0001
0002
0003
0004
0005
0006 #include <linux/clocksource.h>
0007 #include <linux/init.h>
0008 #include <linux/jiffies.h>
0009 #include <linux/ktime.h>
0010 #include <linux/kernel.h>
0011 #include <linux/math.h>
0012 #include <linux/moduleparam.h>
0013 #include <linux/sched.h>
0014 #include <linux/sched/clock.h>
0015 #include <linux/syscore_ops.h>
0016 #include <linux/hrtimer.h>
0017 #include <linux/sched_clock.h>
0018 #include <linux/seqlock.h>
0019 #include <linux/bitops.h>
0020
0021 #include "timekeeping.h"
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038 struct clock_data {
0039 seqcount_latch_t seq;
0040 struct clock_read_data read_data[2];
0041 ktime_t wrap_kt;
0042 unsigned long rate;
0043
0044 u64 (*actual_read_sched_clock)(void);
0045 };
0046
0047 static struct hrtimer sched_clock_timer;
0048 static int irqtime = -1;
0049
0050 core_param(irqtime, irqtime, int, 0400);
0051
0052 static u64 notrace jiffy_sched_clock_read(void)
0053 {
0054
0055
0056
0057
0058 return (u64)(jiffies - INITIAL_JIFFIES);
0059 }
0060
0061 static struct clock_data cd ____cacheline_aligned = {
0062 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
0063 .read_sched_clock = jiffy_sched_clock_read, },
0064 .actual_read_sched_clock = jiffy_sched_clock_read,
0065 };
0066
0067 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
0068 {
0069 return (cyc * mult) >> shift;
0070 }
0071
0072 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
0073 {
0074 *seq = raw_read_seqcount_latch(&cd.seq);
0075 return cd.read_data + (*seq & 1);
0076 }
0077
0078 notrace int sched_clock_read_retry(unsigned int seq)
0079 {
0080 return read_seqcount_latch_retry(&cd.seq, seq);
0081 }
0082
0083 unsigned long long notrace sched_clock(void)
0084 {
0085 u64 cyc, res;
0086 unsigned int seq;
0087 struct clock_read_data *rd;
0088
0089 do {
0090 rd = sched_clock_read_begin(&seq);
0091
0092 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
0093 rd->sched_clock_mask;
0094 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
0095 } while (sched_clock_read_retry(seq));
0096
0097 return res;
0098 }
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110 static void update_clock_read_data(struct clock_read_data *rd)
0111 {
0112
0113 cd.read_data[1] = *rd;
0114
0115
0116 raw_write_seqcount_latch(&cd.seq);
0117
0118
0119 cd.read_data[0] = *rd;
0120
0121
0122 raw_write_seqcount_latch(&cd.seq);
0123 }
0124
0125
0126
0127
0128 static void update_sched_clock(void)
0129 {
0130 u64 cyc;
0131 u64 ns;
0132 struct clock_read_data rd;
0133
0134 rd = cd.read_data[0];
0135
0136 cyc = cd.actual_read_sched_clock();
0137 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
0138
0139 rd.epoch_ns = ns;
0140 rd.epoch_cyc = cyc;
0141
0142 update_clock_read_data(&rd);
0143 }
0144
0145 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
0146 {
0147 update_sched_clock();
0148 hrtimer_forward_now(hrt, cd.wrap_kt);
0149
0150 return HRTIMER_RESTART;
0151 }
0152
0153 void __init
0154 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
0155 {
0156 u64 res, wrap, new_mask, new_epoch, cyc, ns;
0157 u32 new_mult, new_shift;
0158 unsigned long r, flags;
0159 char r_unit;
0160 struct clock_read_data rd;
0161
0162 if (cd.rate > rate)
0163 return;
0164
0165
0166 local_irq_save(flags);
0167
0168
0169 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
0170
0171 new_mask = CLOCKSOURCE_MASK(bits);
0172 cd.rate = rate;
0173
0174
0175 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
0176 cd.wrap_kt = ns_to_ktime(wrap);
0177
0178 rd = cd.read_data[0];
0179
0180
0181 new_epoch = read();
0182 cyc = cd.actual_read_sched_clock();
0183 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
0184 cd.actual_read_sched_clock = read;
0185
0186 rd.read_sched_clock = read;
0187 rd.sched_clock_mask = new_mask;
0188 rd.mult = new_mult;
0189 rd.shift = new_shift;
0190 rd.epoch_cyc = new_epoch;
0191 rd.epoch_ns = ns;
0192
0193 update_clock_read_data(&rd);
0194
0195 if (sched_clock_timer.function != NULL) {
0196
0197 hrtimer_start(&sched_clock_timer, cd.wrap_kt,
0198 HRTIMER_MODE_REL_HARD);
0199 }
0200
0201 r = rate;
0202 if (r >= 4000000) {
0203 r = DIV_ROUND_CLOSEST(r, 1000000);
0204 r_unit = 'M';
0205 } else if (r >= 4000) {
0206 r = DIV_ROUND_CLOSEST(r, 1000);
0207 r_unit = 'k';
0208 } else {
0209 r_unit = ' ';
0210 }
0211
0212
0213 res = cyc_to_ns(1ULL, new_mult, new_shift);
0214
0215 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
0216 bits, r, r_unit, res, wrap);
0217
0218
0219 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
0220 enable_sched_clock_irqtime();
0221
0222 local_irq_restore(flags);
0223
0224 pr_debug("Registered %pS as sched_clock source\n", read);
0225 }
0226
0227 void __init generic_sched_clock_init(void)
0228 {
0229
0230
0231
0232
0233 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
0234 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
0235
0236 update_sched_clock();
0237
0238
0239
0240
0241
0242 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
0243 sched_clock_timer.function = sched_clock_poll;
0244 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
0245 }
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258 static u64 notrace suspended_sched_clock_read(void)
0259 {
0260 unsigned int seq = raw_read_seqcount_latch(&cd.seq);
0261
0262 return cd.read_data[seq & 1].epoch_cyc;
0263 }
0264
0265 int sched_clock_suspend(void)
0266 {
0267 struct clock_read_data *rd = &cd.read_data[0];
0268
0269 update_sched_clock();
0270 hrtimer_cancel(&sched_clock_timer);
0271 rd->read_sched_clock = suspended_sched_clock_read;
0272
0273 return 0;
0274 }
0275
0276 void sched_clock_resume(void)
0277 {
0278 struct clock_read_data *rd = &cd.read_data[0];
0279
0280 rd->epoch_cyc = cd.actual_read_sched_clock();
0281 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
0282 rd->read_sched_clock = cd.actual_read_sched_clock;
0283 }
0284
0285 static struct syscore_ops sched_clock_ops = {
0286 .suspend = sched_clock_suspend,
0287 .resume = sched_clock_resume,
0288 };
0289
0290 static int __init sched_clock_syscore_init(void)
0291 {
0292 register_syscore_ops(&sched_clock_ops);
0293
0294 return 0;
0295 }
0296 device_initcall(sched_clock_syscore_init);