Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * 2002-10-15  Posix Clocks & timers
0004  *                           by George Anzinger george@mvista.com
0005  *               Copyright (C) 2002 2003 by MontaVista Software.
0006  *
0007  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
0008  *               Copyright (C) 2004 Boris Hu
0009  *
0010  * These are all the functions necessary to implement POSIX clocks & timers
0011  */
0012 #include <linux/mm.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/slab.h>
0015 #include <linux/time.h>
0016 #include <linux/mutex.h>
0017 #include <linux/sched/task.h>
0018 
0019 #include <linux/uaccess.h>
0020 #include <linux/list.h>
0021 #include <linux/init.h>
0022 #include <linux/compiler.h>
0023 #include <linux/hash.h>
0024 #include <linux/posix-clock.h>
0025 #include <linux/posix-timers.h>
0026 #include <linux/syscalls.h>
0027 #include <linux/wait.h>
0028 #include <linux/workqueue.h>
0029 #include <linux/export.h>
0030 #include <linux/hashtable.h>
0031 #include <linux/compat.h>
0032 #include <linux/nospec.h>
0033 #include <linux/time_namespace.h>
0034 
0035 #include "timekeeping.h"
0036 #include "posix-timers.h"
0037 
0038 /*
0039  * Management arrays for POSIX timers. Timers are now kept in static hash table
0040  * with 512 entries.
0041  * Timer ids are allocated by local routine, which selects proper hash head by
0042  * key, constructed from current->signal address and per signal struct counter.
0043  * This keeps timer ids unique per process, but now they can intersect between
0044  * processes.
0045  */
0046 
0047 /*
0048  * Lets keep our timers in a slab cache :-)
0049  */
0050 static struct kmem_cache *posix_timers_cache;
0051 
0052 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
0053 static DEFINE_SPINLOCK(hash_lock);
0054 
0055 static const struct k_clock * const posix_clocks[];
0056 static const struct k_clock *clockid_to_kclock(const clockid_t id);
0057 static const struct k_clock clock_realtime, clock_monotonic;
0058 
0059 /*
0060  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
0061  * SIGEV values.  Here we put out an error if this assumption fails.
0062  */
0063 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
0064                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
0065 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
0066 #endif
0067 
0068 /*
0069  * The timer ID is turned into a timer address by idr_find().
0070  * Verifying a valid ID consists of:
0071  *
0072  * a) checking that idr_find() returns other than -1.
0073  * b) checking that the timer id matches the one in the timer itself.
0074  * c) that the timer owner is in the callers thread group.
0075  */
0076 
0077 /*
0078  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
0079  *      to implement others.  This structure defines the various
0080  *      clocks.
0081  *
0082  * RESOLUTION: Clock resolution is used to round up timer and interval
0083  *      times, NOT to report clock times, which are reported with as
0084  *      much resolution as the system can muster.  In some cases this
0085  *      resolution may depend on the underlying clock hardware and
0086  *      may not be quantifiable until run time, and only then is the
0087  *      necessary code is written.  The standard says we should say
0088  *      something about this issue in the documentation...
0089  *
0090  * FUNCTIONS: The CLOCKs structure defines possible functions to
0091  *      handle various clock functions.
0092  *
0093  *      The standard POSIX timer management code assumes the
0094  *      following: 1.) The k_itimer struct (sched.h) is used for
0095  *      the timer.  2.) The list, it_lock, it_clock, it_id and
0096  *      it_pid fields are not modified by timer code.
0097  *
0098  * Permissions: It is assumed that the clock_settime() function defined
0099  *      for each clock will take care of permission checks.  Some
0100  *      clocks may be set able by any user (i.e. local process
0101  *      clocks) others not.  Currently the only set able clock we
0102  *      have is CLOCK_REALTIME and its high res counter part, both of
0103  *      which we beg off on and pass to do_sys_settimeofday().
0104  */
0105 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
0106 
0107 #define lock_timer(tid, flags)                         \
0108 ({  struct k_itimer *__timr;                       \
0109     __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
0110     __timr;                                \
0111 })
0112 
0113 static int hash(struct signal_struct *sig, unsigned int nr)
0114 {
0115     return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
0116 }
0117 
0118 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
0119                         struct signal_struct *sig,
0120                         timer_t id)
0121 {
0122     struct k_itimer *timer;
0123 
0124     hlist_for_each_entry_rcu(timer, head, t_hash,
0125                  lockdep_is_held(&hash_lock)) {
0126         if ((timer->it_signal == sig) && (timer->it_id == id))
0127             return timer;
0128     }
0129     return NULL;
0130 }
0131 
0132 static struct k_itimer *posix_timer_by_id(timer_t id)
0133 {
0134     struct signal_struct *sig = current->signal;
0135     struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
0136 
0137     return __posix_timers_find(head, sig, id);
0138 }
0139 
0140 static int posix_timer_add(struct k_itimer *timer)
0141 {
0142     struct signal_struct *sig = current->signal;
0143     int first_free_id = sig->posix_timer_id;
0144     struct hlist_head *head;
0145     int ret = -ENOENT;
0146 
0147     do {
0148         spin_lock(&hash_lock);
0149         head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
0150         if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
0151             hlist_add_head_rcu(&timer->t_hash, head);
0152             ret = sig->posix_timer_id;
0153         }
0154         if (++sig->posix_timer_id < 0)
0155             sig->posix_timer_id = 0;
0156         if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
0157             /* Loop over all possible ids completed */
0158             ret = -EAGAIN;
0159         spin_unlock(&hash_lock);
0160     } while (ret == -ENOENT);
0161     return ret;
0162 }
0163 
0164 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
0165 {
0166     spin_unlock_irqrestore(&timr->it_lock, flags);
0167 }
0168 
0169 /* Get clock_realtime */
0170 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
0171 {
0172     ktime_get_real_ts64(tp);
0173     return 0;
0174 }
0175 
0176 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
0177 {
0178     return ktime_get_real();
0179 }
0180 
0181 /* Set clock_realtime */
0182 static int posix_clock_realtime_set(const clockid_t which_clock,
0183                     const struct timespec64 *tp)
0184 {
0185     return do_sys_settimeofday64(tp, NULL);
0186 }
0187 
0188 static int posix_clock_realtime_adj(const clockid_t which_clock,
0189                     struct __kernel_timex *t)
0190 {
0191     return do_adjtimex(t);
0192 }
0193 
0194 /*
0195  * Get monotonic time for posix timers
0196  */
0197 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
0198 {
0199     ktime_get_ts64(tp);
0200     timens_add_monotonic(tp);
0201     return 0;
0202 }
0203 
0204 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
0205 {
0206     return ktime_get();
0207 }
0208 
0209 /*
0210  * Get monotonic-raw time for posix timers
0211  */
0212 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
0213 {
0214     ktime_get_raw_ts64(tp);
0215     timens_add_monotonic(tp);
0216     return 0;
0217 }
0218 
0219 
0220 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
0221 {
0222     ktime_get_coarse_real_ts64(tp);
0223     return 0;
0224 }
0225 
0226 static int posix_get_monotonic_coarse(clockid_t which_clock,
0227                         struct timespec64 *tp)
0228 {
0229     ktime_get_coarse_ts64(tp);
0230     timens_add_monotonic(tp);
0231     return 0;
0232 }
0233 
0234 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
0235 {
0236     *tp = ktime_to_timespec64(KTIME_LOW_RES);
0237     return 0;
0238 }
0239 
0240 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
0241 {
0242     ktime_get_boottime_ts64(tp);
0243     timens_add_boottime(tp);
0244     return 0;
0245 }
0246 
0247 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
0248 {
0249     return ktime_get_boottime();
0250 }
0251 
0252 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
0253 {
0254     ktime_get_clocktai_ts64(tp);
0255     return 0;
0256 }
0257 
0258 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
0259 {
0260     return ktime_get_clocktai();
0261 }
0262 
0263 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
0264 {
0265     tp->tv_sec = 0;
0266     tp->tv_nsec = hrtimer_resolution;
0267     return 0;
0268 }
0269 
0270 /*
0271  * Initialize everything, well, just everything in Posix clocks/timers ;)
0272  */
0273 static __init int init_posix_timers(void)
0274 {
0275     posix_timers_cache = kmem_cache_create("posix_timers_cache",
0276                     sizeof(struct k_itimer), 0,
0277                     SLAB_PANIC | SLAB_ACCOUNT, NULL);
0278     return 0;
0279 }
0280 __initcall(init_posix_timers);
0281 
0282 /*
0283  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
0284  * are of type int. Clamp the overrun value to INT_MAX
0285  */
0286 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
0287 {
0288     s64 sum = timr->it_overrun_last + (s64)baseval;
0289 
0290     return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
0291 }
0292 
0293 static void common_hrtimer_rearm(struct k_itimer *timr)
0294 {
0295     struct hrtimer *timer = &timr->it.real.timer;
0296 
0297     timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
0298                         timr->it_interval);
0299     hrtimer_restart(timer);
0300 }
0301 
0302 /*
0303  * This function is exported for use by the signal deliver code.  It is
0304  * called just prior to the info block being released and passes that
0305  * block to us.  It's function is to update the overrun entry AND to
0306  * restart the timer.  It should only be called if the timer is to be
0307  * restarted (i.e. we have flagged this in the sys_private entry of the
0308  * info block).
0309  *
0310  * To protect against the timer going away while the interrupt is queued,
0311  * we require that the it_requeue_pending flag be set.
0312  */
0313 void posixtimer_rearm(struct kernel_siginfo *info)
0314 {
0315     struct k_itimer *timr;
0316     unsigned long flags;
0317 
0318     timr = lock_timer(info->si_tid, &flags);
0319     if (!timr)
0320         return;
0321 
0322     if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
0323         timr->kclock->timer_rearm(timr);
0324 
0325         timr->it_active = 1;
0326         timr->it_overrun_last = timr->it_overrun;
0327         timr->it_overrun = -1LL;
0328         ++timr->it_requeue_pending;
0329 
0330         info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
0331     }
0332 
0333     unlock_timer(timr, flags);
0334 }
0335 
0336 int posix_timer_event(struct k_itimer *timr, int si_private)
0337 {
0338     enum pid_type type;
0339     int ret;
0340     /*
0341      * FIXME: if ->sigq is queued we can race with
0342      * dequeue_signal()->posixtimer_rearm().
0343      *
0344      * If dequeue_signal() sees the "right" value of
0345      * si_sys_private it calls posixtimer_rearm().
0346      * We re-queue ->sigq and drop ->it_lock().
0347      * posixtimer_rearm() locks the timer
0348      * and re-schedules it while ->sigq is pending.
0349      * Not really bad, but not that we want.
0350      */
0351     timr->sigq->info.si_sys_private = si_private;
0352 
0353     type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
0354     ret = send_sigqueue(timr->sigq, timr->it_pid, type);
0355     /* If we failed to send the signal the timer stops. */
0356     return ret > 0;
0357 }
0358 
0359 /*
0360  * This function gets called when a POSIX.1b interval timer expires.  It
0361  * is used as a callback from the kernel internal timer.  The
0362  * run_timer_list code ALWAYS calls with interrupts on.
0363 
0364  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
0365  */
0366 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
0367 {
0368     struct k_itimer *timr;
0369     unsigned long flags;
0370     int si_private = 0;
0371     enum hrtimer_restart ret = HRTIMER_NORESTART;
0372 
0373     timr = container_of(timer, struct k_itimer, it.real.timer);
0374     spin_lock_irqsave(&timr->it_lock, flags);
0375 
0376     timr->it_active = 0;
0377     if (timr->it_interval != 0)
0378         si_private = ++timr->it_requeue_pending;
0379 
0380     if (posix_timer_event(timr, si_private)) {
0381         /*
0382          * signal was not sent because of sig_ignor
0383          * we will not get a call back to restart it AND
0384          * it should be restarted.
0385          */
0386         if (timr->it_interval != 0) {
0387             ktime_t now = hrtimer_cb_get_time(timer);
0388 
0389             /*
0390              * FIXME: What we really want, is to stop this
0391              * timer completely and restart it in case the
0392              * SIG_IGN is removed. This is a non trivial
0393              * change which involves sighand locking
0394              * (sigh !), which we don't want to do late in
0395              * the release cycle.
0396              *
0397              * For now we just let timers with an interval
0398              * less than a jiffie expire every jiffie to
0399              * avoid softirq starvation in case of SIG_IGN
0400              * and a very small interval, which would put
0401              * the timer right back on the softirq pending
0402              * list. By moving now ahead of time we trick
0403              * hrtimer_forward() to expire the timer
0404              * later, while we still maintain the overrun
0405              * accuracy, but have some inconsistency in
0406              * the timer_gettime() case. This is at least
0407              * better than a starved softirq. A more
0408              * complex fix which solves also another related
0409              * inconsistency is already in the pipeline.
0410              */
0411 #ifdef CONFIG_HIGH_RES_TIMERS
0412             {
0413                 ktime_t kj = NSEC_PER_SEC / HZ;
0414 
0415                 if (timr->it_interval < kj)
0416                     now = ktime_add(now, kj);
0417             }
0418 #endif
0419             timr->it_overrun += hrtimer_forward(timer, now,
0420                                 timr->it_interval);
0421             ret = HRTIMER_RESTART;
0422             ++timr->it_requeue_pending;
0423             timr->it_active = 1;
0424         }
0425     }
0426 
0427     unlock_timer(timr, flags);
0428     return ret;
0429 }
0430 
0431 static struct pid *good_sigevent(sigevent_t * event)
0432 {
0433     struct pid *pid = task_tgid(current);
0434     struct task_struct *rtn;
0435 
0436     switch (event->sigev_notify) {
0437     case SIGEV_SIGNAL | SIGEV_THREAD_ID:
0438         pid = find_vpid(event->sigev_notify_thread_id);
0439         rtn = pid_task(pid, PIDTYPE_PID);
0440         if (!rtn || !same_thread_group(rtn, current))
0441             return NULL;
0442         fallthrough;
0443     case SIGEV_SIGNAL:
0444     case SIGEV_THREAD:
0445         if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
0446             return NULL;
0447         fallthrough;
0448     case SIGEV_NONE:
0449         return pid;
0450     default:
0451         return NULL;
0452     }
0453 }
0454 
0455 static struct k_itimer * alloc_posix_timer(void)
0456 {
0457     struct k_itimer *tmr;
0458     tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
0459     if (!tmr)
0460         return tmr;
0461     if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
0462         kmem_cache_free(posix_timers_cache, tmr);
0463         return NULL;
0464     }
0465     clear_siginfo(&tmr->sigq->info);
0466     return tmr;
0467 }
0468 
0469 static void k_itimer_rcu_free(struct rcu_head *head)
0470 {
0471     struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
0472 
0473     kmem_cache_free(posix_timers_cache, tmr);
0474 }
0475 
0476 #define IT_ID_SET   1
0477 #define IT_ID_NOT_SET   0
0478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
0479 {
0480     if (it_id_set) {
0481         unsigned long flags;
0482         spin_lock_irqsave(&hash_lock, flags);
0483         hlist_del_rcu(&tmr->t_hash);
0484         spin_unlock_irqrestore(&hash_lock, flags);
0485     }
0486     put_pid(tmr->it_pid);
0487     sigqueue_free(tmr->sigq);
0488     call_rcu(&tmr->rcu, k_itimer_rcu_free);
0489 }
0490 
0491 static int common_timer_create(struct k_itimer *new_timer)
0492 {
0493     hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
0494     return 0;
0495 }
0496 
0497 /* Create a POSIX.1b interval timer. */
0498 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
0499                timer_t __user *created_timer_id)
0500 {
0501     const struct k_clock *kc = clockid_to_kclock(which_clock);
0502     struct k_itimer *new_timer;
0503     int error, new_timer_id;
0504     int it_id_set = IT_ID_NOT_SET;
0505 
0506     if (!kc)
0507         return -EINVAL;
0508     if (!kc->timer_create)
0509         return -EOPNOTSUPP;
0510 
0511     new_timer = alloc_posix_timer();
0512     if (unlikely(!new_timer))
0513         return -EAGAIN;
0514 
0515     spin_lock_init(&new_timer->it_lock);
0516     new_timer_id = posix_timer_add(new_timer);
0517     if (new_timer_id < 0) {
0518         error = new_timer_id;
0519         goto out;
0520     }
0521 
0522     it_id_set = IT_ID_SET;
0523     new_timer->it_id = (timer_t) new_timer_id;
0524     new_timer->it_clock = which_clock;
0525     new_timer->kclock = kc;
0526     new_timer->it_overrun = -1LL;
0527 
0528     if (event) {
0529         rcu_read_lock();
0530         new_timer->it_pid = get_pid(good_sigevent(event));
0531         rcu_read_unlock();
0532         if (!new_timer->it_pid) {
0533             error = -EINVAL;
0534             goto out;
0535         }
0536         new_timer->it_sigev_notify     = event->sigev_notify;
0537         new_timer->sigq->info.si_signo = event->sigev_signo;
0538         new_timer->sigq->info.si_value = event->sigev_value;
0539     } else {
0540         new_timer->it_sigev_notify     = SIGEV_SIGNAL;
0541         new_timer->sigq->info.si_signo = SIGALRM;
0542         memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
0543         new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
0544         new_timer->it_pid = get_pid(task_tgid(current));
0545     }
0546 
0547     new_timer->sigq->info.si_tid   = new_timer->it_id;
0548     new_timer->sigq->info.si_code  = SI_TIMER;
0549 
0550     if (copy_to_user(created_timer_id,
0551              &new_timer_id, sizeof (new_timer_id))) {
0552         error = -EFAULT;
0553         goto out;
0554     }
0555 
0556     error = kc->timer_create(new_timer);
0557     if (error)
0558         goto out;
0559 
0560     spin_lock_irq(&current->sighand->siglock);
0561     new_timer->it_signal = current->signal;
0562     list_add(&new_timer->list, &current->signal->posix_timers);
0563     spin_unlock_irq(&current->sighand->siglock);
0564 
0565     return 0;
0566     /*
0567      * In the case of the timer belonging to another task, after
0568      * the task is unlocked, the timer is owned by the other task
0569      * and may cease to exist at any time.  Don't use or modify
0570      * new_timer after the unlock call.
0571      */
0572 out:
0573     release_posix_timer(new_timer, it_id_set);
0574     return error;
0575 }
0576 
0577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
0578         struct sigevent __user *, timer_event_spec,
0579         timer_t __user *, created_timer_id)
0580 {
0581     if (timer_event_spec) {
0582         sigevent_t event;
0583 
0584         if (copy_from_user(&event, timer_event_spec, sizeof (event)))
0585             return -EFAULT;
0586         return do_timer_create(which_clock, &event, created_timer_id);
0587     }
0588     return do_timer_create(which_clock, NULL, created_timer_id);
0589 }
0590 
0591 #ifdef CONFIG_COMPAT
0592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
0593                struct compat_sigevent __user *, timer_event_spec,
0594                timer_t __user *, created_timer_id)
0595 {
0596     if (timer_event_spec) {
0597         sigevent_t event;
0598 
0599         if (get_compat_sigevent(&event, timer_event_spec))
0600             return -EFAULT;
0601         return do_timer_create(which_clock, &event, created_timer_id);
0602     }
0603     return do_timer_create(which_clock, NULL, created_timer_id);
0604 }
0605 #endif
0606 
0607 /*
0608  * Locking issues: We need to protect the result of the id look up until
0609  * we get the timer locked down so it is not deleted under us.  The
0610  * removal is done under the idr spinlock so we use that here to bridge
0611  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
0612  * be release with out holding the timer lock.
0613  */
0614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
0615 {
0616     struct k_itimer *timr;
0617 
0618     /*
0619      * timer_t could be any type >= int and we want to make sure any
0620      * @timer_id outside positive int range fails lookup.
0621      */
0622     if ((unsigned long long)timer_id > INT_MAX)
0623         return NULL;
0624 
0625     rcu_read_lock();
0626     timr = posix_timer_by_id(timer_id);
0627     if (timr) {
0628         spin_lock_irqsave(&timr->it_lock, *flags);
0629         if (timr->it_signal == current->signal) {
0630             rcu_read_unlock();
0631             return timr;
0632         }
0633         spin_unlock_irqrestore(&timr->it_lock, *flags);
0634     }
0635     rcu_read_unlock();
0636 
0637     return NULL;
0638 }
0639 
0640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
0641 {
0642     struct hrtimer *timer = &timr->it.real.timer;
0643 
0644     return __hrtimer_expires_remaining_adjusted(timer, now);
0645 }
0646 
0647 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
0648 {
0649     struct hrtimer *timer = &timr->it.real.timer;
0650 
0651     return hrtimer_forward(timer, now, timr->it_interval);
0652 }
0653 
0654 /*
0655  * Get the time remaining on a POSIX.1b interval timer.  This function
0656  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
0657  * mess with irq.
0658  *
0659  * We have a couple of messes to clean up here.  First there is the case
0660  * of a timer that has a requeue pending.  These timers should appear to
0661  * be in the timer list with an expiry as if we were to requeue them
0662  * now.
0663  *
0664  * The second issue is the SIGEV_NONE timer which may be active but is
0665  * not really ever put in the timer list (to save system resources).
0666  * This timer may be expired, and if so, we will do it here.  Otherwise
0667  * it is the same as a requeue pending timer WRT to what we should
0668  * report.
0669  */
0670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
0671 {
0672     const struct k_clock *kc = timr->kclock;
0673     ktime_t now, remaining, iv;
0674     bool sig_none;
0675 
0676     sig_none = timr->it_sigev_notify == SIGEV_NONE;
0677     iv = timr->it_interval;
0678 
0679     /* interval timer ? */
0680     if (iv) {
0681         cur_setting->it_interval = ktime_to_timespec64(iv);
0682     } else if (!timr->it_active) {
0683         /*
0684          * SIGEV_NONE oneshot timers are never queued. Check them
0685          * below.
0686          */
0687         if (!sig_none)
0688             return;
0689     }
0690 
0691     now = kc->clock_get_ktime(timr->it_clock);
0692 
0693     /*
0694      * When a requeue is pending or this is a SIGEV_NONE timer move the
0695      * expiry time forward by intervals, so expiry is > now.
0696      */
0697     if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
0698         timr->it_overrun += kc->timer_forward(timr, now);
0699 
0700     remaining = kc->timer_remaining(timr, now);
0701     /* Return 0 only, when the timer is expired and not pending */
0702     if (remaining <= 0) {
0703         /*
0704          * A single shot SIGEV_NONE timer must return 0, when
0705          * it is expired !
0706          */
0707         if (!sig_none)
0708             cur_setting->it_value.tv_nsec = 1;
0709     } else {
0710         cur_setting->it_value = ktime_to_timespec64(remaining);
0711     }
0712 }
0713 
0714 /* Get the time remaining on a POSIX.1b interval timer. */
0715 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
0716 {
0717     struct k_itimer *timr;
0718     const struct k_clock *kc;
0719     unsigned long flags;
0720     int ret = 0;
0721 
0722     timr = lock_timer(timer_id, &flags);
0723     if (!timr)
0724         return -EINVAL;
0725 
0726     memset(setting, 0, sizeof(*setting));
0727     kc = timr->kclock;
0728     if (WARN_ON_ONCE(!kc || !kc->timer_get))
0729         ret = -EINVAL;
0730     else
0731         kc->timer_get(timr, setting);
0732 
0733     unlock_timer(timr, flags);
0734     return ret;
0735 }
0736 
0737 /* Get the time remaining on a POSIX.1b interval timer. */
0738 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
0739         struct __kernel_itimerspec __user *, setting)
0740 {
0741     struct itimerspec64 cur_setting;
0742 
0743     int ret = do_timer_gettime(timer_id, &cur_setting);
0744     if (!ret) {
0745         if (put_itimerspec64(&cur_setting, setting))
0746             ret = -EFAULT;
0747     }
0748     return ret;
0749 }
0750 
0751 #ifdef CONFIG_COMPAT_32BIT_TIME
0752 
0753 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
0754         struct old_itimerspec32 __user *, setting)
0755 {
0756     struct itimerspec64 cur_setting;
0757 
0758     int ret = do_timer_gettime(timer_id, &cur_setting);
0759     if (!ret) {
0760         if (put_old_itimerspec32(&cur_setting, setting))
0761             ret = -EFAULT;
0762     }
0763     return ret;
0764 }
0765 
0766 #endif
0767 
0768 /*
0769  * Get the number of overruns of a POSIX.1b interval timer.  This is to
0770  * be the overrun of the timer last delivered.  At the same time we are
0771  * accumulating overruns on the next timer.  The overrun is frozen when
0772  * the signal is delivered, either at the notify time (if the info block
0773  * is not queued) or at the actual delivery time (as we are informed by
0774  * the call back to posixtimer_rearm().  So all we need to do is
0775  * to pick up the frozen overrun.
0776  */
0777 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
0778 {
0779     struct k_itimer *timr;
0780     int overrun;
0781     unsigned long flags;
0782 
0783     timr = lock_timer(timer_id, &flags);
0784     if (!timr)
0785         return -EINVAL;
0786 
0787     overrun = timer_overrun_to_int(timr, 0);
0788     unlock_timer(timr, flags);
0789 
0790     return overrun;
0791 }
0792 
0793 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
0794                    bool absolute, bool sigev_none)
0795 {
0796     struct hrtimer *timer = &timr->it.real.timer;
0797     enum hrtimer_mode mode;
0798 
0799     mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
0800     /*
0801      * Posix magic: Relative CLOCK_REALTIME timers are not affected by
0802      * clock modifications, so they become CLOCK_MONOTONIC based under the
0803      * hood. See hrtimer_init(). Update timr->kclock, so the generic
0804      * functions which use timr->kclock->clock_get_*() work.
0805      *
0806      * Note: it_clock stays unmodified, because the next timer_set() might
0807      * use ABSTIME, so it needs to switch back.
0808      */
0809     if (timr->it_clock == CLOCK_REALTIME)
0810         timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
0811 
0812     hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
0813     timr->it.real.timer.function = posix_timer_fn;
0814 
0815     if (!absolute)
0816         expires = ktime_add_safe(expires, timer->base->get_time());
0817     hrtimer_set_expires(timer, expires);
0818 
0819     if (!sigev_none)
0820         hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
0821 }
0822 
0823 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
0824 {
0825     return hrtimer_try_to_cancel(&timr->it.real.timer);
0826 }
0827 
0828 static void common_timer_wait_running(struct k_itimer *timer)
0829 {
0830     hrtimer_cancel_wait_running(&timer->it.real.timer);
0831 }
0832 
0833 /*
0834  * On PREEMPT_RT this prevent priority inversion against softirq kthread in
0835  * case it gets preempted while executing a timer callback. See comments in
0836  * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
0837  * cpu_relax().
0838  */
0839 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
0840                        unsigned long *flags)
0841 {
0842     const struct k_clock *kc = READ_ONCE(timer->kclock);
0843     timer_t timer_id = READ_ONCE(timer->it_id);
0844 
0845     /* Prevent kfree(timer) after dropping the lock */
0846     rcu_read_lock();
0847     unlock_timer(timer, *flags);
0848 
0849     if (!WARN_ON_ONCE(!kc->timer_wait_running))
0850         kc->timer_wait_running(timer);
0851 
0852     rcu_read_unlock();
0853     /* Relock the timer. It might be not longer hashed. */
0854     return lock_timer(timer_id, flags);
0855 }
0856 
0857 /* Set a POSIX.1b interval timer. */
0858 int common_timer_set(struct k_itimer *timr, int flags,
0859              struct itimerspec64 *new_setting,
0860              struct itimerspec64 *old_setting)
0861 {
0862     const struct k_clock *kc = timr->kclock;
0863     bool sigev_none;
0864     ktime_t expires;
0865 
0866     if (old_setting)
0867         common_timer_get(timr, old_setting);
0868 
0869     /* Prevent rearming by clearing the interval */
0870     timr->it_interval = 0;
0871     /*
0872      * Careful here. On SMP systems the timer expiry function could be
0873      * active and spinning on timr->it_lock.
0874      */
0875     if (kc->timer_try_to_cancel(timr) < 0)
0876         return TIMER_RETRY;
0877 
0878     timr->it_active = 0;
0879     timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
0880         ~REQUEUE_PENDING;
0881     timr->it_overrun_last = 0;
0882 
0883     /* Switch off the timer when it_value is zero */
0884     if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
0885         return 0;
0886 
0887     timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
0888     expires = timespec64_to_ktime(new_setting->it_value);
0889     if (flags & TIMER_ABSTIME)
0890         expires = timens_ktime_to_host(timr->it_clock, expires);
0891     sigev_none = timr->it_sigev_notify == SIGEV_NONE;
0892 
0893     kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
0894     timr->it_active = !sigev_none;
0895     return 0;
0896 }
0897 
0898 static int do_timer_settime(timer_t timer_id, int tmr_flags,
0899                 struct itimerspec64 *new_spec64,
0900                 struct itimerspec64 *old_spec64)
0901 {
0902     const struct k_clock *kc;
0903     struct k_itimer *timr;
0904     unsigned long flags;
0905     int error = 0;
0906 
0907     if (!timespec64_valid(&new_spec64->it_interval) ||
0908         !timespec64_valid(&new_spec64->it_value))
0909         return -EINVAL;
0910 
0911     if (old_spec64)
0912         memset(old_spec64, 0, sizeof(*old_spec64));
0913 
0914     timr = lock_timer(timer_id, &flags);
0915 retry:
0916     if (!timr)
0917         return -EINVAL;
0918 
0919     kc = timr->kclock;
0920     if (WARN_ON_ONCE(!kc || !kc->timer_set))
0921         error = -EINVAL;
0922     else
0923         error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
0924 
0925     if (error == TIMER_RETRY) {
0926         // We already got the old time...
0927         old_spec64 = NULL;
0928         /* Unlocks and relocks the timer if it still exists */
0929         timr = timer_wait_running(timr, &flags);
0930         goto retry;
0931     }
0932     unlock_timer(timr, flags);
0933 
0934     return error;
0935 }
0936 
0937 /* Set a POSIX.1b interval timer */
0938 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
0939         const struct __kernel_itimerspec __user *, new_setting,
0940         struct __kernel_itimerspec __user *, old_setting)
0941 {
0942     struct itimerspec64 new_spec, old_spec;
0943     struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
0944     int error = 0;
0945 
0946     if (!new_setting)
0947         return -EINVAL;
0948 
0949     if (get_itimerspec64(&new_spec, new_setting))
0950         return -EFAULT;
0951 
0952     error = do_timer_settime(timer_id, flags, &new_spec, rtn);
0953     if (!error && old_setting) {
0954         if (put_itimerspec64(&old_spec, old_setting))
0955             error = -EFAULT;
0956     }
0957     return error;
0958 }
0959 
0960 #ifdef CONFIG_COMPAT_32BIT_TIME
0961 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
0962         struct old_itimerspec32 __user *, new,
0963         struct old_itimerspec32 __user *, old)
0964 {
0965     struct itimerspec64 new_spec, old_spec;
0966     struct itimerspec64 *rtn = old ? &old_spec : NULL;
0967     int error = 0;
0968 
0969     if (!new)
0970         return -EINVAL;
0971     if (get_old_itimerspec32(&new_spec, new))
0972         return -EFAULT;
0973 
0974     error = do_timer_settime(timer_id, flags, &new_spec, rtn);
0975     if (!error && old) {
0976         if (put_old_itimerspec32(&old_spec, old))
0977             error = -EFAULT;
0978     }
0979     return error;
0980 }
0981 #endif
0982 
0983 int common_timer_del(struct k_itimer *timer)
0984 {
0985     const struct k_clock *kc = timer->kclock;
0986 
0987     timer->it_interval = 0;
0988     if (kc->timer_try_to_cancel(timer) < 0)
0989         return TIMER_RETRY;
0990     timer->it_active = 0;
0991     return 0;
0992 }
0993 
0994 static inline int timer_delete_hook(struct k_itimer *timer)
0995 {
0996     const struct k_clock *kc = timer->kclock;
0997 
0998     if (WARN_ON_ONCE(!kc || !kc->timer_del))
0999         return -EINVAL;
1000     return kc->timer_del(timer);
1001 }
1002 
1003 /* Delete a POSIX.1b interval timer. */
1004 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1005 {
1006     struct k_itimer *timer;
1007     unsigned long flags;
1008 
1009     timer = lock_timer(timer_id, &flags);
1010 
1011 retry_delete:
1012     if (!timer)
1013         return -EINVAL;
1014 
1015     if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1016         /* Unlocks and relocks the timer if it still exists */
1017         timer = timer_wait_running(timer, &flags);
1018         goto retry_delete;
1019     }
1020 
1021     spin_lock(&current->sighand->siglock);
1022     list_del(&timer->list);
1023     spin_unlock(&current->sighand->siglock);
1024     /*
1025      * This keeps any tasks waiting on the spin lock from thinking
1026      * they got something (see the lock code above).
1027      */
1028     timer->it_signal = NULL;
1029 
1030     unlock_timer(timer, flags);
1031     release_posix_timer(timer, IT_ID_SET);
1032     return 0;
1033 }
1034 
1035 /*
1036  * return timer owned by the process, used by exit_itimers
1037  */
1038 static void itimer_delete(struct k_itimer *timer)
1039 {
1040 retry_delete:
1041     spin_lock_irq(&timer->it_lock);
1042 
1043     if (timer_delete_hook(timer) == TIMER_RETRY) {
1044         spin_unlock_irq(&timer->it_lock);
1045         goto retry_delete;
1046     }
1047     list_del(&timer->list);
1048 
1049     spin_unlock_irq(&timer->it_lock);
1050     release_posix_timer(timer, IT_ID_SET);
1051 }
1052 
1053 /*
1054  * This is called by do_exit or de_thread, only when nobody else can
1055  * modify the signal->posix_timers list. Yet we need sighand->siglock
1056  * to prevent the race with /proc/pid/timers.
1057  */
1058 void exit_itimers(struct task_struct *tsk)
1059 {
1060     struct list_head timers;
1061     struct k_itimer *tmr;
1062 
1063     if (list_empty(&tsk->signal->posix_timers))
1064         return;
1065 
1066     spin_lock_irq(&tsk->sighand->siglock);
1067     list_replace_init(&tsk->signal->posix_timers, &timers);
1068     spin_unlock_irq(&tsk->sighand->siglock);
1069 
1070     while (!list_empty(&timers)) {
1071         tmr = list_first_entry(&timers, struct k_itimer, list);
1072         itimer_delete(tmr);
1073     }
1074 }
1075 
1076 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1077         const struct __kernel_timespec __user *, tp)
1078 {
1079     const struct k_clock *kc = clockid_to_kclock(which_clock);
1080     struct timespec64 new_tp;
1081 
1082     if (!kc || !kc->clock_set)
1083         return -EINVAL;
1084 
1085     if (get_timespec64(&new_tp, tp))
1086         return -EFAULT;
1087 
1088     return kc->clock_set(which_clock, &new_tp);
1089 }
1090 
1091 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1092         struct __kernel_timespec __user *, tp)
1093 {
1094     const struct k_clock *kc = clockid_to_kclock(which_clock);
1095     struct timespec64 kernel_tp;
1096     int error;
1097 
1098     if (!kc)
1099         return -EINVAL;
1100 
1101     error = kc->clock_get_timespec(which_clock, &kernel_tp);
1102 
1103     if (!error && put_timespec64(&kernel_tp, tp))
1104         error = -EFAULT;
1105 
1106     return error;
1107 }
1108 
1109 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1110 {
1111     const struct k_clock *kc = clockid_to_kclock(which_clock);
1112 
1113     if (!kc)
1114         return -EINVAL;
1115     if (!kc->clock_adj)
1116         return -EOPNOTSUPP;
1117 
1118     return kc->clock_adj(which_clock, ktx);
1119 }
1120 
1121 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1122         struct __kernel_timex __user *, utx)
1123 {
1124     struct __kernel_timex ktx;
1125     int err;
1126 
1127     if (copy_from_user(&ktx, utx, sizeof(ktx)))
1128         return -EFAULT;
1129 
1130     err = do_clock_adjtime(which_clock, &ktx);
1131 
1132     if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1133         return -EFAULT;
1134 
1135     return err;
1136 }
1137 
1138 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1139         struct __kernel_timespec __user *, tp)
1140 {
1141     const struct k_clock *kc = clockid_to_kclock(which_clock);
1142     struct timespec64 rtn_tp;
1143     int error;
1144 
1145     if (!kc)
1146         return -EINVAL;
1147 
1148     error = kc->clock_getres(which_clock, &rtn_tp);
1149 
1150     if (!error && tp && put_timespec64(&rtn_tp, tp))
1151         error = -EFAULT;
1152 
1153     return error;
1154 }
1155 
1156 #ifdef CONFIG_COMPAT_32BIT_TIME
1157 
1158 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1159         struct old_timespec32 __user *, tp)
1160 {
1161     const struct k_clock *kc = clockid_to_kclock(which_clock);
1162     struct timespec64 ts;
1163 
1164     if (!kc || !kc->clock_set)
1165         return -EINVAL;
1166 
1167     if (get_old_timespec32(&ts, tp))
1168         return -EFAULT;
1169 
1170     return kc->clock_set(which_clock, &ts);
1171 }
1172 
1173 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1174         struct old_timespec32 __user *, tp)
1175 {
1176     const struct k_clock *kc = clockid_to_kclock(which_clock);
1177     struct timespec64 ts;
1178     int err;
1179 
1180     if (!kc)
1181         return -EINVAL;
1182 
1183     err = kc->clock_get_timespec(which_clock, &ts);
1184 
1185     if (!err && put_old_timespec32(&ts, tp))
1186         err = -EFAULT;
1187 
1188     return err;
1189 }
1190 
1191 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1192         struct old_timex32 __user *, utp)
1193 {
1194     struct __kernel_timex ktx;
1195     int err;
1196 
1197     err = get_old_timex32(&ktx, utp);
1198     if (err)
1199         return err;
1200 
1201     err = do_clock_adjtime(which_clock, &ktx);
1202 
1203     if (err >= 0 && put_old_timex32(utp, &ktx))
1204         return -EFAULT;
1205 
1206     return err;
1207 }
1208 
1209 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1210         struct old_timespec32 __user *, tp)
1211 {
1212     const struct k_clock *kc = clockid_to_kclock(which_clock);
1213     struct timespec64 ts;
1214     int err;
1215 
1216     if (!kc)
1217         return -EINVAL;
1218 
1219     err = kc->clock_getres(which_clock, &ts);
1220     if (!err && tp && put_old_timespec32(&ts, tp))
1221         return -EFAULT;
1222 
1223     return err;
1224 }
1225 
1226 #endif
1227 
1228 /*
1229  * nanosleep for monotonic and realtime clocks
1230  */
1231 static int common_nsleep(const clockid_t which_clock, int flags,
1232              const struct timespec64 *rqtp)
1233 {
1234     ktime_t texp = timespec64_to_ktime(*rqtp);
1235 
1236     return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1237                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1238                  which_clock);
1239 }
1240 
1241 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1242              const struct timespec64 *rqtp)
1243 {
1244     ktime_t texp = timespec64_to_ktime(*rqtp);
1245 
1246     if (flags & TIMER_ABSTIME)
1247         texp = timens_ktime_to_host(which_clock, texp);
1248 
1249     return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1250                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1251                  which_clock);
1252 }
1253 
1254 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1255         const struct __kernel_timespec __user *, rqtp,
1256         struct __kernel_timespec __user *, rmtp)
1257 {
1258     const struct k_clock *kc = clockid_to_kclock(which_clock);
1259     struct timespec64 t;
1260 
1261     if (!kc)
1262         return -EINVAL;
1263     if (!kc->nsleep)
1264         return -EOPNOTSUPP;
1265 
1266     if (get_timespec64(&t, rqtp))
1267         return -EFAULT;
1268 
1269     if (!timespec64_valid(&t))
1270         return -EINVAL;
1271     if (flags & TIMER_ABSTIME)
1272         rmtp = NULL;
1273     current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1274     current->restart_block.nanosleep.rmtp = rmtp;
1275 
1276     return kc->nsleep(which_clock, flags, &t);
1277 }
1278 
1279 #ifdef CONFIG_COMPAT_32BIT_TIME
1280 
1281 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1282         struct old_timespec32 __user *, rqtp,
1283         struct old_timespec32 __user *, rmtp)
1284 {
1285     const struct k_clock *kc = clockid_to_kclock(which_clock);
1286     struct timespec64 t;
1287 
1288     if (!kc)
1289         return -EINVAL;
1290     if (!kc->nsleep)
1291         return -EOPNOTSUPP;
1292 
1293     if (get_old_timespec32(&t, rqtp))
1294         return -EFAULT;
1295 
1296     if (!timespec64_valid(&t))
1297         return -EINVAL;
1298     if (flags & TIMER_ABSTIME)
1299         rmtp = NULL;
1300     current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1301     current->restart_block.nanosleep.compat_rmtp = rmtp;
1302 
1303     return kc->nsleep(which_clock, flags, &t);
1304 }
1305 
1306 #endif
1307 
1308 static const struct k_clock clock_realtime = {
1309     .clock_getres       = posix_get_hrtimer_res,
1310     .clock_get_timespec = posix_get_realtime_timespec,
1311     .clock_get_ktime    = posix_get_realtime_ktime,
1312     .clock_set      = posix_clock_realtime_set,
1313     .clock_adj      = posix_clock_realtime_adj,
1314     .nsleep         = common_nsleep,
1315     .timer_create       = common_timer_create,
1316     .timer_set      = common_timer_set,
1317     .timer_get      = common_timer_get,
1318     .timer_del      = common_timer_del,
1319     .timer_rearm        = common_hrtimer_rearm,
1320     .timer_forward      = common_hrtimer_forward,
1321     .timer_remaining    = common_hrtimer_remaining,
1322     .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1323     .timer_wait_running = common_timer_wait_running,
1324     .timer_arm      = common_hrtimer_arm,
1325 };
1326 
1327 static const struct k_clock clock_monotonic = {
1328     .clock_getres       = posix_get_hrtimer_res,
1329     .clock_get_timespec = posix_get_monotonic_timespec,
1330     .clock_get_ktime    = posix_get_monotonic_ktime,
1331     .nsleep         = common_nsleep_timens,
1332     .timer_create       = common_timer_create,
1333     .timer_set      = common_timer_set,
1334     .timer_get      = common_timer_get,
1335     .timer_del      = common_timer_del,
1336     .timer_rearm        = common_hrtimer_rearm,
1337     .timer_forward      = common_hrtimer_forward,
1338     .timer_remaining    = common_hrtimer_remaining,
1339     .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1340     .timer_wait_running = common_timer_wait_running,
1341     .timer_arm      = common_hrtimer_arm,
1342 };
1343 
1344 static const struct k_clock clock_monotonic_raw = {
1345     .clock_getres       = posix_get_hrtimer_res,
1346     .clock_get_timespec = posix_get_monotonic_raw,
1347 };
1348 
1349 static const struct k_clock clock_realtime_coarse = {
1350     .clock_getres       = posix_get_coarse_res,
1351     .clock_get_timespec = posix_get_realtime_coarse,
1352 };
1353 
1354 static const struct k_clock clock_monotonic_coarse = {
1355     .clock_getres       = posix_get_coarse_res,
1356     .clock_get_timespec = posix_get_monotonic_coarse,
1357 };
1358 
1359 static const struct k_clock clock_tai = {
1360     .clock_getres       = posix_get_hrtimer_res,
1361     .clock_get_ktime    = posix_get_tai_ktime,
1362     .clock_get_timespec = posix_get_tai_timespec,
1363     .nsleep         = common_nsleep,
1364     .timer_create       = common_timer_create,
1365     .timer_set      = common_timer_set,
1366     .timer_get      = common_timer_get,
1367     .timer_del      = common_timer_del,
1368     .timer_rearm        = common_hrtimer_rearm,
1369     .timer_forward      = common_hrtimer_forward,
1370     .timer_remaining    = common_hrtimer_remaining,
1371     .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1372     .timer_wait_running = common_timer_wait_running,
1373     .timer_arm      = common_hrtimer_arm,
1374 };
1375 
1376 static const struct k_clock clock_boottime = {
1377     .clock_getres       = posix_get_hrtimer_res,
1378     .clock_get_ktime    = posix_get_boottime_ktime,
1379     .clock_get_timespec = posix_get_boottime_timespec,
1380     .nsleep         = common_nsleep_timens,
1381     .timer_create       = common_timer_create,
1382     .timer_set      = common_timer_set,
1383     .timer_get      = common_timer_get,
1384     .timer_del      = common_timer_del,
1385     .timer_rearm        = common_hrtimer_rearm,
1386     .timer_forward      = common_hrtimer_forward,
1387     .timer_remaining    = common_hrtimer_remaining,
1388     .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1389     .timer_wait_running = common_timer_wait_running,
1390     .timer_arm      = common_hrtimer_arm,
1391 };
1392 
1393 static const struct k_clock * const posix_clocks[] = {
1394     [CLOCK_REALTIME]        = &clock_realtime,
1395     [CLOCK_MONOTONIC]       = &clock_monotonic,
1396     [CLOCK_PROCESS_CPUTIME_ID]  = &clock_process,
1397     [CLOCK_THREAD_CPUTIME_ID]   = &clock_thread,
1398     [CLOCK_MONOTONIC_RAW]       = &clock_monotonic_raw,
1399     [CLOCK_REALTIME_COARSE]     = &clock_realtime_coarse,
1400     [CLOCK_MONOTONIC_COARSE]    = &clock_monotonic_coarse,
1401     [CLOCK_BOOTTIME]        = &clock_boottime,
1402     [CLOCK_REALTIME_ALARM]      = &alarm_clock,
1403     [CLOCK_BOOTTIME_ALARM]      = &alarm_clock,
1404     [CLOCK_TAI]         = &clock_tai,
1405 };
1406 
1407 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1408 {
1409     clockid_t idx = id;
1410 
1411     if (id < 0) {
1412         return (id & CLOCKFD_MASK) == CLOCKFD ?
1413             &clock_posix_dynamic : &clock_posix_cpu;
1414     }
1415 
1416     if (id >= ARRAY_SIZE(posix_clocks))
1417         return NULL;
1418 
1419     return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1420 }