Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0+ */
0002 /*
0003  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
0004  * Internal non-public definitions that provide either classic
0005  * or preemptible semantics.
0006  *
0007  * Copyright Red Hat, 2009
0008  * Copyright IBM Corporation, 2009
0009  * Copyright SUSE, 2021
0010  *
0011  * Author: Ingo Molnar <mingo@elte.hu>
0012  *     Paul E. McKenney <paulmck@linux.ibm.com>
0013  *     Frederic Weisbecker <frederic@kernel.org>
0014  */
0015 
0016 #ifdef CONFIG_RCU_NOCB_CPU
0017 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
0018 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
0019 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
0020 {
0021     return lockdep_is_held(&rdp->nocb_lock);
0022 }
0023 
0024 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
0025 {
0026     /* Race on early boot between thread creation and assignment */
0027     if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
0028         return true;
0029 
0030     if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
0031         if (in_task())
0032             return true;
0033     return false;
0034 }
0035 
0036 /*
0037  * Offload callback processing from the boot-time-specified set of CPUs
0038  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
0039  * created that pull the callbacks from the corresponding CPU, wait for
0040  * a grace period to elapse, and invoke the callbacks.  These kthreads
0041  * are organized into GP kthreads, which manage incoming callbacks, wait for
0042  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
0043  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
0044  * do a wake_up() on their GP kthread when they insert a callback into any
0045  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
0046  * in which case each kthread actively polls its CPU.  (Which isn't so great
0047  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
0048  *
0049  * This is intended to be used in conjunction with Frederic Weisbecker's
0050  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
0051  * running CPU-bound user-mode computations.
0052  *
0053  * Offloading of callbacks can also be used as an energy-efficiency
0054  * measure because CPUs with no RCU callbacks queued are more aggressive
0055  * about entering dyntick-idle mode.
0056  */
0057 
0058 
0059 /*
0060  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
0061  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
0062  */
0063 static int __init rcu_nocb_setup(char *str)
0064 {
0065     alloc_bootmem_cpumask_var(&rcu_nocb_mask);
0066     if (*str == '=') {
0067         if (cpulist_parse(++str, rcu_nocb_mask)) {
0068             pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
0069             cpumask_setall(rcu_nocb_mask);
0070         }
0071     }
0072     rcu_state.nocb_is_setup = true;
0073     return 1;
0074 }
0075 __setup("rcu_nocbs", rcu_nocb_setup);
0076 
0077 static int __init parse_rcu_nocb_poll(char *arg)
0078 {
0079     rcu_nocb_poll = true;
0080     return 0;
0081 }
0082 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
0083 
0084 /*
0085  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
0086  * After all, the main point of bypassing is to avoid lock contention
0087  * on ->nocb_lock, which only can happen at high call_rcu() rates.
0088  */
0089 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
0090 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
0091 
0092 /*
0093  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
0094  * lock isn't immediately available, increment ->nocb_lock_contended to
0095  * flag the contention.
0096  */
0097 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
0098     __acquires(&rdp->nocb_bypass_lock)
0099 {
0100     lockdep_assert_irqs_disabled();
0101     if (raw_spin_trylock(&rdp->nocb_bypass_lock))
0102         return;
0103     atomic_inc(&rdp->nocb_lock_contended);
0104     WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
0105     smp_mb__after_atomic(); /* atomic_inc() before lock. */
0106     raw_spin_lock(&rdp->nocb_bypass_lock);
0107     smp_mb__before_atomic(); /* atomic_dec() after lock. */
0108     atomic_dec(&rdp->nocb_lock_contended);
0109 }
0110 
0111 /*
0112  * Spinwait until the specified rcu_data structure's ->nocb_lock is
0113  * not contended.  Please note that this is extremely special-purpose,
0114  * relying on the fact that at most two kthreads and one CPU contend for
0115  * this lock, and also that the two kthreads are guaranteed to have frequent
0116  * grace-period-duration time intervals between successive acquisitions
0117  * of the lock.  This allows us to use an extremely simple throttling
0118  * mechanism, and further to apply it only to the CPU doing floods of
0119  * call_rcu() invocations.  Don't try this at home!
0120  */
0121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
0122 {
0123     WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
0124     while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
0125         cpu_relax();
0126 }
0127 
0128 /*
0129  * Conditionally acquire the specified rcu_data structure's
0130  * ->nocb_bypass_lock.
0131  */
0132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
0133 {
0134     lockdep_assert_irqs_disabled();
0135     return raw_spin_trylock(&rdp->nocb_bypass_lock);
0136 }
0137 
0138 /*
0139  * Release the specified rcu_data structure's ->nocb_bypass_lock.
0140  */
0141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
0142     __releases(&rdp->nocb_bypass_lock)
0143 {
0144     lockdep_assert_irqs_disabled();
0145     raw_spin_unlock(&rdp->nocb_bypass_lock);
0146 }
0147 
0148 /*
0149  * Acquire the specified rcu_data structure's ->nocb_lock, but only
0150  * if it corresponds to a no-CBs CPU.
0151  */
0152 static void rcu_nocb_lock(struct rcu_data *rdp)
0153 {
0154     lockdep_assert_irqs_disabled();
0155     if (!rcu_rdp_is_offloaded(rdp))
0156         return;
0157     raw_spin_lock(&rdp->nocb_lock);
0158 }
0159 
0160 /*
0161  * Release the specified rcu_data structure's ->nocb_lock, but only
0162  * if it corresponds to a no-CBs CPU.
0163  */
0164 static void rcu_nocb_unlock(struct rcu_data *rdp)
0165 {
0166     if (rcu_rdp_is_offloaded(rdp)) {
0167         lockdep_assert_irqs_disabled();
0168         raw_spin_unlock(&rdp->nocb_lock);
0169     }
0170 }
0171 
0172 /*
0173  * Release the specified rcu_data structure's ->nocb_lock and restore
0174  * interrupts, but only if it corresponds to a no-CBs CPU.
0175  */
0176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
0177                        unsigned long flags)
0178 {
0179     if (rcu_rdp_is_offloaded(rdp)) {
0180         lockdep_assert_irqs_disabled();
0181         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
0182     } else {
0183         local_irq_restore(flags);
0184     }
0185 }
0186 
0187 /* Lockdep check that ->cblist may be safely accessed. */
0188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
0189 {
0190     lockdep_assert_irqs_disabled();
0191     if (rcu_rdp_is_offloaded(rdp))
0192         lockdep_assert_held(&rdp->nocb_lock);
0193 }
0194 
0195 /*
0196  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
0197  * grace period.
0198  */
0199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
0200 {
0201     swake_up_all(sq);
0202 }
0203 
0204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
0205 {
0206     return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
0207 }
0208 
0209 static void rcu_init_one_nocb(struct rcu_node *rnp)
0210 {
0211     init_swait_queue_head(&rnp->nocb_gp_wq[0]);
0212     init_swait_queue_head(&rnp->nocb_gp_wq[1]);
0213 }
0214 
0215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
0216                struct rcu_data *rdp,
0217                bool force, unsigned long flags)
0218     __releases(rdp_gp->nocb_gp_lock)
0219 {
0220     bool needwake = false;
0221 
0222     if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
0223         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
0224         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0225                     TPS("AlreadyAwake"));
0226         return false;
0227     }
0228 
0229     if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
0230         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
0231         del_timer(&rdp_gp->nocb_timer);
0232     }
0233 
0234     if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
0235         WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
0236         needwake = true;
0237     }
0238     raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
0239     if (needwake) {
0240         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
0241         wake_up_process(rdp_gp->nocb_gp_kthread);
0242     }
0243 
0244     return needwake;
0245 }
0246 
0247 /*
0248  * Kick the GP kthread for this NOCB group.
0249  */
0250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
0251 {
0252     unsigned long flags;
0253     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
0254 
0255     raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
0256     return __wake_nocb_gp(rdp_gp, rdp, force, flags);
0257 }
0258 
0259 /*
0260  * Arrange to wake the GP kthread for this NOCB group at some future
0261  * time when it is safe to do so.
0262  */
0263 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
0264                    const char *reason)
0265 {
0266     unsigned long flags;
0267     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
0268 
0269     raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
0270 
0271     /*
0272      * Bypass wakeup overrides previous deferments. In case
0273      * of callback storm, no need to wake up too early.
0274      */
0275     if (waketype == RCU_NOCB_WAKE_BYPASS) {
0276         mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
0277         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
0278     } else {
0279         if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
0280             mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
0281         if (rdp_gp->nocb_defer_wakeup < waketype)
0282             WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
0283     }
0284 
0285     raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
0286 
0287     trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
0288 }
0289 
0290 /*
0291  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
0292  * However, if there is a callback to be enqueued and if ->nocb_bypass
0293  * proves to be initially empty, just return false because the no-CB GP
0294  * kthread may need to be awakened in this case.
0295  *
0296  * Note that this function always returns true if rhp is NULL.
0297  */
0298 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
0299                      unsigned long j)
0300 {
0301     struct rcu_cblist rcl;
0302 
0303     WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
0304     rcu_lockdep_assert_cblist_protected(rdp);
0305     lockdep_assert_held(&rdp->nocb_bypass_lock);
0306     if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
0307         raw_spin_unlock(&rdp->nocb_bypass_lock);
0308         return false;
0309     }
0310     /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
0311     if (rhp)
0312         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
0313     rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
0314     rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
0315     WRITE_ONCE(rdp->nocb_bypass_first, j);
0316     rcu_nocb_bypass_unlock(rdp);
0317     return true;
0318 }
0319 
0320 /*
0321  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
0322  * However, if there is a callback to be enqueued and if ->nocb_bypass
0323  * proves to be initially empty, just return false because the no-CB GP
0324  * kthread may need to be awakened in this case.
0325  *
0326  * Note that this function always returns true if rhp is NULL.
0327  */
0328 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
0329                   unsigned long j)
0330 {
0331     if (!rcu_rdp_is_offloaded(rdp))
0332         return true;
0333     rcu_lockdep_assert_cblist_protected(rdp);
0334     rcu_nocb_bypass_lock(rdp);
0335     return rcu_nocb_do_flush_bypass(rdp, rhp, j);
0336 }
0337 
0338 /*
0339  * If the ->nocb_bypass_lock is immediately available, flush the
0340  * ->nocb_bypass queue into ->cblist.
0341  */
0342 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
0343 {
0344     rcu_lockdep_assert_cblist_protected(rdp);
0345     if (!rcu_rdp_is_offloaded(rdp) ||
0346         !rcu_nocb_bypass_trylock(rdp))
0347         return;
0348     WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
0349 }
0350 
0351 /*
0352  * See whether it is appropriate to use the ->nocb_bypass list in order
0353  * to control contention on ->nocb_lock.  A limited number of direct
0354  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
0355  * is non-empty, further callbacks must be placed into ->nocb_bypass,
0356  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
0357  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
0358  * used if ->cblist is empty, because otherwise callbacks can be stranded
0359  * on ->nocb_bypass because we cannot count on the current CPU ever again
0360  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
0361  * non-empty, the corresponding no-CBs grace-period kthread must not be
0362  * in an indefinite sleep state.
0363  *
0364  * Finally, it is not permitted to use the bypass during early boot,
0365  * as doing so would confuse the auto-initialization code.  Besides
0366  * which, there is no point in worrying about lock contention while
0367  * there is only one CPU in operation.
0368  */
0369 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
0370                 bool *was_alldone, unsigned long flags)
0371 {
0372     unsigned long c;
0373     unsigned long cur_gp_seq;
0374     unsigned long j = jiffies;
0375     long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
0376 
0377     lockdep_assert_irqs_disabled();
0378 
0379     // Pure softirq/rcuc based processing: no bypassing, no
0380     // locking.
0381     if (!rcu_rdp_is_offloaded(rdp)) {
0382         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
0383         return false;
0384     }
0385 
0386     // In the process of (de-)offloading: no bypassing, but
0387     // locking.
0388     if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
0389         rcu_nocb_lock(rdp);
0390         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
0391         return false; /* Not offloaded, no bypassing. */
0392     }
0393 
0394     // Don't use ->nocb_bypass during early boot.
0395     if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
0396         rcu_nocb_lock(rdp);
0397         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
0398         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
0399         return false;
0400     }
0401 
0402     // If we have advanced to a new jiffy, reset counts to allow
0403     // moving back from ->nocb_bypass to ->cblist.
0404     if (j == rdp->nocb_nobypass_last) {
0405         c = rdp->nocb_nobypass_count + 1;
0406     } else {
0407         WRITE_ONCE(rdp->nocb_nobypass_last, j);
0408         c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
0409         if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
0410                  nocb_nobypass_lim_per_jiffy))
0411             c = 0;
0412         else if (c > nocb_nobypass_lim_per_jiffy)
0413             c = nocb_nobypass_lim_per_jiffy;
0414     }
0415     WRITE_ONCE(rdp->nocb_nobypass_count, c);
0416 
0417     // If there hasn't yet been all that many ->cblist enqueues
0418     // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
0419     // ->nocb_bypass first.
0420     if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
0421         rcu_nocb_lock(rdp);
0422         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
0423         if (*was_alldone)
0424             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0425                         TPS("FirstQ"));
0426         WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
0427         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
0428         return false; // Caller must enqueue the callback.
0429     }
0430 
0431     // If ->nocb_bypass has been used too long or is too full,
0432     // flush ->nocb_bypass to ->cblist.
0433     if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
0434         ncbs >= qhimark) {
0435         rcu_nocb_lock(rdp);
0436         if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
0437             *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
0438             if (*was_alldone)
0439                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0440                             TPS("FirstQ"));
0441             WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
0442             return false; // Caller must enqueue the callback.
0443         }
0444         if (j != rdp->nocb_gp_adv_time &&
0445             rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
0446             rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
0447             rcu_advance_cbs_nowake(rdp->mynode, rdp);
0448             rdp->nocb_gp_adv_time = j;
0449         }
0450         rcu_nocb_unlock_irqrestore(rdp, flags);
0451         return true; // Callback already enqueued.
0452     }
0453 
0454     // We need to use the bypass.
0455     rcu_nocb_wait_contended(rdp);
0456     rcu_nocb_bypass_lock(rdp);
0457     ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
0458     rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
0459     rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
0460     if (!ncbs) {
0461         WRITE_ONCE(rdp->nocb_bypass_first, j);
0462         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
0463     }
0464     rcu_nocb_bypass_unlock(rdp);
0465     smp_mb(); /* Order enqueue before wake. */
0466     if (ncbs) {
0467         local_irq_restore(flags);
0468     } else {
0469         // No-CBs GP kthread might be indefinitely asleep, if so, wake.
0470         rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
0471         if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
0472             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0473                         TPS("FirstBQwake"));
0474             __call_rcu_nocb_wake(rdp, true, flags);
0475         } else {
0476             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0477                         TPS("FirstBQnoWake"));
0478             rcu_nocb_unlock_irqrestore(rdp, flags);
0479         }
0480     }
0481     return true; // Callback already enqueued.
0482 }
0483 
0484 /*
0485  * Awaken the no-CBs grace-period kthread if needed, either due to it
0486  * legitimately being asleep or due to overload conditions.
0487  *
0488  * If warranted, also wake up the kthread servicing this CPUs queues.
0489  */
0490 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
0491                  unsigned long flags)
0492                  __releases(rdp->nocb_lock)
0493 {
0494     unsigned long cur_gp_seq;
0495     unsigned long j;
0496     long len;
0497     struct task_struct *t;
0498 
0499     // If we are being polled or there is no kthread, just leave.
0500     t = READ_ONCE(rdp->nocb_gp_kthread);
0501     if (rcu_nocb_poll || !t) {
0502         rcu_nocb_unlock_irqrestore(rdp, flags);
0503         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0504                     TPS("WakeNotPoll"));
0505         return;
0506     }
0507     // Need to actually to a wakeup.
0508     len = rcu_segcblist_n_cbs(&rdp->cblist);
0509     if (was_alldone) {
0510         rdp->qlen_last_fqs_check = len;
0511         if (!irqs_disabled_flags(flags)) {
0512             /* ... if queue was empty ... */
0513             rcu_nocb_unlock_irqrestore(rdp, flags);
0514             wake_nocb_gp(rdp, false);
0515             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0516                         TPS("WakeEmpty"));
0517         } else {
0518             rcu_nocb_unlock_irqrestore(rdp, flags);
0519             wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
0520                        TPS("WakeEmptyIsDeferred"));
0521         }
0522     } else if (len > rdp->qlen_last_fqs_check + qhimark) {
0523         /* ... or if many callbacks queued. */
0524         rdp->qlen_last_fqs_check = len;
0525         j = jiffies;
0526         if (j != rdp->nocb_gp_adv_time &&
0527             rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
0528             rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
0529             rcu_advance_cbs_nowake(rdp->mynode, rdp);
0530             rdp->nocb_gp_adv_time = j;
0531         }
0532         smp_mb(); /* Enqueue before timer_pending(). */
0533         if ((rdp->nocb_cb_sleep ||
0534              !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
0535             !timer_pending(&rdp->nocb_timer)) {
0536             rcu_nocb_unlock_irqrestore(rdp, flags);
0537             wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
0538                        TPS("WakeOvfIsDeferred"));
0539         } else {
0540             rcu_nocb_unlock_irqrestore(rdp, flags);
0541             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
0542         }
0543     } else {
0544         rcu_nocb_unlock_irqrestore(rdp, flags);
0545         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
0546     }
0547 }
0548 
0549 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
0550                    bool *wake_state)
0551 {
0552     struct rcu_segcblist *cblist = &rdp->cblist;
0553     unsigned long flags;
0554     int ret;
0555 
0556     rcu_nocb_lock_irqsave(rdp, flags);
0557     if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
0558         !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
0559         /*
0560          * Offloading. Set our flag and notify the offload worker.
0561          * We will handle this rdp until it ever gets de-offloaded.
0562          */
0563         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
0564         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
0565             *wake_state = true;
0566         ret = 1;
0567     } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
0568            rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
0569         /*
0570          * De-offloading. Clear our flag and notify the de-offload worker.
0571          * We will ignore this rdp until it ever gets re-offloaded.
0572          */
0573         rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
0574         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
0575             *wake_state = true;
0576         ret = 0;
0577     } else {
0578         WARN_ON_ONCE(1);
0579         ret = -1;
0580     }
0581 
0582     rcu_nocb_unlock_irqrestore(rdp, flags);
0583 
0584     return ret;
0585 }
0586 
0587 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
0588 {
0589     trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
0590     swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
0591                     !READ_ONCE(my_rdp->nocb_gp_sleep));
0592     trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
0593 }
0594 
0595 /*
0596  * No-CBs GP kthreads come here to wait for additional callbacks to show up
0597  * or for grace periods to end.
0598  */
0599 static void nocb_gp_wait(struct rcu_data *my_rdp)
0600 {
0601     bool bypass = false;
0602     long bypass_ncbs;
0603     int __maybe_unused cpu = my_rdp->cpu;
0604     unsigned long cur_gp_seq;
0605     unsigned long flags;
0606     bool gotcbs = false;
0607     unsigned long j = jiffies;
0608     bool needwait_gp = false; // This prevents actual uninitialized use.
0609     bool needwake;
0610     bool needwake_gp;
0611     struct rcu_data *rdp, *rdp_toggling = NULL;
0612     struct rcu_node *rnp;
0613     unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
0614     bool wasempty = false;
0615 
0616     /*
0617      * Each pass through the following loop checks for CBs and for the
0618      * nearest grace period (if any) to wait for next.  The CB kthreads
0619      * and the global grace-period kthread are awakened if needed.
0620      */
0621     WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
0622     /*
0623      * An rcu_data structure is removed from the list after its
0624      * CPU is de-offloaded and added to the list before that CPU is
0625      * (re-)offloaded.  If the following loop happens to be referencing
0626      * that rcu_data structure during the time that the corresponding
0627      * CPU is de-offloaded and then immediately re-offloaded, this
0628      * loop's rdp pointer will be carried to the end of the list by
0629      * the resulting pair of list operations.  This can cause the loop
0630      * to skip over some of the rcu_data structures that were supposed
0631      * to have been scanned.  Fortunately a new iteration through the
0632      * entire loop is forced after a given CPU's rcu_data structure
0633      * is added to the list, so the skipped-over rcu_data structures
0634      * won't be ignored for long.
0635      */
0636     list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
0637         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
0638         rcu_nocb_lock_irqsave(rdp, flags);
0639         lockdep_assert_held(&rdp->nocb_lock);
0640         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
0641         if (bypass_ncbs &&
0642             (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
0643              bypass_ncbs > 2 * qhimark)) {
0644             // Bypass full or old, so flush it.
0645             (void)rcu_nocb_try_flush_bypass(rdp, j);
0646             bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
0647         } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
0648             rcu_nocb_unlock_irqrestore(rdp, flags);
0649             continue; /* No callbacks here, try next. */
0650         }
0651         if (bypass_ncbs) {
0652             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0653                         TPS("Bypass"));
0654             bypass = true;
0655         }
0656         rnp = rdp->mynode;
0657 
0658         // Advance callbacks if helpful and low contention.
0659         needwake_gp = false;
0660         if (!rcu_segcblist_restempty(&rdp->cblist,
0661                          RCU_NEXT_READY_TAIL) ||
0662             (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
0663              rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
0664             raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
0665             needwake_gp = rcu_advance_cbs(rnp, rdp);
0666             wasempty = rcu_segcblist_restempty(&rdp->cblist,
0667                                RCU_NEXT_READY_TAIL);
0668             raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
0669         }
0670         // Need to wait on some grace period?
0671         WARN_ON_ONCE(wasempty &&
0672                  !rcu_segcblist_restempty(&rdp->cblist,
0673                               RCU_NEXT_READY_TAIL));
0674         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
0675             if (!needwait_gp ||
0676                 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
0677                 wait_gp_seq = cur_gp_seq;
0678             needwait_gp = true;
0679             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
0680                         TPS("NeedWaitGP"));
0681         }
0682         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
0683             needwake = rdp->nocb_cb_sleep;
0684             WRITE_ONCE(rdp->nocb_cb_sleep, false);
0685             smp_mb(); /* CB invocation -after- GP end. */
0686         } else {
0687             needwake = false;
0688         }
0689         rcu_nocb_unlock_irqrestore(rdp, flags);
0690         if (needwake) {
0691             swake_up_one(&rdp->nocb_cb_wq);
0692             gotcbs = true;
0693         }
0694         if (needwake_gp)
0695             rcu_gp_kthread_wake();
0696     }
0697 
0698     my_rdp->nocb_gp_bypass = bypass;
0699     my_rdp->nocb_gp_gp = needwait_gp;
0700     my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
0701 
0702     if (bypass && !rcu_nocb_poll) {
0703         // At least one child with non-empty ->nocb_bypass, so set
0704         // timer in order to avoid stranding its callbacks.
0705         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
0706                    TPS("WakeBypassIsDeferred"));
0707     }
0708     if (rcu_nocb_poll) {
0709         /* Polling, so trace if first poll in the series. */
0710         if (gotcbs)
0711             trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
0712         if (list_empty(&my_rdp->nocb_head_rdp)) {
0713             raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
0714             if (!my_rdp->nocb_toggling_rdp)
0715                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
0716             raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
0717             /* Wait for any offloading rdp */
0718             nocb_gp_sleep(my_rdp, cpu);
0719         } else {
0720             schedule_timeout_idle(1);
0721         }
0722     } else if (!needwait_gp) {
0723         /* Wait for callbacks to appear. */
0724         nocb_gp_sleep(my_rdp, cpu);
0725     } else {
0726         rnp = my_rdp->mynode;
0727         trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
0728         swait_event_interruptible_exclusive(
0729             rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
0730             rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
0731             !READ_ONCE(my_rdp->nocb_gp_sleep));
0732         trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
0733     }
0734 
0735     if (!rcu_nocb_poll) {
0736         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
0737         // (De-)queue an rdp to/from the group if its nocb state is changing
0738         rdp_toggling = my_rdp->nocb_toggling_rdp;
0739         if (rdp_toggling)
0740             my_rdp->nocb_toggling_rdp = NULL;
0741 
0742         if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
0743             WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
0744             del_timer(&my_rdp->nocb_timer);
0745         }
0746         WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
0747         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
0748     } else {
0749         rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
0750         if (rdp_toggling) {
0751             /*
0752              * Paranoid locking to make sure nocb_toggling_rdp is well
0753              * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
0754              * race with another round of nocb toggling for this rdp.
0755              * Nocb locking should prevent from that already but we stick
0756              * to paranoia, especially in rare path.
0757              */
0758             raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
0759             my_rdp->nocb_toggling_rdp = NULL;
0760             raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
0761         }
0762     }
0763 
0764     if (rdp_toggling) {
0765         bool wake_state = false;
0766         int ret;
0767 
0768         ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
0769         if (ret == 1)
0770             list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
0771         else if (ret == 0)
0772             list_del(&rdp_toggling->nocb_entry_rdp);
0773         if (wake_state)
0774             swake_up_one(&rdp_toggling->nocb_state_wq);
0775     }
0776 
0777     my_rdp->nocb_gp_seq = -1;
0778     WARN_ON(signal_pending(current));
0779 }
0780 
0781 /*
0782  * No-CBs grace-period-wait kthread.  There is one of these per group
0783  * of CPUs, but only once at least one CPU in that group has come online
0784  * at least once since boot.  This kthread checks for newly posted
0785  * callbacks from any of the CPUs it is responsible for, waits for a
0786  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
0787  * that then have callback-invocation work to do.
0788  */
0789 static int rcu_nocb_gp_kthread(void *arg)
0790 {
0791     struct rcu_data *rdp = arg;
0792 
0793     for (;;) {
0794         WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
0795         nocb_gp_wait(rdp);
0796         cond_resched_tasks_rcu_qs();
0797     }
0798     return 0;
0799 }
0800 
0801 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
0802 {
0803     u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
0804 
0805     return rcu_segcblist_test_flags(&rdp->cblist, flags);
0806 }
0807 
0808 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
0809 {
0810     return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
0811 }
0812 
0813 /*
0814  * Invoke any ready callbacks from the corresponding no-CBs CPU,
0815  * then, if there are no more, wait for more to appear.
0816  */
0817 static void nocb_cb_wait(struct rcu_data *rdp)
0818 {
0819     struct rcu_segcblist *cblist = &rdp->cblist;
0820     unsigned long cur_gp_seq;
0821     unsigned long flags;
0822     bool needwake_state = false;
0823     bool needwake_gp = false;
0824     bool can_sleep = true;
0825     struct rcu_node *rnp = rdp->mynode;
0826 
0827     do {
0828         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
0829                             nocb_cb_wait_cond(rdp));
0830 
0831         // VVV Ensure CB invocation follows _sleep test.
0832         if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
0833             WARN_ON(signal_pending(current));
0834             trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
0835         }
0836     } while (!nocb_cb_can_run(rdp));
0837 
0838 
0839     local_irq_save(flags);
0840     rcu_momentary_dyntick_idle();
0841     local_irq_restore(flags);
0842     /*
0843      * Disable BH to provide the expected environment.  Also, when
0844      * transitioning to/from NOCB mode, a self-requeuing callback might
0845      * be invoked from softirq.  A short grace period could cause both
0846      * instances of this callback would execute concurrently.
0847      */
0848     local_bh_disable();
0849     rcu_do_batch(rdp);
0850     local_bh_enable();
0851     lockdep_assert_irqs_enabled();
0852     rcu_nocb_lock_irqsave(rdp, flags);
0853     if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
0854         rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
0855         raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
0856         needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
0857         raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
0858     }
0859 
0860     if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
0861         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
0862             rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
0863             if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
0864                 needwake_state = true;
0865         }
0866         if (rcu_segcblist_ready_cbs(cblist))
0867             can_sleep = false;
0868     } else {
0869         /*
0870          * De-offloading. Clear our flag and notify the de-offload worker.
0871          * We won't touch the callbacks and keep sleeping until we ever
0872          * get re-offloaded.
0873          */
0874         WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
0875         rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
0876         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
0877             needwake_state = true;
0878     }
0879 
0880     WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
0881 
0882     if (rdp->nocb_cb_sleep)
0883         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
0884 
0885     rcu_nocb_unlock_irqrestore(rdp, flags);
0886     if (needwake_gp)
0887         rcu_gp_kthread_wake();
0888 
0889     if (needwake_state)
0890         swake_up_one(&rdp->nocb_state_wq);
0891 }
0892 
0893 /*
0894  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
0895  * nocb_cb_wait() to do the dirty work.
0896  */
0897 static int rcu_nocb_cb_kthread(void *arg)
0898 {
0899     struct rcu_data *rdp = arg;
0900 
0901     // Each pass through this loop does one callback batch, and,
0902     // if there are no more ready callbacks, waits for them.
0903     for (;;) {
0904         nocb_cb_wait(rdp);
0905         cond_resched_tasks_rcu_qs();
0906     }
0907     return 0;
0908 }
0909 
0910 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
0911 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
0912 {
0913     return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
0914 }
0915 
0916 /* Do a deferred wakeup of rcu_nocb_kthread(). */
0917 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
0918                        struct rcu_data *rdp, int level,
0919                        unsigned long flags)
0920     __releases(rdp_gp->nocb_gp_lock)
0921 {
0922     int ndw;
0923     int ret;
0924 
0925     if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
0926         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
0927         return false;
0928     }
0929 
0930     ndw = rdp_gp->nocb_defer_wakeup;
0931     ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
0932     trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
0933 
0934     return ret;
0935 }
0936 
0937 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
0938 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
0939 {
0940     unsigned long flags;
0941     struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
0942 
0943     WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
0944     trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
0945 
0946     raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
0947     smp_mb__after_spinlock(); /* Timer expire before wakeup. */
0948     do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
0949 }
0950 
0951 /*
0952  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
0953  * This means we do an inexact common-case check.  Note that if
0954  * we miss, ->nocb_timer will eventually clean things up.
0955  */
0956 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
0957 {
0958     unsigned long flags;
0959     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
0960 
0961     if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
0962         return false;
0963 
0964     raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
0965     return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
0966 }
0967 
0968 void rcu_nocb_flush_deferred_wakeup(void)
0969 {
0970     do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
0971 }
0972 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
0973 
0974 static int rdp_offload_toggle(struct rcu_data *rdp,
0975                    bool offload, unsigned long flags)
0976     __releases(rdp->nocb_lock)
0977 {
0978     struct rcu_segcblist *cblist = &rdp->cblist;
0979     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
0980     bool wake_gp = false;
0981 
0982     rcu_segcblist_offload(cblist, offload);
0983 
0984     if (rdp->nocb_cb_sleep)
0985         rdp->nocb_cb_sleep = false;
0986     rcu_nocb_unlock_irqrestore(rdp, flags);
0987 
0988     /*
0989      * Ignore former value of nocb_cb_sleep and force wake up as it could
0990      * have been spuriously set to false already.
0991      */
0992     swake_up_one(&rdp->nocb_cb_wq);
0993 
0994     raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
0995     // Queue this rdp for add/del to/from the list to iterate on rcuog
0996     WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
0997     if (rdp_gp->nocb_gp_sleep) {
0998         rdp_gp->nocb_gp_sleep = false;
0999         wake_gp = true;
1000     }
1001     raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1002 
1003     return wake_gp;
1004 }
1005 
1006 static long rcu_nocb_rdp_deoffload(void *arg)
1007 {
1008     struct rcu_data *rdp = arg;
1009     struct rcu_segcblist *cblist = &rdp->cblist;
1010     unsigned long flags;
1011     int wake_gp;
1012     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1013 
1014     /*
1015      * rcu_nocb_rdp_deoffload() may be called directly if
1016      * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1017      * is not online yet.
1018      */
1019     WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1020 
1021     pr_info("De-offloading %d\n", rdp->cpu);
1022 
1023     rcu_nocb_lock_irqsave(rdp, flags);
1024     /*
1025      * Flush once and for all now. This suffices because we are
1026      * running on the target CPU holding ->nocb_lock (thus having
1027      * interrupts disabled), and because rdp_offload_toggle()
1028      * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1029      * Thus future calls to rcu_segcblist_completely_offloaded() will
1030      * return false, which means that future calls to rcu_nocb_try_bypass()
1031      * will refuse to put anything into the bypass.
1032      */
1033     WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
1034     /*
1035      * Start with invoking rcu_core() early. This way if the current thread
1036      * happens to preempt an ongoing call to rcu_core() in the middle,
1037      * leaving some work dismissed because rcu_core() still thinks the rdp is
1038      * completely offloaded, we are guaranteed a nearby future instance of
1039      * rcu_core() to catch up.
1040      */
1041     rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1042     invoke_rcu_core();
1043     wake_gp = rdp_offload_toggle(rdp, false, flags);
1044 
1045     mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1046     if (rdp_gp->nocb_gp_kthread) {
1047         if (wake_gp)
1048             wake_up_process(rdp_gp->nocb_gp_kthread);
1049 
1050         /*
1051          * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1052          * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1053          */
1054         if (!rdp->nocb_cb_kthread) {
1055             rcu_nocb_lock_irqsave(rdp, flags);
1056             rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1057             rcu_nocb_unlock_irqrestore(rdp, flags);
1058         }
1059 
1060         swait_event_exclusive(rdp->nocb_state_wq,
1061                     !rcu_segcblist_test_flags(cblist,
1062                       SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1063     } else {
1064         /*
1065          * No kthread to clear the flags for us or remove the rdp from the nocb list
1066          * to iterate. Do it here instead. Locking doesn't look stricly necessary
1067          * but we stick to paranoia in this rare path.
1068          */
1069         rcu_nocb_lock_irqsave(rdp, flags);
1070         rcu_segcblist_clear_flags(&rdp->cblist,
1071                 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1072         rcu_nocb_unlock_irqrestore(rdp, flags);
1073 
1074         list_del(&rdp->nocb_entry_rdp);
1075     }
1076     mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1077 
1078     /*
1079      * Lock one last time to acquire latest callback updates from kthreads
1080      * so we can later handle callbacks locally without locking.
1081      */
1082     rcu_nocb_lock_irqsave(rdp, flags);
1083     /*
1084      * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1085      * lock is released but how about being paranoid for once?
1086      */
1087     rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1088     /*
1089      * Without SEGCBLIST_LOCKING, we can't use
1090      * rcu_nocb_unlock_irqrestore() anymore.
1091      */
1092     raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1093 
1094     /* Sanity check */
1095     WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1096 
1097 
1098     return 0;
1099 }
1100 
1101 int rcu_nocb_cpu_deoffload(int cpu)
1102 {
1103     struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1104     int ret = 0;
1105 
1106     cpus_read_lock();
1107     mutex_lock(&rcu_state.barrier_mutex);
1108     if (rcu_rdp_is_offloaded(rdp)) {
1109         if (cpu_online(cpu)) {
1110             ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1111             if (!ret)
1112                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1113         } else {
1114             pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
1115             ret = -EINVAL;
1116         }
1117     }
1118     mutex_unlock(&rcu_state.barrier_mutex);
1119     cpus_read_unlock();
1120 
1121     return ret;
1122 }
1123 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1124 
1125 static long rcu_nocb_rdp_offload(void *arg)
1126 {
1127     struct rcu_data *rdp = arg;
1128     struct rcu_segcblist *cblist = &rdp->cblist;
1129     unsigned long flags;
1130     int wake_gp;
1131     struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1132 
1133     WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1134     /*
1135      * For now we only support re-offload, ie: the rdp must have been
1136      * offloaded on boot first.
1137      */
1138     if (!rdp->nocb_gp_rdp)
1139         return -EINVAL;
1140 
1141     if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1142         return -EINVAL;
1143 
1144     pr_info("Offloading %d\n", rdp->cpu);
1145 
1146     /*
1147      * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1148      * is set.
1149      */
1150     raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1151 
1152     /*
1153      * We didn't take the nocb lock while working on the
1154      * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1155      * Every modifications that have been done previously on
1156      * rdp->cblist must be visible remotely by the nocb kthreads
1157      * upon wake up after reading the cblist flags.
1158      *
1159      * The layout against nocb_lock enforces that ordering:
1160      *
1161      *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1162      * -------------------------   ----------------------------
1163      *      WRITE callbacks           rcu_nocb_lock()
1164      *      rcu_nocb_lock()           READ flags
1165      *      WRITE flags               READ callbacks
1166      *      rcu_nocb_unlock()         rcu_nocb_unlock()
1167      */
1168     wake_gp = rdp_offload_toggle(rdp, true, flags);
1169     if (wake_gp)
1170         wake_up_process(rdp_gp->nocb_gp_kthread);
1171     swait_event_exclusive(rdp->nocb_state_wq,
1172                   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1173                   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1174 
1175     /*
1176      * All kthreads are ready to work, we can finally relieve rcu_core() and
1177      * enable nocb bypass.
1178      */
1179     rcu_nocb_lock_irqsave(rdp, flags);
1180     rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1181     rcu_nocb_unlock_irqrestore(rdp, flags);
1182 
1183     return 0;
1184 }
1185 
1186 int rcu_nocb_cpu_offload(int cpu)
1187 {
1188     struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1189     int ret = 0;
1190 
1191     cpus_read_lock();
1192     mutex_lock(&rcu_state.barrier_mutex);
1193     if (!rcu_rdp_is_offloaded(rdp)) {
1194         if (cpu_online(cpu)) {
1195             ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1196             if (!ret)
1197                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1198         } else {
1199             pr_info("NOCB: Can't CB-offload an offline CPU\n");
1200             ret = -EINVAL;
1201         }
1202     }
1203     mutex_unlock(&rcu_state.barrier_mutex);
1204     cpus_read_unlock();
1205 
1206     return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1209 
1210 void __init rcu_init_nohz(void)
1211 {
1212     int cpu;
1213     bool need_rcu_nocb_mask = false;
1214     bool offload_all = false;
1215     struct rcu_data *rdp;
1216 
1217 #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL)
1218     if (!rcu_state.nocb_is_setup) {
1219         need_rcu_nocb_mask = true;
1220         offload_all = true;
1221     }
1222 #endif /* #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) */
1223 
1224 #if defined(CONFIG_NO_HZ_FULL)
1225     if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) {
1226         need_rcu_nocb_mask = true;
1227         offload_all = false; /* NO_HZ_FULL has its own mask. */
1228     }
1229 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1230 
1231     if (need_rcu_nocb_mask) {
1232         if (!cpumask_available(rcu_nocb_mask)) {
1233             if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1234                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1235                 return;
1236             }
1237         }
1238         rcu_state.nocb_is_setup = true;
1239     }
1240 
1241     if (!rcu_state.nocb_is_setup)
1242         return;
1243 
1244 #if defined(CONFIG_NO_HZ_FULL)
1245     if (tick_nohz_full_running)
1246         cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1247 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1248 
1249     if (offload_all)
1250         cpumask_setall(rcu_nocb_mask);
1251 
1252     if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1253         pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1254         cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1255                 rcu_nocb_mask);
1256     }
1257     if (cpumask_empty(rcu_nocb_mask))
1258         pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1259     else
1260         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1261             cpumask_pr_args(rcu_nocb_mask));
1262     if (rcu_nocb_poll)
1263         pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1264 
1265     for_each_cpu(cpu, rcu_nocb_mask) {
1266         rdp = per_cpu_ptr(&rcu_data, cpu);
1267         if (rcu_segcblist_empty(&rdp->cblist))
1268             rcu_segcblist_init(&rdp->cblist);
1269         rcu_segcblist_offload(&rdp->cblist, true);
1270         rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1271         rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1272     }
1273     rcu_organize_nocb_kthreads();
1274 }
1275 
1276 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1277 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1278 {
1279     init_swait_queue_head(&rdp->nocb_cb_wq);
1280     init_swait_queue_head(&rdp->nocb_gp_wq);
1281     init_swait_queue_head(&rdp->nocb_state_wq);
1282     raw_spin_lock_init(&rdp->nocb_lock);
1283     raw_spin_lock_init(&rdp->nocb_bypass_lock);
1284     raw_spin_lock_init(&rdp->nocb_gp_lock);
1285     timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1286     rcu_cblist_init(&rdp->nocb_bypass);
1287     mutex_init(&rdp->nocb_gp_kthread_mutex);
1288 }
1289 
1290 /*
1291  * If the specified CPU is a no-CBs CPU that does not already have its
1292  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1293  * for this CPU's group has not yet been created, spawn it as well.
1294  */
1295 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1296 {
1297     struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1298     struct rcu_data *rdp_gp;
1299     struct task_struct *t;
1300     struct sched_param sp;
1301 
1302     if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1303         return;
1304 
1305     /* If there already is an rcuo kthread, then nothing to do. */
1306     if (rdp->nocb_cb_kthread)
1307         return;
1308 
1309     /* If we didn't spawn the GP kthread first, reorganize! */
1310     sp.sched_priority = kthread_prio;
1311     rdp_gp = rdp->nocb_gp_rdp;
1312     mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1313     if (!rdp_gp->nocb_gp_kthread) {
1314         t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1315                 "rcuog/%d", rdp_gp->cpu);
1316         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1317             mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1318             goto end;
1319         }
1320         WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1321         if (kthread_prio)
1322             sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1323     }
1324     mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1325 
1326     /* Spawn the kthread for this CPU. */
1327     t = kthread_run(rcu_nocb_cb_kthread, rdp,
1328             "rcuo%c/%d", rcu_state.abbr, cpu);
1329     if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1330         goto end;
1331 
1332     if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1333         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1334 
1335     WRITE_ONCE(rdp->nocb_cb_kthread, t);
1336     WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1337     return;
1338 end:
1339     mutex_lock(&rcu_state.barrier_mutex);
1340     if (rcu_rdp_is_offloaded(rdp)) {
1341         rcu_nocb_rdp_deoffload(rdp);
1342         cpumask_clear_cpu(cpu, rcu_nocb_mask);
1343     }
1344     mutex_unlock(&rcu_state.barrier_mutex);
1345 }
1346 
1347 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1348 static int rcu_nocb_gp_stride = -1;
1349 module_param(rcu_nocb_gp_stride, int, 0444);
1350 
1351 /*
1352  * Initialize GP-CB relationships for all no-CBs CPU.
1353  */
1354 static void __init rcu_organize_nocb_kthreads(void)
1355 {
1356     int cpu;
1357     bool firsttime = true;
1358     bool gotnocbs = false;
1359     bool gotnocbscbs = true;
1360     int ls = rcu_nocb_gp_stride;
1361     int nl = 0;  /* Next GP kthread. */
1362     struct rcu_data *rdp;
1363     struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1364 
1365     if (!cpumask_available(rcu_nocb_mask))
1366         return;
1367     if (ls == -1) {
1368         ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1369         rcu_nocb_gp_stride = ls;
1370     }
1371 
1372     /*
1373      * Each pass through this loop sets up one rcu_data structure.
1374      * Should the corresponding CPU come online in the future, then
1375      * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1376      */
1377     for_each_possible_cpu(cpu) {
1378         rdp = per_cpu_ptr(&rcu_data, cpu);
1379         if (rdp->cpu >= nl) {
1380             /* New GP kthread, set up for CBs & next GP. */
1381             gotnocbs = true;
1382             nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1383             rdp_gp = rdp;
1384             INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1385             if (dump_tree) {
1386                 if (!firsttime)
1387                     pr_cont("%s\n", gotnocbscbs
1388                             ? "" : " (self only)");
1389                 gotnocbscbs = false;
1390                 firsttime = false;
1391                 pr_alert("%s: No-CB GP kthread CPU %d:",
1392                      __func__, cpu);
1393             }
1394         } else {
1395             /* Another CB kthread, link to previous GP kthread. */
1396             gotnocbscbs = true;
1397             if (dump_tree)
1398                 pr_cont(" %d", cpu);
1399         }
1400         rdp->nocb_gp_rdp = rdp_gp;
1401         if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1402             list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1403     }
1404     if (gotnocbs && dump_tree)
1405         pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1406 }
1407 
1408 /*
1409  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1410  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1411  */
1412 void rcu_bind_current_to_nocb(void)
1413 {
1414     if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1415         WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1416 }
1417 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1418 
1419 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1420 #ifdef CONFIG_SMP
1421 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1422 {
1423     return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1424 }
1425 #else // #ifdef CONFIG_SMP
1426 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1427 {
1428     return "";
1429 }
1430 #endif // #else #ifdef CONFIG_SMP
1431 
1432 /*
1433  * Dump out nocb grace-period kthread state for the specified rcu_data
1434  * structure.
1435  */
1436 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1437 {
1438     struct rcu_node *rnp = rdp->mynode;
1439 
1440     pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1441         rdp->cpu,
1442         "kK"[!!rdp->nocb_gp_kthread],
1443         "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1444         "dD"[!!rdp->nocb_defer_wakeup],
1445         "tT"[timer_pending(&rdp->nocb_timer)],
1446         "sS"[!!rdp->nocb_gp_sleep],
1447         ".W"[swait_active(&rdp->nocb_gp_wq)],
1448         ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1449         ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1450         ".B"[!!rdp->nocb_gp_bypass],
1451         ".G"[!!rdp->nocb_gp_gp],
1452         (long)rdp->nocb_gp_seq,
1453         rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1454         rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1455         rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1456         show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1457 }
1458 
1459 /* Dump out nocb kthread state for the specified rcu_data structure. */
1460 static void show_rcu_nocb_state(struct rcu_data *rdp)
1461 {
1462     char bufw[20];
1463     char bufr[20];
1464     struct rcu_data *nocb_next_rdp;
1465     struct rcu_segcblist *rsclp = &rdp->cblist;
1466     bool waslocked;
1467     bool wassleep;
1468 
1469     if (rdp->nocb_gp_rdp == rdp)
1470         show_rcu_nocb_gp_state(rdp);
1471 
1472     nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1473                           &rdp->nocb_entry_rdp,
1474                           typeof(*rdp),
1475                           nocb_entry_rdp);
1476 
1477     sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1478     sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1479     pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1480         rdp->cpu, rdp->nocb_gp_rdp->cpu,
1481         nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1482         "kK"[!!rdp->nocb_cb_kthread],
1483         "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1484         "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1485         "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1486         "sS"[!!rdp->nocb_cb_sleep],
1487         ".W"[swait_active(&rdp->nocb_cb_wq)],
1488         jiffies - rdp->nocb_bypass_first,
1489         jiffies - rdp->nocb_nobypass_last,
1490         rdp->nocb_nobypass_count,
1491         ".D"[rcu_segcblist_ready_cbs(rsclp)],
1492         ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1493         rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1494         ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1495         rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1496         ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1497         ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1498         rcu_segcblist_n_cbs(&rdp->cblist),
1499         rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1500         rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1501         show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1502 
1503     /* It is OK for GP kthreads to have GP state. */
1504     if (rdp->nocb_gp_rdp == rdp)
1505         return;
1506 
1507     waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1508     wassleep = swait_active(&rdp->nocb_gp_wq);
1509     if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1510         return;  /* Nothing untoward. */
1511 
1512     pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1513         "lL"[waslocked],
1514         "dD"[!!rdp->nocb_defer_wakeup],
1515         "sS"[!!rdp->nocb_gp_sleep],
1516         ".W"[wassleep]);
1517 }
1518 
1519 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1520 
1521 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1522 {
1523     return 0;
1524 }
1525 
1526 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1527 {
1528     return false;
1529 }
1530 
1531 /* No ->nocb_lock to acquire.  */
1532 static void rcu_nocb_lock(struct rcu_data *rdp)
1533 {
1534 }
1535 
1536 /* No ->nocb_lock to release.  */
1537 static void rcu_nocb_unlock(struct rcu_data *rdp)
1538 {
1539 }
1540 
1541 /* No ->nocb_lock to release.  */
1542 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1543                        unsigned long flags)
1544 {
1545     local_irq_restore(flags);
1546 }
1547 
1548 /* Lockdep check that ->cblist may be safely accessed. */
1549 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1550 {
1551     lockdep_assert_irqs_disabled();
1552 }
1553 
1554 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1555 {
1556 }
1557 
1558 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1559 {
1560     return NULL;
1561 }
1562 
1563 static void rcu_init_one_nocb(struct rcu_node *rnp)
1564 {
1565 }
1566 
1567 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1568                   unsigned long j)
1569 {
1570     return true;
1571 }
1572 
1573 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1574                 bool *was_alldone, unsigned long flags)
1575 {
1576     return false;
1577 }
1578 
1579 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1580                  unsigned long flags)
1581 {
1582     WARN_ON_ONCE(1);  /* Should be dead code! */
1583 }
1584 
1585 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1586 {
1587 }
1588 
1589 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1590 {
1591     return false;
1592 }
1593 
1594 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1595 {
1596     return false;
1597 }
1598 
1599 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1600 {
1601 }
1602 
1603 static void show_rcu_nocb_state(struct rcu_data *rdp)
1604 {
1605 }
1606 
1607 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */