![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0-only 0002 /* 0003 * kernel/sched/cpupri.c 0004 * 0005 * CPU priority management 0006 * 0007 * Copyright (C) 2007-2008 Novell 0008 * 0009 * Author: Gregory Haskins <ghaskins@novell.com> 0010 * 0011 * This code tracks the priority of each CPU so that global migration 0012 * decisions are easy to calculate. Each CPU can be in a state as follows: 0013 * 0014 * (INVALID), NORMAL, RT1, ... RT99, HIGHER 0015 * 0016 * going from the lowest priority to the highest. CPUs in the INVALID state 0017 * are not eligible for routing. The system maintains this state with 0018 * a 2 dimensional bitmap (the first for priority class, the second for CPUs 0019 * in that class). Therefore a typical application without affinity 0020 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit 0021 * searches). For tasks with affinity restrictions, the algorithm has a 0022 * worst case complexity of O(min(101, nr_domcpus)), though the scenario that 0023 * yields the worst case search is fairly contrived. 0024 */ 0025 0026 /* 0027 * p->rt_priority p->prio newpri cpupri 0028 * 0029 * -1 -1 (CPUPRI_INVALID) 0030 * 0031 * 99 0 (CPUPRI_NORMAL) 0032 * 0033 * 1 98 98 1 0034 * ... 0035 * 49 50 50 49 0036 * 50 49 49 50 0037 * ... 0038 * 99 0 0 99 0039 * 0040 * 100 100 (CPUPRI_HIGHER) 0041 */ 0042 static int convert_prio(int prio) 0043 { 0044 int cpupri; 0045 0046 switch (prio) { 0047 case CPUPRI_INVALID: 0048 cpupri = CPUPRI_INVALID; /* -1 */ 0049 break; 0050 0051 case 0 ... 98: 0052 cpupri = MAX_RT_PRIO-1 - prio; /* 1 ... 99 */ 0053 break; 0054 0055 case MAX_RT_PRIO-1: 0056 cpupri = CPUPRI_NORMAL; /* 0 */ 0057 break; 0058 0059 case MAX_RT_PRIO: 0060 cpupri = CPUPRI_HIGHER; /* 100 */ 0061 break; 0062 } 0063 0064 return cpupri; 0065 } 0066 0067 static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p, 0068 struct cpumask *lowest_mask, int idx) 0069 { 0070 struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; 0071 int skip = 0; 0072 0073 if (!atomic_read(&(vec)->count)) 0074 skip = 1; 0075 /* 0076 * When looking at the vector, we need to read the counter, 0077 * do a memory barrier, then read the mask. 0078 * 0079 * Note: This is still all racy, but we can deal with it. 0080 * Ideally, we only want to look at masks that are set. 0081 * 0082 * If a mask is not set, then the only thing wrong is that we 0083 * did a little more work than necessary. 0084 * 0085 * If we read a zero count but the mask is set, because of the 0086 * memory barriers, that can only happen when the highest prio 0087 * task for a run queue has left the run queue, in which case, 0088 * it will be followed by a pull. If the task we are processing 0089 * fails to find a proper place to go, that pull request will 0090 * pull this task if the run queue is running at a lower 0091 * priority. 0092 */ 0093 smp_rmb(); 0094 0095 /* Need to do the rmb for every iteration */ 0096 if (skip) 0097 return 0; 0098 0099 if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids) 0100 return 0; 0101 0102 if (lowest_mask) { 0103 cpumask_and(lowest_mask, &p->cpus_mask, vec->mask); 0104 0105 /* 0106 * We have to ensure that we have at least one bit 0107 * still set in the array, since the map could have 0108 * been concurrently emptied between the first and 0109 * second reads of vec->mask. If we hit this 0110 * condition, simply act as though we never hit this 0111 * priority level and continue on. 0112 */ 0113 if (cpumask_empty(lowest_mask)) 0114 return 0; 0115 } 0116 0117 return 1; 0118 } 0119 0120 int cpupri_find(struct cpupri *cp, struct task_struct *p, 0121 struct cpumask *lowest_mask) 0122 { 0123 return cpupri_find_fitness(cp, p, lowest_mask, NULL); 0124 } 0125 0126 /** 0127 * cpupri_find_fitness - find the best (lowest-pri) CPU in the system 0128 * @cp: The cpupri context 0129 * @p: The task 0130 * @lowest_mask: A mask to fill in with selected CPUs (or NULL) 0131 * @fitness_fn: A pointer to a function to do custom checks whether the CPU 0132 * fits a specific criteria so that we only return those CPUs. 0133 * 0134 * Note: This function returns the recommended CPUs as calculated during the 0135 * current invocation. By the time the call returns, the CPUs may have in 0136 * fact changed priorities any number of times. While not ideal, it is not 0137 * an issue of correctness since the normal rebalancer logic will correct 0138 * any discrepancies created by racing against the uncertainty of the current 0139 * priority configuration. 0140 * 0141 * Return: (int)bool - CPUs were found 0142 */ 0143 int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p, 0144 struct cpumask *lowest_mask, 0145 bool (*fitness_fn)(struct task_struct *p, int cpu)) 0146 { 0147 int task_pri = convert_prio(p->prio); 0148 int idx, cpu; 0149 0150 BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES); 0151 0152 for (idx = 0; idx < task_pri; idx++) { 0153 0154 if (!__cpupri_find(cp, p, lowest_mask, idx)) 0155 continue; 0156 0157 if (!lowest_mask || !fitness_fn) 0158 return 1; 0159 0160 /* Ensure the capacity of the CPUs fit the task */ 0161 for_each_cpu(cpu, lowest_mask) { 0162 if (!fitness_fn(p, cpu)) 0163 cpumask_clear_cpu(cpu, lowest_mask); 0164 } 0165 0166 /* 0167 * If no CPU at the current priority can fit the task 0168 * continue looking 0169 */ 0170 if (cpumask_empty(lowest_mask)) 0171 continue; 0172 0173 return 1; 0174 } 0175 0176 /* 0177 * If we failed to find a fitting lowest_mask, kick off a new search 0178 * but without taking into account any fitness criteria this time. 0179 * 0180 * This rule favours honouring priority over fitting the task in the 0181 * correct CPU (Capacity Awareness being the only user now). 0182 * The idea is that if a higher priority task can run, then it should 0183 * run even if this ends up being on unfitting CPU. 0184 * 0185 * The cost of this trade-off is not entirely clear and will probably 0186 * be good for some workloads and bad for others. 0187 * 0188 * The main idea here is that if some CPUs were over-committed, we try 0189 * to spread which is what the scheduler traditionally did. Sys admins 0190 * must do proper RT planning to avoid overloading the system if they 0191 * really care. 0192 */ 0193 if (fitness_fn) 0194 return cpupri_find(cp, p, lowest_mask); 0195 0196 return 0; 0197 } 0198 0199 /** 0200 * cpupri_set - update the CPU priority setting 0201 * @cp: The cpupri context 0202 * @cpu: The target CPU 0203 * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU 0204 * 0205 * Note: Assumes cpu_rq(cpu)->lock is locked 0206 * 0207 * Returns: (void) 0208 */ 0209 void cpupri_set(struct cpupri *cp, int cpu, int newpri) 0210 { 0211 int *currpri = &cp->cpu_to_pri[cpu]; 0212 int oldpri = *currpri; 0213 int do_mb = 0; 0214 0215 newpri = convert_prio(newpri); 0216 0217 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); 0218 0219 if (newpri == oldpri) 0220 return; 0221 0222 /* 0223 * If the CPU was currently mapped to a different value, we 0224 * need to map it to the new value then remove the old value. 0225 * Note, we must add the new value first, otherwise we risk the 0226 * cpu being missed by the priority loop in cpupri_find. 0227 */ 0228 if (likely(newpri != CPUPRI_INVALID)) { 0229 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; 0230 0231 cpumask_set_cpu(cpu, vec->mask); 0232 /* 0233 * When adding a new vector, we update the mask first, 0234 * do a write memory barrier, and then update the count, to 0235 * make sure the vector is visible when count is set. 0236 */ 0237 smp_mb__before_atomic(); 0238 atomic_inc(&(vec)->count); 0239 do_mb = 1; 0240 } 0241 if (likely(oldpri != CPUPRI_INVALID)) { 0242 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; 0243 0244 /* 0245 * Because the order of modification of the vec->count 0246 * is important, we must make sure that the update 0247 * of the new prio is seen before we decrement the 0248 * old prio. This makes sure that the loop sees 0249 * one or the other when we raise the priority of 0250 * the run queue. We don't care about when we lower the 0251 * priority, as that will trigger an rt pull anyway. 0252 * 0253 * We only need to do a memory barrier if we updated 0254 * the new priority vec. 0255 */ 0256 if (do_mb) 0257 smp_mb__after_atomic(); 0258 0259 /* 0260 * When removing from the vector, we decrement the counter first 0261 * do a memory barrier and then clear the mask. 0262 */ 0263 atomic_dec(&(vec)->count); 0264 smp_mb__after_atomic(); 0265 cpumask_clear_cpu(cpu, vec->mask); 0266 } 0267 0268 *currpri = newpri; 0269 } 0270 0271 /** 0272 * cpupri_init - initialize the cpupri structure 0273 * @cp: The cpupri context 0274 * 0275 * Return: -ENOMEM on memory allocation failure. 0276 */ 0277 int cpupri_init(struct cpupri *cp) 0278 { 0279 int i; 0280 0281 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { 0282 struct cpupri_vec *vec = &cp->pri_to_cpu[i]; 0283 0284 atomic_set(&vec->count, 0); 0285 if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) 0286 goto cleanup; 0287 } 0288 0289 cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL); 0290 if (!cp->cpu_to_pri) 0291 goto cleanup; 0292 0293 for_each_possible_cpu(i) 0294 cp->cpu_to_pri[i] = CPUPRI_INVALID; 0295 0296 return 0; 0297 0298 cleanup: 0299 for (i--; i >= 0; i--) 0300 free_cpumask_var(cp->pri_to_cpu[i].mask); 0301 return -ENOMEM; 0302 } 0303 0304 /** 0305 * cpupri_cleanup - clean up the cpupri structure 0306 * @cp: The cpupri context 0307 */ 0308 void cpupri_cleanup(struct cpupri *cp) 0309 { 0310 int i; 0311 0312 kfree(cp->cpu_to_pri); 0313 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) 0314 free_cpumask_var(cp->pri_to_cpu[i].mask); 0315 }
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |