Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/kernel/resource.c
0004  *
0005  * Copyright (C) 1999   Linus Torvalds
0006  * Copyright (C) 1999   Martin Mares <mj@ucw.cz>
0007  *
0008  * Arbitrary resource management.
0009  */
0010 
0011 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0012 
0013 #include <linux/export.h>
0014 #include <linux/errno.h>
0015 #include <linux/ioport.h>
0016 #include <linux/init.h>
0017 #include <linux/slab.h>
0018 #include <linux/spinlock.h>
0019 #include <linux/fs.h>
0020 #include <linux/proc_fs.h>
0021 #include <linux/pseudo_fs.h>
0022 #include <linux/sched.h>
0023 #include <linux/seq_file.h>
0024 #include <linux/device.h>
0025 #include <linux/pfn.h>
0026 #include <linux/mm.h>
0027 #include <linux/mount.h>
0028 #include <linux/resource_ext.h>
0029 #include <uapi/linux/magic.h>
0030 #include <asm/io.h>
0031 
0032 
0033 struct resource ioport_resource = {
0034     .name   = "PCI IO",
0035     .start  = 0,
0036     .end    = IO_SPACE_LIMIT,
0037     .flags  = IORESOURCE_IO,
0038 };
0039 EXPORT_SYMBOL(ioport_resource);
0040 
0041 struct resource iomem_resource = {
0042     .name   = "PCI mem",
0043     .start  = 0,
0044     .end    = -1,
0045     .flags  = IORESOURCE_MEM,
0046 };
0047 EXPORT_SYMBOL(iomem_resource);
0048 
0049 /* constraints to be met while allocating resources */
0050 struct resource_constraint {
0051     resource_size_t min, max, align;
0052     resource_size_t (*alignf)(void *, const struct resource *,
0053             resource_size_t, resource_size_t);
0054     void *alignf_data;
0055 };
0056 
0057 static DEFINE_RWLOCK(resource_lock);
0058 
0059 static struct resource *next_resource(struct resource *p)
0060 {
0061     if (p->child)
0062         return p->child;
0063     while (!p->sibling && p->parent)
0064         p = p->parent;
0065     return p->sibling;
0066 }
0067 
0068 static struct resource *next_resource_skip_children(struct resource *p)
0069 {
0070     while (!p->sibling && p->parent)
0071         p = p->parent;
0072     return p->sibling;
0073 }
0074 
0075 #define for_each_resource(_root, _p, _skip_children) \
0076     for ((_p) = (_root)->child; (_p); \
0077          (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
0078                        next_resource(_p))
0079 
0080 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
0081 {
0082     struct resource *p = v;
0083     (*pos)++;
0084     return (void *)next_resource(p);
0085 }
0086 
0087 #ifdef CONFIG_PROC_FS
0088 
0089 enum { MAX_IORES_LEVEL = 5 };
0090 
0091 static void *r_start(struct seq_file *m, loff_t *pos)
0092     __acquires(resource_lock)
0093 {
0094     struct resource *p = pde_data(file_inode(m->file));
0095     loff_t l = 0;
0096     read_lock(&resource_lock);
0097     for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
0098         ;
0099     return p;
0100 }
0101 
0102 static void r_stop(struct seq_file *m, void *v)
0103     __releases(resource_lock)
0104 {
0105     read_unlock(&resource_lock);
0106 }
0107 
0108 static int r_show(struct seq_file *m, void *v)
0109 {
0110     struct resource *root = pde_data(file_inode(m->file));
0111     struct resource *r = v, *p;
0112     unsigned long long start, end;
0113     int width = root->end < 0x10000 ? 4 : 8;
0114     int depth;
0115 
0116     for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
0117         if (p->parent == root)
0118             break;
0119 
0120     if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
0121         start = r->start;
0122         end = r->end;
0123     } else {
0124         start = end = 0;
0125     }
0126 
0127     seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
0128             depth * 2, "",
0129             width, start,
0130             width, end,
0131             r->name ? r->name : "<BAD>");
0132     return 0;
0133 }
0134 
0135 static const struct seq_operations resource_op = {
0136     .start  = r_start,
0137     .next   = r_next,
0138     .stop   = r_stop,
0139     .show   = r_show,
0140 };
0141 
0142 static int __init ioresources_init(void)
0143 {
0144     proc_create_seq_data("ioports", 0, NULL, &resource_op,
0145             &ioport_resource);
0146     proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
0147     return 0;
0148 }
0149 __initcall(ioresources_init);
0150 
0151 #endif /* CONFIG_PROC_FS */
0152 
0153 static void free_resource(struct resource *res)
0154 {
0155     /**
0156      * If the resource was allocated using memblock early during boot
0157      * we'll leak it here: we can only return full pages back to the
0158      * buddy and trying to be smart and reusing them eventually in
0159      * alloc_resource() overcomplicates resource handling.
0160      */
0161     if (res && PageSlab(virt_to_head_page(res)))
0162         kfree(res);
0163 }
0164 
0165 static struct resource *alloc_resource(gfp_t flags)
0166 {
0167     return kzalloc(sizeof(struct resource), flags);
0168 }
0169 
0170 /* Return the conflict entry if you can't request it */
0171 static struct resource * __request_resource(struct resource *root, struct resource *new)
0172 {
0173     resource_size_t start = new->start;
0174     resource_size_t end = new->end;
0175     struct resource *tmp, **p;
0176 
0177     if (end < start)
0178         return root;
0179     if (start < root->start)
0180         return root;
0181     if (end > root->end)
0182         return root;
0183     p = &root->child;
0184     for (;;) {
0185         tmp = *p;
0186         if (!tmp || tmp->start > end) {
0187             new->sibling = tmp;
0188             *p = new;
0189             new->parent = root;
0190             return NULL;
0191         }
0192         p = &tmp->sibling;
0193         if (tmp->end < start)
0194             continue;
0195         return tmp;
0196     }
0197 }
0198 
0199 static int __release_resource(struct resource *old, bool release_child)
0200 {
0201     struct resource *tmp, **p, *chd;
0202 
0203     p = &old->parent->child;
0204     for (;;) {
0205         tmp = *p;
0206         if (!tmp)
0207             break;
0208         if (tmp == old) {
0209             if (release_child || !(tmp->child)) {
0210                 *p = tmp->sibling;
0211             } else {
0212                 for (chd = tmp->child;; chd = chd->sibling) {
0213                     chd->parent = tmp->parent;
0214                     if (!(chd->sibling))
0215                         break;
0216                 }
0217                 *p = tmp->child;
0218                 chd->sibling = tmp->sibling;
0219             }
0220             old->parent = NULL;
0221             return 0;
0222         }
0223         p = &tmp->sibling;
0224     }
0225     return -EINVAL;
0226 }
0227 
0228 static void __release_child_resources(struct resource *r)
0229 {
0230     struct resource *tmp, *p;
0231     resource_size_t size;
0232 
0233     p = r->child;
0234     r->child = NULL;
0235     while (p) {
0236         tmp = p;
0237         p = p->sibling;
0238 
0239         tmp->parent = NULL;
0240         tmp->sibling = NULL;
0241         __release_child_resources(tmp);
0242 
0243         printk(KERN_DEBUG "release child resource %pR\n", tmp);
0244         /* need to restore size, and keep flags */
0245         size = resource_size(tmp);
0246         tmp->start = 0;
0247         tmp->end = size - 1;
0248     }
0249 }
0250 
0251 void release_child_resources(struct resource *r)
0252 {
0253     write_lock(&resource_lock);
0254     __release_child_resources(r);
0255     write_unlock(&resource_lock);
0256 }
0257 
0258 /**
0259  * request_resource_conflict - request and reserve an I/O or memory resource
0260  * @root: root resource descriptor
0261  * @new: resource descriptor desired by caller
0262  *
0263  * Returns 0 for success, conflict resource on error.
0264  */
0265 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
0266 {
0267     struct resource *conflict;
0268 
0269     write_lock(&resource_lock);
0270     conflict = __request_resource(root, new);
0271     write_unlock(&resource_lock);
0272     return conflict;
0273 }
0274 
0275 /**
0276  * request_resource - request and reserve an I/O or memory resource
0277  * @root: root resource descriptor
0278  * @new: resource descriptor desired by caller
0279  *
0280  * Returns 0 for success, negative error code on error.
0281  */
0282 int request_resource(struct resource *root, struct resource *new)
0283 {
0284     struct resource *conflict;
0285 
0286     conflict = request_resource_conflict(root, new);
0287     return conflict ? -EBUSY : 0;
0288 }
0289 
0290 EXPORT_SYMBOL(request_resource);
0291 
0292 /**
0293  * release_resource - release a previously reserved resource
0294  * @old: resource pointer
0295  */
0296 int release_resource(struct resource *old)
0297 {
0298     int retval;
0299 
0300     write_lock(&resource_lock);
0301     retval = __release_resource(old, true);
0302     write_unlock(&resource_lock);
0303     return retval;
0304 }
0305 
0306 EXPORT_SYMBOL(release_resource);
0307 
0308 /**
0309  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
0310  *           [@start..@end].
0311  *
0312  * If a resource is found, returns 0 and @*res is overwritten with the part
0313  * of the resource that's within [@start..@end]; if none is found, returns
0314  * -ENODEV.  Returns -EINVAL for invalid parameters.
0315  *
0316  * @start:  start address of the resource searched for
0317  * @end:    end address of same resource
0318  * @flags:  flags which the resource must have
0319  * @desc:   descriptor the resource must have
0320  * @res:    return ptr, if resource found
0321  *
0322  * The caller must specify @start, @end, @flags, and @desc
0323  * (which may be IORES_DESC_NONE).
0324  */
0325 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
0326                    unsigned long flags, unsigned long desc,
0327                    struct resource *res)
0328 {
0329     struct resource *p;
0330 
0331     if (!res)
0332         return -EINVAL;
0333 
0334     if (start >= end)
0335         return -EINVAL;
0336 
0337     read_lock(&resource_lock);
0338 
0339     for (p = iomem_resource.child; p; p = next_resource(p)) {
0340         /* If we passed the resource we are looking for, stop */
0341         if (p->start > end) {
0342             p = NULL;
0343             break;
0344         }
0345 
0346         /* Skip until we find a range that matches what we look for */
0347         if (p->end < start)
0348             continue;
0349 
0350         if ((p->flags & flags) != flags)
0351             continue;
0352         if ((desc != IORES_DESC_NONE) && (desc != p->desc))
0353             continue;
0354 
0355         /* Found a match, break */
0356         break;
0357     }
0358 
0359     if (p) {
0360         /* copy data */
0361         *res = (struct resource) {
0362             .start = max(start, p->start),
0363             .end = min(end, p->end),
0364             .flags = p->flags,
0365             .desc = p->desc,
0366             .parent = p->parent,
0367         };
0368     }
0369 
0370     read_unlock(&resource_lock);
0371     return p ? 0 : -ENODEV;
0372 }
0373 
0374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
0375                  unsigned long flags, unsigned long desc,
0376                  void *arg,
0377                  int (*func)(struct resource *, void *))
0378 {
0379     struct resource res;
0380     int ret = -EINVAL;
0381 
0382     while (start < end &&
0383            !find_next_iomem_res(start, end, flags, desc, &res)) {
0384         ret = (*func)(&res, arg);
0385         if (ret)
0386             break;
0387 
0388         start = res.end + 1;
0389     }
0390 
0391     return ret;
0392 }
0393 
0394 /**
0395  * walk_iomem_res_desc - Walks through iomem resources and calls func()
0396  *           with matching resource ranges.
0397  * *
0398  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
0399  * @flags: I/O resource flags
0400  * @start: start addr
0401  * @end: end addr
0402  * @arg: function argument for the callback @func
0403  * @func: callback function that is called for each qualifying resource area
0404  *
0405  * All the memory ranges which overlap start,end and also match flags and
0406  * desc are valid candidates.
0407  *
0408  * NOTE: For a new descriptor search, define a new IORES_DESC in
0409  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
0410  */
0411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
0412         u64 end, void *arg, int (*func)(struct resource *, void *))
0413 {
0414     return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
0415 }
0416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
0417 
0418 /*
0419  * This function calls the @func callback against all memory ranges of type
0420  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
0421  * Now, this function is only for System RAM, it deals with full ranges and
0422  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
0423  * ranges.
0424  */
0425 int walk_system_ram_res(u64 start, u64 end, void *arg,
0426             int (*func)(struct resource *, void *))
0427 {
0428     unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
0429 
0430     return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
0431                      func);
0432 }
0433 
0434 /*
0435  * This function calls the @func callback against all memory ranges, which
0436  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
0437  */
0438 int walk_mem_res(u64 start, u64 end, void *arg,
0439          int (*func)(struct resource *, void *))
0440 {
0441     unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
0442 
0443     return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
0444                      func);
0445 }
0446 
0447 /*
0448  * This function calls the @func callback against all memory ranges of type
0449  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
0450  * It is to be used only for System RAM.
0451  */
0452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
0453               void *arg, int (*func)(unsigned long, unsigned long, void *))
0454 {
0455     resource_size_t start, end;
0456     unsigned long flags;
0457     struct resource res;
0458     unsigned long pfn, end_pfn;
0459     int ret = -EINVAL;
0460 
0461     start = (u64) start_pfn << PAGE_SHIFT;
0462     end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
0463     flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
0464     while (start < end &&
0465            !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
0466         pfn = PFN_UP(res.start);
0467         end_pfn = PFN_DOWN(res.end + 1);
0468         if (end_pfn > pfn)
0469             ret = (*func)(pfn, end_pfn - pfn, arg);
0470         if (ret)
0471             break;
0472         start = res.end + 1;
0473     }
0474     return ret;
0475 }
0476 
0477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
0478 {
0479     return 1;
0480 }
0481 
0482 /*
0483  * This generic page_is_ram() returns true if specified address is
0484  * registered as System RAM in iomem_resource list.
0485  */
0486 int __weak page_is_ram(unsigned long pfn)
0487 {
0488     return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
0489 }
0490 EXPORT_SYMBOL_GPL(page_is_ram);
0491 
0492 static int __region_intersects(struct resource *parent, resource_size_t start,
0493                    size_t size, unsigned long flags,
0494                    unsigned long desc)
0495 {
0496     struct resource res;
0497     int type = 0; int other = 0;
0498     struct resource *p;
0499 
0500     res.start = start;
0501     res.end = start + size - 1;
0502 
0503     for (p = parent->child; p ; p = p->sibling) {
0504         bool is_type = (((p->flags & flags) == flags) &&
0505                 ((desc == IORES_DESC_NONE) ||
0506                  (desc == p->desc)));
0507 
0508         if (resource_overlaps(p, &res))
0509             is_type ? type++ : other++;
0510     }
0511 
0512     if (type == 0)
0513         return REGION_DISJOINT;
0514 
0515     if (other == 0)
0516         return REGION_INTERSECTS;
0517 
0518     return REGION_MIXED;
0519 }
0520 
0521 /**
0522  * region_intersects() - determine intersection of region with known resources
0523  * @start: region start address
0524  * @size: size of region
0525  * @flags: flags of resource (in iomem_resource)
0526  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
0527  *
0528  * Check if the specified region partially overlaps or fully eclipses a
0529  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
0530  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
0531  * return REGION_MIXED if the region overlaps @flags/@desc and another
0532  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
0533  * and no other defined resource. Note that REGION_INTERSECTS is also
0534  * returned in the case when the specified region overlaps RAM and undefined
0535  * memory holes.
0536  *
0537  * region_intersect() is used by memory remapping functions to ensure
0538  * the user is not remapping RAM and is a vast speed up over walking
0539  * through the resource table page by page.
0540  */
0541 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
0542               unsigned long desc)
0543 {
0544     int ret;
0545 
0546     read_lock(&resource_lock);
0547     ret = __region_intersects(&iomem_resource, start, size, flags, desc);
0548     read_unlock(&resource_lock);
0549 
0550     return ret;
0551 }
0552 EXPORT_SYMBOL_GPL(region_intersects);
0553 
0554 void __weak arch_remove_reservations(struct resource *avail)
0555 {
0556 }
0557 
0558 static resource_size_t simple_align_resource(void *data,
0559                          const struct resource *avail,
0560                          resource_size_t size,
0561                          resource_size_t align)
0562 {
0563     return avail->start;
0564 }
0565 
0566 static void resource_clip(struct resource *res, resource_size_t min,
0567               resource_size_t max)
0568 {
0569     if (res->start < min)
0570         res->start = min;
0571     if (res->end > max)
0572         res->end = max;
0573 }
0574 
0575 /*
0576  * Find empty slot in the resource tree with the given range and
0577  * alignment constraints
0578  */
0579 static int __find_resource(struct resource *root, struct resource *old,
0580              struct resource *new,
0581              resource_size_t  size,
0582              struct resource_constraint *constraint)
0583 {
0584     struct resource *this = root->child;
0585     struct resource tmp = *new, avail, alloc;
0586 
0587     tmp.start = root->start;
0588     /*
0589      * Skip past an allocated resource that starts at 0, since the assignment
0590      * of this->start - 1 to tmp->end below would cause an underflow.
0591      */
0592     if (this && this->start == root->start) {
0593         tmp.start = (this == old) ? old->start : this->end + 1;
0594         this = this->sibling;
0595     }
0596     for(;;) {
0597         if (this)
0598             tmp.end = (this == old) ?  this->end : this->start - 1;
0599         else
0600             tmp.end = root->end;
0601 
0602         if (tmp.end < tmp.start)
0603             goto next;
0604 
0605         resource_clip(&tmp, constraint->min, constraint->max);
0606         arch_remove_reservations(&tmp);
0607 
0608         /* Check for overflow after ALIGN() */
0609         avail.start = ALIGN(tmp.start, constraint->align);
0610         avail.end = tmp.end;
0611         avail.flags = new->flags & ~IORESOURCE_UNSET;
0612         if (avail.start >= tmp.start) {
0613             alloc.flags = avail.flags;
0614             alloc.start = constraint->alignf(constraint->alignf_data, &avail,
0615                     size, constraint->align);
0616             alloc.end = alloc.start + size - 1;
0617             if (alloc.start <= alloc.end &&
0618                 resource_contains(&avail, &alloc)) {
0619                 new->start = alloc.start;
0620                 new->end = alloc.end;
0621                 return 0;
0622             }
0623         }
0624 
0625 next:       if (!this || this->end == root->end)
0626             break;
0627 
0628         if (this != old)
0629             tmp.start = this->end + 1;
0630         this = this->sibling;
0631     }
0632     return -EBUSY;
0633 }
0634 
0635 /*
0636  * Find empty slot in the resource tree given range and alignment.
0637  */
0638 static int find_resource(struct resource *root, struct resource *new,
0639             resource_size_t size,
0640             struct resource_constraint  *constraint)
0641 {
0642     return  __find_resource(root, NULL, new, size, constraint);
0643 }
0644 
0645 /**
0646  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
0647  *  The resource will be relocated if the new size cannot be reallocated in the
0648  *  current location.
0649  *
0650  * @root: root resource descriptor
0651  * @old:  resource descriptor desired by caller
0652  * @newsize: new size of the resource descriptor
0653  * @constraint: the size and alignment constraints to be met.
0654  */
0655 static int reallocate_resource(struct resource *root, struct resource *old,
0656                    resource_size_t newsize,
0657                    struct resource_constraint *constraint)
0658 {
0659     int err=0;
0660     struct resource new = *old;
0661     struct resource *conflict;
0662 
0663     write_lock(&resource_lock);
0664 
0665     if ((err = __find_resource(root, old, &new, newsize, constraint)))
0666         goto out;
0667 
0668     if (resource_contains(&new, old)) {
0669         old->start = new.start;
0670         old->end = new.end;
0671         goto out;
0672     }
0673 
0674     if (old->child) {
0675         err = -EBUSY;
0676         goto out;
0677     }
0678 
0679     if (resource_contains(old, &new)) {
0680         old->start = new.start;
0681         old->end = new.end;
0682     } else {
0683         __release_resource(old, true);
0684         *old = new;
0685         conflict = __request_resource(root, old);
0686         BUG_ON(conflict);
0687     }
0688 out:
0689     write_unlock(&resource_lock);
0690     return err;
0691 }
0692 
0693 
0694 /**
0695  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
0696  *  The resource will be reallocated with a new size if it was already allocated
0697  * @root: root resource descriptor
0698  * @new: resource descriptor desired by caller
0699  * @size: requested resource region size
0700  * @min: minimum boundary to allocate
0701  * @max: maximum boundary to allocate
0702  * @align: alignment requested, in bytes
0703  * @alignf: alignment function, optional, called if not NULL
0704  * @alignf_data: arbitrary data to pass to the @alignf function
0705  */
0706 int allocate_resource(struct resource *root, struct resource *new,
0707               resource_size_t size, resource_size_t min,
0708               resource_size_t max, resource_size_t align,
0709               resource_size_t (*alignf)(void *,
0710                         const struct resource *,
0711                         resource_size_t,
0712                         resource_size_t),
0713               void *alignf_data)
0714 {
0715     int err;
0716     struct resource_constraint constraint;
0717 
0718     if (!alignf)
0719         alignf = simple_align_resource;
0720 
0721     constraint.min = min;
0722     constraint.max = max;
0723     constraint.align = align;
0724     constraint.alignf = alignf;
0725     constraint.alignf_data = alignf_data;
0726 
0727     if ( new->parent ) {
0728         /* resource is already allocated, try reallocating with
0729            the new constraints */
0730         return reallocate_resource(root, new, size, &constraint);
0731     }
0732 
0733     write_lock(&resource_lock);
0734     err = find_resource(root, new, size, &constraint);
0735     if (err >= 0 && __request_resource(root, new))
0736         err = -EBUSY;
0737     write_unlock(&resource_lock);
0738     return err;
0739 }
0740 
0741 EXPORT_SYMBOL(allocate_resource);
0742 
0743 /**
0744  * lookup_resource - find an existing resource by a resource start address
0745  * @root: root resource descriptor
0746  * @start: resource start address
0747  *
0748  * Returns a pointer to the resource if found, NULL otherwise
0749  */
0750 struct resource *lookup_resource(struct resource *root, resource_size_t start)
0751 {
0752     struct resource *res;
0753 
0754     read_lock(&resource_lock);
0755     for (res = root->child; res; res = res->sibling) {
0756         if (res->start == start)
0757             break;
0758     }
0759     read_unlock(&resource_lock);
0760 
0761     return res;
0762 }
0763 
0764 /*
0765  * Insert a resource into the resource tree. If successful, return NULL,
0766  * otherwise return the conflicting resource (compare to __request_resource())
0767  */
0768 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
0769 {
0770     struct resource *first, *next;
0771 
0772     for (;; parent = first) {
0773         first = __request_resource(parent, new);
0774         if (!first)
0775             return first;
0776 
0777         if (first == parent)
0778             return first;
0779         if (WARN_ON(first == new))  /* duplicated insertion */
0780             return first;
0781 
0782         if ((first->start > new->start) || (first->end < new->end))
0783             break;
0784         if ((first->start == new->start) && (first->end == new->end))
0785             break;
0786     }
0787 
0788     for (next = first; ; next = next->sibling) {
0789         /* Partial overlap? Bad, and unfixable */
0790         if (next->start < new->start || next->end > new->end)
0791             return next;
0792         if (!next->sibling)
0793             break;
0794         if (next->sibling->start > new->end)
0795             break;
0796     }
0797 
0798     new->parent = parent;
0799     new->sibling = next->sibling;
0800     new->child = first;
0801 
0802     next->sibling = NULL;
0803     for (next = first; next; next = next->sibling)
0804         next->parent = new;
0805 
0806     if (parent->child == first) {
0807         parent->child = new;
0808     } else {
0809         next = parent->child;
0810         while (next->sibling != first)
0811             next = next->sibling;
0812         next->sibling = new;
0813     }
0814     return NULL;
0815 }
0816 
0817 /**
0818  * insert_resource_conflict - Inserts resource in the resource tree
0819  * @parent: parent of the new resource
0820  * @new: new resource to insert
0821  *
0822  * Returns 0 on success, conflict resource if the resource can't be inserted.
0823  *
0824  * This function is equivalent to request_resource_conflict when no conflict
0825  * happens. If a conflict happens, and the conflicting resources
0826  * entirely fit within the range of the new resource, then the new
0827  * resource is inserted and the conflicting resources become children of
0828  * the new resource.
0829  *
0830  * This function is intended for producers of resources, such as FW modules
0831  * and bus drivers.
0832  */
0833 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
0834 {
0835     struct resource *conflict;
0836 
0837     write_lock(&resource_lock);
0838     conflict = __insert_resource(parent, new);
0839     write_unlock(&resource_lock);
0840     return conflict;
0841 }
0842 
0843 /**
0844  * insert_resource - Inserts a resource in the resource tree
0845  * @parent: parent of the new resource
0846  * @new: new resource to insert
0847  *
0848  * Returns 0 on success, -EBUSY if the resource can't be inserted.
0849  *
0850  * This function is intended for producers of resources, such as FW modules
0851  * and bus drivers.
0852  */
0853 int insert_resource(struct resource *parent, struct resource *new)
0854 {
0855     struct resource *conflict;
0856 
0857     conflict = insert_resource_conflict(parent, new);
0858     return conflict ? -EBUSY : 0;
0859 }
0860 EXPORT_SYMBOL_GPL(insert_resource);
0861 
0862 /**
0863  * insert_resource_expand_to_fit - Insert a resource into the resource tree
0864  * @root: root resource descriptor
0865  * @new: new resource to insert
0866  *
0867  * Insert a resource into the resource tree, possibly expanding it in order
0868  * to make it encompass any conflicting resources.
0869  */
0870 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
0871 {
0872     if (new->parent)
0873         return;
0874 
0875     write_lock(&resource_lock);
0876     for (;;) {
0877         struct resource *conflict;
0878 
0879         conflict = __insert_resource(root, new);
0880         if (!conflict)
0881             break;
0882         if (conflict == root)
0883             break;
0884 
0885         /* Ok, expand resource to cover the conflict, then try again .. */
0886         if (conflict->start < new->start)
0887             new->start = conflict->start;
0888         if (conflict->end > new->end)
0889             new->end = conflict->end;
0890 
0891         printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
0892     }
0893     write_unlock(&resource_lock);
0894 }
0895 /*
0896  * Not for general consumption, only early boot memory map parsing, PCI
0897  * resource discovery, and late discovery of CXL resources are expected
0898  * to use this interface. The former are built-in and only the latter,
0899  * CXL, is a module.
0900  */
0901 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
0902 
0903 /**
0904  * remove_resource - Remove a resource in the resource tree
0905  * @old: resource to remove
0906  *
0907  * Returns 0 on success, -EINVAL if the resource is not valid.
0908  *
0909  * This function removes a resource previously inserted by insert_resource()
0910  * or insert_resource_conflict(), and moves the children (if any) up to
0911  * where they were before.  insert_resource() and insert_resource_conflict()
0912  * insert a new resource, and move any conflicting resources down to the
0913  * children of the new resource.
0914  *
0915  * insert_resource(), insert_resource_conflict() and remove_resource() are
0916  * intended for producers of resources, such as FW modules and bus drivers.
0917  */
0918 int remove_resource(struct resource *old)
0919 {
0920     int retval;
0921 
0922     write_lock(&resource_lock);
0923     retval = __release_resource(old, false);
0924     write_unlock(&resource_lock);
0925     return retval;
0926 }
0927 EXPORT_SYMBOL_GPL(remove_resource);
0928 
0929 static int __adjust_resource(struct resource *res, resource_size_t start,
0930                 resource_size_t size)
0931 {
0932     struct resource *tmp, *parent = res->parent;
0933     resource_size_t end = start + size - 1;
0934     int result = -EBUSY;
0935 
0936     if (!parent)
0937         goto skip;
0938 
0939     if ((start < parent->start) || (end > parent->end))
0940         goto out;
0941 
0942     if (res->sibling && (res->sibling->start <= end))
0943         goto out;
0944 
0945     tmp = parent->child;
0946     if (tmp != res) {
0947         while (tmp->sibling != res)
0948             tmp = tmp->sibling;
0949         if (start <= tmp->end)
0950             goto out;
0951     }
0952 
0953 skip:
0954     for (tmp = res->child; tmp; tmp = tmp->sibling)
0955         if ((tmp->start < start) || (tmp->end > end))
0956             goto out;
0957 
0958     res->start = start;
0959     res->end = end;
0960     result = 0;
0961 
0962  out:
0963     return result;
0964 }
0965 
0966 /**
0967  * adjust_resource - modify a resource's start and size
0968  * @res: resource to modify
0969  * @start: new start value
0970  * @size: new size
0971  *
0972  * Given an existing resource, change its start and size to match the
0973  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
0974  * Existing children of the resource are assumed to be immutable.
0975  */
0976 int adjust_resource(struct resource *res, resource_size_t start,
0977             resource_size_t size)
0978 {
0979     int result;
0980 
0981     write_lock(&resource_lock);
0982     result = __adjust_resource(res, start, size);
0983     write_unlock(&resource_lock);
0984     return result;
0985 }
0986 EXPORT_SYMBOL(adjust_resource);
0987 
0988 static void __init
0989 __reserve_region_with_split(struct resource *root, resource_size_t start,
0990                 resource_size_t end, const char *name)
0991 {
0992     struct resource *parent = root;
0993     struct resource *conflict;
0994     struct resource *res = alloc_resource(GFP_ATOMIC);
0995     struct resource *next_res = NULL;
0996     int type = resource_type(root);
0997 
0998     if (!res)
0999         return;
1000 
1001     res->name = name;
1002     res->start = start;
1003     res->end = end;
1004     res->flags = type | IORESOURCE_BUSY;
1005     res->desc = IORES_DESC_NONE;
1006 
1007     while (1) {
1008 
1009         conflict = __request_resource(parent, res);
1010         if (!conflict) {
1011             if (!next_res)
1012                 break;
1013             res = next_res;
1014             next_res = NULL;
1015             continue;
1016         }
1017 
1018         /* conflict covered whole area */
1019         if (conflict->start <= res->start &&
1020                 conflict->end >= res->end) {
1021             free_resource(res);
1022             WARN_ON(next_res);
1023             break;
1024         }
1025 
1026         /* failed, split and try again */
1027         if (conflict->start > res->start) {
1028             end = res->end;
1029             res->end = conflict->start - 1;
1030             if (conflict->end < end) {
1031                 next_res = alloc_resource(GFP_ATOMIC);
1032                 if (!next_res) {
1033                     free_resource(res);
1034                     break;
1035                 }
1036                 next_res->name = name;
1037                 next_res->start = conflict->end + 1;
1038                 next_res->end = end;
1039                 next_res->flags = type | IORESOURCE_BUSY;
1040                 next_res->desc = IORES_DESC_NONE;
1041             }
1042         } else {
1043             res->start = conflict->end + 1;
1044         }
1045     }
1046 
1047 }
1048 
1049 void __init
1050 reserve_region_with_split(struct resource *root, resource_size_t start,
1051               resource_size_t end, const char *name)
1052 {
1053     int abort = 0;
1054 
1055     write_lock(&resource_lock);
1056     if (root->start > start || root->end < end) {
1057         pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1058                (unsigned long long)start, (unsigned long long)end,
1059                root);
1060         if (start > root->end || end < root->start)
1061             abort = 1;
1062         else {
1063             if (end > root->end)
1064                 end = root->end;
1065             if (start < root->start)
1066                 start = root->start;
1067             pr_err("fixing request to [0x%llx-0x%llx]\n",
1068                    (unsigned long long)start,
1069                    (unsigned long long)end);
1070         }
1071         dump_stack();
1072     }
1073     if (!abort)
1074         __reserve_region_with_split(root, start, end, name);
1075     write_unlock(&resource_lock);
1076 }
1077 
1078 /**
1079  * resource_alignment - calculate resource's alignment
1080  * @res: resource pointer
1081  *
1082  * Returns alignment on success, 0 (invalid alignment) on failure.
1083  */
1084 resource_size_t resource_alignment(struct resource *res)
1085 {
1086     switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1087     case IORESOURCE_SIZEALIGN:
1088         return resource_size(res);
1089     case IORESOURCE_STARTALIGN:
1090         return res->start;
1091     default:
1092         return 0;
1093     }
1094 }
1095 
1096 /*
1097  * This is compatibility stuff for IO resources.
1098  *
1099  * Note how this, unlike the above, knows about
1100  * the IO flag meanings (busy etc).
1101  *
1102  * request_region creates a new busy region.
1103  *
1104  * release_region releases a matching busy region.
1105  */
1106 
1107 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1108 
1109 static struct inode *iomem_inode;
1110 
1111 #ifdef CONFIG_IO_STRICT_DEVMEM
1112 static void revoke_iomem(struct resource *res)
1113 {
1114     /* pairs with smp_store_release() in iomem_init_inode() */
1115     struct inode *inode = smp_load_acquire(&iomem_inode);
1116 
1117     /*
1118      * Check that the initialization has completed. Losing the race
1119      * is ok because it means drivers are claiming resources before
1120      * the fs_initcall level of init and prevent iomem_get_mapping users
1121      * from establishing mappings.
1122      */
1123     if (!inode)
1124         return;
1125 
1126     /*
1127      * The expectation is that the driver has successfully marked
1128      * the resource busy by this point, so devmem_is_allowed()
1129      * should start returning false, however for performance this
1130      * does not iterate the entire resource range.
1131      */
1132     if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1133         devmem_is_allowed(PHYS_PFN(res->end))) {
1134         /*
1135          * *cringe* iomem=relaxed says "go ahead, what's the
1136          * worst that can happen?"
1137          */
1138         return;
1139     }
1140 
1141     unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1142 }
1143 #else
1144 static void revoke_iomem(struct resource *res) {}
1145 #endif
1146 
1147 struct address_space *iomem_get_mapping(void)
1148 {
1149     /*
1150      * This function is only called from file open paths, hence guaranteed
1151      * that fs_initcalls have completed and no need to check for NULL. But
1152      * since revoke_iomem can be called before the initcall we still need
1153      * the barrier to appease checkers.
1154      */
1155     return smp_load_acquire(&iomem_inode)->i_mapping;
1156 }
1157 
1158 static int __request_region_locked(struct resource *res, struct resource *parent,
1159                    resource_size_t start, resource_size_t n,
1160                    const char *name, int flags)
1161 {
1162     DECLARE_WAITQUEUE(wait, current);
1163 
1164     res->name = name;
1165     res->start = start;
1166     res->end = start + n - 1;
1167 
1168     for (;;) {
1169         struct resource *conflict;
1170 
1171         res->flags = resource_type(parent) | resource_ext_type(parent);
1172         res->flags |= IORESOURCE_BUSY | flags;
1173         res->desc = parent->desc;
1174 
1175         conflict = __request_resource(parent, res);
1176         if (!conflict)
1177             break;
1178         /*
1179          * mm/hmm.c reserves physical addresses which then
1180          * become unavailable to other users.  Conflicts are
1181          * not expected.  Warn to aid debugging if encountered.
1182          */
1183         if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1184             pr_warn("Unaddressable device %s %pR conflicts with %pR",
1185                 conflict->name, conflict, res);
1186         }
1187         if (conflict != parent) {
1188             if (!(conflict->flags & IORESOURCE_BUSY)) {
1189                 parent = conflict;
1190                 continue;
1191             }
1192         }
1193         if (conflict->flags & flags & IORESOURCE_MUXED) {
1194             add_wait_queue(&muxed_resource_wait, &wait);
1195             write_unlock(&resource_lock);
1196             set_current_state(TASK_UNINTERRUPTIBLE);
1197             schedule();
1198             remove_wait_queue(&muxed_resource_wait, &wait);
1199             write_lock(&resource_lock);
1200             continue;
1201         }
1202         /* Uhhuh, that didn't work out.. */
1203         return -EBUSY;
1204     }
1205 
1206     return 0;
1207 }
1208 
1209 /**
1210  * __request_region - create a new busy resource region
1211  * @parent: parent resource descriptor
1212  * @start: resource start address
1213  * @n: resource region size
1214  * @name: reserving caller's ID string
1215  * @flags: IO resource flags
1216  */
1217 struct resource *__request_region(struct resource *parent,
1218                   resource_size_t start, resource_size_t n,
1219                   const char *name, int flags)
1220 {
1221     struct resource *res = alloc_resource(GFP_KERNEL);
1222     int ret;
1223 
1224     if (!res)
1225         return NULL;
1226 
1227     write_lock(&resource_lock);
1228     ret = __request_region_locked(res, parent, start, n, name, flags);
1229     write_unlock(&resource_lock);
1230 
1231     if (ret) {
1232         free_resource(res);
1233         return NULL;
1234     }
1235 
1236     if (parent == &iomem_resource)
1237         revoke_iomem(res);
1238 
1239     return res;
1240 }
1241 EXPORT_SYMBOL(__request_region);
1242 
1243 /**
1244  * __release_region - release a previously reserved resource region
1245  * @parent: parent resource descriptor
1246  * @start: resource start address
1247  * @n: resource region size
1248  *
1249  * The described resource region must match a currently busy region.
1250  */
1251 void __release_region(struct resource *parent, resource_size_t start,
1252               resource_size_t n)
1253 {
1254     struct resource **p;
1255     resource_size_t end;
1256 
1257     p = &parent->child;
1258     end = start + n - 1;
1259 
1260     write_lock(&resource_lock);
1261 
1262     for (;;) {
1263         struct resource *res = *p;
1264 
1265         if (!res)
1266             break;
1267         if (res->start <= start && res->end >= end) {
1268             if (!(res->flags & IORESOURCE_BUSY)) {
1269                 p = &res->child;
1270                 continue;
1271             }
1272             if (res->start != start || res->end != end)
1273                 break;
1274             *p = res->sibling;
1275             write_unlock(&resource_lock);
1276             if (res->flags & IORESOURCE_MUXED)
1277                 wake_up(&muxed_resource_wait);
1278             free_resource(res);
1279             return;
1280         }
1281         p = &res->sibling;
1282     }
1283 
1284     write_unlock(&resource_lock);
1285 
1286     printk(KERN_WARNING "Trying to free nonexistent resource "
1287         "<%016llx-%016llx>\n", (unsigned long long)start,
1288         (unsigned long long)end);
1289 }
1290 EXPORT_SYMBOL(__release_region);
1291 
1292 #ifdef CONFIG_MEMORY_HOTREMOVE
1293 /**
1294  * release_mem_region_adjustable - release a previously reserved memory region
1295  * @start: resource start address
1296  * @size: resource region size
1297  *
1298  * This interface is intended for memory hot-delete.  The requested region
1299  * is released from a currently busy memory resource.  The requested region
1300  * must either match exactly or fit into a single busy resource entry.  In
1301  * the latter case, the remaining resource is adjusted accordingly.
1302  * Existing children of the busy memory resource must be immutable in the
1303  * request.
1304  *
1305  * Note:
1306  * - Additional release conditions, such as overlapping region, can be
1307  *   supported after they are confirmed as valid cases.
1308  * - When a busy memory resource gets split into two entries, the code
1309  *   assumes that all children remain in the lower address entry for
1310  *   simplicity.  Enhance this logic when necessary.
1311  */
1312 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1313 {
1314     struct resource *parent = &iomem_resource;
1315     struct resource *new_res = NULL;
1316     bool alloc_nofail = false;
1317     struct resource **p;
1318     struct resource *res;
1319     resource_size_t end;
1320 
1321     end = start + size - 1;
1322     if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1323         return;
1324 
1325     /*
1326      * We free up quite a lot of memory on memory hotunplug (esp., memap),
1327      * just before releasing the region. This is highly unlikely to
1328      * fail - let's play save and make it never fail as the caller cannot
1329      * perform any error handling (e.g., trying to re-add memory will fail
1330      * similarly).
1331      */
1332 retry:
1333     new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1334 
1335     p = &parent->child;
1336     write_lock(&resource_lock);
1337 
1338     while ((res = *p)) {
1339         if (res->start >= end)
1340             break;
1341 
1342         /* look for the next resource if it does not fit into */
1343         if (res->start > start || res->end < end) {
1344             p = &res->sibling;
1345             continue;
1346         }
1347 
1348         /*
1349          * All memory regions added from memory-hotplug path have the
1350          * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1351          * this flag, we know that we are dealing with a resource coming
1352          * from HMM/devm. HMM/devm use another mechanism to add/release
1353          * a resource. This goes via devm_request_mem_region and
1354          * devm_release_mem_region.
1355          * HMM/devm take care to release their resources when they want,
1356          * so if we are dealing with them, let us just back off here.
1357          */
1358         if (!(res->flags & IORESOURCE_SYSRAM)) {
1359             break;
1360         }
1361 
1362         if (!(res->flags & IORESOURCE_MEM))
1363             break;
1364 
1365         if (!(res->flags & IORESOURCE_BUSY)) {
1366             p = &res->child;
1367             continue;
1368         }
1369 
1370         /* found the target resource; let's adjust accordingly */
1371         if (res->start == start && res->end == end) {
1372             /* free the whole entry */
1373             *p = res->sibling;
1374             free_resource(res);
1375         } else if (res->start == start && res->end != end) {
1376             /* adjust the start */
1377             WARN_ON_ONCE(__adjust_resource(res, end + 1,
1378                                res->end - end));
1379         } else if (res->start != start && res->end == end) {
1380             /* adjust the end */
1381             WARN_ON_ONCE(__adjust_resource(res, res->start,
1382                                start - res->start));
1383         } else {
1384             /* split into two entries - we need a new resource */
1385             if (!new_res) {
1386                 new_res = alloc_resource(GFP_ATOMIC);
1387                 if (!new_res) {
1388                     alloc_nofail = true;
1389                     write_unlock(&resource_lock);
1390                     goto retry;
1391                 }
1392             }
1393             new_res->name = res->name;
1394             new_res->start = end + 1;
1395             new_res->end = res->end;
1396             new_res->flags = res->flags;
1397             new_res->desc = res->desc;
1398             new_res->parent = res->parent;
1399             new_res->sibling = res->sibling;
1400             new_res->child = NULL;
1401 
1402             if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1403                                start - res->start)))
1404                 break;
1405             res->sibling = new_res;
1406             new_res = NULL;
1407         }
1408 
1409         break;
1410     }
1411 
1412     write_unlock(&resource_lock);
1413     free_resource(new_res);
1414 }
1415 #endif  /* CONFIG_MEMORY_HOTREMOVE */
1416 
1417 #ifdef CONFIG_MEMORY_HOTPLUG
1418 static bool system_ram_resources_mergeable(struct resource *r1,
1419                        struct resource *r2)
1420 {
1421     /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1422     return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1423            r1->name == r2->name && r1->desc == r2->desc &&
1424            !r1->child && !r2->child;
1425 }
1426 
1427 /**
1428  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1429  *  merge it with adjacent, mergeable resources
1430  * @res: resource descriptor
1431  *
1432  * This interface is intended for memory hotplug, whereby lots of contiguous
1433  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1434  * the actual resource boundaries are not of interest (e.g., it might be
1435  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1436  * same parent, and that don't have any children are considered. All mergeable
1437  * resources must be immutable during the request.
1438  *
1439  * Note:
1440  * - The caller has to make sure that no pointers to resources that are
1441  *   marked mergeable are used anymore after this call - the resource might
1442  *   be freed and the pointer might be stale!
1443  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1444  */
1445 void merge_system_ram_resource(struct resource *res)
1446 {
1447     const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1448     struct resource *cur;
1449 
1450     if (WARN_ON_ONCE((res->flags & flags) != flags))
1451         return;
1452 
1453     write_lock(&resource_lock);
1454     res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1455 
1456     /* Try to merge with next item in the list. */
1457     cur = res->sibling;
1458     if (cur && system_ram_resources_mergeable(res, cur)) {
1459         res->end = cur->end;
1460         res->sibling = cur->sibling;
1461         free_resource(cur);
1462     }
1463 
1464     /* Try to merge with previous item in the list. */
1465     cur = res->parent->child;
1466     while (cur && cur->sibling != res)
1467         cur = cur->sibling;
1468     if (cur && system_ram_resources_mergeable(cur, res)) {
1469         cur->end = res->end;
1470         cur->sibling = res->sibling;
1471         free_resource(res);
1472     }
1473     write_unlock(&resource_lock);
1474 }
1475 #endif  /* CONFIG_MEMORY_HOTPLUG */
1476 
1477 /*
1478  * Managed region resource
1479  */
1480 static void devm_resource_release(struct device *dev, void *ptr)
1481 {
1482     struct resource **r = ptr;
1483 
1484     release_resource(*r);
1485 }
1486 
1487 /**
1488  * devm_request_resource() - request and reserve an I/O or memory resource
1489  * @dev: device for which to request the resource
1490  * @root: root of the resource tree from which to request the resource
1491  * @new: descriptor of the resource to request
1492  *
1493  * This is a device-managed version of request_resource(). There is usually
1494  * no need to release resources requested by this function explicitly since
1495  * that will be taken care of when the device is unbound from its driver.
1496  * If for some reason the resource needs to be released explicitly, because
1497  * of ordering issues for example, drivers must call devm_release_resource()
1498  * rather than the regular release_resource().
1499  *
1500  * When a conflict is detected between any existing resources and the newly
1501  * requested resource, an error message will be printed.
1502  *
1503  * Returns 0 on success or a negative error code on failure.
1504  */
1505 int devm_request_resource(struct device *dev, struct resource *root,
1506               struct resource *new)
1507 {
1508     struct resource *conflict, **ptr;
1509 
1510     ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1511     if (!ptr)
1512         return -ENOMEM;
1513 
1514     *ptr = new;
1515 
1516     conflict = request_resource_conflict(root, new);
1517     if (conflict) {
1518         dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1519             new, conflict->name, conflict);
1520         devres_free(ptr);
1521         return -EBUSY;
1522     }
1523 
1524     devres_add(dev, ptr);
1525     return 0;
1526 }
1527 EXPORT_SYMBOL(devm_request_resource);
1528 
1529 static int devm_resource_match(struct device *dev, void *res, void *data)
1530 {
1531     struct resource **ptr = res;
1532 
1533     return *ptr == data;
1534 }
1535 
1536 /**
1537  * devm_release_resource() - release a previously requested resource
1538  * @dev: device for which to release the resource
1539  * @new: descriptor of the resource to release
1540  *
1541  * Releases a resource previously requested using devm_request_resource().
1542  */
1543 void devm_release_resource(struct device *dev, struct resource *new)
1544 {
1545     WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1546                    new));
1547 }
1548 EXPORT_SYMBOL(devm_release_resource);
1549 
1550 struct region_devres {
1551     struct resource *parent;
1552     resource_size_t start;
1553     resource_size_t n;
1554 };
1555 
1556 static void devm_region_release(struct device *dev, void *res)
1557 {
1558     struct region_devres *this = res;
1559 
1560     __release_region(this->parent, this->start, this->n);
1561 }
1562 
1563 static int devm_region_match(struct device *dev, void *res, void *match_data)
1564 {
1565     struct region_devres *this = res, *match = match_data;
1566 
1567     return this->parent == match->parent &&
1568         this->start == match->start && this->n == match->n;
1569 }
1570 
1571 struct resource *
1572 __devm_request_region(struct device *dev, struct resource *parent,
1573               resource_size_t start, resource_size_t n, const char *name)
1574 {
1575     struct region_devres *dr = NULL;
1576     struct resource *res;
1577 
1578     dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1579               GFP_KERNEL);
1580     if (!dr)
1581         return NULL;
1582 
1583     dr->parent = parent;
1584     dr->start = start;
1585     dr->n = n;
1586 
1587     res = __request_region(parent, start, n, name, 0);
1588     if (res)
1589         devres_add(dev, dr);
1590     else
1591         devres_free(dr);
1592 
1593     return res;
1594 }
1595 EXPORT_SYMBOL(__devm_request_region);
1596 
1597 void __devm_release_region(struct device *dev, struct resource *parent,
1598                resource_size_t start, resource_size_t n)
1599 {
1600     struct region_devres match_data = { parent, start, n };
1601 
1602     __release_region(parent, start, n);
1603     WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1604                    &match_data));
1605 }
1606 EXPORT_SYMBOL(__devm_release_region);
1607 
1608 /*
1609  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1610  */
1611 #define MAXRESERVE 4
1612 static int __init reserve_setup(char *str)
1613 {
1614     static int reserved;
1615     static struct resource reserve[MAXRESERVE];
1616 
1617     for (;;) {
1618         unsigned int io_start, io_num;
1619         int x = reserved;
1620         struct resource *parent;
1621 
1622         if (get_option(&str, &io_start) != 2)
1623             break;
1624         if (get_option(&str, &io_num) == 0)
1625             break;
1626         if (x < MAXRESERVE) {
1627             struct resource *res = reserve + x;
1628 
1629             /*
1630              * If the region starts below 0x10000, we assume it's
1631              * I/O port space; otherwise assume it's memory.
1632              */
1633             if (io_start < 0x10000) {
1634                 res->flags = IORESOURCE_IO;
1635                 parent = &ioport_resource;
1636             } else {
1637                 res->flags = IORESOURCE_MEM;
1638                 parent = &iomem_resource;
1639             }
1640             res->name = "reserved";
1641             res->start = io_start;
1642             res->end = io_start + io_num - 1;
1643             res->flags |= IORESOURCE_BUSY;
1644             res->desc = IORES_DESC_NONE;
1645             res->child = NULL;
1646             if (request_resource(parent, res) == 0)
1647                 reserved = x+1;
1648         }
1649     }
1650     return 1;
1651 }
1652 __setup("reserve=", reserve_setup);
1653 
1654 /*
1655  * Check if the requested addr and size spans more than any slot in the
1656  * iomem resource tree.
1657  */
1658 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1659 {
1660     struct resource *p = &iomem_resource;
1661     int err = 0;
1662     loff_t l;
1663 
1664     read_lock(&resource_lock);
1665     for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1666         /*
1667          * We can probably skip the resources without
1668          * IORESOURCE_IO attribute?
1669          */
1670         if (p->start >= addr + size)
1671             continue;
1672         if (p->end < addr)
1673             continue;
1674         if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1675             PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1676             continue;
1677         /*
1678          * if a resource is "BUSY", it's not a hardware resource
1679          * but a driver mapping of such a resource; we don't want
1680          * to warn for those; some drivers legitimately map only
1681          * partial hardware resources. (example: vesafb)
1682          */
1683         if (p->flags & IORESOURCE_BUSY)
1684             continue;
1685 
1686         printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1687                (unsigned long long)addr,
1688                (unsigned long long)(addr + size - 1),
1689                p->name, p);
1690         err = -1;
1691         break;
1692     }
1693     read_unlock(&resource_lock);
1694 
1695     return err;
1696 }
1697 
1698 #ifdef CONFIG_STRICT_DEVMEM
1699 static int strict_iomem_checks = 1;
1700 #else
1701 static int strict_iomem_checks;
1702 #endif
1703 
1704 /*
1705  * Check if an address is exclusive to the kernel and must not be mapped to
1706  * user space, for example, via /dev/mem.
1707  *
1708  * Returns true if exclusive to the kernel, otherwise returns false.
1709  */
1710 bool iomem_is_exclusive(u64 addr)
1711 {
1712     const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1713                           IORESOURCE_EXCLUSIVE;
1714     bool skip_children = false, err = false;
1715     int size = PAGE_SIZE;
1716     struct resource *p;
1717 
1718     addr = addr & PAGE_MASK;
1719 
1720     read_lock(&resource_lock);
1721     for_each_resource(&iomem_resource, p, skip_children) {
1722         if (p->start >= addr + size)
1723             break;
1724         if (p->end < addr) {
1725             skip_children = true;
1726             continue;
1727         }
1728         skip_children = false;
1729 
1730         /*
1731          * IORESOURCE_SYSTEM_RAM resources are exclusive if
1732          * IORESOURCE_EXCLUSIVE is set, even if they
1733          * are not busy and even if "iomem=relaxed" is set. The
1734          * responsible driver dynamically adds/removes system RAM within
1735          * such an area and uncontrolled access is dangerous.
1736          */
1737         if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1738             err = true;
1739             break;
1740         }
1741 
1742         /*
1743          * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1744          * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1745          * resource is busy.
1746          */
1747         if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1748             continue;
1749         if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1750                 || p->flags & IORESOURCE_EXCLUSIVE) {
1751             err = true;
1752             break;
1753         }
1754     }
1755     read_unlock(&resource_lock);
1756 
1757     return err;
1758 }
1759 
1760 struct resource_entry *resource_list_create_entry(struct resource *res,
1761                           size_t extra_size)
1762 {
1763     struct resource_entry *entry;
1764 
1765     entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1766     if (entry) {
1767         INIT_LIST_HEAD(&entry->node);
1768         entry->res = res ? res : &entry->__res;
1769     }
1770 
1771     return entry;
1772 }
1773 EXPORT_SYMBOL(resource_list_create_entry);
1774 
1775 void resource_list_free(struct list_head *head)
1776 {
1777     struct resource_entry *entry, *tmp;
1778 
1779     list_for_each_entry_safe(entry, tmp, head, node)
1780         resource_list_destroy_entry(entry);
1781 }
1782 EXPORT_SYMBOL(resource_list_free);
1783 
1784 #ifdef CONFIG_GET_FREE_REGION
1785 #define GFR_DESCENDING      (1UL << 0)
1786 #define GFR_REQUEST_REGION  (1UL << 1)
1787 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1788 
1789 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1790                  resource_size_t align, unsigned long flags)
1791 {
1792     if (flags & GFR_DESCENDING) {
1793         resource_size_t end;
1794 
1795         end = min_t(resource_size_t, base->end,
1796                 (1ULL << MAX_PHYSMEM_BITS) - 1);
1797         return end - size + 1;
1798     }
1799 
1800     return ALIGN(base->start, align);
1801 }
1802 
1803 static bool gfr_continue(struct resource *base, resource_size_t addr,
1804              resource_size_t size, unsigned long flags)
1805 {
1806     if (flags & GFR_DESCENDING)
1807         return addr > size && addr >= base->start;
1808     /*
1809      * In the ascend case be careful that the last increment by
1810      * @size did not wrap 0.
1811      */
1812     return addr > addr - size &&
1813            addr <= min_t(resource_size_t, base->end,
1814                  (1ULL << MAX_PHYSMEM_BITS) - 1);
1815 }
1816 
1817 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1818                 unsigned long flags)
1819 {
1820     if (flags & GFR_DESCENDING)
1821         return addr - size;
1822     return addr + size;
1823 }
1824 
1825 static void remove_free_mem_region(void *_res)
1826 {
1827     struct resource *res = _res;
1828 
1829     if (res->parent)
1830         remove_resource(res);
1831     free_resource(res);
1832 }
1833 
1834 static struct resource *
1835 get_free_mem_region(struct device *dev, struct resource *base,
1836             resource_size_t size, const unsigned long align,
1837             const char *name, const unsigned long desc,
1838             const unsigned long flags)
1839 {
1840     resource_size_t addr;
1841     struct resource *res;
1842     struct region_devres *dr = NULL;
1843 
1844     size = ALIGN(size, align);
1845 
1846     res = alloc_resource(GFP_KERNEL);
1847     if (!res)
1848         return ERR_PTR(-ENOMEM);
1849 
1850     if (dev && (flags & GFR_REQUEST_REGION)) {
1851         dr = devres_alloc(devm_region_release,
1852                 sizeof(struct region_devres), GFP_KERNEL);
1853         if (!dr) {
1854             free_resource(res);
1855             return ERR_PTR(-ENOMEM);
1856         }
1857     } else if (dev) {
1858         if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1859             return ERR_PTR(-ENOMEM);
1860     }
1861 
1862     write_lock(&resource_lock);
1863     for (addr = gfr_start(base, size, align, flags);
1864          gfr_continue(base, addr, size, flags);
1865          addr = gfr_next(addr, size, flags)) {
1866         if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1867             REGION_DISJOINT)
1868             continue;
1869 
1870         if (flags & GFR_REQUEST_REGION) {
1871             if (__request_region_locked(res, &iomem_resource, addr,
1872                             size, name, 0))
1873                 break;
1874 
1875             if (dev) {
1876                 dr->parent = &iomem_resource;
1877                 dr->start = addr;
1878                 dr->n = size;
1879                 devres_add(dev, dr);
1880             }
1881 
1882             res->desc = desc;
1883             write_unlock(&resource_lock);
1884 
1885 
1886             /*
1887              * A driver is claiming this region so revoke any
1888              * mappings.
1889              */
1890             revoke_iomem(res);
1891         } else {
1892             res->start = addr;
1893             res->end = addr + size - 1;
1894             res->name = name;
1895             res->desc = desc;
1896             res->flags = IORESOURCE_MEM;
1897 
1898             /*
1899              * Only succeed if the resource hosts an exclusive
1900              * range after the insert
1901              */
1902             if (__insert_resource(base, res) || res->child)
1903                 break;
1904 
1905             write_unlock(&resource_lock);
1906         }
1907 
1908         return res;
1909     }
1910     write_unlock(&resource_lock);
1911 
1912     if (flags & GFR_REQUEST_REGION) {
1913         free_resource(res);
1914         devres_free(dr);
1915     } else if (dev)
1916         devm_release_action(dev, remove_free_mem_region, res);
1917 
1918     return ERR_PTR(-ERANGE);
1919 }
1920 
1921 /**
1922  * devm_request_free_mem_region - find free region for device private memory
1923  *
1924  * @dev: device struct to bind the resource to
1925  * @size: size in bytes of the device memory to add
1926  * @base: resource tree to look in
1927  *
1928  * This function tries to find an empty range of physical address big enough to
1929  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1930  * memory, which in turn allocates struct pages.
1931  */
1932 struct resource *devm_request_free_mem_region(struct device *dev,
1933         struct resource *base, unsigned long size)
1934 {
1935     unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1936 
1937     return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1938                    dev_name(dev),
1939                    IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1940 }
1941 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1942 
1943 struct resource *request_free_mem_region(struct resource *base,
1944         unsigned long size, const char *name)
1945 {
1946     unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1947 
1948     return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1949                    IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1950 }
1951 EXPORT_SYMBOL_GPL(request_free_mem_region);
1952 
1953 /**
1954  * alloc_free_mem_region - find a free region relative to @base
1955  * @base: resource that will parent the new resource
1956  * @size: size in bytes of memory to allocate from @base
1957  * @align: alignment requirements for the allocation
1958  * @name: resource name
1959  *
1960  * Buses like CXL, that can dynamically instantiate new memory regions,
1961  * need a method to allocate physical address space for those regions.
1962  * Allocate and insert a new resource to cover a free, unclaimed by a
1963  * descendant of @base, range in the span of @base.
1964  */
1965 struct resource *alloc_free_mem_region(struct resource *base,
1966                        unsigned long size, unsigned long align,
1967                        const char *name)
1968 {
1969     /* Default of ascending direction and insert resource */
1970     unsigned long flags = 0;
1971 
1972     return get_free_mem_region(NULL, base, size, align, name,
1973                    IORES_DESC_NONE, flags);
1974 }
1975 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
1976 #endif /* CONFIG_GET_FREE_REGION */
1977 
1978 static int __init strict_iomem(char *str)
1979 {
1980     if (strstr(str, "relaxed"))
1981         strict_iomem_checks = 0;
1982     if (strstr(str, "strict"))
1983         strict_iomem_checks = 1;
1984     return 1;
1985 }
1986 
1987 static int iomem_fs_init_fs_context(struct fs_context *fc)
1988 {
1989     return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1990 }
1991 
1992 static struct file_system_type iomem_fs_type = {
1993     .name       = "iomem",
1994     .owner      = THIS_MODULE,
1995     .init_fs_context = iomem_fs_init_fs_context,
1996     .kill_sb    = kill_anon_super,
1997 };
1998 
1999 static int __init iomem_init_inode(void)
2000 {
2001     static struct vfsmount *iomem_vfs_mount;
2002     static int iomem_fs_cnt;
2003     struct inode *inode;
2004     int rc;
2005 
2006     rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2007     if (rc < 0) {
2008         pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2009         return rc;
2010     }
2011 
2012     inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2013     if (IS_ERR(inode)) {
2014         rc = PTR_ERR(inode);
2015         pr_err("Cannot allocate inode for iomem: %d\n", rc);
2016         simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2017         return rc;
2018     }
2019 
2020     /*
2021      * Publish iomem revocation inode initialized.
2022      * Pairs with smp_load_acquire() in revoke_iomem().
2023      */
2024     smp_store_release(&iomem_inode, inode);
2025 
2026     return 0;
2027 }
2028 
2029 fs_initcall(iomem_init_inode);
2030 
2031 __setup("iomem=", strict_iomem);