0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #include <linux/time.h>
0016 #include <linux/hrtimer.h>
0017 #include <linux/timerqueue.h>
0018 #include <linux/rtc.h>
0019 #include <linux/sched/signal.h>
0020 #include <linux/sched/debug.h>
0021 #include <linux/alarmtimer.h>
0022 #include <linux/mutex.h>
0023 #include <linux/platform_device.h>
0024 #include <linux/posix-timers.h>
0025 #include <linux/workqueue.h>
0026 #include <linux/freezer.h>
0027 #include <linux/compat.h>
0028 #include <linux/module.h>
0029 #include <linux/time_namespace.h>
0030
0031 #include "posix-timers.h"
0032
0033 #define CREATE_TRACE_POINTS
0034 #include <trace/events/alarmtimer.h>
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044 static struct alarm_base {
0045 spinlock_t lock;
0046 struct timerqueue_head timerqueue;
0047 ktime_t (*get_ktime)(void);
0048 void (*get_timespec)(struct timespec64 *tp);
0049 clockid_t base_clockid;
0050 } alarm_bases[ALARM_NUMTYPE];
0051
0052 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
0053
0054 static enum alarmtimer_type freezer_alarmtype;
0055 static ktime_t freezer_expires;
0056 static ktime_t freezer_delta;
0057 static DEFINE_SPINLOCK(freezer_delta_lock);
0058 #endif
0059
0060 #ifdef CONFIG_RTC_CLASS
0061
0062 static struct rtc_timer rtctimer;
0063 static struct rtc_device *rtcdev;
0064 static DEFINE_SPINLOCK(rtcdev_lock);
0065
0066
0067
0068
0069
0070
0071 struct rtc_device *alarmtimer_get_rtcdev(void)
0072 {
0073 unsigned long flags;
0074 struct rtc_device *ret;
0075
0076 spin_lock_irqsave(&rtcdev_lock, flags);
0077 ret = rtcdev;
0078 spin_unlock_irqrestore(&rtcdev_lock, flags);
0079
0080 return ret;
0081 }
0082 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
0083
0084 static int alarmtimer_rtc_add_device(struct device *dev,
0085 struct class_interface *class_intf)
0086 {
0087 unsigned long flags;
0088 struct rtc_device *rtc = to_rtc_device(dev);
0089 struct platform_device *pdev;
0090 int ret = 0;
0091
0092 if (rtcdev)
0093 return -EBUSY;
0094
0095 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
0096 return -1;
0097 if (!device_may_wakeup(rtc->dev.parent))
0098 return -1;
0099
0100 pdev = platform_device_register_data(dev, "alarmtimer",
0101 PLATFORM_DEVID_AUTO, NULL, 0);
0102 if (!IS_ERR(pdev))
0103 device_init_wakeup(&pdev->dev, true);
0104
0105 spin_lock_irqsave(&rtcdev_lock, flags);
0106 if (!IS_ERR(pdev) && !rtcdev) {
0107 if (!try_module_get(rtc->owner)) {
0108 ret = -1;
0109 goto unlock;
0110 }
0111
0112 rtcdev = rtc;
0113
0114 get_device(dev);
0115 pdev = NULL;
0116 } else {
0117 ret = -1;
0118 }
0119 unlock:
0120 spin_unlock_irqrestore(&rtcdev_lock, flags);
0121
0122 platform_device_unregister(pdev);
0123
0124 return ret;
0125 }
0126
0127 static inline void alarmtimer_rtc_timer_init(void)
0128 {
0129 rtc_timer_init(&rtctimer, NULL, NULL);
0130 }
0131
0132 static struct class_interface alarmtimer_rtc_interface = {
0133 .add_dev = &alarmtimer_rtc_add_device,
0134 };
0135
0136 static int alarmtimer_rtc_interface_setup(void)
0137 {
0138 alarmtimer_rtc_interface.class = rtc_class;
0139 return class_interface_register(&alarmtimer_rtc_interface);
0140 }
0141 static void alarmtimer_rtc_interface_remove(void)
0142 {
0143 class_interface_unregister(&alarmtimer_rtc_interface);
0144 }
0145 #else
0146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
0147 static inline void alarmtimer_rtc_interface_remove(void) { }
0148 static inline void alarmtimer_rtc_timer_init(void) { }
0149 #endif
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
0161 {
0162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
0163 timerqueue_del(&base->timerqueue, &alarm->node);
0164
0165 timerqueue_add(&base->timerqueue, &alarm->node);
0166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
0167 }
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
0179 {
0180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
0181 return;
0182
0183 timerqueue_del(&base->timerqueue, &alarm->node);
0184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
0185 }
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
0198 {
0199 struct alarm *alarm = container_of(timer, struct alarm, timer);
0200 struct alarm_base *base = &alarm_bases[alarm->type];
0201 unsigned long flags;
0202 int ret = HRTIMER_NORESTART;
0203 int restart = ALARMTIMER_NORESTART;
0204
0205 spin_lock_irqsave(&base->lock, flags);
0206 alarmtimer_dequeue(base, alarm);
0207 spin_unlock_irqrestore(&base->lock, flags);
0208
0209 if (alarm->function)
0210 restart = alarm->function(alarm, base->get_ktime());
0211
0212 spin_lock_irqsave(&base->lock, flags);
0213 if (restart != ALARMTIMER_NORESTART) {
0214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
0215 alarmtimer_enqueue(base, alarm);
0216 ret = HRTIMER_RESTART;
0217 }
0218 spin_unlock_irqrestore(&base->lock, flags);
0219
0220 trace_alarmtimer_fired(alarm, base->get_ktime());
0221 return ret;
0222
0223 }
0224
0225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
0226 {
0227 struct alarm_base *base = &alarm_bases[alarm->type];
0228 return ktime_sub(alarm->node.expires, base->get_ktime());
0229 }
0230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
0231
0232 #ifdef CONFIG_RTC_CLASS
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242 static int alarmtimer_suspend(struct device *dev)
0243 {
0244 ktime_t min, now, expires;
0245 int i, ret, type;
0246 struct rtc_device *rtc;
0247 unsigned long flags;
0248 struct rtc_time tm;
0249
0250 spin_lock_irqsave(&freezer_delta_lock, flags);
0251 min = freezer_delta;
0252 expires = freezer_expires;
0253 type = freezer_alarmtype;
0254 freezer_delta = 0;
0255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
0256
0257 rtc = alarmtimer_get_rtcdev();
0258
0259 if (!rtc)
0260 return 0;
0261
0262
0263 for (i = 0; i < ALARM_NUMTYPE; i++) {
0264 struct alarm_base *base = &alarm_bases[i];
0265 struct timerqueue_node *next;
0266 ktime_t delta;
0267
0268 spin_lock_irqsave(&base->lock, flags);
0269 next = timerqueue_getnext(&base->timerqueue);
0270 spin_unlock_irqrestore(&base->lock, flags);
0271 if (!next)
0272 continue;
0273 delta = ktime_sub(next->expires, base->get_ktime());
0274 if (!min || (delta < min)) {
0275 expires = next->expires;
0276 min = delta;
0277 type = i;
0278 }
0279 }
0280 if (min == 0)
0281 return 0;
0282
0283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
0284 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
0285 return -EBUSY;
0286 }
0287
0288 trace_alarmtimer_suspend(expires, type);
0289
0290
0291 rtc_timer_cancel(rtc, &rtctimer);
0292 rtc_read_time(rtc, &tm);
0293 now = rtc_tm_to_ktime(tm);
0294 now = ktime_add(now, min);
0295
0296
0297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
0298 if (ret < 0)
0299 pm_wakeup_event(dev, MSEC_PER_SEC);
0300 return ret;
0301 }
0302
0303 static int alarmtimer_resume(struct device *dev)
0304 {
0305 struct rtc_device *rtc;
0306
0307 rtc = alarmtimer_get_rtcdev();
0308 if (rtc)
0309 rtc_timer_cancel(rtc, &rtctimer);
0310 return 0;
0311 }
0312
0313 #else
0314 static int alarmtimer_suspend(struct device *dev)
0315 {
0316 return 0;
0317 }
0318
0319 static int alarmtimer_resume(struct device *dev)
0320 {
0321 return 0;
0322 }
0323 #endif
0324
0325 static void
0326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
0327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
0328 {
0329 timerqueue_init(&alarm->node);
0330 alarm->timer.function = alarmtimer_fired;
0331 alarm->function = function;
0332 alarm->type = type;
0333 alarm->state = ALARMTIMER_STATE_INACTIVE;
0334 }
0335
0336
0337
0338
0339
0340
0341
0342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
0343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
0344 {
0345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
0346 HRTIMER_MODE_ABS);
0347 __alarm_init(alarm, type, function);
0348 }
0349 EXPORT_SYMBOL_GPL(alarm_init);
0350
0351
0352
0353
0354
0355
0356 void alarm_start(struct alarm *alarm, ktime_t start)
0357 {
0358 struct alarm_base *base = &alarm_bases[alarm->type];
0359 unsigned long flags;
0360
0361 spin_lock_irqsave(&base->lock, flags);
0362 alarm->node.expires = start;
0363 alarmtimer_enqueue(base, alarm);
0364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
0365 spin_unlock_irqrestore(&base->lock, flags);
0366
0367 trace_alarmtimer_start(alarm, base->get_ktime());
0368 }
0369 EXPORT_SYMBOL_GPL(alarm_start);
0370
0371
0372
0373
0374
0375
0376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
0377 {
0378 struct alarm_base *base = &alarm_bases[alarm->type];
0379
0380 start = ktime_add_safe(start, base->get_ktime());
0381 alarm_start(alarm, start);
0382 }
0383 EXPORT_SYMBOL_GPL(alarm_start_relative);
0384
0385 void alarm_restart(struct alarm *alarm)
0386 {
0387 struct alarm_base *base = &alarm_bases[alarm->type];
0388 unsigned long flags;
0389
0390 spin_lock_irqsave(&base->lock, flags);
0391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
0392 hrtimer_restart(&alarm->timer);
0393 alarmtimer_enqueue(base, alarm);
0394 spin_unlock_irqrestore(&base->lock, flags);
0395 }
0396 EXPORT_SYMBOL_GPL(alarm_restart);
0397
0398
0399
0400
0401
0402
0403
0404
0405 int alarm_try_to_cancel(struct alarm *alarm)
0406 {
0407 struct alarm_base *base = &alarm_bases[alarm->type];
0408 unsigned long flags;
0409 int ret;
0410
0411 spin_lock_irqsave(&base->lock, flags);
0412 ret = hrtimer_try_to_cancel(&alarm->timer);
0413 if (ret >= 0)
0414 alarmtimer_dequeue(base, alarm);
0415 spin_unlock_irqrestore(&base->lock, flags);
0416
0417 trace_alarmtimer_cancel(alarm, base->get_ktime());
0418 return ret;
0419 }
0420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
0421
0422
0423
0424
0425
0426
0427
0428
0429 int alarm_cancel(struct alarm *alarm)
0430 {
0431 for (;;) {
0432 int ret = alarm_try_to_cancel(alarm);
0433 if (ret >= 0)
0434 return ret;
0435 hrtimer_cancel_wait_running(&alarm->timer);
0436 }
0437 }
0438 EXPORT_SYMBOL_GPL(alarm_cancel);
0439
0440
0441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
0442 {
0443 u64 overrun = 1;
0444 ktime_t delta;
0445
0446 delta = ktime_sub(now, alarm->node.expires);
0447
0448 if (delta < 0)
0449 return 0;
0450
0451 if (unlikely(delta >= interval)) {
0452 s64 incr = ktime_to_ns(interval);
0453
0454 overrun = ktime_divns(delta, incr);
0455
0456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
0457 incr*overrun);
0458
0459 if (alarm->node.expires > now)
0460 return overrun;
0461
0462
0463
0464
0465 overrun++;
0466 }
0467
0468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
0469 return overrun;
0470 }
0471 EXPORT_SYMBOL_GPL(alarm_forward);
0472
0473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
0474 {
0475 struct alarm_base *base = &alarm_bases[alarm->type];
0476
0477 return alarm_forward(alarm, base->get_ktime(), interval);
0478 }
0479 EXPORT_SYMBOL_GPL(alarm_forward_now);
0480
0481 #ifdef CONFIG_POSIX_TIMERS
0482
0483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
0484 {
0485 struct alarm_base *base;
0486 unsigned long flags;
0487 ktime_t delta;
0488
0489 switch(type) {
0490 case ALARM_REALTIME:
0491 base = &alarm_bases[ALARM_REALTIME];
0492 type = ALARM_REALTIME_FREEZER;
0493 break;
0494 case ALARM_BOOTTIME:
0495 base = &alarm_bases[ALARM_BOOTTIME];
0496 type = ALARM_BOOTTIME_FREEZER;
0497 break;
0498 default:
0499 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
0500 return;
0501 }
0502
0503 delta = ktime_sub(absexp, base->get_ktime());
0504
0505 spin_lock_irqsave(&freezer_delta_lock, flags);
0506 if (!freezer_delta || (delta < freezer_delta)) {
0507 freezer_delta = delta;
0508 freezer_expires = absexp;
0509 freezer_alarmtype = type;
0510 }
0511 spin_unlock_irqrestore(&freezer_delta_lock, flags);
0512 }
0513
0514
0515
0516
0517
0518 static enum alarmtimer_type clock2alarm(clockid_t clockid)
0519 {
0520 if (clockid == CLOCK_REALTIME_ALARM)
0521 return ALARM_REALTIME;
0522 if (clockid == CLOCK_BOOTTIME_ALARM)
0523 return ALARM_BOOTTIME;
0524 return -1;
0525 }
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
0537 ktime_t now)
0538 {
0539 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
0540 it.alarm.alarmtimer);
0541 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
0542 unsigned long flags;
0543 int si_private = 0;
0544
0545 spin_lock_irqsave(&ptr->it_lock, flags);
0546
0547 ptr->it_active = 0;
0548 if (ptr->it_interval)
0549 si_private = ++ptr->it_requeue_pending;
0550
0551 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
0552
0553
0554
0555
0556 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
0557 ++ptr->it_requeue_pending;
0558 ptr->it_active = 1;
0559 result = ALARMTIMER_RESTART;
0560 }
0561 spin_unlock_irqrestore(&ptr->it_lock, flags);
0562
0563 return result;
0564 }
0565
0566
0567
0568
0569
0570 static void alarm_timer_rearm(struct k_itimer *timr)
0571 {
0572 struct alarm *alarm = &timr->it.alarm.alarmtimer;
0573
0574 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
0575 alarm_start(alarm, alarm->node.expires);
0576 }
0577
0578
0579
0580
0581
0582
0583 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
0584 {
0585 struct alarm *alarm = &timr->it.alarm.alarmtimer;
0586
0587 return alarm_forward(alarm, timr->it_interval, now);
0588 }
0589
0590
0591
0592
0593
0594
0595 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
0596 {
0597 struct alarm *alarm = &timr->it.alarm.alarmtimer;
0598
0599 return ktime_sub(alarm->node.expires, now);
0600 }
0601
0602
0603
0604
0605
0606 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
0607 {
0608 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
0609 }
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619 static void alarm_timer_wait_running(struct k_itimer *timr)
0620 {
0621 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
0622 }
0623
0624
0625
0626
0627
0628
0629
0630
0631 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
0632 bool absolute, bool sigev_none)
0633 {
0634 struct alarm *alarm = &timr->it.alarm.alarmtimer;
0635 struct alarm_base *base = &alarm_bases[alarm->type];
0636
0637 if (!absolute)
0638 expires = ktime_add_safe(expires, base->get_ktime());
0639 if (sigev_none)
0640 alarm->node.expires = expires;
0641 else
0642 alarm_start(&timr->it.alarm.alarmtimer, expires);
0643 }
0644
0645
0646
0647
0648
0649
0650
0651
0652 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
0653 {
0654 if (!alarmtimer_get_rtcdev())
0655 return -EINVAL;
0656
0657 tp->tv_sec = 0;
0658 tp->tv_nsec = hrtimer_resolution;
0659 return 0;
0660 }
0661
0662
0663
0664
0665
0666
0667
0668
0669 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
0670 {
0671 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
0672
0673 if (!alarmtimer_get_rtcdev())
0674 return -EINVAL;
0675
0676 base->get_timespec(tp);
0677
0678 return 0;
0679 }
0680
0681
0682
0683
0684
0685
0686
0687 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
0688 {
0689 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
0690
0691 if (!alarmtimer_get_rtcdev())
0692 return -EINVAL;
0693
0694 return base->get_ktime();
0695 }
0696
0697
0698
0699
0700
0701
0702
0703 static int alarm_timer_create(struct k_itimer *new_timer)
0704 {
0705 enum alarmtimer_type type;
0706
0707 if (!alarmtimer_get_rtcdev())
0708 return -EOPNOTSUPP;
0709
0710 if (!capable(CAP_WAKE_ALARM))
0711 return -EPERM;
0712
0713 type = clock2alarm(new_timer->it_clock);
0714 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
0715 return 0;
0716 }
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
0728 ktime_t now)
0729 {
0730 struct task_struct *task = (struct task_struct *)alarm->data;
0731
0732 alarm->data = NULL;
0733 if (task)
0734 wake_up_process(task);
0735 return ALARMTIMER_NORESTART;
0736 }
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
0747 enum alarmtimer_type type)
0748 {
0749 struct restart_block *restart;
0750 alarm->data = (void *)current;
0751 do {
0752 set_current_state(TASK_INTERRUPTIBLE);
0753 alarm_start(alarm, absexp);
0754 if (likely(alarm->data))
0755 schedule();
0756
0757 alarm_cancel(alarm);
0758 } while (alarm->data && !signal_pending(current));
0759
0760 __set_current_state(TASK_RUNNING);
0761
0762 destroy_hrtimer_on_stack(&alarm->timer);
0763
0764 if (!alarm->data)
0765 return 0;
0766
0767 if (freezing(current))
0768 alarmtimer_freezerset(absexp, type);
0769 restart = ¤t->restart_block;
0770 if (restart->nanosleep.type != TT_NONE) {
0771 struct timespec64 rmt;
0772 ktime_t rem;
0773
0774 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
0775
0776 if (rem <= 0)
0777 return 0;
0778 rmt = ktime_to_timespec64(rem);
0779
0780 return nanosleep_copyout(restart, &rmt);
0781 }
0782 return -ERESTART_RESTARTBLOCK;
0783 }
0784
0785 static void
0786 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
0787 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
0788 {
0789 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
0790 HRTIMER_MODE_ABS);
0791 __alarm_init(alarm, type, function);
0792 }
0793
0794
0795
0796
0797
0798
0799
0800 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
0801 {
0802 enum alarmtimer_type type = restart->nanosleep.clockid;
0803 ktime_t exp = restart->nanosleep.expires;
0804 struct alarm alarm;
0805
0806 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
0807
0808 return alarmtimer_do_nsleep(&alarm, exp, type);
0809 }
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
0820 const struct timespec64 *tsreq)
0821 {
0822 enum alarmtimer_type type = clock2alarm(which_clock);
0823 struct restart_block *restart = ¤t->restart_block;
0824 struct alarm alarm;
0825 ktime_t exp;
0826 int ret = 0;
0827
0828 if (!alarmtimer_get_rtcdev())
0829 return -EOPNOTSUPP;
0830
0831 if (flags & ~TIMER_ABSTIME)
0832 return -EINVAL;
0833
0834 if (!capable(CAP_WAKE_ALARM))
0835 return -EPERM;
0836
0837 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
0838
0839 exp = timespec64_to_ktime(*tsreq);
0840
0841 if (flags != TIMER_ABSTIME) {
0842 ktime_t now = alarm_bases[type].get_ktime();
0843
0844 exp = ktime_add_safe(now, exp);
0845 } else {
0846 exp = timens_ktime_to_host(which_clock, exp);
0847 }
0848
0849 ret = alarmtimer_do_nsleep(&alarm, exp, type);
0850 if (ret != -ERESTART_RESTARTBLOCK)
0851 return ret;
0852
0853
0854 if (flags == TIMER_ABSTIME)
0855 return -ERESTARTNOHAND;
0856
0857 restart->nanosleep.clockid = type;
0858 restart->nanosleep.expires = exp;
0859 set_restart_fn(restart, alarm_timer_nsleep_restart);
0860 return ret;
0861 }
0862
0863 const struct k_clock alarm_clock = {
0864 .clock_getres = alarm_clock_getres,
0865 .clock_get_ktime = alarm_clock_get_ktime,
0866 .clock_get_timespec = alarm_clock_get_timespec,
0867 .timer_create = alarm_timer_create,
0868 .timer_set = common_timer_set,
0869 .timer_del = common_timer_del,
0870 .timer_get = common_timer_get,
0871 .timer_arm = alarm_timer_arm,
0872 .timer_rearm = alarm_timer_rearm,
0873 .timer_forward = alarm_timer_forward,
0874 .timer_remaining = alarm_timer_remaining,
0875 .timer_try_to_cancel = alarm_timer_try_to_cancel,
0876 .timer_wait_running = alarm_timer_wait_running,
0877 .nsleep = alarm_timer_nsleep,
0878 };
0879 #endif
0880
0881
0882
0883 static const struct dev_pm_ops alarmtimer_pm_ops = {
0884 .suspend = alarmtimer_suspend,
0885 .resume = alarmtimer_resume,
0886 };
0887
0888 static struct platform_driver alarmtimer_driver = {
0889 .driver = {
0890 .name = "alarmtimer",
0891 .pm = &alarmtimer_pm_ops,
0892 }
0893 };
0894
0895 static void get_boottime_timespec(struct timespec64 *tp)
0896 {
0897 ktime_get_boottime_ts64(tp);
0898 timens_add_boottime(tp);
0899 }
0900
0901
0902
0903
0904
0905
0906
0907 static int __init alarmtimer_init(void)
0908 {
0909 int error;
0910 int i;
0911
0912 alarmtimer_rtc_timer_init();
0913
0914
0915 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
0916 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
0917 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
0918 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
0919 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
0920 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
0921 for (i = 0; i < ALARM_NUMTYPE; i++) {
0922 timerqueue_init_head(&alarm_bases[i].timerqueue);
0923 spin_lock_init(&alarm_bases[i].lock);
0924 }
0925
0926 error = alarmtimer_rtc_interface_setup();
0927 if (error)
0928 return error;
0929
0930 error = platform_driver_register(&alarmtimer_driver);
0931 if (error)
0932 goto out_if;
0933
0934 return 0;
0935 out_if:
0936 alarmtimer_rtc_interface_remove();
0937 return error;
0938 }
0939 device_initcall(alarmtimer_init);