Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Scheduler topology setup/handling methods
0004  */
0005 
0006 DEFINE_MUTEX(sched_domains_mutex);
0007 
0008 /* Protected by sched_domains_mutex: */
0009 static cpumask_var_t sched_domains_tmpmask;
0010 static cpumask_var_t sched_domains_tmpmask2;
0011 
0012 #ifdef CONFIG_SCHED_DEBUG
0013 
0014 static int __init sched_debug_setup(char *str)
0015 {
0016     sched_debug_verbose = true;
0017 
0018     return 0;
0019 }
0020 early_param("sched_verbose", sched_debug_setup);
0021 
0022 static inline bool sched_debug(void)
0023 {
0024     return sched_debug_verbose;
0025 }
0026 
0027 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
0028 const struct sd_flag_debug sd_flag_debug[] = {
0029 #include <linux/sched/sd_flags.h>
0030 };
0031 #undef SD_FLAG
0032 
0033 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
0034                   struct cpumask *groupmask)
0035 {
0036     struct sched_group *group = sd->groups;
0037     unsigned long flags = sd->flags;
0038     unsigned int idx;
0039 
0040     cpumask_clear(groupmask);
0041 
0042     printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
0043     printk(KERN_CONT "span=%*pbl level=%s\n",
0044            cpumask_pr_args(sched_domain_span(sd)), sd->name);
0045 
0046     if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
0047         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
0048     }
0049     if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
0050         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
0051     }
0052 
0053     for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
0054         unsigned int flag = BIT(idx);
0055         unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
0056 
0057         if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
0058             !(sd->child->flags & flag))
0059             printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
0060                    sd_flag_debug[idx].name);
0061 
0062         if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
0063             !(sd->parent->flags & flag))
0064             printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
0065                    sd_flag_debug[idx].name);
0066     }
0067 
0068     printk(KERN_DEBUG "%*s groups:", level + 1, "");
0069     do {
0070         if (!group) {
0071             printk("\n");
0072             printk(KERN_ERR "ERROR: group is NULL\n");
0073             break;
0074         }
0075 
0076         if (cpumask_empty(sched_group_span(group))) {
0077             printk(KERN_CONT "\n");
0078             printk(KERN_ERR "ERROR: empty group\n");
0079             break;
0080         }
0081 
0082         if (!(sd->flags & SD_OVERLAP) &&
0083             cpumask_intersects(groupmask, sched_group_span(group))) {
0084             printk(KERN_CONT "\n");
0085             printk(KERN_ERR "ERROR: repeated CPUs\n");
0086             break;
0087         }
0088 
0089         cpumask_or(groupmask, groupmask, sched_group_span(group));
0090 
0091         printk(KERN_CONT " %d:{ span=%*pbl",
0092                 group->sgc->id,
0093                 cpumask_pr_args(sched_group_span(group)));
0094 
0095         if ((sd->flags & SD_OVERLAP) &&
0096             !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
0097             printk(KERN_CONT " mask=%*pbl",
0098                 cpumask_pr_args(group_balance_mask(group)));
0099         }
0100 
0101         if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
0102             printk(KERN_CONT " cap=%lu", group->sgc->capacity);
0103 
0104         if (group == sd->groups && sd->child &&
0105             !cpumask_equal(sched_domain_span(sd->child),
0106                    sched_group_span(group))) {
0107             printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
0108         }
0109 
0110         printk(KERN_CONT " }");
0111 
0112         group = group->next;
0113 
0114         if (group != sd->groups)
0115             printk(KERN_CONT ",");
0116 
0117     } while (group != sd->groups);
0118     printk(KERN_CONT "\n");
0119 
0120     if (!cpumask_equal(sched_domain_span(sd), groupmask))
0121         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
0122 
0123     if (sd->parent &&
0124         !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
0125         printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
0126     return 0;
0127 }
0128 
0129 static void sched_domain_debug(struct sched_domain *sd, int cpu)
0130 {
0131     int level = 0;
0132 
0133     if (!sched_debug_verbose)
0134         return;
0135 
0136     if (!sd) {
0137         printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
0138         return;
0139     }
0140 
0141     printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
0142 
0143     for (;;) {
0144         if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
0145             break;
0146         level++;
0147         sd = sd->parent;
0148         if (!sd)
0149             break;
0150     }
0151 }
0152 #else /* !CONFIG_SCHED_DEBUG */
0153 
0154 # define sched_debug_verbose 0
0155 # define sched_domain_debug(sd, cpu) do { } while (0)
0156 static inline bool sched_debug(void)
0157 {
0158     return false;
0159 }
0160 #endif /* CONFIG_SCHED_DEBUG */
0161 
0162 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
0163 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
0164 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
0165 #include <linux/sched/sd_flags.h>
0166 0;
0167 #undef SD_FLAG
0168 
0169 static int sd_degenerate(struct sched_domain *sd)
0170 {
0171     if (cpumask_weight(sched_domain_span(sd)) == 1)
0172         return 1;
0173 
0174     /* Following flags need at least 2 groups */
0175     if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
0176         (sd->groups != sd->groups->next))
0177         return 0;
0178 
0179     /* Following flags don't use groups */
0180     if (sd->flags & (SD_WAKE_AFFINE))
0181         return 0;
0182 
0183     return 1;
0184 }
0185 
0186 static int
0187 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
0188 {
0189     unsigned long cflags = sd->flags, pflags = parent->flags;
0190 
0191     if (sd_degenerate(parent))
0192         return 1;
0193 
0194     if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
0195         return 0;
0196 
0197     /* Flags needing groups don't count if only 1 group in parent */
0198     if (parent->groups == parent->groups->next)
0199         pflags &= ~SD_DEGENERATE_GROUPS_MASK;
0200 
0201     if (~cflags & pflags)
0202         return 0;
0203 
0204     return 1;
0205 }
0206 
0207 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
0208 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
0209 static unsigned int sysctl_sched_energy_aware = 1;
0210 DEFINE_MUTEX(sched_energy_mutex);
0211 bool sched_energy_update;
0212 
0213 void rebuild_sched_domains_energy(void)
0214 {
0215     mutex_lock(&sched_energy_mutex);
0216     sched_energy_update = true;
0217     rebuild_sched_domains();
0218     sched_energy_update = false;
0219     mutex_unlock(&sched_energy_mutex);
0220 }
0221 
0222 #ifdef CONFIG_PROC_SYSCTL
0223 static int sched_energy_aware_handler(struct ctl_table *table, int write,
0224         void *buffer, size_t *lenp, loff_t *ppos)
0225 {
0226     int ret, state;
0227 
0228     if (write && !capable(CAP_SYS_ADMIN))
0229         return -EPERM;
0230 
0231     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0232     if (!ret && write) {
0233         state = static_branch_unlikely(&sched_energy_present);
0234         if (state != sysctl_sched_energy_aware)
0235             rebuild_sched_domains_energy();
0236     }
0237 
0238     return ret;
0239 }
0240 
0241 static struct ctl_table sched_energy_aware_sysctls[] = {
0242     {
0243         .procname       = "sched_energy_aware",
0244         .data           = &sysctl_sched_energy_aware,
0245         .maxlen         = sizeof(unsigned int),
0246         .mode           = 0644,
0247         .proc_handler   = sched_energy_aware_handler,
0248         .extra1         = SYSCTL_ZERO,
0249         .extra2         = SYSCTL_ONE,
0250     },
0251     {}
0252 };
0253 
0254 static int __init sched_energy_aware_sysctl_init(void)
0255 {
0256     register_sysctl_init("kernel", sched_energy_aware_sysctls);
0257     return 0;
0258 }
0259 
0260 late_initcall(sched_energy_aware_sysctl_init);
0261 #endif
0262 
0263 static void free_pd(struct perf_domain *pd)
0264 {
0265     struct perf_domain *tmp;
0266 
0267     while (pd) {
0268         tmp = pd->next;
0269         kfree(pd);
0270         pd = tmp;
0271     }
0272 }
0273 
0274 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
0275 {
0276     while (pd) {
0277         if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
0278             return pd;
0279         pd = pd->next;
0280     }
0281 
0282     return NULL;
0283 }
0284 
0285 static struct perf_domain *pd_init(int cpu)
0286 {
0287     struct em_perf_domain *obj = em_cpu_get(cpu);
0288     struct perf_domain *pd;
0289 
0290     if (!obj) {
0291         if (sched_debug())
0292             pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
0293         return NULL;
0294     }
0295 
0296     pd = kzalloc(sizeof(*pd), GFP_KERNEL);
0297     if (!pd)
0298         return NULL;
0299     pd->em_pd = obj;
0300 
0301     return pd;
0302 }
0303 
0304 static void perf_domain_debug(const struct cpumask *cpu_map,
0305                         struct perf_domain *pd)
0306 {
0307     if (!sched_debug() || !pd)
0308         return;
0309 
0310     printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
0311 
0312     while (pd) {
0313         printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
0314                 cpumask_first(perf_domain_span(pd)),
0315                 cpumask_pr_args(perf_domain_span(pd)),
0316                 em_pd_nr_perf_states(pd->em_pd));
0317         pd = pd->next;
0318     }
0319 
0320     printk(KERN_CONT "\n");
0321 }
0322 
0323 static void destroy_perf_domain_rcu(struct rcu_head *rp)
0324 {
0325     struct perf_domain *pd;
0326 
0327     pd = container_of(rp, struct perf_domain, rcu);
0328     free_pd(pd);
0329 }
0330 
0331 static void sched_energy_set(bool has_eas)
0332 {
0333     if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
0334         if (sched_debug())
0335             pr_info("%s: stopping EAS\n", __func__);
0336         static_branch_disable_cpuslocked(&sched_energy_present);
0337     } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
0338         if (sched_debug())
0339             pr_info("%s: starting EAS\n", __func__);
0340         static_branch_enable_cpuslocked(&sched_energy_present);
0341     }
0342 }
0343 
0344 /*
0345  * EAS can be used on a root domain if it meets all the following conditions:
0346  *    1. an Energy Model (EM) is available;
0347  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
0348  *    3. no SMT is detected.
0349  *    4. the EM complexity is low enough to keep scheduling overheads low;
0350  *    5. schedutil is driving the frequency of all CPUs of the rd;
0351  *    6. frequency invariance support is present;
0352  *
0353  * The complexity of the Energy Model is defined as:
0354  *
0355  *              C = nr_pd * (nr_cpus + nr_ps)
0356  *
0357  * with parameters defined as:
0358  *  - nr_pd:    the number of performance domains
0359  *  - nr_cpus:  the number of CPUs
0360  *  - nr_ps:    the sum of the number of performance states of all performance
0361  *              domains (for example, on a system with 2 performance domains,
0362  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
0363  *
0364  * It is generally not a good idea to use such a model in the wake-up path on
0365  * very complex platforms because of the associated scheduling overheads. The
0366  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
0367  * with per-CPU DVFS and less than 8 performance states each, for example.
0368  */
0369 #define EM_MAX_COMPLEXITY 2048
0370 
0371 extern struct cpufreq_governor schedutil_gov;
0372 static bool build_perf_domains(const struct cpumask *cpu_map)
0373 {
0374     int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
0375     struct perf_domain *pd = NULL, *tmp;
0376     int cpu = cpumask_first(cpu_map);
0377     struct root_domain *rd = cpu_rq(cpu)->rd;
0378     struct cpufreq_policy *policy;
0379     struct cpufreq_governor *gov;
0380 
0381     if (!sysctl_sched_energy_aware)
0382         goto free;
0383 
0384     /* EAS is enabled for asymmetric CPU capacity topologies. */
0385     if (!per_cpu(sd_asym_cpucapacity, cpu)) {
0386         if (sched_debug()) {
0387             pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
0388                     cpumask_pr_args(cpu_map));
0389         }
0390         goto free;
0391     }
0392 
0393     /* EAS definitely does *not* handle SMT */
0394     if (sched_smt_active()) {
0395         pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
0396             cpumask_pr_args(cpu_map));
0397         goto free;
0398     }
0399 
0400     if (!arch_scale_freq_invariant()) {
0401         if (sched_debug()) {
0402             pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
0403                 cpumask_pr_args(cpu_map));
0404         }
0405         goto free;
0406     }
0407 
0408     for_each_cpu(i, cpu_map) {
0409         /* Skip already covered CPUs. */
0410         if (find_pd(pd, i))
0411             continue;
0412 
0413         /* Do not attempt EAS if schedutil is not being used. */
0414         policy = cpufreq_cpu_get(i);
0415         if (!policy)
0416             goto free;
0417         gov = policy->governor;
0418         cpufreq_cpu_put(policy);
0419         if (gov != &schedutil_gov) {
0420             if (rd->pd)
0421                 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
0422                         cpumask_pr_args(cpu_map));
0423             goto free;
0424         }
0425 
0426         /* Create the new pd and add it to the local list. */
0427         tmp = pd_init(i);
0428         if (!tmp)
0429             goto free;
0430         tmp->next = pd;
0431         pd = tmp;
0432 
0433         /*
0434          * Count performance domains and performance states for the
0435          * complexity check.
0436          */
0437         nr_pd++;
0438         nr_ps += em_pd_nr_perf_states(pd->em_pd);
0439     }
0440 
0441     /* Bail out if the Energy Model complexity is too high. */
0442     if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
0443         WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
0444                         cpumask_pr_args(cpu_map));
0445         goto free;
0446     }
0447 
0448     perf_domain_debug(cpu_map, pd);
0449 
0450     /* Attach the new list of performance domains to the root domain. */
0451     tmp = rd->pd;
0452     rcu_assign_pointer(rd->pd, pd);
0453     if (tmp)
0454         call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
0455 
0456     return !!pd;
0457 
0458 free:
0459     free_pd(pd);
0460     tmp = rd->pd;
0461     rcu_assign_pointer(rd->pd, NULL);
0462     if (tmp)
0463         call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
0464 
0465     return false;
0466 }
0467 #else
0468 static void free_pd(struct perf_domain *pd) { }
0469 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
0470 
0471 static void free_rootdomain(struct rcu_head *rcu)
0472 {
0473     struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
0474 
0475     cpupri_cleanup(&rd->cpupri);
0476     cpudl_cleanup(&rd->cpudl);
0477     free_cpumask_var(rd->dlo_mask);
0478     free_cpumask_var(rd->rto_mask);
0479     free_cpumask_var(rd->online);
0480     free_cpumask_var(rd->span);
0481     free_pd(rd->pd);
0482     kfree(rd);
0483 }
0484 
0485 void rq_attach_root(struct rq *rq, struct root_domain *rd)
0486 {
0487     struct root_domain *old_rd = NULL;
0488     unsigned long flags;
0489 
0490     raw_spin_rq_lock_irqsave(rq, flags);
0491 
0492     if (rq->rd) {
0493         old_rd = rq->rd;
0494 
0495         if (cpumask_test_cpu(rq->cpu, old_rd->online))
0496             set_rq_offline(rq);
0497 
0498         cpumask_clear_cpu(rq->cpu, old_rd->span);
0499 
0500         /*
0501          * If we dont want to free the old_rd yet then
0502          * set old_rd to NULL to skip the freeing later
0503          * in this function:
0504          */
0505         if (!atomic_dec_and_test(&old_rd->refcount))
0506             old_rd = NULL;
0507     }
0508 
0509     atomic_inc(&rd->refcount);
0510     rq->rd = rd;
0511 
0512     cpumask_set_cpu(rq->cpu, rd->span);
0513     if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
0514         set_rq_online(rq);
0515 
0516     raw_spin_rq_unlock_irqrestore(rq, flags);
0517 
0518     if (old_rd)
0519         call_rcu(&old_rd->rcu, free_rootdomain);
0520 }
0521 
0522 void sched_get_rd(struct root_domain *rd)
0523 {
0524     atomic_inc(&rd->refcount);
0525 }
0526 
0527 void sched_put_rd(struct root_domain *rd)
0528 {
0529     if (!atomic_dec_and_test(&rd->refcount))
0530         return;
0531 
0532     call_rcu(&rd->rcu, free_rootdomain);
0533 }
0534 
0535 static int init_rootdomain(struct root_domain *rd)
0536 {
0537     if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0538         goto out;
0539     if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
0540         goto free_span;
0541     if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
0542         goto free_online;
0543     if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
0544         goto free_dlo_mask;
0545 
0546 #ifdef HAVE_RT_PUSH_IPI
0547     rd->rto_cpu = -1;
0548     raw_spin_lock_init(&rd->rto_lock);
0549     rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
0550 #endif
0551 
0552     rd->visit_gen = 0;
0553     init_dl_bw(&rd->dl_bw);
0554     if (cpudl_init(&rd->cpudl) != 0)
0555         goto free_rto_mask;
0556 
0557     if (cpupri_init(&rd->cpupri) != 0)
0558         goto free_cpudl;
0559     return 0;
0560 
0561 free_cpudl:
0562     cpudl_cleanup(&rd->cpudl);
0563 free_rto_mask:
0564     free_cpumask_var(rd->rto_mask);
0565 free_dlo_mask:
0566     free_cpumask_var(rd->dlo_mask);
0567 free_online:
0568     free_cpumask_var(rd->online);
0569 free_span:
0570     free_cpumask_var(rd->span);
0571 out:
0572     return -ENOMEM;
0573 }
0574 
0575 /*
0576  * By default the system creates a single root-domain with all CPUs as
0577  * members (mimicking the global state we have today).
0578  */
0579 struct root_domain def_root_domain;
0580 
0581 void init_defrootdomain(void)
0582 {
0583     init_rootdomain(&def_root_domain);
0584 
0585     atomic_set(&def_root_domain.refcount, 1);
0586 }
0587 
0588 static struct root_domain *alloc_rootdomain(void)
0589 {
0590     struct root_domain *rd;
0591 
0592     rd = kzalloc(sizeof(*rd), GFP_KERNEL);
0593     if (!rd)
0594         return NULL;
0595 
0596     if (init_rootdomain(rd) != 0) {
0597         kfree(rd);
0598         return NULL;
0599     }
0600 
0601     return rd;
0602 }
0603 
0604 static void free_sched_groups(struct sched_group *sg, int free_sgc)
0605 {
0606     struct sched_group *tmp, *first;
0607 
0608     if (!sg)
0609         return;
0610 
0611     first = sg;
0612     do {
0613         tmp = sg->next;
0614 
0615         if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
0616             kfree(sg->sgc);
0617 
0618         if (atomic_dec_and_test(&sg->ref))
0619             kfree(sg);
0620         sg = tmp;
0621     } while (sg != first);
0622 }
0623 
0624 static void destroy_sched_domain(struct sched_domain *sd)
0625 {
0626     /*
0627      * A normal sched domain may have multiple group references, an
0628      * overlapping domain, having private groups, only one.  Iterate,
0629      * dropping group/capacity references, freeing where none remain.
0630      */
0631     free_sched_groups(sd->groups, 1);
0632 
0633     if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
0634         kfree(sd->shared);
0635     kfree(sd);
0636 }
0637 
0638 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
0639 {
0640     struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
0641 
0642     while (sd) {
0643         struct sched_domain *parent = sd->parent;
0644         destroy_sched_domain(sd);
0645         sd = parent;
0646     }
0647 }
0648 
0649 static void destroy_sched_domains(struct sched_domain *sd)
0650 {
0651     if (sd)
0652         call_rcu(&sd->rcu, destroy_sched_domains_rcu);
0653 }
0654 
0655 /*
0656  * Keep a special pointer to the highest sched_domain that has
0657  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
0658  * allows us to avoid some pointer chasing select_idle_sibling().
0659  *
0660  * Also keep a unique ID per domain (we use the first CPU number in
0661  * the cpumask of the domain), this allows us to quickly tell if
0662  * two CPUs are in the same cache domain, see cpus_share_cache().
0663  */
0664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
0665 DEFINE_PER_CPU(int, sd_llc_size);
0666 DEFINE_PER_CPU(int, sd_llc_id);
0667 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
0668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
0669 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
0670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
0671 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
0672 
0673 static void update_top_cache_domain(int cpu)
0674 {
0675     struct sched_domain_shared *sds = NULL;
0676     struct sched_domain *sd;
0677     int id = cpu;
0678     int size = 1;
0679 
0680     sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
0681     if (sd) {
0682         id = cpumask_first(sched_domain_span(sd));
0683         size = cpumask_weight(sched_domain_span(sd));
0684         sds = sd->shared;
0685     }
0686 
0687     rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
0688     per_cpu(sd_llc_size, cpu) = size;
0689     per_cpu(sd_llc_id, cpu) = id;
0690     rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
0691 
0692     sd = lowest_flag_domain(cpu, SD_NUMA);
0693     rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
0694 
0695     sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
0696     rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
0697 
0698     sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
0699     rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
0700 }
0701 
0702 /*
0703  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
0704  * hold the hotplug lock.
0705  */
0706 static void
0707 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
0708 {
0709     struct rq *rq = cpu_rq(cpu);
0710     struct sched_domain *tmp;
0711 
0712     /* Remove the sched domains which do not contribute to scheduling. */
0713     for (tmp = sd; tmp; ) {
0714         struct sched_domain *parent = tmp->parent;
0715         if (!parent)
0716             break;
0717 
0718         if (sd_parent_degenerate(tmp, parent)) {
0719             tmp->parent = parent->parent;
0720             if (parent->parent)
0721                 parent->parent->child = tmp;
0722             /*
0723              * Transfer SD_PREFER_SIBLING down in case of a
0724              * degenerate parent; the spans match for this
0725              * so the property transfers.
0726              */
0727             if (parent->flags & SD_PREFER_SIBLING)
0728                 tmp->flags |= SD_PREFER_SIBLING;
0729             destroy_sched_domain(parent);
0730         } else
0731             tmp = tmp->parent;
0732     }
0733 
0734     if (sd && sd_degenerate(sd)) {
0735         tmp = sd;
0736         sd = sd->parent;
0737         destroy_sched_domain(tmp);
0738         if (sd) {
0739             struct sched_group *sg = sd->groups;
0740 
0741             /*
0742              * sched groups hold the flags of the child sched
0743              * domain for convenience. Clear such flags since
0744              * the child is being destroyed.
0745              */
0746             do {
0747                 sg->flags = 0;
0748             } while (sg != sd->groups);
0749 
0750             sd->child = NULL;
0751         }
0752     }
0753 
0754     sched_domain_debug(sd, cpu);
0755 
0756     rq_attach_root(rq, rd);
0757     tmp = rq->sd;
0758     rcu_assign_pointer(rq->sd, sd);
0759     dirty_sched_domain_sysctl(cpu);
0760     destroy_sched_domains(tmp);
0761 
0762     update_top_cache_domain(cpu);
0763 }
0764 
0765 struct s_data {
0766     struct sched_domain * __percpu *sd;
0767     struct root_domain  *rd;
0768 };
0769 
0770 enum s_alloc {
0771     sa_rootdomain,
0772     sa_sd,
0773     sa_sd_storage,
0774     sa_none,
0775 };
0776 
0777 /*
0778  * Return the canonical balance CPU for this group, this is the first CPU
0779  * of this group that's also in the balance mask.
0780  *
0781  * The balance mask are all those CPUs that could actually end up at this
0782  * group. See build_balance_mask().
0783  *
0784  * Also see should_we_balance().
0785  */
0786 int group_balance_cpu(struct sched_group *sg)
0787 {
0788     return cpumask_first(group_balance_mask(sg));
0789 }
0790 
0791 
0792 /*
0793  * NUMA topology (first read the regular topology blurb below)
0794  *
0795  * Given a node-distance table, for example:
0796  *
0797  *   node   0   1   2   3
0798  *     0:  10  20  30  20
0799  *     1:  20  10  20  30
0800  *     2:  30  20  10  20
0801  *     3:  20  30  20  10
0802  *
0803  * which represents a 4 node ring topology like:
0804  *
0805  *   0 ----- 1
0806  *   |       |
0807  *   |       |
0808  *   |       |
0809  *   3 ----- 2
0810  *
0811  * We want to construct domains and groups to represent this. The way we go
0812  * about doing this is to build the domains on 'hops'. For each NUMA level we
0813  * construct the mask of all nodes reachable in @level hops.
0814  *
0815  * For the above NUMA topology that gives 3 levels:
0816  *
0817  * NUMA-2   0-3     0-3     0-3     0-3
0818  *  groups: {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
0819  *
0820  * NUMA-1   0-1,3       0-2     1-3     0,2-3
0821  *  groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
0822  *
0823  * NUMA-0   0       1       2       3
0824  *
0825  *
0826  * As can be seen; things don't nicely line up as with the regular topology.
0827  * When we iterate a domain in child domain chunks some nodes can be
0828  * represented multiple times -- hence the "overlap" naming for this part of
0829  * the topology.
0830  *
0831  * In order to minimize this overlap, we only build enough groups to cover the
0832  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
0833  *
0834  * Because:
0835  *
0836  *  - the first group of each domain is its child domain; this
0837  *    gets us the first 0-1,3
0838  *  - the only uncovered node is 2, who's child domain is 1-3.
0839  *
0840  * However, because of the overlap, computing a unique CPU for each group is
0841  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
0842  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
0843  * end up at those groups (they would end up in group: 0-1,3).
0844  *
0845  * To correct this we have to introduce the group balance mask. This mask
0846  * will contain those CPUs in the group that can reach this group given the
0847  * (child) domain tree.
0848  *
0849  * With this we can once again compute balance_cpu and sched_group_capacity
0850  * relations.
0851  *
0852  * XXX include words on how balance_cpu is unique and therefore can be
0853  * used for sched_group_capacity links.
0854  *
0855  *
0856  * Another 'interesting' topology is:
0857  *
0858  *   node   0   1   2   3
0859  *     0:  10  20  20  30
0860  *     1:  20  10  20  20
0861  *     2:  20  20  10  20
0862  *     3:  30  20  20  10
0863  *
0864  * Which looks a little like:
0865  *
0866  *   0 ----- 1
0867  *   |     / |
0868  *   |   /   |
0869  *   | /     |
0870  *   2 ----- 3
0871  *
0872  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
0873  * are not.
0874  *
0875  * This leads to a few particularly weird cases where the sched_domain's are
0876  * not of the same number for each CPU. Consider:
0877  *
0878  * NUMA-2   0-3                     0-3
0879  *  groups: {0-2},{1-3}                 {1-3},{0-2}
0880  *
0881  * NUMA-1   0-2     0-3     0-3     1-3
0882  *
0883  * NUMA-0   0       1       2       3
0884  *
0885  */
0886 
0887 
0888 /*
0889  * Build the balance mask; it contains only those CPUs that can arrive at this
0890  * group and should be considered to continue balancing.
0891  *
0892  * We do this during the group creation pass, therefore the group information
0893  * isn't complete yet, however since each group represents a (child) domain we
0894  * can fully construct this using the sched_domain bits (which are already
0895  * complete).
0896  */
0897 static void
0898 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
0899 {
0900     const struct cpumask *sg_span = sched_group_span(sg);
0901     struct sd_data *sdd = sd->private;
0902     struct sched_domain *sibling;
0903     int i;
0904 
0905     cpumask_clear(mask);
0906 
0907     for_each_cpu(i, sg_span) {
0908         sibling = *per_cpu_ptr(sdd->sd, i);
0909 
0910         /*
0911          * Can happen in the asymmetric case, where these siblings are
0912          * unused. The mask will not be empty because those CPUs that
0913          * do have the top domain _should_ span the domain.
0914          */
0915         if (!sibling->child)
0916             continue;
0917 
0918         /* If we would not end up here, we can't continue from here */
0919         if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
0920             continue;
0921 
0922         cpumask_set_cpu(i, mask);
0923     }
0924 
0925     /* We must not have empty masks here */
0926     WARN_ON_ONCE(cpumask_empty(mask));
0927 }
0928 
0929 /*
0930  * XXX: This creates per-node group entries; since the load-balancer will
0931  * immediately access remote memory to construct this group's load-balance
0932  * statistics having the groups node local is of dubious benefit.
0933  */
0934 static struct sched_group *
0935 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
0936 {
0937     struct sched_group *sg;
0938     struct cpumask *sg_span;
0939 
0940     sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
0941             GFP_KERNEL, cpu_to_node(cpu));
0942 
0943     if (!sg)
0944         return NULL;
0945 
0946     sg_span = sched_group_span(sg);
0947     if (sd->child) {
0948         cpumask_copy(sg_span, sched_domain_span(sd->child));
0949         sg->flags = sd->child->flags;
0950     } else {
0951         cpumask_copy(sg_span, sched_domain_span(sd));
0952     }
0953 
0954     atomic_inc(&sg->ref);
0955     return sg;
0956 }
0957 
0958 static void init_overlap_sched_group(struct sched_domain *sd,
0959                      struct sched_group *sg)
0960 {
0961     struct cpumask *mask = sched_domains_tmpmask2;
0962     struct sd_data *sdd = sd->private;
0963     struct cpumask *sg_span;
0964     int cpu;
0965 
0966     build_balance_mask(sd, sg, mask);
0967     cpu = cpumask_first(mask);
0968 
0969     sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
0970     if (atomic_inc_return(&sg->sgc->ref) == 1)
0971         cpumask_copy(group_balance_mask(sg), mask);
0972     else
0973         WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
0974 
0975     /*
0976      * Initialize sgc->capacity such that even if we mess up the
0977      * domains and no possible iteration will get us here, we won't
0978      * die on a /0 trap.
0979      */
0980     sg_span = sched_group_span(sg);
0981     sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
0982     sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
0983     sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
0984 }
0985 
0986 static struct sched_domain *
0987 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
0988 {
0989     /*
0990      * The proper descendant would be the one whose child won't span out
0991      * of sd
0992      */
0993     while (sibling->child &&
0994            !cpumask_subset(sched_domain_span(sibling->child),
0995                    sched_domain_span(sd)))
0996         sibling = sibling->child;
0997 
0998     /*
0999      * As we are referencing sgc across different topology level, we need
1000      * to go down to skip those sched_domains which don't contribute to
1001      * scheduling because they will be degenerated in cpu_attach_domain
1002      */
1003     while (sibling->child &&
1004            cpumask_equal(sched_domain_span(sibling->child),
1005                  sched_domain_span(sibling)))
1006         sibling = sibling->child;
1007 
1008     return sibling;
1009 }
1010 
1011 static int
1012 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013 {
1014     struct sched_group *first = NULL, *last = NULL, *sg;
1015     const struct cpumask *span = sched_domain_span(sd);
1016     struct cpumask *covered = sched_domains_tmpmask;
1017     struct sd_data *sdd = sd->private;
1018     struct sched_domain *sibling;
1019     int i;
1020 
1021     cpumask_clear(covered);
1022 
1023     for_each_cpu_wrap(i, span, cpu) {
1024         struct cpumask *sg_span;
1025 
1026         if (cpumask_test_cpu(i, covered))
1027             continue;
1028 
1029         sibling = *per_cpu_ptr(sdd->sd, i);
1030 
1031         /*
1032          * Asymmetric node setups can result in situations where the
1033          * domain tree is of unequal depth, make sure to skip domains
1034          * that already cover the entire range.
1035          *
1036          * In that case build_sched_domains() will have terminated the
1037          * iteration early and our sibling sd spans will be empty.
1038          * Domains should always include the CPU they're built on, so
1039          * check that.
1040          */
1041         if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042             continue;
1043 
1044         /*
1045          * Usually we build sched_group by sibling's child sched_domain
1046          * But for machines whose NUMA diameter are 3 or above, we move
1047          * to build sched_group by sibling's proper descendant's child
1048          * domain because sibling's child sched_domain will span out of
1049          * the sched_domain being built as below.
1050          *
1051          * Smallest diameter=3 topology is:
1052          *
1053          *   node   0   1   2   3
1054          *     0:  10  20  30  40
1055          *     1:  20  10  20  30
1056          *     2:  30  20  10  20
1057          *     3:  40  30  20  10
1058          *
1059          *   0 --- 1 --- 2 --- 3
1060          *
1061          * NUMA-3       0-3             N/A             N/A             0-3
1062          *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1063          *
1064          * NUMA-2       0-2             0-3             0-3             1-3
1065          *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1066          *
1067          * NUMA-1       0-1             0-2             1-3             2-3
1068          *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1069          *
1070          * NUMA-0       0               1               2               3
1071          *
1072          * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073          * group span isn't a subset of the domain span.
1074          */
1075         if (sibling->child &&
1076             !cpumask_subset(sched_domain_span(sibling->child), span))
1077             sibling = find_descended_sibling(sd, sibling);
1078 
1079         sg = build_group_from_child_sched_domain(sibling, cpu);
1080         if (!sg)
1081             goto fail;
1082 
1083         sg_span = sched_group_span(sg);
1084         cpumask_or(covered, covered, sg_span);
1085 
1086         init_overlap_sched_group(sibling, sg);
1087 
1088         if (!first)
1089             first = sg;
1090         if (last)
1091             last->next = sg;
1092         last = sg;
1093         last->next = first;
1094     }
1095     sd->groups = first;
1096 
1097     return 0;
1098 
1099 fail:
1100     free_sched_groups(first, 0);
1101 
1102     return -ENOMEM;
1103 }
1104 
1105 
1106 /*
1107  * Package topology (also see the load-balance blurb in fair.c)
1108  *
1109  * The scheduler builds a tree structure to represent a number of important
1110  * topology features. By default (default_topology[]) these include:
1111  *
1112  *  - Simultaneous multithreading (SMT)
1113  *  - Multi-Core Cache (MC)
1114  *  - Package (DIE)
1115  *
1116  * Where the last one more or less denotes everything up to a NUMA node.
1117  *
1118  * The tree consists of 3 primary data structures:
1119  *
1120  *  sched_domain -> sched_group -> sched_group_capacity
1121  *      ^ ^             ^ ^
1122  *          `-'             `-'
1123  *
1124  * The sched_domains are per-CPU and have a two way link (parent & child) and
1125  * denote the ever growing mask of CPUs belonging to that level of topology.
1126  *
1127  * Each sched_domain has a circular (double) linked list of sched_group's, each
1128  * denoting the domains of the level below (or individual CPUs in case of the
1129  * first domain level). The sched_group linked by a sched_domain includes the
1130  * CPU of that sched_domain [*].
1131  *
1132  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1133  *
1134  * CPU   0   1   2   3   4   5   6   7
1135  *
1136  * DIE  [                             ]
1137  * MC   [             ] [             ]
1138  * SMT  [     ] [     ] [     ] [     ]
1139  *
1140  *  - or -
1141  *
1142  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1143  * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1144  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1145  *
1146  * CPU   0   1   2   3   4   5   6   7
1147  *
1148  * One way to think about it is: sched_domain moves you up and down among these
1149  * topology levels, while sched_group moves you sideways through it, at child
1150  * domain granularity.
1151  *
1152  * sched_group_capacity ensures each unique sched_group has shared storage.
1153  *
1154  * There are two related construction problems, both require a CPU that
1155  * uniquely identify each group (for a given domain):
1156  *
1157  *  - The first is the balance_cpu (see should_we_balance() and the
1158  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1159  *    continue balancing at a higher domain.
1160  *
1161  *  - The second is the sched_group_capacity; we want all identical groups
1162  *    to share a single sched_group_capacity.
1163  *
1164  * Since these topologies are exclusive by construction. That is, its
1165  * impossible for an SMT thread to belong to multiple cores, and cores to
1166  * be part of multiple caches. There is a very clear and unique location
1167  * for each CPU in the hierarchy.
1168  *
1169  * Therefore computing a unique CPU for each group is trivial (the iteration
1170  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1171  * group), we can simply pick the first CPU in each group.
1172  *
1173  *
1174  * [*] in other words, the first group of each domain is its child domain.
1175  */
1176 
1177 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178 {
1179     struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180     struct sched_domain *child = sd->child;
1181     struct sched_group *sg;
1182     bool already_visited;
1183 
1184     if (child)
1185         cpu = cpumask_first(sched_domain_span(child));
1186 
1187     sg = *per_cpu_ptr(sdd->sg, cpu);
1188     sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189 
1190     /* Increase refcounts for claim_allocations: */
1191     already_visited = atomic_inc_return(&sg->ref) > 1;
1192     /* sgc visits should follow a similar trend as sg */
1193     WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1194 
1195     /* If we have already visited that group, it's already initialized. */
1196     if (already_visited)
1197         return sg;
1198 
1199     if (child) {
1200         cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201         cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202         sg->flags = child->flags;
1203     } else {
1204         cpumask_set_cpu(cpu, sched_group_span(sg));
1205         cpumask_set_cpu(cpu, group_balance_mask(sg));
1206     }
1207 
1208     sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1209     sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210     sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1211 
1212     return sg;
1213 }
1214 
1215 /*
1216  * build_sched_groups will build a circular linked list of the groups
1217  * covered by the given span, will set each group's ->cpumask correctly,
1218  * and will initialize their ->sgc.
1219  *
1220  * Assumes the sched_domain tree is fully constructed
1221  */
1222 static int
1223 build_sched_groups(struct sched_domain *sd, int cpu)
1224 {
1225     struct sched_group *first = NULL, *last = NULL;
1226     struct sd_data *sdd = sd->private;
1227     const struct cpumask *span = sched_domain_span(sd);
1228     struct cpumask *covered;
1229     int i;
1230 
1231     lockdep_assert_held(&sched_domains_mutex);
1232     covered = sched_domains_tmpmask;
1233 
1234     cpumask_clear(covered);
1235 
1236     for_each_cpu_wrap(i, span, cpu) {
1237         struct sched_group *sg;
1238 
1239         if (cpumask_test_cpu(i, covered))
1240             continue;
1241 
1242         sg = get_group(i, sdd);
1243 
1244         cpumask_or(covered, covered, sched_group_span(sg));
1245 
1246         if (!first)
1247             first = sg;
1248         if (last)
1249             last->next = sg;
1250         last = sg;
1251     }
1252     last->next = first;
1253     sd->groups = first;
1254 
1255     return 0;
1256 }
1257 
1258 /*
1259  * Initialize sched groups cpu_capacity.
1260  *
1261  * cpu_capacity indicates the capacity of sched group, which is used while
1262  * distributing the load between different sched groups in a sched domain.
1263  * Typically cpu_capacity for all the groups in a sched domain will be same
1264  * unless there are asymmetries in the topology. If there are asymmetries,
1265  * group having more cpu_capacity will pickup more load compared to the
1266  * group having less cpu_capacity.
1267  */
1268 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269 {
1270     struct sched_group *sg = sd->groups;
1271 
1272     WARN_ON(!sg);
1273 
1274     do {
1275         int cpu, max_cpu = -1;
1276 
1277         sg->group_weight = cpumask_weight(sched_group_span(sg));
1278 
1279         if (!(sd->flags & SD_ASYM_PACKING))
1280             goto next;
1281 
1282         for_each_cpu(cpu, sched_group_span(sg)) {
1283             if (max_cpu < 0)
1284                 max_cpu = cpu;
1285             else if (sched_asym_prefer(cpu, max_cpu))
1286                 max_cpu = cpu;
1287         }
1288         sg->asym_prefer_cpu = max_cpu;
1289 
1290 next:
1291         sg = sg->next;
1292     } while (sg != sd->groups);
1293 
1294     if (cpu != group_balance_cpu(sg))
1295         return;
1296 
1297     update_group_capacity(sd, cpu);
1298 }
1299 
1300 /*
1301  * Asymmetric CPU capacity bits
1302  */
1303 struct asym_cap_data {
1304     struct list_head link;
1305     unsigned long capacity;
1306     unsigned long cpus[];
1307 };
1308 
1309 /*
1310  * Set of available CPUs grouped by their corresponding capacities
1311  * Each list entry contains a CPU mask reflecting CPUs that share the same
1312  * capacity.
1313  * The lifespan of data is unlimited.
1314  */
1315 static LIST_HEAD(asym_cap_list);
1316 
1317 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318 
1319 /*
1320  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321  * Provides sd_flags reflecting the asymmetry scope.
1322  */
1323 static inline int
1324 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325                const struct cpumask *cpu_map)
1326 {
1327     struct asym_cap_data *entry;
1328     int count = 0, miss = 0;
1329 
1330     /*
1331      * Count how many unique CPU capacities this domain spans across
1332      * (compare sched_domain CPUs mask with ones representing  available
1333      * CPUs capacities). Take into account CPUs that might be offline:
1334      * skip those.
1335      */
1336     list_for_each_entry(entry, &asym_cap_list, link) {
1337         if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338             ++count;
1339         else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340             ++miss;
1341     }
1342 
1343     WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344 
1345     /* No asymmetry detected */
1346     if (count < 2)
1347         return 0;
1348     /* Some of the available CPU capacity values have not been detected */
1349     if (miss)
1350         return SD_ASYM_CPUCAPACITY;
1351 
1352     /* Full asymmetry */
1353     return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354 
1355 }
1356 
1357 static inline void asym_cpu_capacity_update_data(int cpu)
1358 {
1359     unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360     struct asym_cap_data *entry = NULL;
1361 
1362     list_for_each_entry(entry, &asym_cap_list, link) {
1363         if (capacity == entry->capacity)
1364             goto done;
1365     }
1366 
1367     entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368     if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369         return;
1370     entry->capacity = capacity;
1371     list_add(&entry->link, &asym_cap_list);
1372 done:
1373     __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374 }
1375 
1376 /*
1377  * Build-up/update list of CPUs grouped by their capacities
1378  * An update requires explicit request to rebuild sched domains
1379  * with state indicating CPU topology changes.
1380  */
1381 static void asym_cpu_capacity_scan(void)
1382 {
1383     struct asym_cap_data *entry, *next;
1384     int cpu;
1385 
1386     list_for_each_entry(entry, &asym_cap_list, link)
1387         cpumask_clear(cpu_capacity_span(entry));
1388 
1389     for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390         asym_cpu_capacity_update_data(cpu);
1391 
1392     list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393         if (cpumask_empty(cpu_capacity_span(entry))) {
1394             list_del(&entry->link);
1395             kfree(entry);
1396         }
1397     }
1398 
1399     /*
1400      * Only one capacity value has been detected i.e. this system is symmetric.
1401      * No need to keep this data around.
1402      */
1403     if (list_is_singular(&asym_cap_list)) {
1404         entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405         list_del(&entry->link);
1406         kfree(entry);
1407     }
1408 }
1409 
1410 /*
1411  * Initializers for schedule domains
1412  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413  */
1414 
1415 static int default_relax_domain_level = -1;
1416 int sched_domain_level_max;
1417 
1418 static int __init setup_relax_domain_level(char *str)
1419 {
1420     if (kstrtoint(str, 0, &default_relax_domain_level))
1421         pr_warn("Unable to set relax_domain_level\n");
1422 
1423     return 1;
1424 }
1425 __setup("relax_domain_level=", setup_relax_domain_level);
1426 
1427 static void set_domain_attribute(struct sched_domain *sd,
1428                  struct sched_domain_attr *attr)
1429 {
1430     int request;
1431 
1432     if (!attr || attr->relax_domain_level < 0) {
1433         if (default_relax_domain_level < 0)
1434             return;
1435         request = default_relax_domain_level;
1436     } else
1437         request = attr->relax_domain_level;
1438 
1439     if (sd->level > request) {
1440         /* Turn off idle balance on this domain: */
1441         sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442     }
1443 }
1444 
1445 static void __sdt_free(const struct cpumask *cpu_map);
1446 static int __sdt_alloc(const struct cpumask *cpu_map);
1447 
1448 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449                  const struct cpumask *cpu_map)
1450 {
1451     switch (what) {
1452     case sa_rootdomain:
1453         if (!atomic_read(&d->rd->refcount))
1454             free_rootdomain(&d->rd->rcu);
1455         fallthrough;
1456     case sa_sd:
1457         free_percpu(d->sd);
1458         fallthrough;
1459     case sa_sd_storage:
1460         __sdt_free(cpu_map);
1461         fallthrough;
1462     case sa_none:
1463         break;
1464     }
1465 }
1466 
1467 static enum s_alloc
1468 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469 {
1470     memset(d, 0, sizeof(*d));
1471 
1472     if (__sdt_alloc(cpu_map))
1473         return sa_sd_storage;
1474     d->sd = alloc_percpu(struct sched_domain *);
1475     if (!d->sd)
1476         return sa_sd_storage;
1477     d->rd = alloc_rootdomain();
1478     if (!d->rd)
1479         return sa_sd;
1480 
1481     return sa_rootdomain;
1482 }
1483 
1484 /*
1485  * NULL the sd_data elements we've used to build the sched_domain and
1486  * sched_group structure so that the subsequent __free_domain_allocs()
1487  * will not free the data we're using.
1488  */
1489 static void claim_allocations(int cpu, struct sched_domain *sd)
1490 {
1491     struct sd_data *sdd = sd->private;
1492 
1493     WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494     *per_cpu_ptr(sdd->sd, cpu) = NULL;
1495 
1496     if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497         *per_cpu_ptr(sdd->sds, cpu) = NULL;
1498 
1499     if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500         *per_cpu_ptr(sdd->sg, cpu) = NULL;
1501 
1502     if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503         *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504 }
1505 
1506 #ifdef CONFIG_NUMA
1507 enum numa_topology_type sched_numa_topology_type;
1508 
1509 static int          sched_domains_numa_levels;
1510 static int          sched_domains_curr_level;
1511 
1512 int             sched_max_numa_distance;
1513 static int          *sched_domains_numa_distance;
1514 static struct cpumask       ***sched_domains_numa_masks;
1515 #endif
1516 
1517 /*
1518  * SD_flags allowed in topology descriptions.
1519  *
1520  * These flags are purely descriptive of the topology and do not prescribe
1521  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522  * function:
1523  *
1524  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1525  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1526  *   SD_NUMA                - describes NUMA topologies
1527  *
1528  * Odd one out, which beside describing the topology has a quirk also
1529  * prescribes the desired behaviour that goes along with it:
1530  *
1531  *   SD_ASYM_PACKING        - describes SMT quirks
1532  */
1533 #define TOPOLOGY_SD_FLAGS       \
1534     (SD_SHARE_CPUCAPACITY   |   \
1535      SD_SHARE_PKG_RESOURCES |   \
1536      SD_NUMA        |   \
1537      SD_ASYM_PACKING)
1538 
1539 static struct sched_domain *
1540 sd_init(struct sched_domain_topology_level *tl,
1541     const struct cpumask *cpu_map,
1542     struct sched_domain *child, int cpu)
1543 {
1544     struct sd_data *sdd = &tl->data;
1545     struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546     int sd_id, sd_weight, sd_flags = 0;
1547     struct cpumask *sd_span;
1548 
1549 #ifdef CONFIG_NUMA
1550     /*
1551      * Ugly hack to pass state to sd_numa_mask()...
1552      */
1553     sched_domains_curr_level = tl->numa_level;
1554 #endif
1555 
1556     sd_weight = cpumask_weight(tl->mask(cpu));
1557 
1558     if (tl->sd_flags)
1559         sd_flags = (*tl->sd_flags)();
1560     if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561             "wrong sd_flags in topology description\n"))
1562         sd_flags &= TOPOLOGY_SD_FLAGS;
1563 
1564     *sd = (struct sched_domain){
1565         .min_interval       = sd_weight,
1566         .max_interval       = 2*sd_weight,
1567         .busy_factor        = 16,
1568         .imbalance_pct      = 117,
1569 
1570         .cache_nice_tries   = 0,
1571 
1572         .flags          = 1*SD_BALANCE_NEWIDLE
1573                     | 1*SD_BALANCE_EXEC
1574                     | 1*SD_BALANCE_FORK
1575                     | 0*SD_BALANCE_WAKE
1576                     | 1*SD_WAKE_AFFINE
1577                     | 0*SD_SHARE_CPUCAPACITY
1578                     | 0*SD_SHARE_PKG_RESOURCES
1579                     | 0*SD_SERIALIZE
1580                     | 1*SD_PREFER_SIBLING
1581                     | 0*SD_NUMA
1582                     | sd_flags
1583                     ,
1584 
1585         .last_balance       = jiffies,
1586         .balance_interval   = sd_weight,
1587         .max_newidle_lb_cost    = 0,
1588         .last_decay_max_lb_cost = jiffies,
1589         .child          = child,
1590 #ifdef CONFIG_SCHED_DEBUG
1591         .name           = tl->name,
1592 #endif
1593     };
1594 
1595     sd_span = sched_domain_span(sd);
1596     cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597     sd_id = cpumask_first(sd_span);
1598 
1599     sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600 
1601     WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602           (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603           "CPU capacity asymmetry not supported on SMT\n");
1604 
1605     /*
1606      * Convert topological properties into behaviour.
1607      */
1608     /* Don't attempt to spread across CPUs of different capacities. */
1609     if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1610         sd->child->flags &= ~SD_PREFER_SIBLING;
1611 
1612     if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613         sd->imbalance_pct = 110;
1614 
1615     } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616         sd->imbalance_pct = 117;
1617         sd->cache_nice_tries = 1;
1618 
1619 #ifdef CONFIG_NUMA
1620     } else if (sd->flags & SD_NUMA) {
1621         sd->cache_nice_tries = 2;
1622 
1623         sd->flags &= ~SD_PREFER_SIBLING;
1624         sd->flags |= SD_SERIALIZE;
1625         if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626             sd->flags &= ~(SD_BALANCE_EXEC |
1627                        SD_BALANCE_FORK |
1628                        SD_WAKE_AFFINE);
1629         }
1630 
1631 #endif
1632     } else {
1633         sd->cache_nice_tries = 1;
1634     }
1635 
1636     /*
1637      * For all levels sharing cache; connect a sched_domain_shared
1638      * instance.
1639      */
1640     if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641         sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642         atomic_inc(&sd->shared->ref);
1643         atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644     }
1645 
1646     sd->private = sdd;
1647 
1648     return sd;
1649 }
1650 
1651 /*
1652  * Topology list, bottom-up.
1653  */
1654 static struct sched_domain_topology_level default_topology[] = {
1655 #ifdef CONFIG_SCHED_SMT
1656     { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657 #endif
1658 
1659 #ifdef CONFIG_SCHED_CLUSTER
1660     { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661 #endif
1662 
1663 #ifdef CONFIG_SCHED_MC
1664     { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665 #endif
1666     { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667     { NULL, },
1668 };
1669 
1670 static struct sched_domain_topology_level *sched_domain_topology =
1671     default_topology;
1672 static struct sched_domain_topology_level *sched_domain_topology_saved;
1673 
1674 #define for_each_sd_topology(tl)            \
1675     for (tl = sched_domain_topology; tl->mask; tl++)
1676 
1677 void set_sched_topology(struct sched_domain_topology_level *tl)
1678 {
1679     if (WARN_ON_ONCE(sched_smp_initialized))
1680         return;
1681 
1682     sched_domain_topology = tl;
1683     sched_domain_topology_saved = NULL;
1684 }
1685 
1686 #ifdef CONFIG_NUMA
1687 
1688 static const struct cpumask *sd_numa_mask(int cpu)
1689 {
1690     return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691 }
1692 
1693 static void sched_numa_warn(const char *str)
1694 {
1695     static int done = false;
1696     int i,j;
1697 
1698     if (done)
1699         return;
1700 
1701     done = true;
1702 
1703     printk(KERN_WARNING "ERROR: %s\n\n", str);
1704 
1705     for (i = 0; i < nr_node_ids; i++) {
1706         printk(KERN_WARNING "  ");
1707         for (j = 0; j < nr_node_ids; j++) {
1708             if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1709                 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1710             else
1711                 printk(KERN_CONT " %02d  ", node_distance(i,j));
1712         }
1713         printk(KERN_CONT "\n");
1714     }
1715     printk(KERN_WARNING "\n");
1716 }
1717 
1718 bool find_numa_distance(int distance)
1719 {
1720     bool found = false;
1721     int i, *distances;
1722 
1723     if (distance == node_distance(0, 0))
1724         return true;
1725 
1726     rcu_read_lock();
1727     distances = rcu_dereference(sched_domains_numa_distance);
1728     if (!distances)
1729         goto unlock;
1730     for (i = 0; i < sched_domains_numa_levels; i++) {
1731         if (distances[i] == distance) {
1732             found = true;
1733             break;
1734         }
1735     }
1736 unlock:
1737     rcu_read_unlock();
1738 
1739     return found;
1740 }
1741 
1742 #define for_each_cpu_node_but(n, nbut)      \
1743     for_each_node_state(n, N_CPU)       \
1744         if (n == nbut)          \
1745             continue;       \
1746         else
1747 
1748 /*
1749  * A system can have three types of NUMA topology:
1750  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753  *
1754  * The difference between a glueless mesh topology and a backplane
1755  * topology lies in whether communication between not directly
1756  * connected nodes goes through intermediary nodes (where programs
1757  * could run), or through backplane controllers. This affects
1758  * placement of programs.
1759  *
1760  * The type of topology can be discerned with the following tests:
1761  * - If the maximum distance between any nodes is 1 hop, the system
1762  *   is directly connected.
1763  * - If for two nodes A and B, located N > 1 hops away from each other,
1764  *   there is an intermediary node C, which is < N hops away from both
1765  *   nodes A and B, the system is a glueless mesh.
1766  */
1767 static void init_numa_topology_type(int offline_node)
1768 {
1769     int a, b, c, n;
1770 
1771     n = sched_max_numa_distance;
1772 
1773     if (sched_domains_numa_levels <= 2) {
1774         sched_numa_topology_type = NUMA_DIRECT;
1775         return;
1776     }
1777 
1778     for_each_cpu_node_but(a, offline_node) {
1779         for_each_cpu_node_but(b, offline_node) {
1780             /* Find two nodes furthest removed from each other. */
1781             if (node_distance(a, b) < n)
1782                 continue;
1783 
1784             /* Is there an intermediary node between a and b? */
1785             for_each_cpu_node_but(c, offline_node) {
1786                 if (node_distance(a, c) < n &&
1787                     node_distance(b, c) < n) {
1788                     sched_numa_topology_type =
1789                             NUMA_GLUELESS_MESH;
1790                     return;
1791                 }
1792             }
1793 
1794             sched_numa_topology_type = NUMA_BACKPLANE;
1795             return;
1796         }
1797     }
1798 
1799     pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1800     sched_numa_topology_type = NUMA_DIRECT;
1801 }
1802 
1803 
1804 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805 
1806 void sched_init_numa(int offline_node)
1807 {
1808     struct sched_domain_topology_level *tl;
1809     unsigned long *distance_map;
1810     int nr_levels = 0;
1811     int i, j;
1812     int *distances;
1813     struct cpumask ***masks;
1814 
1815     /*
1816      * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817      * unique distances in the node_distance() table.
1818      */
1819     distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820     if (!distance_map)
1821         return;
1822 
1823     bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1824     for_each_cpu_node_but(i, offline_node) {
1825         for_each_cpu_node_but(j, offline_node) {
1826             int distance = node_distance(i, j);
1827 
1828             if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829                 sched_numa_warn("Invalid distance value range");
1830                 bitmap_free(distance_map);
1831                 return;
1832             }
1833 
1834             bitmap_set(distance_map, distance, 1);
1835         }
1836     }
1837     /*
1838      * We can now figure out how many unique distance values there are and
1839      * allocate memory accordingly.
1840      */
1841     nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842 
1843     distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1844     if (!distances) {
1845         bitmap_free(distance_map);
1846         return;
1847     }
1848 
1849     for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850         j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1851         distances[i] = j;
1852     }
1853     rcu_assign_pointer(sched_domains_numa_distance, distances);
1854 
1855     bitmap_free(distance_map);
1856 
1857     /*
1858      * 'nr_levels' contains the number of unique distances
1859      *
1860      * The sched_domains_numa_distance[] array includes the actual distance
1861      * numbers.
1862      */
1863 
1864     /*
1865      * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866      * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867      * the array will contain less then 'nr_levels' members. This could be
1868      * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869      * in other functions.
1870      *
1871      * We reset it to 'nr_levels' at the end of this function.
1872      */
1873     sched_domains_numa_levels = 0;
1874 
1875     masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1876     if (!masks)
1877         return;
1878 
1879     /*
1880      * Now for each level, construct a mask per node which contains all
1881      * CPUs of nodes that are that many hops away from us.
1882      */
1883     for (i = 0; i < nr_levels; i++) {
1884         masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1885         if (!masks[i])
1886             return;
1887 
1888         for_each_cpu_node_but(j, offline_node) {
1889             struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890             int k;
1891 
1892             if (!mask)
1893                 return;
1894 
1895             masks[i][j] = mask;
1896 
1897             for_each_cpu_node_but(k, offline_node) {
1898                 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899                     sched_numa_warn("Node-distance not symmetric");
1900 
1901                 if (node_distance(j, k) > sched_domains_numa_distance[i])
1902                     continue;
1903 
1904                 cpumask_or(mask, mask, cpumask_of_node(k));
1905             }
1906         }
1907     }
1908     rcu_assign_pointer(sched_domains_numa_masks, masks);
1909 
1910     /* Compute default topology size */
1911     for (i = 0; sched_domain_topology[i].mask; i++);
1912 
1913     tl = kzalloc((i + nr_levels + 1) *
1914             sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915     if (!tl)
1916         return;
1917 
1918     /*
1919      * Copy the default topology bits..
1920      */
1921     for (i = 0; sched_domain_topology[i].mask; i++)
1922         tl[i] = sched_domain_topology[i];
1923 
1924     /*
1925      * Add the NUMA identity distance, aka single NODE.
1926      */
1927     tl[i++] = (struct sched_domain_topology_level){
1928         .mask = sd_numa_mask,
1929         .numa_level = 0,
1930         SD_INIT_NAME(NODE)
1931     };
1932 
1933     /*
1934      * .. and append 'j' levels of NUMA goodness.
1935      */
1936     for (j = 1; j < nr_levels; i++, j++) {
1937         tl[i] = (struct sched_domain_topology_level){
1938             .mask = sd_numa_mask,
1939             .sd_flags = cpu_numa_flags,
1940             .flags = SDTL_OVERLAP,
1941             .numa_level = j,
1942             SD_INIT_NAME(NUMA)
1943         };
1944     }
1945 
1946     sched_domain_topology_saved = sched_domain_topology;
1947     sched_domain_topology = tl;
1948 
1949     sched_domains_numa_levels = nr_levels;
1950     WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951 
1952     init_numa_topology_type(offline_node);
1953 }
1954 
1955 
1956 static void sched_reset_numa(void)
1957 {
1958     int nr_levels, *distances;
1959     struct cpumask ***masks;
1960 
1961     nr_levels = sched_domains_numa_levels;
1962     sched_domains_numa_levels = 0;
1963     sched_max_numa_distance = 0;
1964     sched_numa_topology_type = NUMA_DIRECT;
1965     distances = sched_domains_numa_distance;
1966     rcu_assign_pointer(sched_domains_numa_distance, NULL);
1967     masks = sched_domains_numa_masks;
1968     rcu_assign_pointer(sched_domains_numa_masks, NULL);
1969     if (distances || masks) {
1970         int i, j;
1971 
1972         synchronize_rcu();
1973         kfree(distances);
1974         for (i = 0; i < nr_levels && masks; i++) {
1975             if (!masks[i])
1976                 continue;
1977             for_each_node(j)
1978                 kfree(masks[i][j]);
1979             kfree(masks[i]);
1980         }
1981         kfree(masks);
1982     }
1983     if (sched_domain_topology_saved) {
1984         kfree(sched_domain_topology);
1985         sched_domain_topology = sched_domain_topology_saved;
1986         sched_domain_topology_saved = NULL;
1987     }
1988 }
1989 
1990 /*
1991  * Call with hotplug lock held
1992  */
1993 void sched_update_numa(int cpu, bool online)
1994 {
1995     int node;
1996 
1997     node = cpu_to_node(cpu);
1998     /*
1999      * Scheduler NUMA topology is updated when the first CPU of a
2000      * node is onlined or the last CPU of a node is offlined.
2001      */
2002     if (cpumask_weight(cpumask_of_node(node)) != 1)
2003         return;
2004 
2005     sched_reset_numa();
2006     sched_init_numa(online ? NUMA_NO_NODE : node);
2007 }
2008 
2009 void sched_domains_numa_masks_set(unsigned int cpu)
2010 {
2011     int node = cpu_to_node(cpu);
2012     int i, j;
2013 
2014     for (i = 0; i < sched_domains_numa_levels; i++) {
2015         for (j = 0; j < nr_node_ids; j++) {
2016             if (!node_state(j, N_CPU))
2017                 continue;
2018 
2019             /* Set ourselves in the remote node's masks */
2020             if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022         }
2023     }
2024 }
2025 
2026 void sched_domains_numa_masks_clear(unsigned int cpu)
2027 {
2028     int i, j;
2029 
2030     for (i = 0; i < sched_domains_numa_levels; i++) {
2031         for (j = 0; j < nr_node_ids; j++) {
2032             if (sched_domains_numa_masks[i][j])
2033                 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034         }
2035     }
2036 }
2037 
2038 /*
2039  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040  *                             closest to @cpu from @cpumask.
2041  * cpumask: cpumask to find a cpu from
2042  * cpu: cpu to be close to
2043  *
2044  * returns: cpu, or nr_cpu_ids when nothing found.
2045  */
2046 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047 {
2048     int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2049     struct cpumask ***masks;
2050 
2051     rcu_read_lock();
2052     masks = rcu_dereference(sched_domains_numa_masks);
2053     if (!masks)
2054         goto unlock;
2055     for (i = 0; i < sched_domains_numa_levels; i++) {
2056         if (!masks[i][j])
2057             break;
2058         cpu = cpumask_any_and(cpus, masks[i][j]);
2059         if (cpu < nr_cpu_ids) {
2060             found = cpu;
2061             break;
2062         }
2063     }
2064 unlock:
2065     rcu_read_unlock();
2066 
2067     return found;
2068 }
2069 
2070 #endif /* CONFIG_NUMA */
2071 
2072 static int __sdt_alloc(const struct cpumask *cpu_map)
2073 {
2074     struct sched_domain_topology_level *tl;
2075     int j;
2076 
2077     for_each_sd_topology(tl) {
2078         struct sd_data *sdd = &tl->data;
2079 
2080         sdd->sd = alloc_percpu(struct sched_domain *);
2081         if (!sdd->sd)
2082             return -ENOMEM;
2083 
2084         sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085         if (!sdd->sds)
2086             return -ENOMEM;
2087 
2088         sdd->sg = alloc_percpu(struct sched_group *);
2089         if (!sdd->sg)
2090             return -ENOMEM;
2091 
2092         sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093         if (!sdd->sgc)
2094             return -ENOMEM;
2095 
2096         for_each_cpu(j, cpu_map) {
2097             struct sched_domain *sd;
2098             struct sched_domain_shared *sds;
2099             struct sched_group *sg;
2100             struct sched_group_capacity *sgc;
2101 
2102             sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103                     GFP_KERNEL, cpu_to_node(j));
2104             if (!sd)
2105                 return -ENOMEM;
2106 
2107             *per_cpu_ptr(sdd->sd, j) = sd;
2108 
2109             sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110                     GFP_KERNEL, cpu_to_node(j));
2111             if (!sds)
2112                 return -ENOMEM;
2113 
2114             *per_cpu_ptr(sdd->sds, j) = sds;
2115 
2116             sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117                     GFP_KERNEL, cpu_to_node(j));
2118             if (!sg)
2119                 return -ENOMEM;
2120 
2121             sg->next = sg;
2122 
2123             *per_cpu_ptr(sdd->sg, j) = sg;
2124 
2125             sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126                     GFP_KERNEL, cpu_to_node(j));
2127             if (!sgc)
2128                 return -ENOMEM;
2129 
2130 #ifdef CONFIG_SCHED_DEBUG
2131             sgc->id = j;
2132 #endif
2133 
2134             *per_cpu_ptr(sdd->sgc, j) = sgc;
2135         }
2136     }
2137 
2138     return 0;
2139 }
2140 
2141 static void __sdt_free(const struct cpumask *cpu_map)
2142 {
2143     struct sched_domain_topology_level *tl;
2144     int j;
2145 
2146     for_each_sd_topology(tl) {
2147         struct sd_data *sdd = &tl->data;
2148 
2149         for_each_cpu(j, cpu_map) {
2150             struct sched_domain *sd;
2151 
2152             if (sdd->sd) {
2153                 sd = *per_cpu_ptr(sdd->sd, j);
2154                 if (sd && (sd->flags & SD_OVERLAP))
2155                     free_sched_groups(sd->groups, 0);
2156                 kfree(*per_cpu_ptr(sdd->sd, j));
2157             }
2158 
2159             if (sdd->sds)
2160                 kfree(*per_cpu_ptr(sdd->sds, j));
2161             if (sdd->sg)
2162                 kfree(*per_cpu_ptr(sdd->sg, j));
2163             if (sdd->sgc)
2164                 kfree(*per_cpu_ptr(sdd->sgc, j));
2165         }
2166         free_percpu(sdd->sd);
2167         sdd->sd = NULL;
2168         free_percpu(sdd->sds);
2169         sdd->sds = NULL;
2170         free_percpu(sdd->sg);
2171         sdd->sg = NULL;
2172         free_percpu(sdd->sgc);
2173         sdd->sgc = NULL;
2174     }
2175 }
2176 
2177 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178         const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179         struct sched_domain *child, int cpu)
2180 {
2181     struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182 
2183     if (child) {
2184         sd->level = child->level + 1;
2185         sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186         child->parent = sd;
2187 
2188         if (!cpumask_subset(sched_domain_span(child),
2189                     sched_domain_span(sd))) {
2190             pr_err("BUG: arch topology borken\n");
2191 #ifdef CONFIG_SCHED_DEBUG
2192             pr_err("     the %s domain not a subset of the %s domain\n",
2193                     child->name, sd->name);
2194 #endif
2195             /* Fixup, ensure @sd has at least @child CPUs. */
2196             cpumask_or(sched_domain_span(sd),
2197                    sched_domain_span(sd),
2198                    sched_domain_span(child));
2199         }
2200 
2201     }
2202     set_domain_attribute(sd, attr);
2203 
2204     return sd;
2205 }
2206 
2207 /*
2208  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209  * any two given CPUs at this (non-NUMA) topology level.
2210  */
2211 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212                   const struct cpumask *cpu_map, int cpu)
2213 {
2214     int i;
2215 
2216     /* NUMA levels are allowed to overlap */
2217     if (tl->flags & SDTL_OVERLAP)
2218         return true;
2219 
2220     /*
2221      * Non-NUMA levels cannot partially overlap - they must be either
2222      * completely equal or completely disjoint. Otherwise we can end up
2223      * breaking the sched_group lists - i.e. a later get_group() pass
2224      * breaks the linking done for an earlier span.
2225      */
2226     for_each_cpu(i, cpu_map) {
2227         if (i == cpu)
2228             continue;
2229         /*
2230          * We should 'and' all those masks with 'cpu_map' to exactly
2231          * match the topology we're about to build, but that can only
2232          * remove CPUs, which only lessens our ability to detect
2233          * overlaps
2234          */
2235         if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236             cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237             return false;
2238     }
2239 
2240     return true;
2241 }
2242 
2243 /*
2244  * Build sched domains for a given set of CPUs and attach the sched domains
2245  * to the individual CPUs
2246  */
2247 static int
2248 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249 {
2250     enum s_alloc alloc_state = sa_none;
2251     struct sched_domain *sd;
2252     struct s_data d;
2253     struct rq *rq = NULL;
2254     int i, ret = -ENOMEM;
2255     bool has_asym = false;
2256 
2257     if (WARN_ON(cpumask_empty(cpu_map)))
2258         goto error;
2259 
2260     alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261     if (alloc_state != sa_rootdomain)
2262         goto error;
2263 
2264     /* Set up domains for CPUs specified by the cpu_map: */
2265     for_each_cpu(i, cpu_map) {
2266         struct sched_domain_topology_level *tl;
2267 
2268         sd = NULL;
2269         for_each_sd_topology(tl) {
2270 
2271             if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272                 goto error;
2273 
2274             sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275 
2276             has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2277 
2278             if (tl == sched_domain_topology)
2279                 *per_cpu_ptr(d.sd, i) = sd;
2280             if (tl->flags & SDTL_OVERLAP)
2281                 sd->flags |= SD_OVERLAP;
2282             if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283                 break;
2284         }
2285     }
2286 
2287     /* Build the groups for the domains */
2288     for_each_cpu(i, cpu_map) {
2289         for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290             sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291             if (sd->flags & SD_OVERLAP) {
2292                 if (build_overlap_sched_groups(sd, i))
2293                     goto error;
2294             } else {
2295                 if (build_sched_groups(sd, i))
2296                     goto error;
2297             }
2298         }
2299     }
2300 
2301     /*
2302      * Calculate an allowed NUMA imbalance such that LLCs do not get
2303      * imbalanced.
2304      */
2305     for_each_cpu(i, cpu_map) {
2306         unsigned int imb = 0;
2307         unsigned int imb_span = 1;
2308 
2309         for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310             struct sched_domain *child = sd->child;
2311 
2312             if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313                 (child->flags & SD_SHARE_PKG_RESOURCES)) {
2314                 struct sched_domain __rcu *top_p;
2315                 unsigned int nr_llcs;
2316 
2317                 /*
2318                  * For a single LLC per node, allow an
2319                  * imbalance up to 12.5% of the node. This is
2320                  * arbitrary cutoff based two factors -- SMT and
2321                  * memory channels. For SMT-2, the intent is to
2322                  * avoid premature sharing of HT resources but
2323                  * SMT-4 or SMT-8 *may* benefit from a different
2324                  * cutoff. For memory channels, this is a very
2325                  * rough estimate of how many channels may be
2326                  * active and is based on recent CPUs with
2327                  * many cores.
2328                  *
2329                  * For multiple LLCs, allow an imbalance
2330                  * until multiple tasks would share an LLC
2331                  * on one node while LLCs on another node
2332                  * remain idle. This assumes that there are
2333                  * enough logical CPUs per LLC to avoid SMT
2334                  * factors and that there is a correlation
2335                  * between LLCs and memory channels.
2336                  */
2337                 nr_llcs = sd->span_weight / child->span_weight;
2338                 if (nr_llcs == 1)
2339                     imb = sd->span_weight >> 3;
2340                 else
2341                     imb = nr_llcs;
2342                 imb = max(1U, imb);
2343                 sd->imb_numa_nr = imb;
2344 
2345                 /* Set span based on the first NUMA domain. */
2346                 top_p = sd->parent;
2347                 while (top_p && !(top_p->flags & SD_NUMA)) {
2348                     top_p = top_p->parent;
2349                 }
2350                 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2351             } else {
2352                 int factor = max(1U, (sd->span_weight / imb_span));
2353 
2354                 sd->imb_numa_nr = imb * factor;
2355             }
2356         }
2357     }
2358 
2359     /* Calculate CPU capacity for physical packages and nodes */
2360     for (i = nr_cpumask_bits-1; i >= 0; i--) {
2361         if (!cpumask_test_cpu(i, cpu_map))
2362             continue;
2363 
2364         for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2365             claim_allocations(i, sd);
2366             init_sched_groups_capacity(i, sd);
2367         }
2368     }
2369 
2370     /* Attach the domains */
2371     rcu_read_lock();
2372     for_each_cpu(i, cpu_map) {
2373         rq = cpu_rq(i);
2374         sd = *per_cpu_ptr(d.sd, i);
2375 
2376         /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2377         if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2378             WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2379 
2380         cpu_attach_domain(sd, d.rd, i);
2381     }
2382     rcu_read_unlock();
2383 
2384     if (has_asym)
2385         static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2386 
2387     if (rq && sched_debug_verbose) {
2388         pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2389             cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2390     }
2391 
2392     ret = 0;
2393 error:
2394     __free_domain_allocs(&d, alloc_state, cpu_map);
2395 
2396     return ret;
2397 }
2398 
2399 /* Current sched domains: */
2400 static cpumask_var_t            *doms_cur;
2401 
2402 /* Number of sched domains in 'doms_cur': */
2403 static int              ndoms_cur;
2404 
2405 /* Attributes of custom domains in 'doms_cur' */
2406 static struct sched_domain_attr     *dattr_cur;
2407 
2408 /*
2409  * Special case: If a kmalloc() of a doms_cur partition (array of
2410  * cpumask) fails, then fallback to a single sched domain,
2411  * as determined by the single cpumask fallback_doms.
2412  */
2413 static cpumask_var_t            fallback_doms;
2414 
2415 /*
2416  * arch_update_cpu_topology lets virtualized architectures update the
2417  * CPU core maps. It is supposed to return 1 if the topology changed
2418  * or 0 if it stayed the same.
2419  */
2420 int __weak arch_update_cpu_topology(void)
2421 {
2422     return 0;
2423 }
2424 
2425 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2426 {
2427     int i;
2428     cpumask_var_t *doms;
2429 
2430     doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2431     if (!doms)
2432         return NULL;
2433     for (i = 0; i < ndoms; i++) {
2434         if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2435             free_sched_domains(doms, i);
2436             return NULL;
2437         }
2438     }
2439     return doms;
2440 }
2441 
2442 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2443 {
2444     unsigned int i;
2445     for (i = 0; i < ndoms; i++)
2446         free_cpumask_var(doms[i]);
2447     kfree(doms);
2448 }
2449 
2450 /*
2451  * Set up scheduler domains and groups.  For now this just excludes isolated
2452  * CPUs, but could be used to exclude other special cases in the future.
2453  */
2454 int sched_init_domains(const struct cpumask *cpu_map)
2455 {
2456     int err;
2457 
2458     zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2459     zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2460     zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2461 
2462     arch_update_cpu_topology();
2463     asym_cpu_capacity_scan();
2464     ndoms_cur = 1;
2465     doms_cur = alloc_sched_domains(ndoms_cur);
2466     if (!doms_cur)
2467         doms_cur = &fallback_doms;
2468     cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2469     err = build_sched_domains(doms_cur[0], NULL);
2470 
2471     return err;
2472 }
2473 
2474 /*
2475  * Detach sched domains from a group of CPUs specified in cpu_map
2476  * These CPUs will now be attached to the NULL domain
2477  */
2478 static void detach_destroy_domains(const struct cpumask *cpu_map)
2479 {
2480     unsigned int cpu = cpumask_any(cpu_map);
2481     int i;
2482 
2483     if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2484         static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2485 
2486     rcu_read_lock();
2487     for_each_cpu(i, cpu_map)
2488         cpu_attach_domain(NULL, &def_root_domain, i);
2489     rcu_read_unlock();
2490 }
2491 
2492 /* handle null as "default" */
2493 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2494             struct sched_domain_attr *new, int idx_new)
2495 {
2496     struct sched_domain_attr tmp;
2497 
2498     /* Fast path: */
2499     if (!new && !cur)
2500         return 1;
2501 
2502     tmp = SD_ATTR_INIT;
2503 
2504     return !memcmp(cur ? (cur + idx_cur) : &tmp,
2505             new ? (new + idx_new) : &tmp,
2506             sizeof(struct sched_domain_attr));
2507 }
2508 
2509 /*
2510  * Partition sched domains as specified by the 'ndoms_new'
2511  * cpumasks in the array doms_new[] of cpumasks. This compares
2512  * doms_new[] to the current sched domain partitioning, doms_cur[].
2513  * It destroys each deleted domain and builds each new domain.
2514  *
2515  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2516  * The masks don't intersect (don't overlap.) We should setup one
2517  * sched domain for each mask. CPUs not in any of the cpumasks will
2518  * not be load balanced. If the same cpumask appears both in the
2519  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2520  * it as it is.
2521  *
2522  * The passed in 'doms_new' should be allocated using
2523  * alloc_sched_domains.  This routine takes ownership of it and will
2524  * free_sched_domains it when done with it. If the caller failed the
2525  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2526  * and partition_sched_domains() will fallback to the single partition
2527  * 'fallback_doms', it also forces the domains to be rebuilt.
2528  *
2529  * If doms_new == NULL it will be replaced with cpu_online_mask.
2530  * ndoms_new == 0 is a special case for destroying existing domains,
2531  * and it will not create the default domain.
2532  *
2533  * Call with hotplug lock and sched_domains_mutex held
2534  */
2535 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2536                     struct sched_domain_attr *dattr_new)
2537 {
2538     bool __maybe_unused has_eas = false;
2539     int i, j, n;
2540     int new_topology;
2541 
2542     lockdep_assert_held(&sched_domains_mutex);
2543 
2544     /* Let the architecture update CPU core mappings: */
2545     new_topology = arch_update_cpu_topology();
2546     /* Trigger rebuilding CPU capacity asymmetry data */
2547     if (new_topology)
2548         asym_cpu_capacity_scan();
2549 
2550     if (!doms_new) {
2551         WARN_ON_ONCE(dattr_new);
2552         n = 0;
2553         doms_new = alloc_sched_domains(1);
2554         if (doms_new) {
2555             n = 1;
2556             cpumask_and(doms_new[0], cpu_active_mask,
2557                     housekeeping_cpumask(HK_TYPE_DOMAIN));
2558         }
2559     } else {
2560         n = ndoms_new;
2561     }
2562 
2563     /* Destroy deleted domains: */
2564     for (i = 0; i < ndoms_cur; i++) {
2565         for (j = 0; j < n && !new_topology; j++) {
2566             if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2567                 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2568                 struct root_domain *rd;
2569 
2570                 /*
2571                  * This domain won't be destroyed and as such
2572                  * its dl_bw->total_bw needs to be cleared.  It
2573                  * will be recomputed in function
2574                  * update_tasks_root_domain().
2575                  */
2576                 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2577                 dl_clear_root_domain(rd);
2578                 goto match1;
2579             }
2580         }
2581         /* No match - a current sched domain not in new doms_new[] */
2582         detach_destroy_domains(doms_cur[i]);
2583 match1:
2584         ;
2585     }
2586 
2587     n = ndoms_cur;
2588     if (!doms_new) {
2589         n = 0;
2590         doms_new = &fallback_doms;
2591         cpumask_and(doms_new[0], cpu_active_mask,
2592                 housekeeping_cpumask(HK_TYPE_DOMAIN));
2593     }
2594 
2595     /* Build new domains: */
2596     for (i = 0; i < ndoms_new; i++) {
2597         for (j = 0; j < n && !new_topology; j++) {
2598             if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2599                 dattrs_equal(dattr_new, i, dattr_cur, j))
2600                 goto match2;
2601         }
2602         /* No match - add a new doms_new */
2603         build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2604 match2:
2605         ;
2606     }
2607 
2608 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2609     /* Build perf. domains: */
2610     for (i = 0; i < ndoms_new; i++) {
2611         for (j = 0; j < n && !sched_energy_update; j++) {
2612             if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2613                 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2614                 has_eas = true;
2615                 goto match3;
2616             }
2617         }
2618         /* No match - add perf. domains for a new rd */
2619         has_eas |= build_perf_domains(doms_new[i]);
2620 match3:
2621         ;
2622     }
2623     sched_energy_set(has_eas);
2624 #endif
2625 
2626     /* Remember the new sched domains: */
2627     if (doms_cur != &fallback_doms)
2628         free_sched_domains(doms_cur, ndoms_cur);
2629 
2630     kfree(dattr_cur);
2631     doms_cur = doms_new;
2632     dattr_cur = dattr_new;
2633     ndoms_cur = ndoms_new;
2634 
2635     update_sched_domain_debugfs();
2636 }
2637 
2638 /*
2639  * Call with hotplug lock held
2640  */
2641 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2642                  struct sched_domain_attr *dattr_new)
2643 {
2644     mutex_lock(&sched_domains_mutex);
2645     partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2646     mutex_unlock(&sched_domains_mutex);
2647 }