Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * linux/kernel/seccomp.c
0004  *
0005  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
0006  *
0007  * Copyright (C) 2012 Google, Inc.
0008  * Will Drewry <wad@chromium.org>
0009  *
0010  * This defines a simple but solid secure-computing facility.
0011  *
0012  * Mode 1 uses a fixed list of allowed system calls.
0013  * Mode 2 allows user-defined system call filters in the form
0014  *        of Berkeley Packet Filters/Linux Socket Filters.
0015  */
0016 #define pr_fmt(fmt) "seccomp: " fmt
0017 
0018 #include <linux/refcount.h>
0019 #include <linux/audit.h>
0020 #include <linux/compat.h>
0021 #include <linux/coredump.h>
0022 #include <linux/kmemleak.h>
0023 #include <linux/nospec.h>
0024 #include <linux/prctl.h>
0025 #include <linux/sched.h>
0026 #include <linux/sched/task_stack.h>
0027 #include <linux/seccomp.h>
0028 #include <linux/slab.h>
0029 #include <linux/syscalls.h>
0030 #include <linux/sysctl.h>
0031 
0032 /* Not exposed in headers: strictly internal use only. */
0033 #define SECCOMP_MODE_DEAD   (SECCOMP_MODE_FILTER + 1)
0034 
0035 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
0036 #include <asm/syscall.h>
0037 #endif
0038 
0039 #ifdef CONFIG_SECCOMP_FILTER
0040 #include <linux/file.h>
0041 #include <linux/filter.h>
0042 #include <linux/pid.h>
0043 #include <linux/ptrace.h>
0044 #include <linux/capability.h>
0045 #include <linux/uaccess.h>
0046 #include <linux/anon_inodes.h>
0047 #include <linux/lockdep.h>
0048 
0049 /*
0050  * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
0051  * wrong direction flag in the ioctl number. This is the broken one,
0052  * which the kernel needs to keep supporting until all userspaces stop
0053  * using the wrong command number.
0054  */
0055 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR  SECCOMP_IOR(2, __u64)
0056 
0057 enum notify_state {
0058     SECCOMP_NOTIFY_INIT,
0059     SECCOMP_NOTIFY_SENT,
0060     SECCOMP_NOTIFY_REPLIED,
0061 };
0062 
0063 struct seccomp_knotif {
0064     /* The struct pid of the task whose filter triggered the notification */
0065     struct task_struct *task;
0066 
0067     /* The "cookie" for this request; this is unique for this filter. */
0068     u64 id;
0069 
0070     /*
0071      * The seccomp data. This pointer is valid the entire time this
0072      * notification is active, since it comes from __seccomp_filter which
0073      * eclipses the entire lifecycle here.
0074      */
0075     const struct seccomp_data *data;
0076 
0077     /*
0078      * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
0079      * struct seccomp_knotif is created and starts out in INIT. Once the
0080      * handler reads the notification off of an FD, it transitions to SENT.
0081      * If a signal is received the state transitions back to INIT and
0082      * another message is sent. When the userspace handler replies, state
0083      * transitions to REPLIED.
0084      */
0085     enum notify_state state;
0086 
0087     /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
0088     int error;
0089     long val;
0090     u32 flags;
0091 
0092     /*
0093      * Signals when this has changed states, such as the listener
0094      * dying, a new seccomp addfd message, or changing to REPLIED
0095      */
0096     struct completion ready;
0097 
0098     struct list_head list;
0099 
0100     /* outstanding addfd requests */
0101     struct list_head addfd;
0102 };
0103 
0104 /**
0105  * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
0106  *
0107  * @file: A reference to the file to install in the other task
0108  * @fd: The fd number to install it at. If the fd number is -1, it means the
0109  *      installing process should allocate the fd as normal.
0110  * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
0111  *         is allowed.
0112  * @ioctl_flags: The flags used for the seccomp_addfd ioctl.
0113  * @ret: The return value of the installing process. It is set to the fd num
0114  *       upon success (>= 0).
0115  * @completion: Indicates that the installing process has completed fd
0116  *              installation, or gone away (either due to successful
0117  *              reply, or signal)
0118  *
0119  */
0120 struct seccomp_kaddfd {
0121     struct file *file;
0122     int fd;
0123     unsigned int flags;
0124     __u32 ioctl_flags;
0125 
0126     union {
0127         bool setfd;
0128         /* To only be set on reply */
0129         int ret;
0130     };
0131     struct completion completion;
0132     struct list_head list;
0133 };
0134 
0135 /**
0136  * struct notification - container for seccomp userspace notifications. Since
0137  * most seccomp filters will not have notification listeners attached and this
0138  * structure is fairly large, we store the notification-specific stuff in a
0139  * separate structure.
0140  *
0141  * @request: A semaphore that users of this notification can wait on for
0142  *           changes. Actual reads and writes are still controlled with
0143  *           filter->notify_lock.
0144  * @next_id: The id of the next request.
0145  * @notifications: A list of struct seccomp_knotif elements.
0146  */
0147 struct notification {
0148     struct semaphore request;
0149     u64 next_id;
0150     struct list_head notifications;
0151 };
0152 
0153 #ifdef SECCOMP_ARCH_NATIVE
0154 /**
0155  * struct action_cache - per-filter cache of seccomp actions per
0156  * arch/syscall pair
0157  *
0158  * @allow_native: A bitmap where each bit represents whether the
0159  *        filter will always allow the syscall, for the
0160  *        native architecture.
0161  * @allow_compat: A bitmap where each bit represents whether the
0162  *        filter will always allow the syscall, for the
0163  *        compat architecture.
0164  */
0165 struct action_cache {
0166     DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
0167 #ifdef SECCOMP_ARCH_COMPAT
0168     DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
0169 #endif
0170 };
0171 #else
0172 struct action_cache { };
0173 
0174 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
0175                          const struct seccomp_data *sd)
0176 {
0177     return false;
0178 }
0179 
0180 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
0181 {
0182 }
0183 #endif /* SECCOMP_ARCH_NATIVE */
0184 
0185 /**
0186  * struct seccomp_filter - container for seccomp BPF programs
0187  *
0188  * @refs: Reference count to manage the object lifetime.
0189  *    A filter's reference count is incremented for each directly
0190  *    attached task, once for the dependent filter, and if
0191  *    requested for the user notifier. When @refs reaches zero,
0192  *    the filter can be freed.
0193  * @users: A filter's @users count is incremented for each directly
0194  *         attached task (filter installation, fork(), thread_sync),
0195  *     and once for the dependent filter (tracked in filter->prev).
0196  *     When it reaches zero it indicates that no direct or indirect
0197  *     users of that filter exist. No new tasks can get associated with
0198  *     this filter after reaching 0. The @users count is always smaller
0199  *     or equal to @refs. Hence, reaching 0 for @users does not mean
0200  *     the filter can be freed.
0201  * @cache: cache of arch/syscall mappings to actions
0202  * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
0203  * @wait_killable_recv: Put notifying process in killable state once the
0204  *          notification is received by the userspace listener.
0205  * @prev: points to a previously installed, or inherited, filter
0206  * @prog: the BPF program to evaluate
0207  * @notif: the struct that holds all notification related information
0208  * @notify_lock: A lock for all notification-related accesses.
0209  * @wqh: A wait queue for poll if a notifier is in use.
0210  *
0211  * seccomp_filter objects are organized in a tree linked via the @prev
0212  * pointer.  For any task, it appears to be a singly-linked list starting
0213  * with current->seccomp.filter, the most recently attached or inherited filter.
0214  * However, multiple filters may share a @prev node, by way of fork(), which
0215  * results in a unidirectional tree existing in memory.  This is similar to
0216  * how namespaces work.
0217  *
0218  * seccomp_filter objects should never be modified after being attached
0219  * to a task_struct (other than @refs).
0220  */
0221 struct seccomp_filter {
0222     refcount_t refs;
0223     refcount_t users;
0224     bool log;
0225     bool wait_killable_recv;
0226     struct action_cache cache;
0227     struct seccomp_filter *prev;
0228     struct bpf_prog *prog;
0229     struct notification *notif;
0230     struct mutex notify_lock;
0231     wait_queue_head_t wqh;
0232 };
0233 
0234 /* Limit any path through the tree to 256KB worth of instructions. */
0235 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
0236 
0237 /*
0238  * Endianness is explicitly ignored and left for BPF program authors to manage
0239  * as per the specific architecture.
0240  */
0241 static void populate_seccomp_data(struct seccomp_data *sd)
0242 {
0243     /*
0244      * Instead of using current_pt_reg(), we're already doing the work
0245      * to safely fetch "current", so just use "task" everywhere below.
0246      */
0247     struct task_struct *task = current;
0248     struct pt_regs *regs = task_pt_regs(task);
0249     unsigned long args[6];
0250 
0251     sd->nr = syscall_get_nr(task, regs);
0252     sd->arch = syscall_get_arch(task);
0253     syscall_get_arguments(task, regs, args);
0254     sd->args[0] = args[0];
0255     sd->args[1] = args[1];
0256     sd->args[2] = args[2];
0257     sd->args[3] = args[3];
0258     sd->args[4] = args[4];
0259     sd->args[5] = args[5];
0260     sd->instruction_pointer = KSTK_EIP(task);
0261 }
0262 
0263 /**
0264  *  seccomp_check_filter - verify seccomp filter code
0265  *  @filter: filter to verify
0266  *  @flen: length of filter
0267  *
0268  * Takes a previously checked filter (by bpf_check_classic) and
0269  * redirects all filter code that loads struct sk_buff data
0270  * and related data through seccomp_bpf_load.  It also
0271  * enforces length and alignment checking of those loads.
0272  *
0273  * Returns 0 if the rule set is legal or -EINVAL if not.
0274  */
0275 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
0276 {
0277     int pc;
0278     for (pc = 0; pc < flen; pc++) {
0279         struct sock_filter *ftest = &filter[pc];
0280         u16 code = ftest->code;
0281         u32 k = ftest->k;
0282 
0283         switch (code) {
0284         case BPF_LD | BPF_W | BPF_ABS:
0285             ftest->code = BPF_LDX | BPF_W | BPF_ABS;
0286             /* 32-bit aligned and not out of bounds. */
0287             if (k >= sizeof(struct seccomp_data) || k & 3)
0288                 return -EINVAL;
0289             continue;
0290         case BPF_LD | BPF_W | BPF_LEN:
0291             ftest->code = BPF_LD | BPF_IMM;
0292             ftest->k = sizeof(struct seccomp_data);
0293             continue;
0294         case BPF_LDX | BPF_W | BPF_LEN:
0295             ftest->code = BPF_LDX | BPF_IMM;
0296             ftest->k = sizeof(struct seccomp_data);
0297             continue;
0298         /* Explicitly include allowed calls. */
0299         case BPF_RET | BPF_K:
0300         case BPF_RET | BPF_A:
0301         case BPF_ALU | BPF_ADD | BPF_K:
0302         case BPF_ALU | BPF_ADD | BPF_X:
0303         case BPF_ALU | BPF_SUB | BPF_K:
0304         case BPF_ALU | BPF_SUB | BPF_X:
0305         case BPF_ALU | BPF_MUL | BPF_K:
0306         case BPF_ALU | BPF_MUL | BPF_X:
0307         case BPF_ALU | BPF_DIV | BPF_K:
0308         case BPF_ALU | BPF_DIV | BPF_X:
0309         case BPF_ALU | BPF_AND | BPF_K:
0310         case BPF_ALU | BPF_AND | BPF_X:
0311         case BPF_ALU | BPF_OR | BPF_K:
0312         case BPF_ALU | BPF_OR | BPF_X:
0313         case BPF_ALU | BPF_XOR | BPF_K:
0314         case BPF_ALU | BPF_XOR | BPF_X:
0315         case BPF_ALU | BPF_LSH | BPF_K:
0316         case BPF_ALU | BPF_LSH | BPF_X:
0317         case BPF_ALU | BPF_RSH | BPF_K:
0318         case BPF_ALU | BPF_RSH | BPF_X:
0319         case BPF_ALU | BPF_NEG:
0320         case BPF_LD | BPF_IMM:
0321         case BPF_LDX | BPF_IMM:
0322         case BPF_MISC | BPF_TAX:
0323         case BPF_MISC | BPF_TXA:
0324         case BPF_LD | BPF_MEM:
0325         case BPF_LDX | BPF_MEM:
0326         case BPF_ST:
0327         case BPF_STX:
0328         case BPF_JMP | BPF_JA:
0329         case BPF_JMP | BPF_JEQ | BPF_K:
0330         case BPF_JMP | BPF_JEQ | BPF_X:
0331         case BPF_JMP | BPF_JGE | BPF_K:
0332         case BPF_JMP | BPF_JGE | BPF_X:
0333         case BPF_JMP | BPF_JGT | BPF_K:
0334         case BPF_JMP | BPF_JGT | BPF_X:
0335         case BPF_JMP | BPF_JSET | BPF_K:
0336         case BPF_JMP | BPF_JSET | BPF_X:
0337             continue;
0338         default:
0339             return -EINVAL;
0340         }
0341     }
0342     return 0;
0343 }
0344 
0345 #ifdef SECCOMP_ARCH_NATIVE
0346 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
0347                             size_t bitmap_size,
0348                             int syscall_nr)
0349 {
0350     if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
0351         return false;
0352     syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
0353 
0354     return test_bit(syscall_nr, bitmap);
0355 }
0356 
0357 /**
0358  * seccomp_cache_check_allow - lookup seccomp cache
0359  * @sfilter: The seccomp filter
0360  * @sd: The seccomp data to lookup the cache with
0361  *
0362  * Returns true if the seccomp_data is cached and allowed.
0363  */
0364 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
0365                          const struct seccomp_data *sd)
0366 {
0367     int syscall_nr = sd->nr;
0368     const struct action_cache *cache = &sfilter->cache;
0369 
0370 #ifndef SECCOMP_ARCH_COMPAT
0371     /* A native-only architecture doesn't need to check sd->arch. */
0372     return seccomp_cache_check_allow_bitmap(cache->allow_native,
0373                         SECCOMP_ARCH_NATIVE_NR,
0374                         syscall_nr);
0375 #else
0376     if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
0377         return seccomp_cache_check_allow_bitmap(cache->allow_native,
0378                             SECCOMP_ARCH_NATIVE_NR,
0379                             syscall_nr);
0380     if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
0381         return seccomp_cache_check_allow_bitmap(cache->allow_compat,
0382                             SECCOMP_ARCH_COMPAT_NR,
0383                             syscall_nr);
0384 #endif /* SECCOMP_ARCH_COMPAT */
0385 
0386     WARN_ON_ONCE(true);
0387     return false;
0388 }
0389 #endif /* SECCOMP_ARCH_NATIVE */
0390 
0391 /**
0392  * seccomp_run_filters - evaluates all seccomp filters against @sd
0393  * @sd: optional seccomp data to be passed to filters
0394  * @match: stores struct seccomp_filter that resulted in the return value,
0395  *         unless filter returned SECCOMP_RET_ALLOW, in which case it will
0396  *         be unchanged.
0397  *
0398  * Returns valid seccomp BPF response codes.
0399  */
0400 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
0401 static u32 seccomp_run_filters(const struct seccomp_data *sd,
0402                    struct seccomp_filter **match)
0403 {
0404     u32 ret = SECCOMP_RET_ALLOW;
0405     /* Make sure cross-thread synced filter points somewhere sane. */
0406     struct seccomp_filter *f =
0407             READ_ONCE(current->seccomp.filter);
0408 
0409     /* Ensure unexpected behavior doesn't result in failing open. */
0410     if (WARN_ON(f == NULL))
0411         return SECCOMP_RET_KILL_PROCESS;
0412 
0413     if (seccomp_cache_check_allow(f, sd))
0414         return SECCOMP_RET_ALLOW;
0415 
0416     /*
0417      * All filters in the list are evaluated and the lowest BPF return
0418      * value always takes priority (ignoring the DATA).
0419      */
0420     for (; f; f = f->prev) {
0421         u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
0422 
0423         if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
0424             ret = cur_ret;
0425             *match = f;
0426         }
0427     }
0428     return ret;
0429 }
0430 #endif /* CONFIG_SECCOMP_FILTER */
0431 
0432 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
0433 {
0434     assert_spin_locked(&current->sighand->siglock);
0435 
0436     if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
0437         return false;
0438 
0439     return true;
0440 }
0441 
0442 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
0443 
0444 static inline void seccomp_assign_mode(struct task_struct *task,
0445                        unsigned long seccomp_mode,
0446                        unsigned long flags)
0447 {
0448     assert_spin_locked(&task->sighand->siglock);
0449 
0450     task->seccomp.mode = seccomp_mode;
0451     /*
0452      * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
0453      * filter) is set.
0454      */
0455     smp_mb__before_atomic();
0456     /* Assume default seccomp processes want spec flaw mitigation. */
0457     if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
0458         arch_seccomp_spec_mitigate(task);
0459     set_task_syscall_work(task, SECCOMP);
0460 }
0461 
0462 #ifdef CONFIG_SECCOMP_FILTER
0463 /* Returns 1 if the parent is an ancestor of the child. */
0464 static int is_ancestor(struct seccomp_filter *parent,
0465                struct seccomp_filter *child)
0466 {
0467     /* NULL is the root ancestor. */
0468     if (parent == NULL)
0469         return 1;
0470     for (; child; child = child->prev)
0471         if (child == parent)
0472             return 1;
0473     return 0;
0474 }
0475 
0476 /**
0477  * seccomp_can_sync_threads: checks if all threads can be synchronized
0478  *
0479  * Expects sighand and cred_guard_mutex locks to be held.
0480  *
0481  * Returns 0 on success, -ve on error, or the pid of a thread which was
0482  * either not in the correct seccomp mode or did not have an ancestral
0483  * seccomp filter.
0484  */
0485 static inline pid_t seccomp_can_sync_threads(void)
0486 {
0487     struct task_struct *thread, *caller;
0488 
0489     BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
0490     assert_spin_locked(&current->sighand->siglock);
0491 
0492     /* Validate all threads being eligible for synchronization. */
0493     caller = current;
0494     for_each_thread(caller, thread) {
0495         pid_t failed;
0496 
0497         /* Skip current, since it is initiating the sync. */
0498         if (thread == caller)
0499             continue;
0500 
0501         if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
0502             (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
0503              is_ancestor(thread->seccomp.filter,
0504                  caller->seccomp.filter)))
0505             continue;
0506 
0507         /* Return the first thread that cannot be synchronized. */
0508         failed = task_pid_vnr(thread);
0509         /* If the pid cannot be resolved, then return -ESRCH */
0510         if (WARN_ON(failed == 0))
0511             failed = -ESRCH;
0512         return failed;
0513     }
0514 
0515     return 0;
0516 }
0517 
0518 static inline void seccomp_filter_free(struct seccomp_filter *filter)
0519 {
0520     if (filter) {
0521         bpf_prog_destroy(filter->prog);
0522         kfree(filter);
0523     }
0524 }
0525 
0526 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
0527 {
0528     while (orig && refcount_dec_and_test(&orig->users)) {
0529         if (waitqueue_active(&orig->wqh))
0530             wake_up_poll(&orig->wqh, EPOLLHUP);
0531         orig = orig->prev;
0532     }
0533 }
0534 
0535 static void __put_seccomp_filter(struct seccomp_filter *orig)
0536 {
0537     /* Clean up single-reference branches iteratively. */
0538     while (orig && refcount_dec_and_test(&orig->refs)) {
0539         struct seccomp_filter *freeme = orig;
0540         orig = orig->prev;
0541         seccomp_filter_free(freeme);
0542     }
0543 }
0544 
0545 static void __seccomp_filter_release(struct seccomp_filter *orig)
0546 {
0547     /* Notify about any unused filters in the task's former filter tree. */
0548     __seccomp_filter_orphan(orig);
0549     /* Finally drop all references to the task's former tree. */
0550     __put_seccomp_filter(orig);
0551 }
0552 
0553 /**
0554  * seccomp_filter_release - Detach the task from its filter tree,
0555  *              drop its reference count, and notify
0556  *              about unused filters
0557  *
0558  * This function should only be called when the task is exiting as
0559  * it detaches it from its filter tree. As such, READ_ONCE() and
0560  * barriers are not needed here, as would normally be needed.
0561  */
0562 void seccomp_filter_release(struct task_struct *tsk)
0563 {
0564     struct seccomp_filter *orig = tsk->seccomp.filter;
0565 
0566     /* We are effectively holding the siglock by not having any sighand. */
0567     WARN_ON(tsk->sighand != NULL);
0568 
0569     /* Detach task from its filter tree. */
0570     tsk->seccomp.filter = NULL;
0571     __seccomp_filter_release(orig);
0572 }
0573 
0574 /**
0575  * seccomp_sync_threads: sets all threads to use current's filter
0576  *
0577  * Expects sighand and cred_guard_mutex locks to be held, and for
0578  * seccomp_can_sync_threads() to have returned success already
0579  * without dropping the locks.
0580  *
0581  */
0582 static inline void seccomp_sync_threads(unsigned long flags)
0583 {
0584     struct task_struct *thread, *caller;
0585 
0586     BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
0587     assert_spin_locked(&current->sighand->siglock);
0588 
0589     /* Synchronize all threads. */
0590     caller = current;
0591     for_each_thread(caller, thread) {
0592         /* Skip current, since it needs no changes. */
0593         if (thread == caller)
0594             continue;
0595 
0596         /* Get a task reference for the new leaf node. */
0597         get_seccomp_filter(caller);
0598 
0599         /*
0600          * Drop the task reference to the shared ancestor since
0601          * current's path will hold a reference.  (This also
0602          * allows a put before the assignment.)
0603          */
0604         __seccomp_filter_release(thread->seccomp.filter);
0605 
0606         /* Make our new filter tree visible. */
0607         smp_store_release(&thread->seccomp.filter,
0608                   caller->seccomp.filter);
0609         atomic_set(&thread->seccomp.filter_count,
0610                atomic_read(&caller->seccomp.filter_count));
0611 
0612         /*
0613          * Don't let an unprivileged task work around
0614          * the no_new_privs restriction by creating
0615          * a thread that sets it up, enters seccomp,
0616          * then dies.
0617          */
0618         if (task_no_new_privs(caller))
0619             task_set_no_new_privs(thread);
0620 
0621         /*
0622          * Opt the other thread into seccomp if needed.
0623          * As threads are considered to be trust-realm
0624          * equivalent (see ptrace_may_access), it is safe to
0625          * allow one thread to transition the other.
0626          */
0627         if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
0628             seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
0629                         flags);
0630     }
0631 }
0632 
0633 /**
0634  * seccomp_prepare_filter: Prepares a seccomp filter for use.
0635  * @fprog: BPF program to install
0636  *
0637  * Returns filter on success or an ERR_PTR on failure.
0638  */
0639 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
0640 {
0641     struct seccomp_filter *sfilter;
0642     int ret;
0643     const bool save_orig =
0644 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
0645         true;
0646 #else
0647         false;
0648 #endif
0649 
0650     if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
0651         return ERR_PTR(-EINVAL);
0652 
0653     BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
0654 
0655     /*
0656      * Installing a seccomp filter requires that the task has
0657      * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
0658      * This avoids scenarios where unprivileged tasks can affect the
0659      * behavior of privileged children.
0660      */
0661     if (!task_no_new_privs(current) &&
0662             !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
0663         return ERR_PTR(-EACCES);
0664 
0665     /* Allocate a new seccomp_filter */
0666     sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
0667     if (!sfilter)
0668         return ERR_PTR(-ENOMEM);
0669 
0670     mutex_init(&sfilter->notify_lock);
0671     ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
0672                     seccomp_check_filter, save_orig);
0673     if (ret < 0) {
0674         kfree(sfilter);
0675         return ERR_PTR(ret);
0676     }
0677 
0678     refcount_set(&sfilter->refs, 1);
0679     refcount_set(&sfilter->users, 1);
0680     init_waitqueue_head(&sfilter->wqh);
0681 
0682     return sfilter;
0683 }
0684 
0685 /**
0686  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
0687  * @user_filter: pointer to the user data containing a sock_fprog.
0688  *
0689  * Returns 0 on success and non-zero otherwise.
0690  */
0691 static struct seccomp_filter *
0692 seccomp_prepare_user_filter(const char __user *user_filter)
0693 {
0694     struct sock_fprog fprog;
0695     struct seccomp_filter *filter = ERR_PTR(-EFAULT);
0696 
0697 #ifdef CONFIG_COMPAT
0698     if (in_compat_syscall()) {
0699         struct compat_sock_fprog fprog32;
0700         if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
0701             goto out;
0702         fprog.len = fprog32.len;
0703         fprog.filter = compat_ptr(fprog32.filter);
0704     } else /* falls through to the if below. */
0705 #endif
0706     if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
0707         goto out;
0708     filter = seccomp_prepare_filter(&fprog);
0709 out:
0710     return filter;
0711 }
0712 
0713 #ifdef SECCOMP_ARCH_NATIVE
0714 /**
0715  * seccomp_is_const_allow - check if filter is constant allow with given data
0716  * @fprog: The BPF programs
0717  * @sd: The seccomp data to check against, only syscall number and arch
0718  *      number are considered constant.
0719  */
0720 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
0721                    struct seccomp_data *sd)
0722 {
0723     unsigned int reg_value = 0;
0724     unsigned int pc;
0725     bool op_res;
0726 
0727     if (WARN_ON_ONCE(!fprog))
0728         return false;
0729 
0730     for (pc = 0; pc < fprog->len; pc++) {
0731         struct sock_filter *insn = &fprog->filter[pc];
0732         u16 code = insn->code;
0733         u32 k = insn->k;
0734 
0735         switch (code) {
0736         case BPF_LD | BPF_W | BPF_ABS:
0737             switch (k) {
0738             case offsetof(struct seccomp_data, nr):
0739                 reg_value = sd->nr;
0740                 break;
0741             case offsetof(struct seccomp_data, arch):
0742                 reg_value = sd->arch;
0743                 break;
0744             default:
0745                 /* can't optimize (non-constant value load) */
0746                 return false;
0747             }
0748             break;
0749         case BPF_RET | BPF_K:
0750             /* reached return with constant values only, check allow */
0751             return k == SECCOMP_RET_ALLOW;
0752         case BPF_JMP | BPF_JA:
0753             pc += insn->k;
0754             break;
0755         case BPF_JMP | BPF_JEQ | BPF_K:
0756         case BPF_JMP | BPF_JGE | BPF_K:
0757         case BPF_JMP | BPF_JGT | BPF_K:
0758         case BPF_JMP | BPF_JSET | BPF_K:
0759             switch (BPF_OP(code)) {
0760             case BPF_JEQ:
0761                 op_res = reg_value == k;
0762                 break;
0763             case BPF_JGE:
0764                 op_res = reg_value >= k;
0765                 break;
0766             case BPF_JGT:
0767                 op_res = reg_value > k;
0768                 break;
0769             case BPF_JSET:
0770                 op_res = !!(reg_value & k);
0771                 break;
0772             default:
0773                 /* can't optimize (unknown jump) */
0774                 return false;
0775             }
0776 
0777             pc += op_res ? insn->jt : insn->jf;
0778             break;
0779         case BPF_ALU | BPF_AND | BPF_K:
0780             reg_value &= k;
0781             break;
0782         default:
0783             /* can't optimize (unknown insn) */
0784             return false;
0785         }
0786     }
0787 
0788     /* ran off the end of the filter?! */
0789     WARN_ON(1);
0790     return false;
0791 }
0792 
0793 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
0794                      void *bitmap, const void *bitmap_prev,
0795                      size_t bitmap_size, int arch)
0796 {
0797     struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
0798     struct seccomp_data sd;
0799     int nr;
0800 
0801     if (bitmap_prev) {
0802         /* The new filter must be as restrictive as the last. */
0803         bitmap_copy(bitmap, bitmap_prev, bitmap_size);
0804     } else {
0805         /* Before any filters, all syscalls are always allowed. */
0806         bitmap_fill(bitmap, bitmap_size);
0807     }
0808 
0809     for (nr = 0; nr < bitmap_size; nr++) {
0810         /* No bitmap change: not a cacheable action. */
0811         if (!test_bit(nr, bitmap))
0812             continue;
0813 
0814         sd.nr = nr;
0815         sd.arch = arch;
0816 
0817         /* No bitmap change: continue to always allow. */
0818         if (seccomp_is_const_allow(fprog, &sd))
0819             continue;
0820 
0821         /*
0822          * Not a cacheable action: always run filters.
0823          * atomic clear_bit() not needed, filter not visible yet.
0824          */
0825         __clear_bit(nr, bitmap);
0826     }
0827 }
0828 
0829 /**
0830  * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
0831  * @sfilter: The seccomp filter
0832  *
0833  * Returns 0 if successful or -errno if error occurred.
0834  */
0835 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
0836 {
0837     struct action_cache *cache = &sfilter->cache;
0838     const struct action_cache *cache_prev =
0839         sfilter->prev ? &sfilter->prev->cache : NULL;
0840 
0841     seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
0842                      cache_prev ? cache_prev->allow_native : NULL,
0843                      SECCOMP_ARCH_NATIVE_NR,
0844                      SECCOMP_ARCH_NATIVE);
0845 
0846 #ifdef SECCOMP_ARCH_COMPAT
0847     seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
0848                      cache_prev ? cache_prev->allow_compat : NULL,
0849                      SECCOMP_ARCH_COMPAT_NR,
0850                      SECCOMP_ARCH_COMPAT);
0851 #endif /* SECCOMP_ARCH_COMPAT */
0852 }
0853 #endif /* SECCOMP_ARCH_NATIVE */
0854 
0855 /**
0856  * seccomp_attach_filter: validate and attach filter
0857  * @flags:  flags to change filter behavior
0858  * @filter: seccomp filter to add to the current process
0859  *
0860  * Caller must be holding current->sighand->siglock lock.
0861  *
0862  * Returns 0 on success, -ve on error, or
0863  *   - in TSYNC mode: the pid of a thread which was either not in the correct
0864  *     seccomp mode or did not have an ancestral seccomp filter
0865  *   - in NEW_LISTENER mode: the fd of the new listener
0866  */
0867 static long seccomp_attach_filter(unsigned int flags,
0868                   struct seccomp_filter *filter)
0869 {
0870     unsigned long total_insns;
0871     struct seccomp_filter *walker;
0872 
0873     assert_spin_locked(&current->sighand->siglock);
0874 
0875     /* Validate resulting filter length. */
0876     total_insns = filter->prog->len;
0877     for (walker = current->seccomp.filter; walker; walker = walker->prev)
0878         total_insns += walker->prog->len + 4;  /* 4 instr penalty */
0879     if (total_insns > MAX_INSNS_PER_PATH)
0880         return -ENOMEM;
0881 
0882     /* If thread sync has been requested, check that it is possible. */
0883     if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
0884         int ret;
0885 
0886         ret = seccomp_can_sync_threads();
0887         if (ret) {
0888             if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
0889                 return -ESRCH;
0890             else
0891                 return ret;
0892         }
0893     }
0894 
0895     /* Set log flag, if present. */
0896     if (flags & SECCOMP_FILTER_FLAG_LOG)
0897         filter->log = true;
0898 
0899     /* Set wait killable flag, if present. */
0900     if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV)
0901         filter->wait_killable_recv = true;
0902 
0903     /*
0904      * If there is an existing filter, make it the prev and don't drop its
0905      * task reference.
0906      */
0907     filter->prev = current->seccomp.filter;
0908     seccomp_cache_prepare(filter);
0909     current->seccomp.filter = filter;
0910     atomic_inc(&current->seccomp.filter_count);
0911 
0912     /* Now that the new filter is in place, synchronize to all threads. */
0913     if (flags & SECCOMP_FILTER_FLAG_TSYNC)
0914         seccomp_sync_threads(flags);
0915 
0916     return 0;
0917 }
0918 
0919 static void __get_seccomp_filter(struct seccomp_filter *filter)
0920 {
0921     refcount_inc(&filter->refs);
0922 }
0923 
0924 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
0925 void get_seccomp_filter(struct task_struct *tsk)
0926 {
0927     struct seccomp_filter *orig = tsk->seccomp.filter;
0928     if (!orig)
0929         return;
0930     __get_seccomp_filter(orig);
0931     refcount_inc(&orig->users);
0932 }
0933 
0934 #endif  /* CONFIG_SECCOMP_FILTER */
0935 
0936 /* For use with seccomp_actions_logged */
0937 #define SECCOMP_LOG_KILL_PROCESS    (1 << 0)
0938 #define SECCOMP_LOG_KILL_THREAD     (1 << 1)
0939 #define SECCOMP_LOG_TRAP        (1 << 2)
0940 #define SECCOMP_LOG_ERRNO       (1 << 3)
0941 #define SECCOMP_LOG_TRACE       (1 << 4)
0942 #define SECCOMP_LOG_LOG         (1 << 5)
0943 #define SECCOMP_LOG_ALLOW       (1 << 6)
0944 #define SECCOMP_LOG_USER_NOTIF      (1 << 7)
0945 
0946 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
0947                     SECCOMP_LOG_KILL_THREAD  |
0948                     SECCOMP_LOG_TRAP  |
0949                     SECCOMP_LOG_ERRNO |
0950                     SECCOMP_LOG_USER_NOTIF |
0951                     SECCOMP_LOG_TRACE |
0952                     SECCOMP_LOG_LOG;
0953 
0954 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
0955                    bool requested)
0956 {
0957     bool log = false;
0958 
0959     switch (action) {
0960     case SECCOMP_RET_ALLOW:
0961         break;
0962     case SECCOMP_RET_TRAP:
0963         log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
0964         break;
0965     case SECCOMP_RET_ERRNO:
0966         log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
0967         break;
0968     case SECCOMP_RET_TRACE:
0969         log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
0970         break;
0971     case SECCOMP_RET_USER_NOTIF:
0972         log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
0973         break;
0974     case SECCOMP_RET_LOG:
0975         log = seccomp_actions_logged & SECCOMP_LOG_LOG;
0976         break;
0977     case SECCOMP_RET_KILL_THREAD:
0978         log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
0979         break;
0980     case SECCOMP_RET_KILL_PROCESS:
0981     default:
0982         log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
0983     }
0984 
0985     /*
0986      * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
0987      * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
0988      * any action from being logged by removing the action name from the
0989      * seccomp_actions_logged sysctl.
0990      */
0991     if (!log)
0992         return;
0993 
0994     audit_seccomp(syscall, signr, action);
0995 }
0996 
0997 /*
0998  * Secure computing mode 1 allows only read/write/exit/sigreturn.
0999  * To be fully secure this must be combined with rlimit
1000  * to limit the stack allocations too.
1001  */
1002 static const int mode1_syscalls[] = {
1003     __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1004     -1, /* negative terminated */
1005 };
1006 
1007 static void __secure_computing_strict(int this_syscall)
1008 {
1009     const int *allowed_syscalls = mode1_syscalls;
1010 #ifdef CONFIG_COMPAT
1011     if (in_compat_syscall())
1012         allowed_syscalls = get_compat_mode1_syscalls();
1013 #endif
1014     do {
1015         if (*allowed_syscalls == this_syscall)
1016             return;
1017     } while (*++allowed_syscalls != -1);
1018 
1019 #ifdef SECCOMP_DEBUG
1020     dump_stack();
1021 #endif
1022     current->seccomp.mode = SECCOMP_MODE_DEAD;
1023     seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1024     do_exit(SIGKILL);
1025 }
1026 
1027 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1028 void secure_computing_strict(int this_syscall)
1029 {
1030     int mode = current->seccomp.mode;
1031 
1032     if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1033         unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1034         return;
1035 
1036     if (mode == SECCOMP_MODE_DISABLED)
1037         return;
1038     else if (mode == SECCOMP_MODE_STRICT)
1039         __secure_computing_strict(this_syscall);
1040     else
1041         BUG();
1042 }
1043 #else
1044 
1045 #ifdef CONFIG_SECCOMP_FILTER
1046 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1047 {
1048     /*
1049      * Note: overflow is ok here, the id just needs to be unique per
1050      * filter.
1051      */
1052     lockdep_assert_held(&filter->notify_lock);
1053     return filter->notif->next_id++;
1054 }
1055 
1056 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n)
1057 {
1058     int fd;
1059 
1060     /*
1061      * Remove the notification, and reset the list pointers, indicating
1062      * that it has been handled.
1063      */
1064     list_del_init(&addfd->list);
1065     if (!addfd->setfd)
1066         fd = receive_fd(addfd->file, addfd->flags);
1067     else
1068         fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1069     addfd->ret = fd;
1070 
1071     if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) {
1072         /* If we fail reset and return an error to the notifier */
1073         if (fd < 0) {
1074             n->state = SECCOMP_NOTIFY_SENT;
1075         } else {
1076             /* Return the FD we just added */
1077             n->flags = 0;
1078             n->error = 0;
1079             n->val = fd;
1080         }
1081     }
1082 
1083     /*
1084      * Mark the notification as completed. From this point, addfd mem
1085      * might be invalidated and we can't safely read it anymore.
1086      */
1087     complete(&addfd->completion);
1088 }
1089 
1090 static bool should_sleep_killable(struct seccomp_filter *match,
1091                   struct seccomp_knotif *n)
1092 {
1093     return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT;
1094 }
1095 
1096 static int seccomp_do_user_notification(int this_syscall,
1097                     struct seccomp_filter *match,
1098                     const struct seccomp_data *sd)
1099 {
1100     int err;
1101     u32 flags = 0;
1102     long ret = 0;
1103     struct seccomp_knotif n = {};
1104     struct seccomp_kaddfd *addfd, *tmp;
1105 
1106     mutex_lock(&match->notify_lock);
1107     err = -ENOSYS;
1108     if (!match->notif)
1109         goto out;
1110 
1111     n.task = current;
1112     n.state = SECCOMP_NOTIFY_INIT;
1113     n.data = sd;
1114     n.id = seccomp_next_notify_id(match);
1115     init_completion(&n.ready);
1116     list_add_tail(&n.list, &match->notif->notifications);
1117     INIT_LIST_HEAD(&n.addfd);
1118 
1119     up(&match->notif->request);
1120     wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1121 
1122     /*
1123      * This is where we wait for a reply from userspace.
1124      */
1125     do {
1126         bool wait_killable = should_sleep_killable(match, &n);
1127 
1128         mutex_unlock(&match->notify_lock);
1129         if (wait_killable)
1130             err = wait_for_completion_killable(&n.ready);
1131         else
1132             err = wait_for_completion_interruptible(&n.ready);
1133         mutex_lock(&match->notify_lock);
1134 
1135         if (err != 0) {
1136             /*
1137              * Check to see if the notifcation got picked up and
1138              * whether we should switch to wait killable.
1139              */
1140             if (!wait_killable && should_sleep_killable(match, &n))
1141                 continue;
1142 
1143             goto interrupted;
1144         }
1145 
1146         addfd = list_first_entry_or_null(&n.addfd,
1147                          struct seccomp_kaddfd, list);
1148         /* Check if we were woken up by a addfd message */
1149         if (addfd)
1150             seccomp_handle_addfd(addfd, &n);
1151 
1152     }  while (n.state != SECCOMP_NOTIFY_REPLIED);
1153 
1154     ret = n.val;
1155     err = n.error;
1156     flags = n.flags;
1157 
1158 interrupted:
1159     /* If there were any pending addfd calls, clear them out */
1160     list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1161         /* The process went away before we got a chance to handle it */
1162         addfd->ret = -ESRCH;
1163         list_del_init(&addfd->list);
1164         complete(&addfd->completion);
1165     }
1166 
1167     /*
1168      * Note that it's possible the listener died in between the time when
1169      * we were notified of a response (or a signal) and when we were able to
1170      * re-acquire the lock, so only delete from the list if the
1171      * notification actually exists.
1172      *
1173      * Also note that this test is only valid because there's no way to
1174      * *reattach* to a notifier right now. If one is added, we'll need to
1175      * keep track of the notif itself and make sure they match here.
1176      */
1177     if (match->notif)
1178         list_del(&n.list);
1179 out:
1180     mutex_unlock(&match->notify_lock);
1181 
1182     /* Userspace requests to continue the syscall. */
1183     if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1184         return 0;
1185 
1186     syscall_set_return_value(current, current_pt_regs(),
1187                  err, ret);
1188     return -1;
1189 }
1190 
1191 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1192                 const bool recheck_after_trace)
1193 {
1194     u32 filter_ret, action;
1195     struct seccomp_filter *match = NULL;
1196     int data;
1197     struct seccomp_data sd_local;
1198 
1199     /*
1200      * Make sure that any changes to mode from another thread have
1201      * been seen after SYSCALL_WORK_SECCOMP was seen.
1202      */
1203     smp_rmb();
1204 
1205     if (!sd) {
1206         populate_seccomp_data(&sd_local);
1207         sd = &sd_local;
1208     }
1209 
1210     filter_ret = seccomp_run_filters(sd, &match);
1211     data = filter_ret & SECCOMP_RET_DATA;
1212     action = filter_ret & SECCOMP_RET_ACTION_FULL;
1213 
1214     switch (action) {
1215     case SECCOMP_RET_ERRNO:
1216         /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1217         if (data > MAX_ERRNO)
1218             data = MAX_ERRNO;
1219         syscall_set_return_value(current, current_pt_regs(),
1220                      -data, 0);
1221         goto skip;
1222 
1223     case SECCOMP_RET_TRAP:
1224         /* Show the handler the original registers. */
1225         syscall_rollback(current, current_pt_regs());
1226         /* Let the filter pass back 16 bits of data. */
1227         force_sig_seccomp(this_syscall, data, false);
1228         goto skip;
1229 
1230     case SECCOMP_RET_TRACE:
1231         /* We've been put in this state by the ptracer already. */
1232         if (recheck_after_trace)
1233             return 0;
1234 
1235         /* ENOSYS these calls if there is no tracer attached. */
1236         if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1237             syscall_set_return_value(current,
1238                          current_pt_regs(),
1239                          -ENOSYS, 0);
1240             goto skip;
1241         }
1242 
1243         /* Allow the BPF to provide the event message */
1244         ptrace_event(PTRACE_EVENT_SECCOMP, data);
1245         /*
1246          * The delivery of a fatal signal during event
1247          * notification may silently skip tracer notification,
1248          * which could leave us with a potentially unmodified
1249          * syscall that the tracer would have liked to have
1250          * changed. Since the process is about to die, we just
1251          * force the syscall to be skipped and let the signal
1252          * kill the process and correctly handle any tracer exit
1253          * notifications.
1254          */
1255         if (fatal_signal_pending(current))
1256             goto skip;
1257         /* Check if the tracer forced the syscall to be skipped. */
1258         this_syscall = syscall_get_nr(current, current_pt_regs());
1259         if (this_syscall < 0)
1260             goto skip;
1261 
1262         /*
1263          * Recheck the syscall, since it may have changed. This
1264          * intentionally uses a NULL struct seccomp_data to force
1265          * a reload of all registers. This does not goto skip since
1266          * a skip would have already been reported.
1267          */
1268         if (__seccomp_filter(this_syscall, NULL, true))
1269             return -1;
1270 
1271         return 0;
1272 
1273     case SECCOMP_RET_USER_NOTIF:
1274         if (seccomp_do_user_notification(this_syscall, match, sd))
1275             goto skip;
1276 
1277         return 0;
1278 
1279     case SECCOMP_RET_LOG:
1280         seccomp_log(this_syscall, 0, action, true);
1281         return 0;
1282 
1283     case SECCOMP_RET_ALLOW:
1284         /*
1285          * Note that the "match" filter will always be NULL for
1286          * this action since SECCOMP_RET_ALLOW is the starting
1287          * state in seccomp_run_filters().
1288          */
1289         return 0;
1290 
1291     case SECCOMP_RET_KILL_THREAD:
1292     case SECCOMP_RET_KILL_PROCESS:
1293     default:
1294         current->seccomp.mode = SECCOMP_MODE_DEAD;
1295         seccomp_log(this_syscall, SIGSYS, action, true);
1296         /* Dump core only if this is the last remaining thread. */
1297         if (action != SECCOMP_RET_KILL_THREAD ||
1298             (atomic_read(&current->signal->live) == 1)) {
1299             /* Show the original registers in the dump. */
1300             syscall_rollback(current, current_pt_regs());
1301             /* Trigger a coredump with SIGSYS */
1302             force_sig_seccomp(this_syscall, data, true);
1303         } else {
1304             do_exit(SIGSYS);
1305         }
1306         return -1; /* skip the syscall go directly to signal handling */
1307     }
1308 
1309     unreachable();
1310 
1311 skip:
1312     seccomp_log(this_syscall, 0, action, match ? match->log : false);
1313     return -1;
1314 }
1315 #else
1316 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1317                 const bool recheck_after_trace)
1318 {
1319     BUG();
1320 
1321     return -1;
1322 }
1323 #endif
1324 
1325 int __secure_computing(const struct seccomp_data *sd)
1326 {
1327     int mode = current->seccomp.mode;
1328     int this_syscall;
1329 
1330     if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1331         unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1332         return 0;
1333 
1334     this_syscall = sd ? sd->nr :
1335         syscall_get_nr(current, current_pt_regs());
1336 
1337     switch (mode) {
1338     case SECCOMP_MODE_STRICT:
1339         __secure_computing_strict(this_syscall);  /* may call do_exit */
1340         return 0;
1341     case SECCOMP_MODE_FILTER:
1342         return __seccomp_filter(this_syscall, sd, false);
1343     /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */
1344     case SECCOMP_MODE_DEAD:
1345         WARN_ON_ONCE(1);
1346         do_exit(SIGKILL);
1347         return -1;
1348     default:
1349         BUG();
1350     }
1351 }
1352 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1353 
1354 long prctl_get_seccomp(void)
1355 {
1356     return current->seccomp.mode;
1357 }
1358 
1359 /**
1360  * seccomp_set_mode_strict: internal function for setting strict seccomp
1361  *
1362  * Once current->seccomp.mode is non-zero, it may not be changed.
1363  *
1364  * Returns 0 on success or -EINVAL on failure.
1365  */
1366 static long seccomp_set_mode_strict(void)
1367 {
1368     const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1369     long ret = -EINVAL;
1370 
1371     spin_lock_irq(&current->sighand->siglock);
1372 
1373     if (!seccomp_may_assign_mode(seccomp_mode))
1374         goto out;
1375 
1376 #ifdef TIF_NOTSC
1377     disable_TSC();
1378 #endif
1379     seccomp_assign_mode(current, seccomp_mode, 0);
1380     ret = 0;
1381 
1382 out:
1383     spin_unlock_irq(&current->sighand->siglock);
1384 
1385     return ret;
1386 }
1387 
1388 #ifdef CONFIG_SECCOMP_FILTER
1389 static void seccomp_notify_free(struct seccomp_filter *filter)
1390 {
1391     kfree(filter->notif);
1392     filter->notif = NULL;
1393 }
1394 
1395 static void seccomp_notify_detach(struct seccomp_filter *filter)
1396 {
1397     struct seccomp_knotif *knotif;
1398 
1399     if (!filter)
1400         return;
1401 
1402     mutex_lock(&filter->notify_lock);
1403 
1404     /*
1405      * If this file is being closed because e.g. the task who owned it
1406      * died, let's wake everyone up who was waiting on us.
1407      */
1408     list_for_each_entry(knotif, &filter->notif->notifications, list) {
1409         if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1410             continue;
1411 
1412         knotif->state = SECCOMP_NOTIFY_REPLIED;
1413         knotif->error = -ENOSYS;
1414         knotif->val = 0;
1415 
1416         /*
1417          * We do not need to wake up any pending addfd messages, as
1418          * the notifier will do that for us, as this just looks
1419          * like a standard reply.
1420          */
1421         complete(&knotif->ready);
1422     }
1423 
1424     seccomp_notify_free(filter);
1425     mutex_unlock(&filter->notify_lock);
1426 }
1427 
1428 static int seccomp_notify_release(struct inode *inode, struct file *file)
1429 {
1430     struct seccomp_filter *filter = file->private_data;
1431 
1432     seccomp_notify_detach(filter);
1433     __put_seccomp_filter(filter);
1434     return 0;
1435 }
1436 
1437 /* must be called with notif_lock held */
1438 static inline struct seccomp_knotif *
1439 find_notification(struct seccomp_filter *filter, u64 id)
1440 {
1441     struct seccomp_knotif *cur;
1442 
1443     lockdep_assert_held(&filter->notify_lock);
1444 
1445     list_for_each_entry(cur, &filter->notif->notifications, list) {
1446         if (cur->id == id)
1447             return cur;
1448     }
1449 
1450     return NULL;
1451 }
1452 
1453 
1454 static long seccomp_notify_recv(struct seccomp_filter *filter,
1455                 void __user *buf)
1456 {
1457     struct seccomp_knotif *knotif = NULL, *cur;
1458     struct seccomp_notif unotif;
1459     ssize_t ret;
1460 
1461     /* Verify that we're not given garbage to keep struct extensible. */
1462     ret = check_zeroed_user(buf, sizeof(unotif));
1463     if (ret < 0)
1464         return ret;
1465     if (!ret)
1466         return -EINVAL;
1467 
1468     memset(&unotif, 0, sizeof(unotif));
1469 
1470     ret = down_interruptible(&filter->notif->request);
1471     if (ret < 0)
1472         return ret;
1473 
1474     mutex_lock(&filter->notify_lock);
1475     list_for_each_entry(cur, &filter->notif->notifications, list) {
1476         if (cur->state == SECCOMP_NOTIFY_INIT) {
1477             knotif = cur;
1478             break;
1479         }
1480     }
1481 
1482     /*
1483      * If we didn't find a notification, it could be that the task was
1484      * interrupted by a fatal signal between the time we were woken and
1485      * when we were able to acquire the rw lock.
1486      */
1487     if (!knotif) {
1488         ret = -ENOENT;
1489         goto out;
1490     }
1491 
1492     unotif.id = knotif->id;
1493     unotif.pid = task_pid_vnr(knotif->task);
1494     unotif.data = *(knotif->data);
1495 
1496     knotif->state = SECCOMP_NOTIFY_SENT;
1497     wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1498     ret = 0;
1499 out:
1500     mutex_unlock(&filter->notify_lock);
1501 
1502     if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1503         ret = -EFAULT;
1504 
1505         /*
1506          * Userspace screwed up. To make sure that we keep this
1507          * notification alive, let's reset it back to INIT. It
1508          * may have died when we released the lock, so we need to make
1509          * sure it's still around.
1510          */
1511         mutex_lock(&filter->notify_lock);
1512         knotif = find_notification(filter, unotif.id);
1513         if (knotif) {
1514             /* Reset the process to make sure it's not stuck */
1515             if (should_sleep_killable(filter, knotif))
1516                 complete(&knotif->ready);
1517             knotif->state = SECCOMP_NOTIFY_INIT;
1518             up(&filter->notif->request);
1519         }
1520         mutex_unlock(&filter->notify_lock);
1521     }
1522 
1523     return ret;
1524 }
1525 
1526 static long seccomp_notify_send(struct seccomp_filter *filter,
1527                 void __user *buf)
1528 {
1529     struct seccomp_notif_resp resp = {};
1530     struct seccomp_knotif *knotif;
1531     long ret;
1532 
1533     if (copy_from_user(&resp, buf, sizeof(resp)))
1534         return -EFAULT;
1535 
1536     if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1537         return -EINVAL;
1538 
1539     if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1540         (resp.error || resp.val))
1541         return -EINVAL;
1542 
1543     ret = mutex_lock_interruptible(&filter->notify_lock);
1544     if (ret < 0)
1545         return ret;
1546 
1547     knotif = find_notification(filter, resp.id);
1548     if (!knotif) {
1549         ret = -ENOENT;
1550         goto out;
1551     }
1552 
1553     /* Allow exactly one reply. */
1554     if (knotif->state != SECCOMP_NOTIFY_SENT) {
1555         ret = -EINPROGRESS;
1556         goto out;
1557     }
1558 
1559     ret = 0;
1560     knotif->state = SECCOMP_NOTIFY_REPLIED;
1561     knotif->error = resp.error;
1562     knotif->val = resp.val;
1563     knotif->flags = resp.flags;
1564     complete(&knotif->ready);
1565 out:
1566     mutex_unlock(&filter->notify_lock);
1567     return ret;
1568 }
1569 
1570 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1571                     void __user *buf)
1572 {
1573     struct seccomp_knotif *knotif;
1574     u64 id;
1575     long ret;
1576 
1577     if (copy_from_user(&id, buf, sizeof(id)))
1578         return -EFAULT;
1579 
1580     ret = mutex_lock_interruptible(&filter->notify_lock);
1581     if (ret < 0)
1582         return ret;
1583 
1584     knotif = find_notification(filter, id);
1585     if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1586         ret = 0;
1587     else
1588         ret = -ENOENT;
1589 
1590     mutex_unlock(&filter->notify_lock);
1591     return ret;
1592 }
1593 
1594 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1595                  struct seccomp_notif_addfd __user *uaddfd,
1596                  unsigned int size)
1597 {
1598     struct seccomp_notif_addfd addfd;
1599     struct seccomp_knotif *knotif;
1600     struct seccomp_kaddfd kaddfd;
1601     int ret;
1602 
1603     BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1604     BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1605 
1606     if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1607         return -EINVAL;
1608 
1609     ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1610     if (ret)
1611         return ret;
1612 
1613     if (addfd.newfd_flags & ~O_CLOEXEC)
1614         return -EINVAL;
1615 
1616     if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND))
1617         return -EINVAL;
1618 
1619     if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1620         return -EINVAL;
1621 
1622     kaddfd.file = fget(addfd.srcfd);
1623     if (!kaddfd.file)
1624         return -EBADF;
1625 
1626     kaddfd.ioctl_flags = addfd.flags;
1627     kaddfd.flags = addfd.newfd_flags;
1628     kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1629     kaddfd.fd = addfd.newfd;
1630     init_completion(&kaddfd.completion);
1631 
1632     ret = mutex_lock_interruptible(&filter->notify_lock);
1633     if (ret < 0)
1634         goto out;
1635 
1636     knotif = find_notification(filter, addfd.id);
1637     if (!knotif) {
1638         ret = -ENOENT;
1639         goto out_unlock;
1640     }
1641 
1642     /*
1643      * We do not want to allow for FD injection to occur before the
1644      * notification has been picked up by a userspace handler, or after
1645      * the notification has been replied to.
1646      */
1647     if (knotif->state != SECCOMP_NOTIFY_SENT) {
1648         ret = -EINPROGRESS;
1649         goto out_unlock;
1650     }
1651 
1652     if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) {
1653         /*
1654          * Disallow queuing an atomic addfd + send reply while there are
1655          * some addfd requests still to process.
1656          *
1657          * There is no clear reason to support it and allows us to keep
1658          * the loop on the other side straight-forward.
1659          */
1660         if (!list_empty(&knotif->addfd)) {
1661             ret = -EBUSY;
1662             goto out_unlock;
1663         }
1664 
1665         /* Allow exactly only one reply */
1666         knotif->state = SECCOMP_NOTIFY_REPLIED;
1667     }
1668 
1669     list_add(&kaddfd.list, &knotif->addfd);
1670     complete(&knotif->ready);
1671     mutex_unlock(&filter->notify_lock);
1672 
1673     /* Now we wait for it to be processed or be interrupted */
1674     ret = wait_for_completion_interruptible(&kaddfd.completion);
1675     if (ret == 0) {
1676         /*
1677          * We had a successful completion. The other side has already
1678          * removed us from the addfd queue, and
1679          * wait_for_completion_interruptible has a memory barrier upon
1680          * success that lets us read this value directly without
1681          * locking.
1682          */
1683         ret = kaddfd.ret;
1684         goto out;
1685     }
1686 
1687     mutex_lock(&filter->notify_lock);
1688     /*
1689      * Even though we were woken up by a signal and not a successful
1690      * completion, a completion may have happened in the mean time.
1691      *
1692      * We need to check again if the addfd request has been handled,
1693      * and if not, we will remove it from the queue.
1694      */
1695     if (list_empty(&kaddfd.list))
1696         ret = kaddfd.ret;
1697     else
1698         list_del(&kaddfd.list);
1699 
1700 out_unlock:
1701     mutex_unlock(&filter->notify_lock);
1702 out:
1703     fput(kaddfd.file);
1704 
1705     return ret;
1706 }
1707 
1708 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1709                  unsigned long arg)
1710 {
1711     struct seccomp_filter *filter = file->private_data;
1712     void __user *buf = (void __user *)arg;
1713 
1714     /* Fixed-size ioctls */
1715     switch (cmd) {
1716     case SECCOMP_IOCTL_NOTIF_RECV:
1717         return seccomp_notify_recv(filter, buf);
1718     case SECCOMP_IOCTL_NOTIF_SEND:
1719         return seccomp_notify_send(filter, buf);
1720     case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1721     case SECCOMP_IOCTL_NOTIF_ID_VALID:
1722         return seccomp_notify_id_valid(filter, buf);
1723     }
1724 
1725     /* Extensible Argument ioctls */
1726 #define EA_IOCTL(cmd)   ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1727     switch (EA_IOCTL(cmd)) {
1728     case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1729         return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1730     default:
1731         return -EINVAL;
1732     }
1733 }
1734 
1735 static __poll_t seccomp_notify_poll(struct file *file,
1736                     struct poll_table_struct *poll_tab)
1737 {
1738     struct seccomp_filter *filter = file->private_data;
1739     __poll_t ret = 0;
1740     struct seccomp_knotif *cur;
1741 
1742     poll_wait(file, &filter->wqh, poll_tab);
1743 
1744     if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1745         return EPOLLERR;
1746 
1747     list_for_each_entry(cur, &filter->notif->notifications, list) {
1748         if (cur->state == SECCOMP_NOTIFY_INIT)
1749             ret |= EPOLLIN | EPOLLRDNORM;
1750         if (cur->state == SECCOMP_NOTIFY_SENT)
1751             ret |= EPOLLOUT | EPOLLWRNORM;
1752         if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1753             break;
1754     }
1755 
1756     mutex_unlock(&filter->notify_lock);
1757 
1758     if (refcount_read(&filter->users) == 0)
1759         ret |= EPOLLHUP;
1760 
1761     return ret;
1762 }
1763 
1764 static const struct file_operations seccomp_notify_ops = {
1765     .poll = seccomp_notify_poll,
1766     .release = seccomp_notify_release,
1767     .unlocked_ioctl = seccomp_notify_ioctl,
1768     .compat_ioctl = seccomp_notify_ioctl,
1769 };
1770 
1771 static struct file *init_listener(struct seccomp_filter *filter)
1772 {
1773     struct file *ret;
1774 
1775     ret = ERR_PTR(-ENOMEM);
1776     filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1777     if (!filter->notif)
1778         goto out;
1779 
1780     sema_init(&filter->notif->request, 0);
1781     filter->notif->next_id = get_random_u64();
1782     INIT_LIST_HEAD(&filter->notif->notifications);
1783 
1784     ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1785                  filter, O_RDWR);
1786     if (IS_ERR(ret))
1787         goto out_notif;
1788 
1789     /* The file has a reference to it now */
1790     __get_seccomp_filter(filter);
1791 
1792 out_notif:
1793     if (IS_ERR(ret))
1794         seccomp_notify_free(filter);
1795 out:
1796     return ret;
1797 }
1798 
1799 /*
1800  * Does @new_child have a listener while an ancestor also has a listener?
1801  * If so, we'll want to reject this filter.
1802  * This only has to be tested for the current process, even in the TSYNC case,
1803  * because TSYNC installs @child with the same parent on all threads.
1804  * Note that @new_child is not hooked up to its parent at this point yet, so
1805  * we use current->seccomp.filter.
1806  */
1807 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1808 {
1809     struct seccomp_filter *cur;
1810 
1811     /* must be protected against concurrent TSYNC */
1812     lockdep_assert_held(&current->sighand->siglock);
1813 
1814     if (!new_child->notif)
1815         return false;
1816     for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1817         if (cur->notif)
1818             return true;
1819     }
1820 
1821     return false;
1822 }
1823 
1824 /**
1825  * seccomp_set_mode_filter: internal function for setting seccomp filter
1826  * @flags:  flags to change filter behavior
1827  * @filter: struct sock_fprog containing filter
1828  *
1829  * This function may be called repeatedly to install additional filters.
1830  * Every filter successfully installed will be evaluated (in reverse order)
1831  * for each system call the task makes.
1832  *
1833  * Once current->seccomp.mode is non-zero, it may not be changed.
1834  *
1835  * Returns 0 on success or -EINVAL on failure.
1836  */
1837 static long seccomp_set_mode_filter(unsigned int flags,
1838                     const char __user *filter)
1839 {
1840     const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1841     struct seccomp_filter *prepared = NULL;
1842     long ret = -EINVAL;
1843     int listener = -1;
1844     struct file *listener_f = NULL;
1845 
1846     /* Validate flags. */
1847     if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1848         return -EINVAL;
1849 
1850     /*
1851      * In the successful case, NEW_LISTENER returns the new listener fd.
1852      * But in the failure case, TSYNC returns the thread that died. If you
1853      * combine these two flags, there's no way to tell whether something
1854      * succeeded or failed. So, let's disallow this combination if the user
1855      * has not explicitly requested no errors from TSYNC.
1856      */
1857     if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1858         (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1859         ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1860         return -EINVAL;
1861 
1862     /*
1863      * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense
1864      * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag.
1865      */
1866     if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) &&
1867         ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0))
1868         return -EINVAL;
1869 
1870     /* Prepare the new filter before holding any locks. */
1871     prepared = seccomp_prepare_user_filter(filter);
1872     if (IS_ERR(prepared))
1873         return PTR_ERR(prepared);
1874 
1875     if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1876         listener = get_unused_fd_flags(O_CLOEXEC);
1877         if (listener < 0) {
1878             ret = listener;
1879             goto out_free;
1880         }
1881 
1882         listener_f = init_listener(prepared);
1883         if (IS_ERR(listener_f)) {
1884             put_unused_fd(listener);
1885             ret = PTR_ERR(listener_f);
1886             goto out_free;
1887         }
1888     }
1889 
1890     /*
1891      * Make sure we cannot change seccomp or nnp state via TSYNC
1892      * while another thread is in the middle of calling exec.
1893      */
1894     if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1895         mutex_lock_killable(&current->signal->cred_guard_mutex))
1896         goto out_put_fd;
1897 
1898     spin_lock_irq(&current->sighand->siglock);
1899 
1900     if (!seccomp_may_assign_mode(seccomp_mode))
1901         goto out;
1902 
1903     if (has_duplicate_listener(prepared)) {
1904         ret = -EBUSY;
1905         goto out;
1906     }
1907 
1908     ret = seccomp_attach_filter(flags, prepared);
1909     if (ret)
1910         goto out;
1911     /* Do not free the successfully attached filter. */
1912     prepared = NULL;
1913 
1914     seccomp_assign_mode(current, seccomp_mode, flags);
1915 out:
1916     spin_unlock_irq(&current->sighand->siglock);
1917     if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1918         mutex_unlock(&current->signal->cred_guard_mutex);
1919 out_put_fd:
1920     if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1921         if (ret) {
1922             listener_f->private_data = NULL;
1923             fput(listener_f);
1924             put_unused_fd(listener);
1925             seccomp_notify_detach(prepared);
1926         } else {
1927             fd_install(listener, listener_f);
1928             ret = listener;
1929         }
1930     }
1931 out_free:
1932     seccomp_filter_free(prepared);
1933     return ret;
1934 }
1935 #else
1936 static inline long seccomp_set_mode_filter(unsigned int flags,
1937                        const char __user *filter)
1938 {
1939     return -EINVAL;
1940 }
1941 #endif
1942 
1943 static long seccomp_get_action_avail(const char __user *uaction)
1944 {
1945     u32 action;
1946 
1947     if (copy_from_user(&action, uaction, sizeof(action)))
1948         return -EFAULT;
1949 
1950     switch (action) {
1951     case SECCOMP_RET_KILL_PROCESS:
1952     case SECCOMP_RET_KILL_THREAD:
1953     case SECCOMP_RET_TRAP:
1954     case SECCOMP_RET_ERRNO:
1955     case SECCOMP_RET_USER_NOTIF:
1956     case SECCOMP_RET_TRACE:
1957     case SECCOMP_RET_LOG:
1958     case SECCOMP_RET_ALLOW:
1959         break;
1960     default:
1961         return -EOPNOTSUPP;
1962     }
1963 
1964     return 0;
1965 }
1966 
1967 static long seccomp_get_notif_sizes(void __user *usizes)
1968 {
1969     struct seccomp_notif_sizes sizes = {
1970         .seccomp_notif = sizeof(struct seccomp_notif),
1971         .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1972         .seccomp_data = sizeof(struct seccomp_data),
1973     };
1974 
1975     if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1976         return -EFAULT;
1977 
1978     return 0;
1979 }
1980 
1981 /* Common entry point for both prctl and syscall. */
1982 static long do_seccomp(unsigned int op, unsigned int flags,
1983                void __user *uargs)
1984 {
1985     switch (op) {
1986     case SECCOMP_SET_MODE_STRICT:
1987         if (flags != 0 || uargs != NULL)
1988             return -EINVAL;
1989         return seccomp_set_mode_strict();
1990     case SECCOMP_SET_MODE_FILTER:
1991         return seccomp_set_mode_filter(flags, uargs);
1992     case SECCOMP_GET_ACTION_AVAIL:
1993         if (flags != 0)
1994             return -EINVAL;
1995 
1996         return seccomp_get_action_avail(uargs);
1997     case SECCOMP_GET_NOTIF_SIZES:
1998         if (flags != 0)
1999             return -EINVAL;
2000 
2001         return seccomp_get_notif_sizes(uargs);
2002     default:
2003         return -EINVAL;
2004     }
2005 }
2006 
2007 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
2008              void __user *, uargs)
2009 {
2010     return do_seccomp(op, flags, uargs);
2011 }
2012 
2013 /**
2014  * prctl_set_seccomp: configures current->seccomp.mode
2015  * @seccomp_mode: requested mode to use
2016  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
2017  *
2018  * Returns 0 on success or -EINVAL on failure.
2019  */
2020 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
2021 {
2022     unsigned int op;
2023     void __user *uargs;
2024 
2025     switch (seccomp_mode) {
2026     case SECCOMP_MODE_STRICT:
2027         op = SECCOMP_SET_MODE_STRICT;
2028         /*
2029          * Setting strict mode through prctl always ignored filter,
2030          * so make sure it is always NULL here to pass the internal
2031          * check in do_seccomp().
2032          */
2033         uargs = NULL;
2034         break;
2035     case SECCOMP_MODE_FILTER:
2036         op = SECCOMP_SET_MODE_FILTER;
2037         uargs = filter;
2038         break;
2039     default:
2040         return -EINVAL;
2041     }
2042 
2043     /* prctl interface doesn't have flags, so they are always zero. */
2044     return do_seccomp(op, 0, uargs);
2045 }
2046 
2047 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
2048 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
2049                          unsigned long filter_off)
2050 {
2051     struct seccomp_filter *orig, *filter;
2052     unsigned long count;
2053 
2054     /*
2055      * Note: this is only correct because the caller should be the (ptrace)
2056      * tracer of the task, otherwise lock_task_sighand is needed.
2057      */
2058     spin_lock_irq(&task->sighand->siglock);
2059 
2060     if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2061         spin_unlock_irq(&task->sighand->siglock);
2062         return ERR_PTR(-EINVAL);
2063     }
2064 
2065     orig = task->seccomp.filter;
2066     __get_seccomp_filter(orig);
2067     spin_unlock_irq(&task->sighand->siglock);
2068 
2069     count = 0;
2070     for (filter = orig; filter; filter = filter->prev)
2071         count++;
2072 
2073     if (filter_off >= count) {
2074         filter = ERR_PTR(-ENOENT);
2075         goto out;
2076     }
2077 
2078     count -= filter_off;
2079     for (filter = orig; filter && count > 1; filter = filter->prev)
2080         count--;
2081 
2082     if (WARN_ON(count != 1 || !filter)) {
2083         filter = ERR_PTR(-ENOENT);
2084         goto out;
2085     }
2086 
2087     __get_seccomp_filter(filter);
2088 
2089 out:
2090     __put_seccomp_filter(orig);
2091     return filter;
2092 }
2093 
2094 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2095             void __user *data)
2096 {
2097     struct seccomp_filter *filter;
2098     struct sock_fprog_kern *fprog;
2099     long ret;
2100 
2101     if (!capable(CAP_SYS_ADMIN) ||
2102         current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2103         return -EACCES;
2104     }
2105 
2106     filter = get_nth_filter(task, filter_off);
2107     if (IS_ERR(filter))
2108         return PTR_ERR(filter);
2109 
2110     fprog = filter->prog->orig_prog;
2111     if (!fprog) {
2112         /* This must be a new non-cBPF filter, since we save
2113          * every cBPF filter's orig_prog above when
2114          * CONFIG_CHECKPOINT_RESTORE is enabled.
2115          */
2116         ret = -EMEDIUMTYPE;
2117         goto out;
2118     }
2119 
2120     ret = fprog->len;
2121     if (!data)
2122         goto out;
2123 
2124     if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2125         ret = -EFAULT;
2126 
2127 out:
2128     __put_seccomp_filter(filter);
2129     return ret;
2130 }
2131 
2132 long seccomp_get_metadata(struct task_struct *task,
2133               unsigned long size, void __user *data)
2134 {
2135     long ret;
2136     struct seccomp_filter *filter;
2137     struct seccomp_metadata kmd = {};
2138 
2139     if (!capable(CAP_SYS_ADMIN) ||
2140         current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2141         return -EACCES;
2142     }
2143 
2144     size = min_t(unsigned long, size, sizeof(kmd));
2145 
2146     if (size < sizeof(kmd.filter_off))
2147         return -EINVAL;
2148 
2149     if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2150         return -EFAULT;
2151 
2152     filter = get_nth_filter(task, kmd.filter_off);
2153     if (IS_ERR(filter))
2154         return PTR_ERR(filter);
2155 
2156     if (filter->log)
2157         kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2158 
2159     ret = size;
2160     if (copy_to_user(data, &kmd, size))
2161         ret = -EFAULT;
2162 
2163     __put_seccomp_filter(filter);
2164     return ret;
2165 }
2166 #endif
2167 
2168 #ifdef CONFIG_SYSCTL
2169 
2170 /* Human readable action names for friendly sysctl interaction */
2171 #define SECCOMP_RET_KILL_PROCESS_NAME   "kill_process"
2172 #define SECCOMP_RET_KILL_THREAD_NAME    "kill_thread"
2173 #define SECCOMP_RET_TRAP_NAME       "trap"
2174 #define SECCOMP_RET_ERRNO_NAME      "errno"
2175 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2176 #define SECCOMP_RET_TRACE_NAME      "trace"
2177 #define SECCOMP_RET_LOG_NAME        "log"
2178 #define SECCOMP_RET_ALLOW_NAME      "allow"
2179 
2180 static const char seccomp_actions_avail[] =
2181                 SECCOMP_RET_KILL_PROCESS_NAME   " "
2182                 SECCOMP_RET_KILL_THREAD_NAME    " "
2183                 SECCOMP_RET_TRAP_NAME       " "
2184                 SECCOMP_RET_ERRNO_NAME      " "
2185                 SECCOMP_RET_USER_NOTIF_NAME     " "
2186                 SECCOMP_RET_TRACE_NAME      " "
2187                 SECCOMP_RET_LOG_NAME        " "
2188                 SECCOMP_RET_ALLOW_NAME;
2189 
2190 struct seccomp_log_name {
2191     u32     log;
2192     const char  *name;
2193 };
2194 
2195 static const struct seccomp_log_name seccomp_log_names[] = {
2196     { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2197     { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2198     { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2199     { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2200     { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2201     { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2202     { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2203     { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2204     { }
2205 };
2206 
2207 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2208                           u32 actions_logged,
2209                           const char *sep)
2210 {
2211     const struct seccomp_log_name *cur;
2212     bool append_sep = false;
2213 
2214     for (cur = seccomp_log_names; cur->name && size; cur++) {
2215         ssize_t ret;
2216 
2217         if (!(actions_logged & cur->log))
2218             continue;
2219 
2220         if (append_sep) {
2221             ret = strscpy(names, sep, size);
2222             if (ret < 0)
2223                 return false;
2224 
2225             names += ret;
2226             size -= ret;
2227         } else
2228             append_sep = true;
2229 
2230         ret = strscpy(names, cur->name, size);
2231         if (ret < 0)
2232             return false;
2233 
2234         names += ret;
2235         size -= ret;
2236     }
2237 
2238     return true;
2239 }
2240 
2241 static bool seccomp_action_logged_from_name(u32 *action_logged,
2242                         const char *name)
2243 {
2244     const struct seccomp_log_name *cur;
2245 
2246     for (cur = seccomp_log_names; cur->name; cur++) {
2247         if (!strcmp(cur->name, name)) {
2248             *action_logged = cur->log;
2249             return true;
2250         }
2251     }
2252 
2253     return false;
2254 }
2255 
2256 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2257 {
2258     char *name;
2259 
2260     *actions_logged = 0;
2261     while ((name = strsep(&names, " ")) && *name) {
2262         u32 action_logged = 0;
2263 
2264         if (!seccomp_action_logged_from_name(&action_logged, name))
2265             return false;
2266 
2267         *actions_logged |= action_logged;
2268     }
2269 
2270     return true;
2271 }
2272 
2273 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2274                    size_t *lenp, loff_t *ppos)
2275 {
2276     char names[sizeof(seccomp_actions_avail)];
2277     struct ctl_table table;
2278 
2279     memset(names, 0, sizeof(names));
2280 
2281     if (!seccomp_names_from_actions_logged(names, sizeof(names),
2282                            seccomp_actions_logged, " "))
2283         return -EINVAL;
2284 
2285     table = *ro_table;
2286     table.data = names;
2287     table.maxlen = sizeof(names);
2288     return proc_dostring(&table, 0, buffer, lenp, ppos);
2289 }
2290 
2291 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2292                 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2293 {
2294     char names[sizeof(seccomp_actions_avail)];
2295     struct ctl_table table;
2296     int ret;
2297 
2298     if (!capable(CAP_SYS_ADMIN))
2299         return -EPERM;
2300 
2301     memset(names, 0, sizeof(names));
2302 
2303     table = *ro_table;
2304     table.data = names;
2305     table.maxlen = sizeof(names);
2306     ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2307     if (ret)
2308         return ret;
2309 
2310     if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2311         return -EINVAL;
2312 
2313     if (*actions_logged & SECCOMP_LOG_ALLOW)
2314         return -EINVAL;
2315 
2316     seccomp_actions_logged = *actions_logged;
2317     return 0;
2318 }
2319 
2320 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2321                  int ret)
2322 {
2323     char names[sizeof(seccomp_actions_avail)];
2324     char old_names[sizeof(seccomp_actions_avail)];
2325     const char *new = names;
2326     const char *old = old_names;
2327 
2328     if (!audit_enabled)
2329         return;
2330 
2331     memset(names, 0, sizeof(names));
2332     memset(old_names, 0, sizeof(old_names));
2333 
2334     if (ret)
2335         new = "?";
2336     else if (!actions_logged)
2337         new = "(none)";
2338     else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2339                             actions_logged, ","))
2340         new = "?";
2341 
2342     if (!old_actions_logged)
2343         old = "(none)";
2344     else if (!seccomp_names_from_actions_logged(old_names,
2345                             sizeof(old_names),
2346                             old_actions_logged, ","))
2347         old = "?";
2348 
2349     return audit_seccomp_actions_logged(new, old, !ret);
2350 }
2351 
2352 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2353                       void *buffer, size_t *lenp,
2354                       loff_t *ppos)
2355 {
2356     int ret;
2357 
2358     if (write) {
2359         u32 actions_logged = 0;
2360         u32 old_actions_logged = seccomp_actions_logged;
2361 
2362         ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2363                        &actions_logged);
2364         audit_actions_logged(actions_logged, old_actions_logged, ret);
2365     } else
2366         ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2367 
2368     return ret;
2369 }
2370 
2371 static struct ctl_path seccomp_sysctl_path[] = {
2372     { .procname = "kernel", },
2373     { .procname = "seccomp", },
2374     { }
2375 };
2376 
2377 static struct ctl_table seccomp_sysctl_table[] = {
2378     {
2379         .procname   = "actions_avail",
2380         .data       = (void *) &seccomp_actions_avail,
2381         .maxlen     = sizeof(seccomp_actions_avail),
2382         .mode       = 0444,
2383         .proc_handler   = proc_dostring,
2384     },
2385     {
2386         .procname   = "actions_logged",
2387         .mode       = 0644,
2388         .proc_handler   = seccomp_actions_logged_handler,
2389     },
2390     { }
2391 };
2392 
2393 static int __init seccomp_sysctl_init(void)
2394 {
2395     struct ctl_table_header *hdr;
2396 
2397     hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2398     if (!hdr)
2399         pr_warn("sysctl registration failed\n");
2400     else
2401         kmemleak_not_leak(hdr);
2402 
2403     return 0;
2404 }
2405 
2406 device_initcall(seccomp_sysctl_init)
2407 
2408 #endif /* CONFIG_SYSCTL */
2409 
2410 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2411 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2412 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2413                     const void *bitmap, size_t bitmap_size)
2414 {
2415     int nr;
2416 
2417     for (nr = 0; nr < bitmap_size; nr++) {
2418         bool cached = test_bit(nr, bitmap);
2419         char *status = cached ? "ALLOW" : "FILTER";
2420 
2421         seq_printf(m, "%s %d %s\n", name, nr, status);
2422     }
2423 }
2424 
2425 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2426                struct pid *pid, struct task_struct *task)
2427 {
2428     struct seccomp_filter *f;
2429     unsigned long flags;
2430 
2431     /*
2432      * We don't want some sandboxed process to know what their seccomp
2433      * filters consist of.
2434      */
2435     if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2436         return -EACCES;
2437 
2438     if (!lock_task_sighand(task, &flags))
2439         return -ESRCH;
2440 
2441     f = READ_ONCE(task->seccomp.filter);
2442     if (!f) {
2443         unlock_task_sighand(task, &flags);
2444         return 0;
2445     }
2446 
2447     /* prevent filter from being freed while we are printing it */
2448     __get_seccomp_filter(f);
2449     unlock_task_sighand(task, &flags);
2450 
2451     proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2452                     f->cache.allow_native,
2453                     SECCOMP_ARCH_NATIVE_NR);
2454 
2455 #ifdef SECCOMP_ARCH_COMPAT
2456     proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2457                     f->cache.allow_compat,
2458                     SECCOMP_ARCH_COMPAT_NR);
2459 #endif /* SECCOMP_ARCH_COMPAT */
2460 
2461     __put_seccomp_filter(f);
2462     return 0;
2463 }
2464 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */