/resume on
0626  * all systems either so it depends on the hardware in use.
0627  *
0628  * If that turns out to be a real problem then this could be mitigated by
0629  * using sched clock in a similar way as during early boot. But it's not as
0630  * trivial as on early boot because it needs some careful protection
0631  * against the clock monotonic timestamp jumping backwards on resume.
0632  */
0633 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
0634 {
0635     struct timekeeper *tk = &tk_core.timekeeper;
0636 
0637     snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
0638     snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
0639 }
0640 
0641 /**
0642  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
0643  * @tk: Timekeeper to snapshot.
0644  *
0645  * It generally is unsafe to access the clocksource after timekeeping has been
0646  * suspended, so take a snapshot of the readout base of @tk and use it as the
0647  * fast timekeeper's readout base while suspended.  It will return the same
0648  * number of cycles every time until timekeeping is resumed at which time the
0649  * proper readout base for the fast timekeeper will be restored automatically.
0650  */
0651 static void halt_fast_timekeeper(const struct timekeeper *tk)
0652 {
0653     static struct tk_read_base tkr_dummy;
0654     const struct tk_read_base *tkr = &tk->tkr_mono;
0655 
0656     memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
0657     cycles_at_suspend = tk_clock_read(tkr);
0658     tkr_dummy.clock = &dummy_clock;
0659     tkr_dummy.base_real = tkr->base + tk->offs_real;
0660     update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
0661 
0662     tkr = &tk->tkr_raw;
0663     memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
0664     tkr_dummy.clock = &dummy_clock;
0665     update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
0666 }
0667 
0668 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
0669 
0670 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
0671 {
0672     raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
0673 }
0674 
0675 /**
0676  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
0677  * @nb: Pointer to the notifier block to register
0678  */
0679 int pvclock_gtod_register_notifier(struct notifier_block *nb)
0680 {
0681     struct timekeeper *tk = &tk_core.timekeeper;
0682     unsigned long flags;
0683     int ret;
0684 
0685     raw_spin_lock_irqsave(&timekeeper_lock, flags);
0686     ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
0687     update_pvclock_gtod(tk, true);
0688     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
0689 
0690     return ret;
0691 }
0692 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
0693 
0694 /**
0695  * pvclock_gtod_unregister_notifier - unregister a pvclock
0696  * timedata update listener
0697  * @nb: Pointer to the notifier block to unregister
0698  */
0699 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
0700 {
0701     unsigned long flags;
0702     int ret;
0703 
0704     raw_spin_lock_irqsave(&timekeeper_lock, flags);
0705     ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
0706     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
0707 
0708     return ret;
0709 }
0710 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
0711 
0712 /*
0713  * tk_update_leap_state - helper to update the next_leap_ktime
0714  */
0715 static inline void tk_update_leap_state(struct timekeeper *tk)
0716 {
0717     tk->next_leap_ktime = ntp_get_next_leap();
0718     if (tk->next_leap_ktime != KTIME_MAX)
0719         /* Convert to monotonic time */
0720         tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
0721 }
0722 
0723 /*
0724  * Update the ktime_t based scalar nsec members of the timekeeper
0725  */
0726 static inline void tk_update_ktime_data(struct timekeeper *tk)
0727 {
0728     u64 seconds;
0729     u32 nsec;
0730 
0731     /*
0732      * The xtime based monotonic readout is:
0733      *  nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
0734      * The ktime based monotonic readout is:
0735      *  nsec = base_mono + now();
0736      * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
0737      */
0738     seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
0739     nsec = (u32) tk->wall_to_monotonic.tv_nsec;
0740     tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
0741 
0742     /*
0743      * The sum of the nanoseconds portions of xtime and
0744      * wall_to_monotonic can be greater/equal one second. Take
0745      * this into account before updating tk->ktime_sec.
0746      */
0747     nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
0748     if (nsec >= NSEC_PER_SEC)
0749         seconds++;
0750     tk->ktime_sec = seconds;
0751 
0752     /* Update the monotonic raw base */
0753     tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
0754 }
0755 
0756 /* must hold timekeeper_lock */
0757 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
0758 {
0759     if (action & TK_CLEAR_NTP) {
0760         tk->ntp_error = 0;
0761         ntp_clear();
0762     }
0763 
0764     tk_update_leap_state(tk);
0765     tk_update_ktime_data(tk);
0766 
0767     update_vsyscall(tk);
0768     update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
0769 
0770     tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
0771     update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
0772     update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
0773 
0774     if (action & TK_CLOCK_WAS_SET)
0775         tk->clock_was_set_seq++;
0776     /*
0777      * The mirroring of the data to the shadow-timekeeper needs
0778      * to happen last here to ensure we don't over-write the
0779      * timekeeper structure on the next update with stale data
0780      */
0781     if (action & TK_MIRROR)
0782         memcpy(&shadow_timekeeper, &tk_core.timekeeper,
0783                sizeof(tk_core.timekeeper));
0784 }
0785 
0786 /**
0787  * timekeeping_forward_now - update clock to the current time
0788  * @tk:     Pointer to the timekeeper to update
0789  *
0790  * Forward the current clock to update its state since the last call to
0791  * update_wall_time(). This is useful before significant clock changes,
0792  * as it avoids having to deal with this time offset explicitly.
0793  */
0794 static void timekeeping_forward_now(struct timekeeper *tk)
0795 {
0796     u64 cycle_now, delta;
0797 
0798     cycle_now = tk_clock_read(&tk->tkr_mono);
0799     delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
0800     tk->tkr_mono.cycle_last = cycle_now;
0801     tk->tkr_raw.cycle_last  = cycle_now;
0802 
0803     tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
0804     tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
0805 
0806     tk_normalize_xtime(tk);
0807 }
0808 
0809 /**
0810  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
0811  * @ts:     pointer to the timespec to be set
0812  *
0813  * Returns the time of day in a timespec64 (WARN if suspended).
0814  */
0815 void ktime_get_real_ts64(struct timespec64 *ts)
0816 {
0817     struct timekeeper *tk = &tk_core.timekeeper;
0818     unsigned int seq;
0819     u64 nsecs;
0820 
0821     WARN_ON(timekeeping_suspended);
0822 
0823     do {
0824         seq = read_seqcount_begin(&tk_core.seq);
0825 
0826         ts->tv_sec = tk->xtime_sec;
0827         nsecs = timekeeping_get_ns(&tk->tkr_mono);
0828 
0829     } while (read_seqcount_retry(&tk_core.seq, seq));
0830 
0831     ts->tv_nsec = 0;
0832     timespec64_add_ns(ts, nsecs);
0833 }
0834 EXPORT_SYMBOL(ktime_get_real_ts64);
0835 
0836 ktime_t ktime_get(void)
0837 {
0838     struct timekeeper *tk = &tk_core.timekeeper;
0839     unsigned int seq;
0840     ktime_t base;
0841     u64 nsecs;
0842 
0843     WARN_ON(timekeeping_suspended);
0844 
0845     do {
0846         seq = read_seqcount_begin(&tk_core.seq);
0847         base = tk->tkr_mono.base;
0848         nsecs = timekeeping_get_ns(&tk->tkr_mono);
0849 
0850     } while (read_seqcount_retry(&tk_core.seq, seq));
0851 
0852     return ktime_add_ns(base, nsecs);
0853 }
0854 EXPORT_SYMBOL_GPL(ktime_get);
0855 
0856 u32 ktime_get_resolution_ns(void)
0857 {
0858     struct timekeeper *tk = &tk_core.timekeeper;
0859     unsigned int seq;
0860     u32 nsecs;
0861 
0862     WARN_ON(timekeeping_suspended);
0863 
0864     do {
0865         seq = read_seqcount_begin(&tk_core.seq);
0866         nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
0867     } while (read_seqcount_retry(&tk_core.seq, seq));
0868 
0869     return nsecs;
0870 }
0871 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
0872 
0873 static ktime_t *offsets[TK_OFFS_MAX] = {
0874     [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
0875     [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
0876     [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
0877 };
0878 
0879 ktime_t ktime_get_with_offset(enum tk_offsets offs)
0880 {
0881     struct timekeeper *tk = &tk_core.timekeeper;
0882     unsigned int seq;
0883     ktime_t base, *offset = offsets[offs];
0884     u64 nsecs;
0885 
0886     WARN_ON(timekeeping_suspended);
0887 
0888     do {
0889         seq = read_seqcount_begin(&tk_core.seq);
0890         base = ktime_add(tk->tkr_mono.base, *offset);
0891         nsecs = timekeeping_get_ns(&tk->tkr_mono);
0892 
0893     } while (read_seqcount_retry(&tk_core.seq, seq));
0894 
0895     return ktime_add_ns(base, nsecs);
0896 
0897 }
0898 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
0899 
0900 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
0901 {
0902     struct timekeeper *tk = &tk_core.timekeeper;
0903     unsigned int seq;
0904     ktime_t base, *offset = offsets[offs];
0905     u64 nsecs;
0906 
0907     WARN_ON(timekeeping_suspended);
0908 
0909     do {
0910         seq = read_seqcount_begin(&tk_core.seq);
0911         base = ktime_add(tk->tkr_mono.base, *offset);
0912         nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
0913 
0914     } while (read_seqcount_retry(&tk_core.seq, seq));
0915 
0916     return ktime_add_ns(base, nsecs);
0917 }
0918 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
0919 
0920 /**
0921  * ktime_mono_to_any() - convert monotonic time to any other time
0922  * @tmono:  time to convert.
0923  * @offs:   which offset to use
0924  */
0925 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
0926 {
0927     ktime_t *offset = offsets[offs];
0928     unsigned int seq;
0929     ktime_t tconv;
0930 
0931     do {
0932         seq = read_seqcount_begin(&tk_core.seq);
0933         tconv = ktime_add(tmono, *offset);
0934     } while (read_seqcount_retry(&tk_core.seq, seq));
0935 
0936     return tconv;
0937 }
0938 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
0939 
0940 /**
0941  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
0942  */
0943 ktime_t ktime_get_raw(void)
0944 {
0945     struct timekeeper *tk = &tk_core.timekeeper;
0946     unsigned int seq;
0947     ktime_t base;
0948     u64 nsecs;
0949 
0950     do {
0951         seq = read_seqcount_begin(&tk_core.seq);
0952         base = tk->tkr_raw.base;
0953         nsecs = timekeeping_get_ns(&tk->tkr_raw);
0954 
0955     } while (read_seqcount_retry(&tk_core.seq, seq));
0956 
0957     return ktime_add_ns(base, nsecs);
0958 }
0959 EXPORT_SYMBOL_GPL(ktime_get_raw);
0960 
0961 /**
0962  * ktime_get_ts64 - get the monotonic clock in timespec64 format
0963  * @ts:     pointer to timespec variable
0964  *
0965  * The function calculates the monotonic clock from the realtime
0966  * clock and the wall_to_monotonic offset and stores the result
0967  * in normalized timespec64 format in the variable pointed to by @ts.
0968  */
0969 void ktime_get_ts64(struct timespec64 *ts)
0970 {
0971     struct timekeeper *tk = &tk_core.timekeeper;
0972     struct timespec64 tomono;
0973     unsigned int seq;
0974     u64 nsec;
0975 
0976     WARN_ON(timekeeping_suspended);
0977 
0978     do {
0979         seq = read_seqcount_begin(&tk_core.seq);
0980         ts->tv_sec = tk->xtime_sec;
0981         nsec = timekeeping_get_ns(&tk->tkr_mono);
0982         tomono = tk->wall_to_monotonic;
0983 
0984     } while (read_seqcount_retry(&tk_core.seq, seq));
0985 
0986     ts->tv_sec += tomono.tv_sec;
0987     ts->tv_nsec = 0;
0988     timespec64_add_ns(ts, nsec + tomono.tv_nsec);
0989 }
0990 EXPORT_SYMBOL_GPL(ktime_get_ts64);
0991 
0992 /**
0993  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
0994  *
0995  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
0996  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
0997  * works on both 32 and 64 bit systems. On 32 bit systems the readout
0998  * covers ~136 years of uptime which should be enough to prevent
0999  * premature wrap arounds.
1000  */
1001 time64_t ktime_get_seconds(void)
1002 {
1003     struct timekeeper *tk = &tk_core.timekeeper;
1004 
1005     WARN_ON(timekeeping_suspended);
1006     return tk->ktime_sec;
1007 }
1008 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1009 
1010 /**
1011  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1012  *
1013  * Returns the wall clock seconds since 1970.
1014  *
1015  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016  * 32bit systems the access must be protected with the sequence
1017  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1018  * value.
1019  */
1020 time64_t ktime_get_real_seconds(void)
1021 {
1022     struct timekeeper *tk = &tk_core.timekeeper;
1023     time64_t seconds;
1024     unsigned int seq;
1025 
1026     if (IS_ENABLED(CONFIG_64BIT))
1027         return tk->xtime_sec;
1028 
1029     do {
1030         seq = read_seqcount_begin(&tk_core.seq);
1031         seconds = tk->xtime_sec;
1032 
1033     } while (read_seqcount_retry(&tk_core.seq, seq));
1034 
1035     return seconds;
1036 }
1037 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1038 
1039 /**
1040  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041  * but without the sequence counter protect. This internal function
1042  * is called just when timekeeping lock is already held.
1043  */
1044 noinstr time64_t __ktime_get_real_seconds(void)
1045 {
1046     struct timekeeper *tk = &tk_core.timekeeper;
1047 
1048     return tk->xtime_sec;
1049 }
1050 
1051 /**
1052  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053  * @systime_snapshot:   pointer to struct receiving the system time snapshot
1054  */
1055 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1056 {
1057     struct timekeeper *tk = &tk_core.timekeeper;
1058     unsigned int seq;
1059     ktime_t base_raw;
1060     ktime_t base_real;
1061     u64 nsec_raw;
1062     u64 nsec_real;
1063     u64 now;
1064 
1065     WARN_ON_ONCE(timekeeping_suspended);
1066 
1067     do {
1068         seq = read_seqcount_begin(&tk_core.seq);
1069         now = tk_clock_read(&tk->tkr_mono);
1070         systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1071         systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1072         systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1073         base_real = ktime_add(tk->tkr_mono.base,
1074                       tk_core.timekeeper.offs_real);
1075         base_raw = tk->tkr_raw.base;
1076         nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1077         nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1078     } while (read_seqcount_retry(&tk_core.seq, seq));
1079 
1080     systime_snapshot->cycles = now;
1081     systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1082     systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1083 }
1084 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1085 
1086 /* Scale base by mult/div checking for overflow */
1087 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1088 {
1089     u64 tmp, rem;
1090 
1091     tmp = div64_u64_rem(*base, div, &rem);
1092 
1093     if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1094         ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1095         return -EOVERFLOW;
1096     tmp *= mult;
1097 
1098     rem = div64_u64(rem * mult, div);
1099     *base = tmp + rem;
1100     return 0;
1101 }
1102 
1103 /**
1104  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1105  * @history:            Snapshot representing start of history
1106  * @partial_history_cycles: Cycle offset into history (fractional part)
1107  * @total_history_cycles:   Total history length in cycles
1108  * @discontinuity:      True indicates clock was set on history period
1109  * @ts:             Cross timestamp that should be adjusted using
1110  *  partial/total ratio
1111  *
1112  * Helper function used by get_device_system_crosststamp() to correct the
1113  * crosstimestamp corresponding to the start of the current interval to the
1114  * system counter value (timestamp point) provided by the driver. The
1115  * total_history_* quantities are the total history starting at the provided
1116  * reference point and ending at the start of the current interval. The cycle
1117  * count between the driver timestamp point and the start of the current
1118  * interval is partial_history_cycles.
1119  */
1120 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1121                      u64 partial_history_cycles,
1122                      u64 total_history_cycles,
1123                      bool discontinuity,
1124                      struct system_device_crosststamp *ts)
1125 {
1126     struct timekeeper *tk = &tk_core.timekeeper;
1127     u64 corr_raw, corr_real;
1128     bool interp_forward;
1129     int ret;
1130 
1131     if (total_history_cycles == 0 || partial_history_cycles == 0)
1132         return 0;
1133 
1134     /* Interpolate shortest distance from beginning or end of history */
1135     interp_forward = partial_history_cycles > total_history_cycles / 2;
1136     partial_history_cycles = interp_forward ?
1137         total_history_cycles - partial_history_cycles :
1138         partial_history_cycles;
1139 
1140     /*
1141      * Scale the monotonic raw time delta by:
1142      *  partial_history_cycles / total_history_cycles
1143      */
1144     corr_raw = (u64)ktime_to_ns(
1145         ktime_sub(ts->sys_monoraw, history->raw));
1146     ret = scale64_check_overflow(partial_history_cycles,
1147                      total_history_cycles, &corr_raw);
1148     if (ret)
1149         return ret;
1150 
1151     /*
1152      * If there is a discontinuity in the history, scale monotonic raw
1153      *  correction by:
1154      *  mult(real)/mult(raw) yielding the realtime correction
1155      * Otherwise, calculate the realtime correction similar to monotonic
1156      *  raw calculation
1157      */
1158     if (discontinuity) {
1159         corr_real = mul_u64_u32_div
1160             (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1161     } else {
1162         corr_real = (u64)ktime_to_ns(
1163             ktime_sub(ts->sys_realtime, history->real));
1164         ret = scale64_check_overflow(partial_history_cycles,
1165                          total_history_cycles, &corr_real);
1166         if (ret)
1167             return ret;
1168     }
1169 
1170     /* Fixup monotonic raw and real time time values */
1171     if (interp_forward) {
1172         ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1173         ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1174     } else {
1175         ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1176         ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1177     }
1178 
1179     return 0;
1180 }
1181 
1182 /*
1183  * cycle_between - true if test occurs chronologically between before and after
1184  */
1185 static bool cycle_between(u64 before, u64 test, u64 after)
1186 {
1187     if (test > before && test < after)
1188         return true;
1189     if (test < before && before > after)
1190         return true;
1191     return false;
1192 }
1193 
1194 /**
1195  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1196  * @get_time_fn:    Callback to get simultaneous device time and
1197  *  system counter from the device driver
1198  * @ctx:        Context passed to get_time_fn()
1199  * @history_begin:  Historical reference point used to interpolate system
1200  *  time when counter provided by the driver is before the current interval
1201  * @xtstamp:        Receives simultaneously captured system and device time
1202  *
1203  * Reads a timestamp from a device and correlates it to system time
1204  */
1205 int get_device_system_crosststamp(int (*get_time_fn)
1206                   (ktime_t *device_time,
1207                    struct system_counterval_t *sys_counterval,
1208                    void *ctx),
1209                   void *ctx,
1210                   struct system_time_snapshot *history_begin,
1211                   struct system_device_crosststamp *xtstamp)
1212 {
1213     struct system_counterval_t system_counterval;
1214     struct timekeeper *tk = &tk_core.timekeeper;
1215     u64 cycles, now, interval_start;
1216     unsigned int clock_was_set_seq = 0;
1217     ktime_t base_real, base_raw;
1218     u64 nsec_real, nsec_raw;
1219     u8 cs_was_changed_seq;
1220     unsigned int seq;
1221     bool do_interp;
1222     int ret;
1223 
1224     do {
1225         seq = read_seqcount_begin(&tk_core.seq);
1226         /*
1227          * Try to synchronously capture device time and a system
1228          * counter value calling back into the device driver
1229          */
1230         ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1231         if (ret)
1232             return ret;
1233 
1234         /*
1235          * Verify that the clocksource associated with the captured
1236          * system counter value is the same as the currently installed
1237          * timekeeper clocksource
1238          */
1239         if (tk->tkr_mono.clock != system_counterval.cs)
1240             return -ENODEV;
1241         cycles = system_counterval.cycles;
1242 
1243         /*
1244          * Check whether the system counter value provided by the
1245          * device driver is on the current timekeeping interval.
1246          */
1247         now = tk_clock_read(&tk->tkr_mono);
1248         interval_start = tk->tkr_mono.cycle_last;
1249         if (!cycle_between(interval_start, cycles, now)) {
1250             clock_was_set_seq = tk->clock_was_set_seq;
1251             cs_was_changed_seq = tk->cs_was_changed_seq;
1252             cycles = interval_start;
1253             do_interp = true;
1254         } else {
1255             do_interp = false;
1256         }
1257 
1258         base_real = ktime_add(tk->tkr_mono.base,
1259                       tk_core.timekeeper.offs_real);
1260         base_raw = tk->tkr_raw.base;
1261 
1262         nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1263                              system_counterval.cycles);
1264         nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1265                             system_counterval.cycles);
1266     } while (read_seqcount_retry(&tk_core.seq, seq));
1267 
1268     xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1269     xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1270 
1271     /*
1272      * Interpolate if necessary, adjusting back from the start of the
1273      * current interval
1274      */
1275     if (do_interp) {
1276         u64 partial_history_cycles, total_history_cycles;
1277         bool discontinuity;
1278 
1279         /*
1280          * Check that the counter value occurs after the provided
1281          * history reference and that the history doesn't cross a
1282          * clocksource change
1283          */
1284         if (!history_begin ||
1285             !cycle_between(history_begin->cycles,
1286                    system_counterval.cycles, cycles) ||
1287             history_begin->cs_was_changed_seq != cs_was_changed_seq)
1288             return -EINVAL;
1289         partial_history_cycles = cycles - system_counterval.cycles;
1290         total_history_cycles = cycles - history_begin->cycles;
1291         discontinuity =
1292             history_begin->clock_was_set_seq != clock_was_set_seq;
1293 
1294         ret = adjust_historical_crosststamp(history_begin,
1295                             partial_history_cycles,
1296                             total_history_cycles,
1297                             discontinuity, xtstamp);
1298         if (ret)
1299             return ret;
1300     }
1301 
1302     return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1305 
1306 /**
1307  * do_settimeofday64 - Sets the time of day.
1308  * @ts:     pointer to the timespec64 variable containing the new time
1309  *
1310  * Sets the time of day to the new time and update NTP and notify hrtimers
1311  */
1312 int do_settimeofday64(const struct timespec64 *ts)
1313 {
1314     struct timekeeper *tk = &tk_core.timekeeper;
1315     struct timespec64 ts_delta, xt;
1316     unsigned long flags;
1317     int ret = 0;
1318 
1319     if (!timespec64_valid_settod(ts))
1320         return -EINVAL;
1321 
1322     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1323     write_seqcount_begin(&tk_core.seq);
1324 
1325     timekeeping_forward_now(tk);
1326 
1327     xt = tk_xtime(tk);
1328     ts_delta = timespec64_sub(*ts, xt);
1329 
1330     if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1331         ret = -EINVAL;
1332         goto out;
1333     }
1334 
1335     tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1336 
1337     tk_set_xtime(tk, ts);
1338 out:
1339     timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1340 
1341     write_seqcount_end(&tk_core.seq);
1342     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1343 
1344     /* Signal hrtimers about time change */
1345     clock_was_set(CLOCK_SET_WALL);
1346 
1347     if (!ret) {
1348         audit_tk_injoffset(ts_delta);
1349         add_device_randomness(ts, sizeof(*ts));
1350     }
1351 
1352     return ret;
1353 }
1354 EXPORT_SYMBOL(do_settimeofday64);
1355 
1356 /**
1357  * timekeeping_inject_offset - Adds or subtracts from the current time.
1358  * @ts:     Pointer to the timespec variable containing the offset
1359  *
1360  * Adds or subtracts an offset value from the current time.
1361  */
1362 static int timekeeping_inject_offset(const struct timespec64 *ts)
1363 {
1364     struct timekeeper *tk = &tk_core.timekeeper;
1365     unsigned long flags;
1366     struct timespec64 tmp;
1367     int ret = 0;
1368 
1369     if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1370         return -EINVAL;
1371 
1372     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373     write_seqcount_begin(&tk_core.seq);
1374 
1375     timekeeping_forward_now(tk);
1376 
1377     /* Make sure the proposed value is valid */
1378     tmp = timespec64_add(tk_xtime(tk), *ts);
1379     if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1380         !timespec64_valid_settod(&tmp)) {
1381         ret = -EINVAL;
1382         goto error;
1383     }
1384 
1385     tk_xtime_add(tk, ts);
1386     tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1387 
1388 error: /* even if we error out, we forwarded the time, so call update */
1389     timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1390 
1391     write_seqcount_end(&tk_core.seq);
1392     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1393 
1394     /* Signal hrtimers about time change */
1395     clock_was_set(CLOCK_SET_WALL);
1396 
1397     return ret;
1398 }
1399 
1400 /*
1401  * Indicates if there is an offset between the system clock and the hardware
1402  * clock/persistent clock/rtc.
1403  */
1404 int persistent_clock_is_local;
1405 
1406 /*
1407  * Adjust the time obtained from the CMOS to be UTC time instead of
1408  * local time.
1409  *
1410  * This is ugly, but preferable to the alternatives.  Otherwise we
1411  * would either need to write a program to do it in /etc/rc (and risk
1412  * confusion if the program gets run more than once; it would also be
1413  * hard to make the program warp the clock precisely n hours)  or
1414  * compile in the timezone information into the kernel.  Bad, bad....
1415  *
1416  *                      - TYT, 1992-01-01
1417  *
1418  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1419  * as real UNIX machines always do it. This avoids all headaches about
1420  * daylight saving times and warping kernel clocks.
1421  */
1422 void timekeeping_warp_clock(void)
1423 {
1424     if (sys_tz.tz_minuteswest != 0) {
1425         struct timespec64 adjust;
1426 
1427         persistent_clock_is_local = 1;
1428         adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1429         adjust.tv_nsec = 0;
1430         timekeeping_inject_offset(&adjust);
1431     }
1432 }
1433 
1434 /*
1435  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1436  */
1437 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1438 {
1439     tk->tai_offset = tai_offset;
1440     tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1441 }
1442 
1443 /*
1444  * change_clocksource - Swaps clocksources if a new one is available
1445  *
1446  * Accumulates current time interval and initializes new clocksource
1447  */
1448 static int change_clocksource(void *data)
1449 {
1450     struct timekeeper *tk = &tk_core.timekeeper;
1451     struct clocksource *new, *old = NULL;
1452     unsigned long flags;
1453     bool change = false;
1454 
1455     new = (struct clocksource *) data;
1456 
1457     /*
1458      * If the cs is in module, get a module reference. Succeeds
1459      * for built-in code (owner == NULL) as well.
1460      */
1461     if (try_module_get(new->owner)) {
1462         if (!new->enable || new->enable(new) == 0)
1463             change = true;
1464         else
1465             module_put(new->owner);
1466     }
1467 
1468     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1469     write_seqcount_begin(&tk_core.seq);
1470 
1471     timekeeping_forward_now(tk);
1472 
1473     if (change) {
1474         old = tk->tkr_mono.clock;
1475         tk_setup_internals(tk, new);
1476     }
1477 
1478     timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1479 
1480     write_seqcount_end(&tk_core.seq);
1481     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1482 
1483     if (old) {
1484         if (old->disable)
1485             old->disable(old);
1486 
1487         module_put(old->owner);
1488     }
1489 
1490     return 0;
1491 }
1492 
1493 /**
1494  * timekeeping_notify - Install a new clock source
1495  * @clock:      pointer to the clock source
1496  *
1497  * This function is called from clocksource.c after a new, better clock
1498  * source has been registered. The caller holds the clocksource_mutex.
1499  */
1500 int timekeeping_notify(struct clocksource *clock)
1501 {
1502     struct timekeeper *tk = &tk_core.timekeeper;
1503 
1504     if (tk->tkr_mono.clock == clock)
1505         return 0;
1506     stop_machine(change_clocksource, clock, NULL);
1507     tick_clock_notify();
1508     return tk->tkr_mono.clock == clock ? 0 : -1;
1509 }
1510 
1511 /**
1512  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1513  * @ts:     pointer to the timespec64 to be set
1514  *
1515  * Returns the raw monotonic time (completely un-modified by ntp)
1516  */
1517 void ktime_get_raw_ts64(struct timespec64 *ts)
1518 {
1519     struct timekeeper *tk = &tk_core.timekeeper;
1520     unsigned int seq;
1521     u64 nsecs;
1522 
1523     do {
1524         seq = read_seqcount_begin(&tk_core.seq);
1525         ts->tv_sec = tk->raw_sec;
1526         nsecs = timekeeping_get_ns(&tk->tkr_raw);
1527 
1528     } while (read_seqcount_retry(&tk_core.seq, seq));
1529 
1530     ts->tv_nsec = 0;
1531     timespec64_add_ns(ts, nsecs);
1532 }
1533 EXPORT_SYMBOL(ktime_get_raw_ts64);
1534 
1535 
1536 /**
1537  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1538  */
1539 int timekeeping_valid_for_hres(void)
1540 {
1541     struct timekeeper *tk = &tk_core.timekeeper;
1542     unsigned int seq;
1543     int ret;
1544 
1545     do {
1546         seq = read_seqcount_begin(&tk_core.seq);
1547 
1548         ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1549 
1550     } while (read_seqcount_retry(&tk_core.seq, seq));
1551 
1552     return ret;
1553 }
1554 
1555 /**
1556  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1557  */
1558 u64 timekeeping_max_deferment(void)
1559 {
1560     struct timekeeper *tk = &tk_core.timekeeper;
1561     unsigned int seq;
1562     u64 ret;
1563 
1564     do {
1565         seq = read_seqcount_begin(&tk_core.seq);
1566 
1567         ret = tk->tkr_mono.clock->max_idle_ns;
1568 
1569     } while (read_seqcount_retry(&tk_core.seq, seq));
1570 
1571     return ret;
1572 }
1573 
1574 /**
1575  * read_persistent_clock64 -  Return time from the persistent clock.
1576  * @ts: Pointer to the storage for the readout value
1577  *
1578  * Weak dummy function for arches that do not yet support it.
1579  * Reads the time from the battery backed persistent clock.
1580  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1581  *
1582  *  XXX - Do be sure to remove it once all arches implement it.
1583  */
1584 void __weak read_persistent_clock64(struct timespec64 *ts)
1585 {
1586     ts->tv_sec = 0;
1587     ts->tv_nsec = 0;
1588 }
1589 
1590 /**
1591  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1592  *                                        from the boot.
1593  *
1594  * Weak dummy function for arches that do not yet support it.
1595  * @wall_time:  - current time as returned by persistent clock
1596  * @boot_offset: - offset that is defined as wall_time - boot_time
1597  *
1598  * The default function calculates offset based on the current value of
1599  * local_clock(). This way architectures that support sched_clock() but don't
1600  * support dedicated boot time clock will provide the best estimate of the
1601  * boot time.
1602  */
1603 void __weak __init
1604 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1605                      struct timespec64 *boot_offset)
1606 {
1607     read_persistent_clock64(wall_time);
1608     *boot_offset = ns_to_timespec64(local_clock());
1609 }
1610 
1611 /*
1612  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1613  *
1614  * The flag starts of false and is only set when a suspend reaches
1615  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1616  * timekeeper clocksource is not stopping across suspend and has been
1617  * used to update sleep time. If the timekeeper clocksource has stopped
1618  * then the flag stays true and is used by the RTC resume code to decide
1619  * whether sleeptime must be injected and if so the flag gets false then.
1620  *
1621  * If a suspend fails before reaching timekeeping_resume() then the flag
1622  * stays false and prevents erroneous sleeptime injection.
1623  */
1624 static bool suspend_timing_needed;
1625 
1626 /* Flag for if there is a persistent clock on this platform */
1627 static bool persistent_clock_exists;
1628 
1629 /*
1630  * timekeeping_init - Initializes the clocksource and common timekeeping values
1631  */
1632 void __init timekeeping_init(void)
1633 {
1634     struct timespec64 wall_time, boot_offset, wall_to_mono;
1635     struct timekeeper *tk = &tk_core.timekeeper;
1636     struct clocksource *clock;
1637     unsigned long flags;
1638 
1639     read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1640     if (timespec64_valid_settod(&wall_time) &&
1641         timespec64_to_ns(&wall_time) > 0) {
1642         persistent_clock_exists = true;
1643     } else if (timespec64_to_ns(&wall_time) != 0) {
1644         pr_warn("Persistent clock returned invalid value");
1645         wall_time = (struct timespec64){0};
1646     }
1647 
1648     if (timespec64_compare(&wall_time, &boot_offset) < 0)
1649         boot_offset = (struct timespec64){0};
1650 
1651     /*
1652      * We want set wall_to_mono, so the following is true:
1653      * wall time + wall_to_mono = boot time
1654      */
1655     wall_to_mono = timespec64_sub(boot_offset, wall_time);
1656 
1657     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1658     write_seqcount_begin(&tk_core.seq);
1659     ntp_init();
1660 
1661     clock = clocksource_default_clock();
1662     if (clock->enable)
1663         clock->enable(clock);
1664     tk_setup_internals(tk, clock);
1665 
1666     tk_set_xtime(tk, &wall_time);
1667     tk->raw_sec = 0;
1668 
1669     tk_set_wall_to_mono(tk, wall_to_mono);
1670 
1671     timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1672 
1673     write_seqcount_end(&tk_core.seq);
1674     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1675 }
1676 
1677 /* time in seconds when suspend began for persistent clock */
1678 static struct timespec64 timekeeping_suspend_time;
1679 
1680 /**
1681  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1682  * @tk:     Pointer to the timekeeper to be updated
1683  * @delta:  Pointer to the delta value in timespec64 format
1684  *
1685  * Takes a timespec offset measuring a suspend interval and properly
1686  * adds the sleep offset to the timekeeping variables.
1687  */
1688 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1689                        const struct timespec64 *delta)
1690 {
1691     if (!timespec64_valid_strict(delta)) {
1692         printk_deferred(KERN_WARNING
1693                 "__timekeeping_inject_sleeptime: Invalid "
1694                 "sleep delta value!\n");
1695         return;
1696     }
1697     tk_xtime_add(tk, delta);
1698     tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1699     tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1700     tk_debug_account_sleep_time(delta);
1701 }
1702 
1703 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1704 /**
1705  * We have three kinds of time sources to use for sleep time
1706  * injection, the preference order is:
1707  * 1) non-stop clocksource
1708  * 2) persistent clock (ie: RTC accessible when irqs are off)
1709  * 3) RTC
1710  *
1711  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1712  * If system has neither 1) nor 2), 3) will be used finally.
1713  *
1714  *
1715  * If timekeeping has injected sleeptime via either 1) or 2),
1716  * 3) becomes needless, so in this case we don't need to call
1717  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1718  * means.
1719  */
1720 bool timekeeping_rtc_skipresume(void)
1721 {
1722     return !suspend_timing_needed;
1723 }
1724 
1725 /**
1726  * 1) can be determined whether to use or not only when doing
1727  * timekeeping_resume() which is invoked after rtc_suspend(),
1728  * so we can't skip rtc_suspend() surely if system has 1).
1729  *
1730  * But if system has 2), 2) will definitely be used, so in this
1731  * case we don't need to call rtc_suspend(), and this is what
1732  * timekeeping_rtc_skipsuspend() means.
1733  */
1734 bool timekeeping_rtc_skipsuspend(void)
1735 {
1736     return persistent_clock_exists;
1737 }
1738 
1739 /**
1740  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1741  * @delta: pointer to a timespec64 delta value
1742  *
1743  * This hook is for architectures that cannot support read_persistent_clock64
1744  * because their RTC/persistent clock is only accessible when irqs are enabled.
1745  * and also don't have an effective nonstop clocksource.
1746  *
1747  * This function should only be called by rtc_resume(), and allows
1748  * a suspend offset to be injected into the timekeeping values.
1749  */
1750 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1751 {
1752     struct timekeeper *tk = &tk_core.timekeeper;
1753     unsigned long flags;
1754 
1755     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1756     write_seqcount_begin(&tk_core.seq);
1757 
1758     suspend_timing_needed = false;
1759 
1760     timekeeping_forward_now(tk);
1761 
1762     __timekeeping_inject_sleeptime(tk, delta);
1763 
1764     timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1765 
1766     write_seqcount_end(&tk_core.seq);
1767     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1768 
1769     /* Signal hrtimers about time change */
1770     clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1771 }
1772 #endif
1773 
1774 /**
1775  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1776  */
1777 void timekeeping_resume(void)
1778 {
1779     struct timekeeper *tk = &tk_core.timekeeper;
1780     struct clocksource *clock = tk->tkr_mono.clock;
1781     unsigned long flags;
1782     struct timespec64 ts_new, ts_delta;
1783     u64 cycle_now, nsec;
1784     bool inject_sleeptime = false;
1785 
1786     read_persistent_clock64(&ts_new);
1787 
1788     clockevents_resume();
1789     clocksource_resume();
1790 
1791     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1792     write_seqcount_begin(&tk_core.seq);
1793 
1794     /*
1795      * After system resumes, we need to calculate the suspended time and
1796      * compensate it for the OS time. There are 3 sources that could be
1797      * used: Nonstop clocksource during suspend, persistent clock and rtc
1798      * device.
1799      *
1800      * One specific platform may have 1 or 2 or all of them, and the
1801      * preference will be:
1802      *  suspend-nonstop clocksource -> persistent clock -> rtc
1803      * The less preferred source will only be tried if there is no better
1804      * usable source. The rtc part is handled separately in rtc core code.
1805      */
1806     cycle_now = tk_clock_read(&tk->tkr_mono);
1807     nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1808     if (nsec > 0) {
1809         ts_delta = ns_to_timespec64(nsec);
1810         inject_sleeptime = true;
1811     } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1812         ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1813         inject_sleeptime = true;
1814     }
1815 
1816     if (inject_sleeptime) {
1817         suspend_timing_needed = false;
1818         __timekeeping_inject_sleeptime(tk, &ts_delta);
1819     }
1820 
1821     /* Re-base the last cycle value */
1822     tk->tkr_mono.cycle_last = cycle_now;
1823     tk->tkr_raw.cycle_last  = cycle_now;
1824 
1825     tk->ntp_error = 0;
1826     timekeeping_suspended = 0;
1827     timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1828     write_seqcount_end(&tk_core.seq);
1829     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1830 
1831     touch_softlockup_watchdog();
1832 
1833     /* Resume the clockevent device(s) and hrtimers */
1834     tick_resume();
1835     /* Notify timerfd as resume is equivalent to clock_was_set() */
1836     timerfd_resume();
1837 }
1838 
1839 int timekeeping_suspend(void)
1840 {
1841     struct timekeeper *tk = &tk_core.timekeeper;
1842     unsigned long flags;
1843     struct timespec64       delta, delta_delta;
1844     static struct timespec64    old_delta;
1845     struct clocksource *curr_clock;
1846     u64 cycle_now;
1847 
1848     read_persistent_clock64(&timekeeping_suspend_time);
1849 
1850     /*
1851      * On some systems the persistent_clock can not be detected at
1852      * timekeeping_init by its return value, so if we see a valid
1853      * value returned, update the persistent_clock_exists flag.
1854      */
1855     if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1856         persistent_clock_exists = true;
1857 
1858     suspend_timing_needed = true;
1859 
1860     raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861     write_seqcount_begin(&tk_core.seq);
1862     timekeeping_forward_now(tk);
1863     timekeeping_suspended = 1;
1864 
1865     /*
1866      * Since we've called forward_now, cycle_last stores the value
1867      * just read from the current clocksource. Save this to potentially
1868      * use in suspend timing.
1869      */
1870     curr_clock = tk->tkr_mono.clock;
1871     cycle_now = tk->tkr_mono.cycle_last;
1872     clocksource_start_suspend_timing(curr_clock, cycle_now);
1873 
1874     if (persistent_clock_exists) {
1875         /*
1876          * To avoid drift caused by repeated suspend/resumes,
1877          * which each can add ~1 second drift error,
1878          * try to compensate so the difference in system time
1879          * and persistent_clock time stays close to constant.
1880          */
1881         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1882         delta_delta = timespec64_sub(delta, old_delta);
1883         if (abs(delta_delta.tv_sec) >= 2) {
1884             /*
1885              * if delta_delta is too large, assume time correction
1886              * has occurred and set old_delta to the current delta.
1887              */
1888             old_delta = delta;
1889         } else {
1890             /* Otherwise try to adjust old_system to compensate */
1891             timekeeping_suspend_time =
1892                 timespec64_add(timekeeping_suspend_time, delta_delta);
1893         }
1894     }
1895 
1896     timekeeping_update(tk, TK_MIRROR);
1897     halt_fast_timekeeper(tk);
1898     write_seqcount_end(&tk_core.seq);
1899     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1900 
1901     tick_suspend();
1902     clocksource_suspend();
1903     clockevents_suspend();
1904 
1905     return 0;
1906 }
1907 
1908 /* sysfs resume/suspend bits for timekeeping */
1909 static struct syscore_ops timekeeping_syscore_ops = {
1910     .resume     = timekeeping_resume,
1911     .suspend    = timekeeping_suspend,
1912 };
1913 
1914 static int __init timekeeping_init_ops(void)
1915 {
1916     register_syscore_ops(&timekeeping_syscore_ops);
1917     return 0;
1918 }
1919 device_initcall(timekeeping_init_ops);
1920 
1921 /*
1922  * Apply a multiplier adjustment to the timekeeper
1923  */
1924 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1925                              s64 offset,
1926                              s32 mult_adj)
1927 {
1928     s64 interval = tk->cycle_interval;
1929 
1930     if (mult_adj == 0) {
1931         return;
1932     } else if (mult_adj == -1) {
1933         interval = -interval;
1934         offset = -offset;
1935     } else if (mult_adj != 1) {
1936         interval *= mult_adj;
1937         offset *= mult_adj;
1938     }
1939 
1940     /*
1941      * So the following can be confusing.
1942      *
1943      * To keep things simple, lets assume mult_adj == 1 for now.
1944      *
1945      * When mult_adj != 1, remember that the interval and offset values
1946      * have been appropriately scaled so the math is the same.
1947      *
1948      * The basic idea here is that we're increasing the multiplier
1949      * by one, this causes the xtime_interval to be incremented by
1950      * one cycle_interval. This is because:
1951      *  xtime_interval = cycle_interval * mult
1952      * So if mult is being incremented by one:
1953      *  xtime_interval = cycle_interval * (mult + 1)
1954      * Its the same as:
1955      *  xtime_interval = (cycle_interval * mult) + cycle_interval
1956      * Which can be shortened to:
1957      *  xtime_interval += cycle_interval
1958      *
1959      * So offset stores the non-accumulated cycles. Thus the current
1960      * time (in shifted nanoseconds) is:
1961      *  now = (offset * adj) + xtime_nsec
1962      * Now, even though we're adjusting the clock frequency, we have
1963      * to keep time consistent. In other words, we can't jump back
1964      * in time, and we also want to avoid jumping forward in time.
1965      *
1966      * So given the same offset value, we need the time to be the same
1967      * both before and after the freq adjustment.
1968      *  now = (offset * adj_1) + xtime_nsec_1
1969      *  now = (offset * adj_2) + xtime_nsec_2
1970      * So:
1971      *  (offset * adj_1) + xtime_nsec_1 =
1972      *      (offset * adj_2) + xtime_nsec_2
1973      * And we know:
1974      *  adj_2 = adj_1 + 1
1975      * So:
1976      *  (offset * adj_1) + xtime_nsec_1 =
1977      *      (offset * (adj_1+1)) + xtime_nsec_2
1978      *  (offset * adj_1) + xtime_nsec_1 =
1979      *      (offset * adj_1) + offset + xtime_nsec_2
1980      * Canceling the sides:
1981      *  xtime_nsec_1 = offset + xtime_nsec_2
1982      * Which gives us:
1983      *  xtime_nsec_2 = xtime_nsec_1 - offset
1984      * Which simplifies to:
1985      *  xtime_nsec -= offset
1986      */
1987     if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1988         /* NTP adjustment caused clocksource mult overflow */
1989         WARN_ON_ONCE(1);
1990         return;
1991     }
1992 
1993     tk->tkr_mono.mult += mult_adj;
1994     tk->xtime_interval += interval;
1995     tk->tkr_mono.xtime_nsec -= offset;
1996 }
1997 
1998 /*
1999  * Adjust the timekeeper's multiplier to the correct frequency
2000  * and also to reduce the accumulated error value.
2001  */
2002 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2003 {
2004     u32 mult;
2005 
2006     /*
2007      * Determine the multiplier from the current NTP tick length.
2008      * Avoid expensive division when the tick length doesn't change.
2009      */
2010     if (likely(tk->ntp_tick == ntp_tick_length())) {
2011         mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2012     } else {
2013         tk->ntp_tick = ntp_tick_length();
2014         mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2015                  tk->xtime_remainder, tk->cycle_interval);
2016     }
2017 
2018     /*
2019      * If the clock is behind the NTP time, increase the multiplier by 1
2020      * to catch up with it. If it's ahead and there was a remainder in the
2021      * tick division, the clock will slow down. Otherwise it will stay
2022      * ahead until the tick length changes to a non-divisible value.
2023      */
2024     tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2025     mult += tk->ntp_err_mult;
2026 
2027     timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2028 
2029     if (unlikely(tk->tkr_mono.clock->maxadj &&
2030         (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2031             > tk->tkr_mono.clock->maxadj))) {
2032         printk_once(KERN_WARNING
2033             "Adjusting %s more than 11%% (%ld vs %ld)\n",
2034             tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2035             (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2036     }
2037 
2038     /*
2039      * It may be possible that when we entered this function, xtime_nsec
2040      * was very small.  Further, if we're slightly speeding the clocksource
2041      * in the code above, its possible the required corrective factor to
2042      * xtime_nsec could cause it to underflow.
2043      *
2044      * Now, since we have already accumulated the second and the NTP
2045      * subsystem has been notified via second_overflow(), we need to skip
2046      * the next update.
2047      */
2048     if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2049         tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2050                             tk->tkr_mono.shift;
2051         tk->xtime_sec--;
2052         tk->skip_second_overflow = 1;
2053     }
2054 }
2055 
2056 /*
2057  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2058  *
2059  * Helper function that accumulates the nsecs greater than a second
2060  * from the xtime_nsec field to the xtime_secs field.
2061  * It also calls into the NTP code to handle leapsecond processing.
2062  */
2063 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2064 {
2065     u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2066     unsigned int clock_set = 0;
2067 
2068     while (tk->tkr_mono.xtime_nsec >= nsecps) {
2069         int leap;
2070 
2071         tk->tkr_mono.xtime_nsec -= nsecps;
2072         tk->xtime_sec++;
2073 
2074         /*
2075          * Skip NTP update if this second was accumulated before,
2076          * i.e. xtime_nsec underflowed in timekeeping_adjust()
2077          */
2078         if (unlikely(tk->skip_second_overflow)) {
2079             tk->skip_second_overflow = 0;
2080             continue;
2081         }
2082 
2083         /* Figure out if its a leap sec and apply if needed */
2084         leap = second_overflow(tk->xtime_sec);
2085         if (unlikely(leap)) {
2086             struct timespec64 ts;
2087 
2088             tk->xtime_sec += leap;
2089 
2090             ts.tv_sec = leap;
2091             ts.tv_nsec = 0;
2092             tk_set_wall_to_mono(tk,
2093                 timespec64_sub(tk->wall_to_monotonic, ts));
2094 
2095             __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2096 
2097             clock_set = TK_CLOCK_WAS_SET;
2098         }
2099     }
2100     return clock_set;
2101 }
2102 
2103 /*
2104  * logarithmic_accumulation - shifted accumulation of cycles
2105  *
2106  * This functions accumulates a shifted interval of cycles into
2107  * a shifted interval nanoseconds. Allows for O(log) accumulation
2108  * loop.
2109  *
2110  * Returns the unconsumed cycles.
2111  */
2112 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2113                     u32 shift, unsigned int *clock_set)
2114 {
2115     u64 interval = tk->cycle_interval << shift;
2116     u64 snsec_per_sec;
2117 
2118     /* If the offset is smaller than a shifted interval, do nothing */
2119     if (offset < interval)
2120         return offset;
2121 
2122     /* Accumulate one shifted interval */
2123     offset -= interval;
2124     tk->tkr_mono.cycle_last += interval;
2125     tk->tkr_raw.cycle_last  += interval;
2126 
2127     tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2128     *clock_set |= accumulate_nsecs_to_secs(tk);
2129 
2130     /* Accumulate raw time */
2131     tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2132     snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2133     while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2134         tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2135         tk->raw_sec++;
2136     }
2137 
2138     /* Accumulate error between NTP and clock interval */
2139     tk->ntp_error += tk->ntp_tick << shift;
2140     tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2141                         (tk->ntp_error_shift + shift);
2142 
2143     return offset;
2144 }
2145 
2146 /*
2147  * timekeeping_advance - Updates the timekeeper to the current time and
2148  * current NTP tick length
2149  */
2150 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2151 {
2152     struct timekeeper *real_tk = &tk_core.timekeeper;
2153     struct timekeeper *tk = &shadow_timekeeper;
2154     u64 offset;
2155     int shift = 0, maxshift;
2156     unsigned int clock_set = 0;
2157     unsigned long flags;
2158 
2159     raw_spin_lock_irqsave(&timekeeper_lock, flags);
2160 
2161     /* Make sure we're fully resumed: */
2162     if (unlikely(timekeeping_suspended))
2163         goto out;
2164 
2165     offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2166                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2167 
2168     /* Check if there's really nothing to do */
2169     if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2170         goto out;
2171 
2172     /* Do some additional sanity checking */
2173     timekeeping_check_update(tk, offset);
2174 
2175     /*
2176      * With NO_HZ we may have to accumulate many cycle_intervals
2177      * (think "ticks") worth of time at once. To do this efficiently,
2178      * we calculate the largest doubling multiple of cycle_intervals
2179      * that is smaller than the offset.  We then accumulate that
2180      * chunk in one go, and then try to consume the next smaller
2181      * doubled multiple.
2182      */
2183     shift = ilog2(offset) - ilog2(tk->cycle_interval);
2184     shift = max(0, shift);
2185     /* Bound shift to one less than what overflows tick_length */
2186     maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2187     shift = min(shift, maxshift);
2188     while (offset >= tk->cycle_interval) {
2189         offset = logarithmic_accumulation(tk, offset, shift,
2190                             &clock_set);
2191         if (offset < tk->cycle_interval<<shift)
2192             shift--;
2193     }
2194 
2195     /* Adjust the multiplier to correct NTP error */
2196     timekeeping_adjust(tk, offset);
2197 
2198     /*
2199      * Finally, make sure that after the rounding
2200      * xtime_nsec isn't larger than NSEC_PER_SEC
2201      */
2202     clock_set |= accumulate_nsecs_to_secs(tk);
2203 
2204     write_seqcount_begin(&tk_core.seq);
2205     /*
2206      * Update the real timekeeper.
2207      *
2208      * We could avoid this memcpy by switching pointers, but that
2209      * requires changes to all other timekeeper usage sites as
2210      * well, i.e. move the timekeeper pointer getter into the
2211      * spinlocked/seqcount protected sections. And we trade this
2212      * memcpy under the tk_core.seq against one before we start
2213      * updating.
2214      */
2215     timekeeping_update(tk, clock_set);
2216     memcpy(real_tk, tk, sizeof(*tk));
2217     /* The memcpy must come last. Do not put anything here! */
2218     write_seqcount_end(&tk_core.seq);
2219 out:
2220     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2221 
2222     return !!clock_set;
2223 }
2224 
2225 /**
2226  * update_wall_time - Uses the current clocksource to increment the wall time
2227  *
2228  */
2229 void update_wall_time(void)
2230 {
2231     if (timekeeping_advance(TK_ADV_TICK))
2232         clock_was_set_delayed();
2233 }
2234 
2235 /**
2236  * getboottime64 - Return the real time of system boot.
2237  * @ts:     pointer to the timespec64 to be set
2238  *
2239  * Returns the wall-time of boot in a timespec64.
2240  *
2241  * This is based on the wall_to_monotonic offset and the total suspend
2242  * time. Calls to settimeofday will affect the value returned (which
2243  * basically means that however wrong your real time clock is at boot time,
2244  * you get the right time here).
2245  */
2246 void getboottime64(struct timespec64 *ts)
2247 {
2248     struct timekeeper *tk = &tk_core.timekeeper;
2249     ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2250 
2251     *ts = ktime_to_timespec64(t);
2252 }
2253 EXPORT_SYMBOL_GPL(getboottime64);
2254 
2255 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2256 {
2257     struct timekeeper *tk = &tk_core.timekeeper;
2258     unsigned int seq;
2259 
2260     do {
2261         seq = read_seqcount_begin(&tk_core.seq);
2262 
2263         *ts = tk_xtime(tk);
2264     } while (read_seqcount_retry(&tk_core.seq, seq));
2265 }
2266 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2267 
2268 void ktime_get_coarse_ts64(struct timespec64 *ts)
2269 {
2270     struct timekeeper *tk = &tk_core.timekeeper;
2271     struct timespec64 now, mono;
2272     unsigned int seq;
2273 
2274     do {
2275         seq = read_seqcount_begin(&tk_core.seq);
2276 
2277         now = tk_xtime(tk);
2278         mono = tk->wall_to_monotonic;
2279     } while (read_seqcount_retry(&tk_core.seq, seq));
2280 
2281     set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2282                 now.tv_nsec + mono.tv_nsec);
2283 }
2284 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2285 
2286 /*
2287  * Must hold jiffies_lock
2288  */
2289 void do_timer(unsigned long ticks)
2290 {
2291     jiffies_64 += ticks;
2292     calc_global_load();
2293 }
2294 
2295 /**
2296  * ktime_get_update_offsets_now - hrtimer helper
2297  * @cwsseq: pointer to check and store the clock was set sequence number
2298  * @offs_real:  pointer to storage for monotonic -> realtime offset
2299  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2300  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2301  *
2302  * Returns current monotonic time and updates the offsets if the
2303  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2304  * different.
2305  *
2306  * Called from hrtimer_interrupt() or retrigger_next_event()
2307  */
2308 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2309                      ktime_t *offs_boot, ktime_t *offs_tai)
2310 {
2311     struct timekeeper *tk = &tk_core.timekeeper;
2312     unsigned int seq;
2313     ktime_t base;
2314     u64 nsecs;
2315 
2316     do {
2317         seq = read_seqcount_begin(&tk_core.seq);
2318 
2319         base = tk->tkr_mono.base;
2320         nsecs = timekeeping_get_ns(&tk->tkr_mono);
2321         base = ktime_add_ns(base, nsecs);
2322 
2323         if (*cwsseq != tk->clock_was_set_seq) {
2324             *cwsseq = tk->clock_was_set_seq;
2325             *offs_real = tk->offs_real;
2326             *offs_boot = tk->offs_boot;
2327             *offs_tai = tk->offs_tai;
2328         }
2329 
2330         /* Handle leapsecond insertion adjustments */
2331         if (unlikely(base >= tk->next_leap_ktime))
2332             *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2333 
2334     } while (read_seqcount_retry(&tk_core.seq, seq));
2335 
2336     return base;
2337 }
2338 
2339 /*
2340  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2341  */
2342 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2343 {
2344     if (txc->modes & ADJ_ADJTIME) {
2345         /* singleshot must not be used with any other mode bits */
2346         if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2347             return -EINVAL;
2348         if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2349             !capable(CAP_SYS_TIME))
2350             return -EPERM;
2351     } else {
2352         /* In order to modify anything, you gotta be super-user! */
2353         if (txc->modes && !capable(CAP_SYS_TIME))
2354             return -EPERM;
2355         /*
2356          * if the quartz is off by more than 10% then
2357          * something is VERY wrong!
2358          */
2359         if (txc->modes & ADJ_TICK &&
2360             (txc->tick <  900000/USER_HZ ||
2361              txc->tick > 1100000/USER_HZ))
2362             return -EINVAL;
2363     }
2364 
2365     if (txc->modes & ADJ_SETOFFSET) {
2366         /* In order to inject time, you gotta be super-user! */
2367         if (!capable(CAP_SYS_TIME))
2368             return -EPERM;
2369 
2370         /*
2371          * Validate if a timespec/timeval used to inject a time
2372          * offset is valid.  Offsets can be positive or negative, so
2373          * we don't check tv_sec. The value of the timeval/timespec
2374          * is the sum of its fields,but *NOTE*:
2375          * The field tv_usec/tv_nsec must always be non-negative and
2376          * we can't have more nanoseconds/microseconds than a second.
2377          */
2378         if (txc->time.tv_usec < 0)
2379             return -EINVAL;
2380 
2381         if (txc->modes & ADJ_NANO) {
2382             if (txc->time.tv_usec >= NSEC_PER_SEC)
2383                 return -EINVAL;
2384         } else {
2385             if (txc->time.tv_usec >= USEC_PER_SEC)
2386                 return -EINVAL;
2387         }
2388     }
2389 
2390     /*
2391      * Check for potential multiplication overflows that can
2392      * only happen on 64-bit systems:
2393      */
2394     if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2395         if (LLONG_MIN / PPM_SCALE > txc->freq)
2396             return -EINVAL;
2397         if (LLONG_MAX / PPM_SCALE < txc->freq)
2398             return -EINVAL;
2399     }
2400 
2401     return 0;
2402 }
2403 
2404 /**
2405  * random_get_entropy_fallback - Returns the raw clock source value,
2406  * used by random.c for platforms with no valid random_get_entropy().
2407  */
2408 unsigned long random_get_entropy_fallback(void)
2409 {
2410     struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2411     struct clocksource *clock = READ_ONCE(tkr->clock);
2412 
2413     if (unlikely(timekeeping_suspended || !clock))
2414         return 0;
2415     return clock->read(clock);
2416 }
2417 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2418 
2419 /**
2420  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2421  */
2422 int do_adjtimex(struct __kernel_timex *txc)
2423 {
2424     struct timekeeper *tk = &tk_core.timekeeper;
2425     struct audit_ntp_data ad;
2426     bool clock_set = false;
2427     struct timespec64 ts;
2428     unsigned long flags;
2429     s32 orig_tai, tai;
2430     int ret;
2431 
2432     /* Validate the data before disabling interrupts */
2433     ret = timekeeping_validate_timex(txc);
2434     if (ret)
2435         return ret;
2436     add_device_randomness(txc, sizeof(*txc));
2437 
2438     if (txc->modes & ADJ_SETOFFSET) {
2439         struct timespec64 delta;
2440         delta.tv_sec  = txc->time.tv_sec;
2441         delta.tv_nsec = txc->time.tv_usec;
2442         if (!(txc->modes & ADJ_NANO))
2443             delta.tv_nsec *= 1000;
2444         ret = timekeeping_inject_offset(&delta);
2445         if (ret)
2446             return ret;
2447 
2448         audit_tk_injoffset(delta);
2449     }
2450 
2451     audit_ntp_init(&ad);
2452 
2453     ktime_get_real_ts64(&ts);
2454     add_device_randomness(&ts, sizeof(ts));
2455 
2456     raw_spin_lock_irqsave(&timekeeper_lock, flags);
2457     write_seqcount_begin(&tk_core.seq);
2458 
2459     orig_tai = tai = tk->tai_offset;
2460     ret = __do_adjtimex(txc, &ts, &tai, &ad);
2461 
2462     if (tai != orig_tai) {
2463         __timekeeping_set_tai_offset(tk, tai);
2464         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2465         clock_set = true;
2466     }
2467     tk_update_leap_state(tk);
2468 
2469     write_seqcount_end(&tk_core.seq);
2470     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2471 
2472     audit_ntp_log(&ad);
2473 
2474     /* Update the multiplier immediately if frequency was set directly */
2475     if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2476         clock_set |= timekeeping_advance(TK_ADV_FREQ);
2477 
2478     if (clock_set)
2479         clock_was_set(CLOCK_REALTIME);
2480 
2481     ntp_notify_cmos_timer();
2482 
2483     return ret;
2484 }
2485 
2486 #ifdef CONFIG_NTP_PPS
2487 /**
2488  * hardpps() - Accessor function to NTP __hardpps function
2489  */
2490 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2491 {
2492     unsigned long flags;
2493 
2494     raw_spin_lock_irqsave(&timekeeper_lock, flags);
2495     write_seqcount_begin(&tk_core.seq);
2496 
2497     __hardpps(phase_ts, raw_ts);
2498 
2499     write_seqcount_end(&tk_core.seq);
2500     raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2501 }
2502 EXPORT_SYMBOL(hardpps);
2503 #endif /* CONFIG_NTP_PPS */