0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/cpuhotplug.h>
0009 #include <linux/kasan.h>
0010 #include <linux/mm.h>
0011 #include <linux/scs.h>
0012 #include <linux/vmalloc.h>
0013 #include <linux/vmstat.h>
0014
0015 static void __scs_account(void *s, int account)
0016 {
0017 struct page *scs_page = vmalloc_to_page(s);
0018
0019 mod_node_page_state(page_pgdat(scs_page), NR_KERNEL_SCS_KB,
0020 account * (SCS_SIZE / SZ_1K));
0021 }
0022
0023
0024 #define NR_CACHED_SCS 2
0025 static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]);
0026
0027 static void *__scs_alloc(int node)
0028 {
0029 int i;
0030 void *s;
0031
0032 for (i = 0; i < NR_CACHED_SCS; i++) {
0033 s = this_cpu_xchg(scs_cache[i], NULL);
0034 if (s) {
0035 s = kasan_unpoison_vmalloc(s, SCS_SIZE,
0036 KASAN_VMALLOC_PROT_NORMAL);
0037 memset(s, 0, SCS_SIZE);
0038 goto out;
0039 }
0040 }
0041
0042 s = __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
0043 GFP_SCS, PAGE_KERNEL, 0, node,
0044 __builtin_return_address(0));
0045
0046 out:
0047 return kasan_reset_tag(s);
0048 }
0049
0050 void *scs_alloc(int node)
0051 {
0052 void *s;
0053
0054 s = __scs_alloc(node);
0055 if (!s)
0056 return NULL;
0057
0058 *__scs_magic(s) = SCS_END_MAGIC;
0059
0060
0061
0062
0063
0064 kasan_poison_vmalloc(s, SCS_SIZE);
0065 __scs_account(s, 1);
0066 return s;
0067 }
0068
0069 void scs_free(void *s)
0070 {
0071 int i;
0072
0073 __scs_account(s, -1);
0074
0075
0076
0077
0078
0079
0080
0081 for (i = 0; i < NR_CACHED_SCS; i++)
0082 if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL)
0083 return;
0084
0085 kasan_unpoison_vmalloc(s, SCS_SIZE, KASAN_VMALLOC_PROT_NORMAL);
0086 vfree_atomic(s);
0087 }
0088
0089 static int scs_cleanup(unsigned int cpu)
0090 {
0091 int i;
0092 void **cache = per_cpu_ptr(scs_cache, cpu);
0093
0094 for (i = 0; i < NR_CACHED_SCS; i++) {
0095 vfree(cache[i]);
0096 cache[i] = NULL;
0097 }
0098
0099 return 0;
0100 }
0101
0102 void __init scs_init(void)
0103 {
0104 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL,
0105 scs_cleanup);
0106 }
0107
0108 int scs_prepare(struct task_struct *tsk, int node)
0109 {
0110 void *s = scs_alloc(node);
0111
0112 if (!s)
0113 return -ENOMEM;
0114
0115 task_scs(tsk) = task_scs_sp(tsk) = s;
0116 return 0;
0117 }
0118
0119 static void scs_check_usage(struct task_struct *tsk)
0120 {
0121 static unsigned long highest;
0122
0123 unsigned long *p, prev, curr = highest, used = 0;
0124
0125 if (!IS_ENABLED(CONFIG_DEBUG_STACK_USAGE))
0126 return;
0127
0128 for (p = task_scs(tsk); p < __scs_magic(tsk); ++p) {
0129 if (!READ_ONCE_NOCHECK(*p))
0130 break;
0131 used += sizeof(*p);
0132 }
0133
0134 while (used > curr) {
0135 prev = cmpxchg_relaxed(&highest, curr, used);
0136
0137 if (prev == curr) {
0138 pr_info("%s (%d): highest shadow stack usage: %lu bytes\n",
0139 tsk->comm, task_pid_nr(tsk), used);
0140 break;
0141 }
0142
0143 curr = prev;
0144 }
0145 }
0146
0147 void scs_release(struct task_struct *tsk)
0148 {
0149 void *s = task_scs(tsk);
0150
0151 if (!s)
0152 return;
0153
0154 WARN(task_scs_end_corrupted(tsk),
0155 "corrupted shadow stack detected when freeing task\n");
0156 scs_check_usage(tsk);
0157 scs_free(s);
0158 }