Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 
0003 #include <linux/kernel.h>
0004 #include <linux/irqflags.h>
0005 #include <linux/string.h>
0006 #include <linux/errno.h>
0007 #include <linux/bug.h>
0008 #include "printk_ringbuffer.h"
0009 
0010 /**
0011  * DOC: printk_ringbuffer overview
0012  *
0013  * Data Structure
0014  * --------------
0015  * The printk_ringbuffer is made up of 3 internal ringbuffers:
0016  *
0017  *   desc_ring
0018  *     A ring of descriptors and their meta data (such as sequence number,
0019  *     timestamp, loglevel, etc.) as well as internal state information about
0020  *     the record and logical positions specifying where in the other
0021  *     ringbuffer the text strings are located.
0022  *
0023  *   text_data_ring
0024  *     A ring of data blocks. A data block consists of an unsigned long
0025  *     integer (ID) that maps to a desc_ring index followed by the text
0026  *     string of the record.
0027  *
0028  * The internal state information of a descriptor is the key element to allow
0029  * readers and writers to locklessly synchronize access to the data.
0030  *
0031  * Implementation
0032  * --------------
0033  *
0034  * Descriptor Ring
0035  * ~~~~~~~~~~~~~~~
0036  * The descriptor ring is an array of descriptors. A descriptor contains
0037  * essential meta data to track the data of a printk record using
0038  * blk_lpos structs pointing to associated text data blocks (see
0039  * "Data Rings" below). Each descriptor is assigned an ID that maps
0040  * directly to index values of the descriptor array and has a state. The ID
0041  * and the state are bitwise combined into a single descriptor field named
0042  * @state_var, allowing ID and state to be synchronously and atomically
0043  * updated.
0044  *
0045  * Descriptors have four states:
0046  *
0047  *   reserved
0048  *     A writer is modifying the record.
0049  *
0050  *   committed
0051  *     The record and all its data are written. A writer can reopen the
0052  *     descriptor (transitioning it back to reserved), but in the committed
0053  *     state the data is consistent.
0054  *
0055  *   finalized
0056  *     The record and all its data are complete and available for reading. A
0057  *     writer cannot reopen the descriptor.
0058  *
0059  *   reusable
0060  *     The record exists, but its text and/or meta data may no longer be
0061  *     available.
0062  *
0063  * Querying the @state_var of a record requires providing the ID of the
0064  * descriptor to query. This can yield a possible fifth (pseudo) state:
0065  *
0066  *   miss
0067  *     The descriptor being queried has an unexpected ID.
0068  *
0069  * The descriptor ring has a @tail_id that contains the ID of the oldest
0070  * descriptor and @head_id that contains the ID of the newest descriptor.
0071  *
0072  * When a new descriptor should be created (and the ring is full), the tail
0073  * descriptor is invalidated by first transitioning to the reusable state and
0074  * then invalidating all tail data blocks up to and including the data blocks
0075  * associated with the tail descriptor (for the text ring). Then
0076  * @tail_id is advanced, followed by advancing @head_id. And finally the
0077  * @state_var of the new descriptor is initialized to the new ID and reserved
0078  * state.
0079  *
0080  * The @tail_id can only be advanced if the new @tail_id would be in the
0081  * committed or reusable queried state. This makes it possible that a valid
0082  * sequence number of the tail is always available.
0083  *
0084  * Descriptor Finalization
0085  * ~~~~~~~~~~~~~~~~~~~~~~~
0086  * When a writer calls the commit function prb_commit(), record data is
0087  * fully stored and is consistent within the ringbuffer. However, a writer can
0088  * reopen that record, claiming exclusive access (as with prb_reserve()), and
0089  * modify that record. When finished, the writer must again commit the record.
0090  *
0091  * In order for a record to be made available to readers (and also become
0092  * recyclable for writers), it must be finalized. A finalized record cannot be
0093  * reopened and can never become "unfinalized". Record finalization can occur
0094  * in three different scenarios:
0095  *
0096  *   1) A writer can simultaneously commit and finalize its record by calling
0097  *      prb_final_commit() instead of prb_commit().
0098  *
0099  *   2) When a new record is reserved and the previous record has been
0100  *      committed via prb_commit(), that previous record is automatically
0101  *      finalized.
0102  *
0103  *   3) When a record is committed via prb_commit() and a newer record
0104  *      already exists, the record being committed is automatically finalized.
0105  *
0106  * Data Ring
0107  * ~~~~~~~~~
0108  * The text data ring is a byte array composed of data blocks. Data blocks are
0109  * referenced by blk_lpos structs that point to the logical position of the
0110  * beginning of a data block and the beginning of the next adjacent data
0111  * block. Logical positions are mapped directly to index values of the byte
0112  * array ringbuffer.
0113  *
0114  * Each data block consists of an ID followed by the writer data. The ID is
0115  * the identifier of a descriptor that is associated with the data block. A
0116  * given data block is considered valid if all of the following conditions
0117  * are met:
0118  *
0119  *   1) The descriptor associated with the data block is in the committed
0120  *      or finalized queried state.
0121  *
0122  *   2) The blk_lpos struct within the descriptor associated with the data
0123  *      block references back to the same data block.
0124  *
0125  *   3) The data block is within the head/tail logical position range.
0126  *
0127  * If the writer data of a data block would extend beyond the end of the
0128  * byte array, only the ID of the data block is stored at the logical
0129  * position and the full data block (ID and writer data) is stored at the
0130  * beginning of the byte array. The referencing blk_lpos will point to the
0131  * ID before the wrap and the next data block will be at the logical
0132  * position adjacent the full data block after the wrap.
0133  *
0134  * Data rings have a @tail_lpos that points to the beginning of the oldest
0135  * data block and a @head_lpos that points to the logical position of the
0136  * next (not yet existing) data block.
0137  *
0138  * When a new data block should be created (and the ring is full), tail data
0139  * blocks will first be invalidated by putting their associated descriptors
0140  * into the reusable state and then pushing the @tail_lpos forward beyond
0141  * them. Then the @head_lpos is pushed forward and is associated with a new
0142  * descriptor. If a data block is not valid, the @tail_lpos cannot be
0143  * advanced beyond it.
0144  *
0145  * Info Array
0146  * ~~~~~~~~~~
0147  * The general meta data of printk records are stored in printk_info structs,
0148  * stored in an array with the same number of elements as the descriptor ring.
0149  * Each info corresponds to the descriptor of the same index in the
0150  * descriptor ring. Info validity is confirmed by evaluating the corresponding
0151  * descriptor before and after loading the info.
0152  *
0153  * Usage
0154  * -----
0155  * Here are some simple examples demonstrating writers and readers. For the
0156  * examples a global ringbuffer (test_rb) is available (which is not the
0157  * actual ringbuffer used by printk)::
0158  *
0159  *  DEFINE_PRINTKRB(test_rb, 15, 5);
0160  *
0161  * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
0162  * 1 MiB (2 ^ (15 + 5)) for text data.
0163  *
0164  * Sample writer code::
0165  *
0166  *  const char *textstr = "message text";
0167  *  struct prb_reserved_entry e;
0168  *  struct printk_record r;
0169  *
0170  *  // specify how much to allocate
0171  *  prb_rec_init_wr(&r, strlen(textstr) + 1);
0172  *
0173  *  if (prb_reserve(&e, &test_rb, &r)) {
0174  *      snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
0175  *
0176  *      r.info->text_len = strlen(textstr);
0177  *      r.info->ts_nsec = local_clock();
0178  *      r.info->caller_id = printk_caller_id();
0179  *
0180  *      // commit and finalize the record
0181  *      prb_final_commit(&e);
0182  *  }
0183  *
0184  * Note that additional writer functions are available to extend a record
0185  * after it has been committed but not yet finalized. This can be done as
0186  * long as no new records have been reserved and the caller is the same.
0187  *
0188  * Sample writer code (record extending)::
0189  *
0190  *      // alternate rest of previous example
0191  *
0192  *      r.info->text_len = strlen(textstr);
0193  *      r.info->ts_nsec = local_clock();
0194  *      r.info->caller_id = printk_caller_id();
0195  *
0196  *      // commit the record (but do not finalize yet)
0197  *      prb_commit(&e);
0198  *  }
0199  *
0200  *  ...
0201  *
0202  *  // specify additional 5 bytes text space to extend
0203  *  prb_rec_init_wr(&r, 5);
0204  *
0205  *  // try to extend, but only if it does not exceed 32 bytes
0206  *  if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
0207  *      snprintf(&r.text_buf[r.info->text_len],
0208  *           r.text_buf_size - r.info->text_len, "hello");
0209  *
0210  *      r.info->text_len += 5;
0211  *
0212  *      // commit and finalize the record
0213  *      prb_final_commit(&e);
0214  *  }
0215  *
0216  * Sample reader code::
0217  *
0218  *  struct printk_info info;
0219  *  struct printk_record r;
0220  *  char text_buf[32];
0221  *  u64 seq;
0222  *
0223  *  prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
0224  *
0225  *  prb_for_each_record(0, &test_rb, &seq, &r) {
0226  *      if (info.seq != seq)
0227  *          pr_warn("lost %llu records\n", info.seq - seq);
0228  *
0229  *      if (info.text_len > r.text_buf_size) {
0230  *          pr_warn("record %llu text truncated\n", info.seq);
0231  *          text_buf[r.text_buf_size - 1] = 0;
0232  *      }
0233  *
0234  *      pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
0235  *          &text_buf[0]);
0236  *  }
0237  *
0238  * Note that additional less convenient reader functions are available to
0239  * allow complex record access.
0240  *
0241  * ABA Issues
0242  * ~~~~~~~~~~
0243  * To help avoid ABA issues, descriptors are referenced by IDs (array index
0244  * values combined with tagged bits counting array wraps) and data blocks are
0245  * referenced by logical positions (array index values combined with tagged
0246  * bits counting array wraps). However, on 32-bit systems the number of
0247  * tagged bits is relatively small such that an ABA incident is (at least
0248  * theoretically) possible. For example, if 4 million maximally sized (1KiB)
0249  * printk messages were to occur in NMI context on a 32-bit system, the
0250  * interrupted context would not be able to recognize that the 32-bit integer
0251  * completely wrapped and thus represents a different data block than the one
0252  * the interrupted context expects.
0253  *
0254  * To help combat this possibility, additional state checking is performed
0255  * (such as using cmpxchg() even though set() would suffice). These extra
0256  * checks are commented as such and will hopefully catch any ABA issue that
0257  * a 32-bit system might experience.
0258  *
0259  * Memory Barriers
0260  * ~~~~~~~~~~~~~~~
0261  * Multiple memory barriers are used. To simplify proving correctness and
0262  * generating litmus tests, lines of code related to memory barriers
0263  * (loads, stores, and the associated memory barriers) are labeled::
0264  *
0265  *  LMM(function:letter)
0266  *
0267  * Comments reference the labels using only the "function:letter" part.
0268  *
0269  * The memory barrier pairs and their ordering are:
0270  *
0271  *   desc_reserve:D / desc_reserve:B
0272  *     push descriptor tail (id), then push descriptor head (id)
0273  *
0274  *   desc_reserve:D / data_push_tail:B
0275  *     push data tail (lpos), then set new descriptor reserved (state)
0276  *
0277  *   desc_reserve:D / desc_push_tail:C
0278  *     push descriptor tail (id), then set new descriptor reserved (state)
0279  *
0280  *   desc_reserve:D / prb_first_seq:C
0281  *     push descriptor tail (id), then set new descriptor reserved (state)
0282  *
0283  *   desc_reserve:F / desc_read:D
0284  *     set new descriptor id and reserved (state), then allow writer changes
0285  *
0286  *   data_alloc:A (or data_realloc:A) / desc_read:D
0287  *     set old descriptor reusable (state), then modify new data block area
0288  *
0289  *   data_alloc:A (or data_realloc:A) / data_push_tail:B
0290  *     push data tail (lpos), then modify new data block area
0291  *
0292  *   _prb_commit:B / desc_read:B
0293  *     store writer changes, then set new descriptor committed (state)
0294  *
0295  *   desc_reopen_last:A / _prb_commit:B
0296  *     set descriptor reserved (state), then read descriptor data
0297  *
0298  *   _prb_commit:B / desc_reserve:D
0299  *     set new descriptor committed (state), then check descriptor head (id)
0300  *
0301  *   data_push_tail:D / data_push_tail:A
0302  *     set descriptor reusable (state), then push data tail (lpos)
0303  *
0304  *   desc_push_tail:B / desc_reserve:D
0305  *     set descriptor reusable (state), then push descriptor tail (id)
0306  */
0307 
0308 #define DATA_SIZE(data_ring)        _DATA_SIZE((data_ring)->size_bits)
0309 #define DATA_SIZE_MASK(data_ring)   (DATA_SIZE(data_ring) - 1)
0310 
0311 #define DESCS_COUNT(desc_ring)      _DESCS_COUNT((desc_ring)->count_bits)
0312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
0313 
0314 /* Determine the data array index from a logical position. */
0315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
0316 
0317 /* Determine the desc array index from an ID or sequence number. */
0318 #define DESC_INDEX(desc_ring, n)    ((n) & DESCS_COUNT_MASK(desc_ring))
0319 
0320 /* Determine how many times the data array has wrapped. */
0321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
0322 
0323 /* Determine if a logical position refers to a data-less block. */
0324 #define LPOS_DATALESS(lpos)     ((lpos) & 1UL)
0325 #define BLK_DATALESS(blk)       (LPOS_DATALESS((blk)->begin) && \
0326                      LPOS_DATALESS((blk)->next))
0327 
0328 /* Get the logical position at index 0 of the current wrap. */
0329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
0330 ((lpos) & ~DATA_SIZE_MASK(data_ring))
0331 
0332 /* Get the ID for the same index of the previous wrap as the given ID. */
0333 #define DESC_ID_PREV_WRAP(desc_ring, id) \
0334 DESC_ID((id) - DESCS_COUNT(desc_ring))
0335 
0336 /*
0337  * A data block: mapped directly to the beginning of the data block area
0338  * specified as a logical position within the data ring.
0339  *
0340  * @id:   the ID of the associated descriptor
0341  * @data: the writer data
0342  *
0343  * Note that the size of a data block is only known by its associated
0344  * descriptor.
0345  */
0346 struct prb_data_block {
0347     unsigned long   id;
0348     char        data[];
0349 };
0350 
0351 /*
0352  * Return the descriptor associated with @n. @n can be either a
0353  * descriptor ID or a sequence number.
0354  */
0355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
0356 {
0357     return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
0358 }
0359 
0360 /*
0361  * Return the printk_info associated with @n. @n can be either a
0362  * descriptor ID or a sequence number.
0363  */
0364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
0365 {
0366     return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
0367 }
0368 
0369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
0370                        unsigned long begin_lpos)
0371 {
0372     return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
0373 }
0374 
0375 /*
0376  * Increase the data size to account for data block meta data plus any
0377  * padding so that the adjacent data block is aligned on the ID size.
0378  */
0379 static unsigned int to_blk_size(unsigned int size)
0380 {
0381     struct prb_data_block *db = NULL;
0382 
0383     size += sizeof(*db);
0384     size = ALIGN(size, sizeof(db->id));
0385     return size;
0386 }
0387 
0388 /*
0389  * Sanity checker for reserve size. The ringbuffer code assumes that a data
0390  * block does not exceed the maximum possible size that could fit within the
0391  * ringbuffer. This function provides that basic size check so that the
0392  * assumption is safe.
0393  */
0394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
0395 {
0396     struct prb_data_block *db = NULL;
0397 
0398     if (size == 0)
0399         return true;
0400 
0401     /*
0402      * Ensure the alignment padded size could possibly fit in the data
0403      * array. The largest possible data block must still leave room for
0404      * at least the ID of the next block.
0405      */
0406     size = to_blk_size(size);
0407     if (size > DATA_SIZE(data_ring) - sizeof(db->id))
0408         return false;
0409 
0410     return true;
0411 }
0412 
0413 /* Query the state of a descriptor. */
0414 static enum desc_state get_desc_state(unsigned long id,
0415                       unsigned long state_val)
0416 {
0417     if (id != DESC_ID(state_val))
0418         return desc_miss;
0419 
0420     return DESC_STATE(state_val);
0421 }
0422 
0423 /*
0424  * Get a copy of a specified descriptor and return its queried state. If the
0425  * descriptor is in an inconsistent state (miss or reserved), the caller can
0426  * only expect the descriptor's @state_var field to be valid.
0427  *
0428  * The sequence number and caller_id can be optionally retrieved. Like all
0429  * non-state_var data, they are only valid if the descriptor is in a
0430  * consistent state.
0431  */
0432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
0433                  unsigned long id, struct prb_desc *desc_out,
0434                  u64 *seq_out, u32 *caller_id_out)
0435 {
0436     struct printk_info *info = to_info(desc_ring, id);
0437     struct prb_desc *desc = to_desc(desc_ring, id);
0438     atomic_long_t *state_var = &desc->state_var;
0439     enum desc_state d_state;
0440     unsigned long state_val;
0441 
0442     /* Check the descriptor state. */
0443     state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
0444     d_state = get_desc_state(id, state_val);
0445     if (d_state == desc_miss || d_state == desc_reserved) {
0446         /*
0447          * The descriptor is in an inconsistent state. Set at least
0448          * @state_var so that the caller can see the details of
0449          * the inconsistent state.
0450          */
0451         goto out;
0452     }
0453 
0454     /*
0455      * Guarantee the state is loaded before copying the descriptor
0456      * content. This avoids copying obsolete descriptor content that might
0457      * not apply to the descriptor state. This pairs with _prb_commit:B.
0458      *
0459      * Memory barrier involvement:
0460      *
0461      * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
0462      * from _prb_commit:A.
0463      *
0464      * Relies on:
0465      *
0466      * WMB from _prb_commit:A to _prb_commit:B
0467      *    matching
0468      * RMB from desc_read:A to desc_read:C
0469      */
0470     smp_rmb(); /* LMM(desc_read:B) */
0471 
0472     /*
0473      * Copy the descriptor data. The data is not valid until the
0474      * state has been re-checked. A memcpy() for all of @desc
0475      * cannot be used because of the atomic_t @state_var field.
0476      */
0477     if (desc_out) {
0478         memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
0479                sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
0480     }
0481     if (seq_out)
0482         *seq_out = info->seq; /* also part of desc_read:C */
0483     if (caller_id_out)
0484         *caller_id_out = info->caller_id; /* also part of desc_read:C */
0485 
0486     /*
0487      * 1. Guarantee the descriptor content is loaded before re-checking
0488      *    the state. This avoids reading an obsolete descriptor state
0489      *    that may not apply to the copied content. This pairs with
0490      *    desc_reserve:F.
0491      *
0492      *    Memory barrier involvement:
0493      *
0494      *    If desc_read:C reads from desc_reserve:G, then desc_read:E
0495      *    reads from desc_reserve:F.
0496      *
0497      *    Relies on:
0498      *
0499      *    WMB from desc_reserve:F to desc_reserve:G
0500      *       matching
0501      *    RMB from desc_read:C to desc_read:E
0502      *
0503      * 2. Guarantee the record data is loaded before re-checking the
0504      *    state. This avoids reading an obsolete descriptor state that may
0505      *    not apply to the copied data. This pairs with data_alloc:A and
0506      *    data_realloc:A.
0507      *
0508      *    Memory barrier involvement:
0509      *
0510      *    If copy_data:A reads from data_alloc:B, then desc_read:E
0511      *    reads from desc_make_reusable:A.
0512      *
0513      *    Relies on:
0514      *
0515      *    MB from desc_make_reusable:A to data_alloc:B
0516      *       matching
0517      *    RMB from desc_read:C to desc_read:E
0518      *
0519      *    Note: desc_make_reusable:A and data_alloc:B can be different
0520      *          CPUs. However, the data_alloc:B CPU (which performs the
0521      *          full memory barrier) must have previously seen
0522      *          desc_make_reusable:A.
0523      */
0524     smp_rmb(); /* LMM(desc_read:D) */
0525 
0526     /*
0527      * The data has been copied. Return the current descriptor state,
0528      * which may have changed since the load above.
0529      */
0530     state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
0531     d_state = get_desc_state(id, state_val);
0532 out:
0533     if (desc_out)
0534         atomic_long_set(&desc_out->state_var, state_val);
0535     return d_state;
0536 }
0537 
0538 /*
0539  * Take a specified descriptor out of the finalized state by attempting
0540  * the transition from finalized to reusable. Either this context or some
0541  * other context will have been successful.
0542  */
0543 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
0544                    unsigned long id)
0545 {
0546     unsigned long val_finalized = DESC_SV(id, desc_finalized);
0547     unsigned long val_reusable = DESC_SV(id, desc_reusable);
0548     struct prb_desc *desc = to_desc(desc_ring, id);
0549     atomic_long_t *state_var = &desc->state_var;
0550 
0551     atomic_long_cmpxchg_relaxed(state_var, val_finalized,
0552                     val_reusable); /* LMM(desc_make_reusable:A) */
0553 }
0554 
0555 /*
0556  * Given the text data ring, put the associated descriptor of each
0557  * data block from @lpos_begin until @lpos_end into the reusable state.
0558  *
0559  * If there is any problem making the associated descriptor reusable, either
0560  * the descriptor has not yet been finalized or another writer context has
0561  * already pushed the tail lpos past the problematic data block. Regardless,
0562  * on error the caller can re-load the tail lpos to determine the situation.
0563  */
0564 static bool data_make_reusable(struct printk_ringbuffer *rb,
0565                    unsigned long lpos_begin,
0566                    unsigned long lpos_end,
0567                    unsigned long *lpos_out)
0568 {
0569 
0570     struct prb_data_ring *data_ring = &rb->text_data_ring;
0571     struct prb_desc_ring *desc_ring = &rb->desc_ring;
0572     struct prb_data_block *blk;
0573     enum desc_state d_state;
0574     struct prb_desc desc;
0575     struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
0576     unsigned long id;
0577 
0578     /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
0579     while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
0580         blk = to_block(data_ring, lpos_begin);
0581 
0582         /*
0583          * Load the block ID from the data block. This is a data race
0584          * against a writer that may have newly reserved this data
0585          * area. If the loaded value matches a valid descriptor ID,
0586          * the blk_lpos of that descriptor will be checked to make
0587          * sure it points back to this data block. If the check fails,
0588          * the data area has been recycled by another writer.
0589          */
0590         id = blk->id; /* LMM(data_make_reusable:A) */
0591 
0592         d_state = desc_read(desc_ring, id, &desc,
0593                     NULL, NULL); /* LMM(data_make_reusable:B) */
0594 
0595         switch (d_state) {
0596         case desc_miss:
0597         case desc_reserved:
0598         case desc_committed:
0599             return false;
0600         case desc_finalized:
0601             /*
0602              * This data block is invalid if the descriptor
0603              * does not point back to it.
0604              */
0605             if (blk_lpos->begin != lpos_begin)
0606                 return false;
0607             desc_make_reusable(desc_ring, id);
0608             break;
0609         case desc_reusable:
0610             /*
0611              * This data block is invalid if the descriptor
0612              * does not point back to it.
0613              */
0614             if (blk_lpos->begin != lpos_begin)
0615                 return false;
0616             break;
0617         }
0618 
0619         /* Advance @lpos_begin to the next data block. */
0620         lpos_begin = blk_lpos->next;
0621     }
0622 
0623     *lpos_out = lpos_begin;
0624     return true;
0625 }
0626 
0627 /*
0628  * Advance the data ring tail to at least @lpos. This function puts
0629  * descriptors into the reusable state if the tail is pushed beyond
0630  * their associated data block.
0631  */
0632 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
0633 {
0634     struct prb_data_ring *data_ring = &rb->text_data_ring;
0635     unsigned long tail_lpos_new;
0636     unsigned long tail_lpos;
0637     unsigned long next_lpos;
0638 
0639     /* If @lpos is from a data-less block, there is nothing to do. */
0640     if (LPOS_DATALESS(lpos))
0641         return true;
0642 
0643     /*
0644      * Any descriptor states that have transitioned to reusable due to the
0645      * data tail being pushed to this loaded value will be visible to this
0646      * CPU. This pairs with data_push_tail:D.
0647      *
0648      * Memory barrier involvement:
0649      *
0650      * If data_push_tail:A reads from data_push_tail:D, then this CPU can
0651      * see desc_make_reusable:A.
0652      *
0653      * Relies on:
0654      *
0655      * MB from desc_make_reusable:A to data_push_tail:D
0656      *    matches
0657      * READFROM from data_push_tail:D to data_push_tail:A
0658      *    thus
0659      * READFROM from desc_make_reusable:A to this CPU
0660      */
0661     tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
0662 
0663     /*
0664      * Loop until the tail lpos is at or beyond @lpos. This condition
0665      * may already be satisfied, resulting in no full memory barrier
0666      * from data_push_tail:D being performed. However, since this CPU
0667      * sees the new tail lpos, any descriptor states that transitioned to
0668      * the reusable state must already be visible.
0669      */
0670     while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
0671         /*
0672          * Make all descriptors reusable that are associated with
0673          * data blocks before @lpos.
0674          */
0675         if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
0676             /*
0677              * 1. Guarantee the block ID loaded in
0678              *    data_make_reusable() is performed before
0679              *    reloading the tail lpos. The failed
0680              *    data_make_reusable() may be due to a newly
0681              *    recycled data area causing the tail lpos to
0682              *    have been previously pushed. This pairs with
0683              *    data_alloc:A and data_realloc:A.
0684              *
0685              *    Memory barrier involvement:
0686              *
0687              *    If data_make_reusable:A reads from data_alloc:B,
0688              *    then data_push_tail:C reads from
0689              *    data_push_tail:D.
0690              *
0691              *    Relies on:
0692              *
0693              *    MB from data_push_tail:D to data_alloc:B
0694              *       matching
0695              *    RMB from data_make_reusable:A to
0696              *    data_push_tail:C
0697              *
0698              *    Note: data_push_tail:D and data_alloc:B can be
0699              *          different CPUs. However, the data_alloc:B
0700              *          CPU (which performs the full memory
0701              *          barrier) must have previously seen
0702              *          data_push_tail:D.
0703              *
0704              * 2. Guarantee the descriptor state loaded in
0705              *    data_make_reusable() is performed before
0706              *    reloading the tail lpos. The failed
0707              *    data_make_reusable() may be due to a newly
0708              *    recycled descriptor causing the tail lpos to
0709              *    have been previously pushed. This pairs with
0710              *    desc_reserve:D.
0711              *
0712              *    Memory barrier involvement:
0713              *
0714              *    If data_make_reusable:B reads from
0715              *    desc_reserve:F, then data_push_tail:C reads
0716              *    from data_push_tail:D.
0717              *
0718              *    Relies on:
0719              *
0720              *    MB from data_push_tail:D to desc_reserve:F
0721              *       matching
0722              *    RMB from data_make_reusable:B to
0723              *    data_push_tail:C
0724              *
0725              *    Note: data_push_tail:D and desc_reserve:F can
0726              *          be different CPUs. However, the
0727              *          desc_reserve:F CPU (which performs the
0728              *          full memory barrier) must have previously
0729              *          seen data_push_tail:D.
0730              */
0731             smp_rmb(); /* LMM(data_push_tail:B) */
0732 
0733             tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
0734                             ); /* LMM(data_push_tail:C) */
0735             if (tail_lpos_new == tail_lpos)
0736                 return false;
0737 
0738             /* Another CPU pushed the tail. Try again. */
0739             tail_lpos = tail_lpos_new;
0740             continue;
0741         }
0742 
0743         /*
0744          * Guarantee any descriptor states that have transitioned to
0745          * reusable are stored before pushing the tail lpos. A full
0746          * memory barrier is needed since other CPUs may have made
0747          * the descriptor states reusable. This pairs with
0748          * data_push_tail:A.
0749          */
0750         if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
0751                         next_lpos)) { /* LMM(data_push_tail:D) */
0752             break;
0753         }
0754     }
0755 
0756     return true;
0757 }
0758 
0759 /*
0760  * Advance the desc ring tail. This function advances the tail by one
0761  * descriptor, thus invalidating the oldest descriptor. Before advancing
0762  * the tail, the tail descriptor is made reusable and all data blocks up to
0763  * and including the descriptor's data block are invalidated (i.e. the data
0764  * ring tail is pushed past the data block of the descriptor being made
0765  * reusable).
0766  */
0767 static bool desc_push_tail(struct printk_ringbuffer *rb,
0768                unsigned long tail_id)
0769 {
0770     struct prb_desc_ring *desc_ring = &rb->desc_ring;
0771     enum desc_state d_state;
0772     struct prb_desc desc;
0773 
0774     d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
0775 
0776     switch (d_state) {
0777     case desc_miss:
0778         /*
0779          * If the ID is exactly 1 wrap behind the expected, it is
0780          * in the process of being reserved by another writer and
0781          * must be considered reserved.
0782          */
0783         if (DESC_ID(atomic_long_read(&desc.state_var)) ==
0784             DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
0785             return false;
0786         }
0787 
0788         /*
0789          * The ID has changed. Another writer must have pushed the
0790          * tail and recycled the descriptor already. Success is
0791          * returned because the caller is only interested in the
0792          * specified tail being pushed, which it was.
0793          */
0794         return true;
0795     case desc_reserved:
0796     case desc_committed:
0797         return false;
0798     case desc_finalized:
0799         desc_make_reusable(desc_ring, tail_id);
0800         break;
0801     case desc_reusable:
0802         break;
0803     }
0804 
0805     /*
0806      * Data blocks must be invalidated before their associated
0807      * descriptor can be made available for recycling. Invalidating
0808      * them later is not possible because there is no way to trust
0809      * data blocks once their associated descriptor is gone.
0810      */
0811 
0812     if (!data_push_tail(rb, desc.text_blk_lpos.next))
0813         return false;
0814 
0815     /*
0816      * Check the next descriptor after @tail_id before pushing the tail
0817      * to it because the tail must always be in a finalized or reusable
0818      * state. The implementation of prb_first_seq() relies on this.
0819      *
0820      * A successful read implies that the next descriptor is less than or
0821      * equal to @head_id so there is no risk of pushing the tail past the
0822      * head.
0823      */
0824     d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
0825                 NULL, NULL); /* LMM(desc_push_tail:A) */
0826 
0827     if (d_state == desc_finalized || d_state == desc_reusable) {
0828         /*
0829          * Guarantee any descriptor states that have transitioned to
0830          * reusable are stored before pushing the tail ID. This allows
0831          * verifying the recycled descriptor state. A full memory
0832          * barrier is needed since other CPUs may have made the
0833          * descriptor states reusable. This pairs with desc_reserve:D.
0834          */
0835         atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
0836                     DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
0837     } else {
0838         /*
0839          * Guarantee the last state load from desc_read() is before
0840          * reloading @tail_id in order to see a new tail ID in the
0841          * case that the descriptor has been recycled. This pairs
0842          * with desc_reserve:D.
0843          *
0844          * Memory barrier involvement:
0845          *
0846          * If desc_push_tail:A reads from desc_reserve:F, then
0847          * desc_push_tail:D reads from desc_push_tail:B.
0848          *
0849          * Relies on:
0850          *
0851          * MB from desc_push_tail:B to desc_reserve:F
0852          *    matching
0853          * RMB from desc_push_tail:A to desc_push_tail:D
0854          *
0855          * Note: desc_push_tail:B and desc_reserve:F can be different
0856          *       CPUs. However, the desc_reserve:F CPU (which performs
0857          *       the full memory barrier) must have previously seen
0858          *       desc_push_tail:B.
0859          */
0860         smp_rmb(); /* LMM(desc_push_tail:C) */
0861 
0862         /*
0863          * Re-check the tail ID. The descriptor following @tail_id is
0864          * not in an allowed tail state. But if the tail has since
0865          * been moved by another CPU, then it does not matter.
0866          */
0867         if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
0868             return false;
0869     }
0870 
0871     return true;
0872 }
0873 
0874 /* Reserve a new descriptor, invalidating the oldest if necessary. */
0875 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
0876 {
0877     struct prb_desc_ring *desc_ring = &rb->desc_ring;
0878     unsigned long prev_state_val;
0879     unsigned long id_prev_wrap;
0880     struct prb_desc *desc;
0881     unsigned long head_id;
0882     unsigned long id;
0883 
0884     head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
0885 
0886     do {
0887         id = DESC_ID(head_id + 1);
0888         id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
0889 
0890         /*
0891          * Guarantee the head ID is read before reading the tail ID.
0892          * Since the tail ID is updated before the head ID, this
0893          * guarantees that @id_prev_wrap is never ahead of the tail
0894          * ID. This pairs with desc_reserve:D.
0895          *
0896          * Memory barrier involvement:
0897          *
0898          * If desc_reserve:A reads from desc_reserve:D, then
0899          * desc_reserve:C reads from desc_push_tail:B.
0900          *
0901          * Relies on:
0902          *
0903          * MB from desc_push_tail:B to desc_reserve:D
0904          *    matching
0905          * RMB from desc_reserve:A to desc_reserve:C
0906          *
0907          * Note: desc_push_tail:B and desc_reserve:D can be different
0908          *       CPUs. However, the desc_reserve:D CPU (which performs
0909          *       the full memory barrier) must have previously seen
0910          *       desc_push_tail:B.
0911          */
0912         smp_rmb(); /* LMM(desc_reserve:B) */
0913 
0914         if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
0915                             )) { /* LMM(desc_reserve:C) */
0916             /*
0917              * Make space for the new descriptor by
0918              * advancing the tail.
0919              */
0920             if (!desc_push_tail(rb, id_prev_wrap))
0921                 return false;
0922         }
0923 
0924         /*
0925          * 1. Guarantee the tail ID is read before validating the
0926          *    recycled descriptor state. A read memory barrier is
0927          *    sufficient for this. This pairs with desc_push_tail:B.
0928          *
0929          *    Memory barrier involvement:
0930          *
0931          *    If desc_reserve:C reads from desc_push_tail:B, then
0932          *    desc_reserve:E reads from desc_make_reusable:A.
0933          *
0934          *    Relies on:
0935          *
0936          *    MB from desc_make_reusable:A to desc_push_tail:B
0937          *       matching
0938          *    RMB from desc_reserve:C to desc_reserve:E
0939          *
0940          *    Note: desc_make_reusable:A and desc_push_tail:B can be
0941          *          different CPUs. However, the desc_push_tail:B CPU
0942          *          (which performs the full memory barrier) must have
0943          *          previously seen desc_make_reusable:A.
0944          *
0945          * 2. Guarantee the tail ID is stored before storing the head
0946          *    ID. This pairs with desc_reserve:B.
0947          *
0948          * 3. Guarantee any data ring tail changes are stored before
0949          *    recycling the descriptor. Data ring tail changes can
0950          *    happen via desc_push_tail()->data_push_tail(). A full
0951          *    memory barrier is needed since another CPU may have
0952          *    pushed the data ring tails. This pairs with
0953          *    data_push_tail:B.
0954          *
0955          * 4. Guarantee a new tail ID is stored before recycling the
0956          *    descriptor. A full memory barrier is needed since
0957          *    another CPU may have pushed the tail ID. This pairs
0958          *    with desc_push_tail:C and this also pairs with
0959          *    prb_first_seq:C.
0960          *
0961          * 5. Guarantee the head ID is stored before trying to
0962          *    finalize the previous descriptor. This pairs with
0963          *    _prb_commit:B.
0964          */
0965     } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
0966                       id)); /* LMM(desc_reserve:D) */
0967 
0968     desc = to_desc(desc_ring, id);
0969 
0970     /*
0971      * If the descriptor has been recycled, verify the old state val.
0972      * See "ABA Issues" about why this verification is performed.
0973      */
0974     prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
0975     if (prev_state_val &&
0976         get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
0977         WARN_ON_ONCE(1);
0978         return false;
0979     }
0980 
0981     /*
0982      * Assign the descriptor a new ID and set its state to reserved.
0983      * See "ABA Issues" about why cmpxchg() instead of set() is used.
0984      *
0985      * Guarantee the new descriptor ID and state is stored before making
0986      * any other changes. A write memory barrier is sufficient for this.
0987      * This pairs with desc_read:D.
0988      */
0989     if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
0990             DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
0991         WARN_ON_ONCE(1);
0992         return false;
0993     }
0994 
0995     /* Now data in @desc can be modified: LMM(desc_reserve:G) */
0996 
0997     *id_out = id;
0998     return true;
0999 }
1000 
1001 /* Determine the end of a data block. */
1002 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1003                    unsigned long lpos, unsigned int size)
1004 {
1005     unsigned long begin_lpos;
1006     unsigned long next_lpos;
1007 
1008     begin_lpos = lpos;
1009     next_lpos = lpos + size;
1010 
1011     /* First check if the data block does not wrap. */
1012     if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1013         return next_lpos;
1014 
1015     /* Wrapping data blocks store their data at the beginning. */
1016     return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1017 }
1018 
1019 /*
1020  * Allocate a new data block, invalidating the oldest data block(s)
1021  * if necessary. This function also associates the data block with
1022  * a specified descriptor.
1023  */
1024 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1025             struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1026 {
1027     struct prb_data_ring *data_ring = &rb->text_data_ring;
1028     struct prb_data_block *blk;
1029     unsigned long begin_lpos;
1030     unsigned long next_lpos;
1031 
1032     if (size == 0) {
1033         /* Specify a data-less block. */
1034         blk_lpos->begin = NO_LPOS;
1035         blk_lpos->next = NO_LPOS;
1036         return NULL;
1037     }
1038 
1039     size = to_blk_size(size);
1040 
1041     begin_lpos = atomic_long_read(&data_ring->head_lpos);
1042 
1043     do {
1044         next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1045 
1046         if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1047             /* Failed to allocate, specify a data-less block. */
1048             blk_lpos->begin = FAILED_LPOS;
1049             blk_lpos->next = FAILED_LPOS;
1050             return NULL;
1051         }
1052 
1053         /*
1054          * 1. Guarantee any descriptor states that have transitioned
1055          *    to reusable are stored before modifying the newly
1056          *    allocated data area. A full memory barrier is needed
1057          *    since other CPUs may have made the descriptor states
1058          *    reusable. See data_push_tail:A about why the reusable
1059          *    states are visible. This pairs with desc_read:D.
1060          *
1061          * 2. Guarantee any updated tail lpos is stored before
1062          *    modifying the newly allocated data area. Another CPU may
1063          *    be in data_make_reusable() and is reading a block ID
1064          *    from this area. data_make_reusable() can handle reading
1065          *    a garbage block ID value, but then it must be able to
1066          *    load a new tail lpos. A full memory barrier is needed
1067          *    since other CPUs may have updated the tail lpos. This
1068          *    pairs with data_push_tail:B.
1069          */
1070     } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1071                       next_lpos)); /* LMM(data_alloc:A) */
1072 
1073     blk = to_block(data_ring, begin_lpos);
1074     blk->id = id; /* LMM(data_alloc:B) */
1075 
1076     if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1077         /* Wrapping data blocks store their data at the beginning. */
1078         blk = to_block(data_ring, 0);
1079 
1080         /*
1081          * Store the ID on the wrapped block for consistency.
1082          * The printk_ringbuffer does not actually use it.
1083          */
1084         blk->id = id;
1085     }
1086 
1087     blk_lpos->begin = begin_lpos;
1088     blk_lpos->next = next_lpos;
1089 
1090     return &blk->data[0];
1091 }
1092 
1093 /*
1094  * Try to resize an existing data block associated with the descriptor
1095  * specified by @id. If the resized data block should become wrapped, it
1096  * copies the old data to the new data block. If @size yields a data block
1097  * with the same or less size, the data block is left as is.
1098  *
1099  * Fail if this is not the last allocated data block or if there is not
1100  * enough space or it is not possible make enough space.
1101  *
1102  * Return a pointer to the beginning of the entire data buffer or NULL on
1103  * failure.
1104  */
1105 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1106               struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1107 {
1108     struct prb_data_ring *data_ring = &rb->text_data_ring;
1109     struct prb_data_block *blk;
1110     unsigned long head_lpos;
1111     unsigned long next_lpos;
1112     bool wrapped;
1113 
1114     /* Reallocation only works if @blk_lpos is the newest data block. */
1115     head_lpos = atomic_long_read(&data_ring->head_lpos);
1116     if (head_lpos != blk_lpos->next)
1117         return NULL;
1118 
1119     /* Keep track if @blk_lpos was a wrapping data block. */
1120     wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1121 
1122     size = to_blk_size(size);
1123 
1124     next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1125 
1126     /* If the data block does not increase, there is nothing to do. */
1127     if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1128         if (wrapped)
1129             blk = to_block(data_ring, 0);
1130         else
1131             blk = to_block(data_ring, blk_lpos->begin);
1132         return &blk->data[0];
1133     }
1134 
1135     if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1136         return NULL;
1137 
1138     /* The memory barrier involvement is the same as data_alloc:A. */
1139     if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1140                      next_lpos)) { /* LMM(data_realloc:A) */
1141         return NULL;
1142     }
1143 
1144     blk = to_block(data_ring, blk_lpos->begin);
1145 
1146     if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1147         struct prb_data_block *old_blk = blk;
1148 
1149         /* Wrapping data blocks store their data at the beginning. */
1150         blk = to_block(data_ring, 0);
1151 
1152         /*
1153          * Store the ID on the wrapped block for consistency.
1154          * The printk_ringbuffer does not actually use it.
1155          */
1156         blk->id = id;
1157 
1158         if (!wrapped) {
1159             /*
1160              * Since the allocated space is now in the newly
1161              * created wrapping data block, copy the content
1162              * from the old data block.
1163              */
1164             memcpy(&blk->data[0], &old_blk->data[0],
1165                    (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1166         }
1167     }
1168 
1169     blk_lpos->next = next_lpos;
1170 
1171     return &blk->data[0];
1172 }
1173 
1174 /* Return the number of bytes used by a data block. */
1175 static unsigned int space_used(struct prb_data_ring *data_ring,
1176                    struct prb_data_blk_lpos *blk_lpos)
1177 {
1178     /* Data-less blocks take no space. */
1179     if (BLK_DATALESS(blk_lpos))
1180         return 0;
1181 
1182     if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1183         /* Data block does not wrap. */
1184         return (DATA_INDEX(data_ring, blk_lpos->next) -
1185             DATA_INDEX(data_ring, blk_lpos->begin));
1186     }
1187 
1188     /*
1189      * For wrapping data blocks, the trailing (wasted) space is
1190      * also counted.
1191      */
1192     return (DATA_INDEX(data_ring, blk_lpos->next) +
1193         DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1194 }
1195 
1196 /*
1197  * Given @blk_lpos, return a pointer to the writer data from the data block
1198  * and calculate the size of the data part. A NULL pointer is returned if
1199  * @blk_lpos specifies values that could never be legal.
1200  *
1201  * This function (used by readers) performs strict validation on the lpos
1202  * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1203  * triggered if an internal error is detected.
1204  */
1205 static const char *get_data(struct prb_data_ring *data_ring,
1206                 struct prb_data_blk_lpos *blk_lpos,
1207                 unsigned int *data_size)
1208 {
1209     struct prb_data_block *db;
1210 
1211     /* Data-less data block description. */
1212     if (BLK_DATALESS(blk_lpos)) {
1213         if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1214             *data_size = 0;
1215             return "";
1216         }
1217         return NULL;
1218     }
1219 
1220     /* Regular data block: @begin less than @next and in same wrap. */
1221     if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1222         blk_lpos->begin < blk_lpos->next) {
1223         db = to_block(data_ring, blk_lpos->begin);
1224         *data_size = blk_lpos->next - blk_lpos->begin;
1225 
1226     /* Wrapping data block: @begin is one wrap behind @next. */
1227     } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1228            DATA_WRAPS(data_ring, blk_lpos->next)) {
1229         db = to_block(data_ring, 0);
1230         *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1231 
1232     /* Illegal block description. */
1233     } else {
1234         WARN_ON_ONCE(1);
1235         return NULL;
1236     }
1237 
1238     /* A valid data block will always be aligned to the ID size. */
1239     if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1240         WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1241         return NULL;
1242     }
1243 
1244     /* A valid data block will always have at least an ID. */
1245     if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1246         return NULL;
1247 
1248     /* Subtract block ID space from size to reflect data size. */
1249     *data_size -= sizeof(db->id);
1250 
1251     return &db->data[0];
1252 }
1253 
1254 /*
1255  * Attempt to transition the newest descriptor from committed back to reserved
1256  * so that the record can be modified by a writer again. This is only possible
1257  * if the descriptor is not yet finalized and the provided @caller_id matches.
1258  */
1259 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1260                      u32 caller_id, unsigned long *id_out)
1261 {
1262     unsigned long prev_state_val;
1263     enum desc_state d_state;
1264     struct prb_desc desc;
1265     struct prb_desc *d;
1266     unsigned long id;
1267     u32 cid;
1268 
1269     id = atomic_long_read(&desc_ring->head_id);
1270 
1271     /*
1272      * To reduce unnecessarily reopening, first check if the descriptor
1273      * state and caller ID are correct.
1274      */
1275     d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1276     if (d_state != desc_committed || cid != caller_id)
1277         return NULL;
1278 
1279     d = to_desc(desc_ring, id);
1280 
1281     prev_state_val = DESC_SV(id, desc_committed);
1282 
1283     /*
1284      * Guarantee the reserved state is stored before reading any
1285      * record data. A full memory barrier is needed because @state_var
1286      * modification is followed by reading. This pairs with _prb_commit:B.
1287      *
1288      * Memory barrier involvement:
1289      *
1290      * If desc_reopen_last:A reads from _prb_commit:B, then
1291      * prb_reserve_in_last:A reads from _prb_commit:A.
1292      *
1293      * Relies on:
1294      *
1295      * WMB from _prb_commit:A to _prb_commit:B
1296      *    matching
1297      * MB If desc_reopen_last:A to prb_reserve_in_last:A
1298      */
1299     if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1300             DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1301         return NULL;
1302     }
1303 
1304     *id_out = id;
1305     return d;
1306 }
1307 
1308 /**
1309  * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1310  *                         used by the newest record.
1311  *
1312  * @e:         The entry structure to setup.
1313  * @rb:        The ringbuffer to re-reserve and extend data in.
1314  * @r:         The record structure to allocate buffers for.
1315  * @caller_id: The caller ID of the caller (reserving writer).
1316  * @max_size:  Fail if the extended size would be greater than this.
1317  *
1318  * This is the public function available to writers to re-reserve and extend
1319  * data.
1320  *
1321  * The writer specifies the text size to extend (not the new total size) by
1322  * setting the @text_buf_size field of @r. To ensure proper initialization
1323  * of @r, prb_rec_init_wr() should be used.
1324  *
1325  * This function will fail if @caller_id does not match the caller ID of the
1326  * newest record. In that case the caller must reserve new data using
1327  * prb_reserve().
1328  *
1329  * Context: Any context. Disables local interrupts on success.
1330  * Return: true if text data could be extended, otherwise false.
1331  *
1332  * On success:
1333  *
1334  *   - @r->text_buf points to the beginning of the entire text buffer.
1335  *
1336  *   - @r->text_buf_size is set to the new total size of the buffer.
1337  *
1338  *   - @r->info is not touched so that @r->info->text_len could be used
1339  *     to append the text.
1340  *
1341  *   - prb_record_text_space() can be used on @e to query the new
1342  *     actually used space.
1343  *
1344  * Important: All @r->info fields will already be set with the current values
1345  *            for the record. I.e. @r->info->text_len will be less than
1346  *            @text_buf_size. Writers can use @r->info->text_len to know
1347  *            where concatenation begins and writers should update
1348  *            @r->info->text_len after concatenating.
1349  */
1350 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1351              struct printk_record *r, u32 caller_id, unsigned int max_size)
1352 {
1353     struct prb_desc_ring *desc_ring = &rb->desc_ring;
1354     struct printk_info *info;
1355     unsigned int data_size;
1356     struct prb_desc *d;
1357     unsigned long id;
1358 
1359     local_irq_save(e->irqflags);
1360 
1361     /* Transition the newest descriptor back to the reserved state. */
1362     d = desc_reopen_last(desc_ring, caller_id, &id);
1363     if (!d) {
1364         local_irq_restore(e->irqflags);
1365         goto fail_reopen;
1366     }
1367 
1368     /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1369 
1370     info = to_info(desc_ring, id);
1371 
1372     /*
1373      * Set the @e fields here so that prb_commit() can be used if
1374      * anything fails from now on.
1375      */
1376     e->rb = rb;
1377     e->id = id;
1378 
1379     /*
1380      * desc_reopen_last() checked the caller_id, but there was no
1381      * exclusive access at that point. The descriptor may have
1382      * changed since then.
1383      */
1384     if (caller_id != info->caller_id)
1385         goto fail;
1386 
1387     if (BLK_DATALESS(&d->text_blk_lpos)) {
1388         if (WARN_ON_ONCE(info->text_len != 0)) {
1389             pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1390                      info->text_len);
1391             info->text_len = 0;
1392         }
1393 
1394         if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1395             goto fail;
1396 
1397         if (r->text_buf_size > max_size)
1398             goto fail;
1399 
1400         r->text_buf = data_alloc(rb, r->text_buf_size,
1401                      &d->text_blk_lpos, id);
1402     } else {
1403         if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1404             goto fail;
1405 
1406         /*
1407          * Increase the buffer size to include the original size. If
1408          * the meta data (@text_len) is not sane, use the full data
1409          * block size.
1410          */
1411         if (WARN_ON_ONCE(info->text_len > data_size)) {
1412             pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1413                      info->text_len, data_size);
1414             info->text_len = data_size;
1415         }
1416         r->text_buf_size += info->text_len;
1417 
1418         if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1419             goto fail;
1420 
1421         if (r->text_buf_size > max_size)
1422             goto fail;
1423 
1424         r->text_buf = data_realloc(rb, r->text_buf_size,
1425                        &d->text_blk_lpos, id);
1426     }
1427     if (r->text_buf_size && !r->text_buf)
1428         goto fail;
1429 
1430     r->info = info;
1431 
1432     e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1433 
1434     return true;
1435 fail:
1436     prb_commit(e);
1437     /* prb_commit() re-enabled interrupts. */
1438 fail_reopen:
1439     /* Make it clear to the caller that the re-reserve failed. */
1440     memset(r, 0, sizeof(*r));
1441     return false;
1442 }
1443 
1444 /*
1445  * Attempt to finalize a specified descriptor. If this fails, the descriptor
1446  * is either already final or it will finalize itself when the writer commits.
1447  */
1448 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1449 {
1450     unsigned long prev_state_val = DESC_SV(id, desc_committed);
1451     struct prb_desc *d = to_desc(desc_ring, id);
1452 
1453     atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1454             DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1455 
1456     /* Best effort to remember the last finalized @id. */
1457     atomic_long_set(&desc_ring->last_finalized_id, id);
1458 }
1459 
1460 /**
1461  * prb_reserve() - Reserve space in the ringbuffer.
1462  *
1463  * @e:  The entry structure to setup.
1464  * @rb: The ringbuffer to reserve data in.
1465  * @r:  The record structure to allocate buffers for.
1466  *
1467  * This is the public function available to writers to reserve data.
1468  *
1469  * The writer specifies the text size to reserve by setting the
1470  * @text_buf_size field of @r. To ensure proper initialization of @r,
1471  * prb_rec_init_wr() should be used.
1472  *
1473  * Context: Any context. Disables local interrupts on success.
1474  * Return: true if at least text data could be allocated, otherwise false.
1475  *
1476  * On success, the fields @info and @text_buf of @r will be set by this
1477  * function and should be filled in by the writer before committing. Also
1478  * on success, prb_record_text_space() can be used on @e to query the actual
1479  * space used for the text data block.
1480  *
1481  * Important: @info->text_len needs to be set correctly by the writer in
1482  *            order for data to be readable and/or extended. Its value
1483  *            is initialized to 0.
1484  */
1485 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1486          struct printk_record *r)
1487 {
1488     struct prb_desc_ring *desc_ring = &rb->desc_ring;
1489     struct printk_info *info;
1490     struct prb_desc *d;
1491     unsigned long id;
1492     u64 seq;
1493 
1494     if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1495         goto fail;
1496 
1497     /*
1498      * Descriptors in the reserved state act as blockers to all further
1499      * reservations once the desc_ring has fully wrapped. Disable
1500      * interrupts during the reserve/commit window in order to minimize
1501      * the likelihood of this happening.
1502      */
1503     local_irq_save(e->irqflags);
1504 
1505     if (!desc_reserve(rb, &id)) {
1506         /* Descriptor reservation failures are tracked. */
1507         atomic_long_inc(&rb->fail);
1508         local_irq_restore(e->irqflags);
1509         goto fail;
1510     }
1511 
1512     d = to_desc(desc_ring, id);
1513     info = to_info(desc_ring, id);
1514 
1515     /*
1516      * All @info fields (except @seq) are cleared and must be filled in
1517      * by the writer. Save @seq before clearing because it is used to
1518      * determine the new sequence number.
1519      */
1520     seq = info->seq;
1521     memset(info, 0, sizeof(*info));
1522 
1523     /*
1524      * Set the @e fields here so that prb_commit() can be used if
1525      * text data allocation fails.
1526      */
1527     e->rb = rb;
1528     e->id = id;
1529 
1530     /*
1531      * Initialize the sequence number if it has "never been set".
1532      * Otherwise just increment it by a full wrap.
1533      *
1534      * @seq is considered "never been set" if it has a value of 0,
1535      * _except_ for @infos[0], which was specially setup by the ringbuffer
1536      * initializer and therefore is always considered as set.
1537      *
1538      * See the "Bootstrap" comment block in printk_ringbuffer.h for
1539      * details about how the initializer bootstraps the descriptors.
1540      */
1541     if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1542         info->seq = DESC_INDEX(desc_ring, id);
1543     else
1544         info->seq = seq + DESCS_COUNT(desc_ring);
1545 
1546     /*
1547      * New data is about to be reserved. Once that happens, previous
1548      * descriptors are no longer able to be extended. Finalize the
1549      * previous descriptor now so that it can be made available to
1550      * readers. (For seq==0 there is no previous descriptor.)
1551      */
1552     if (info->seq > 0)
1553         desc_make_final(desc_ring, DESC_ID(id - 1));
1554 
1555     r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1556     /* If text data allocation fails, a data-less record is committed. */
1557     if (r->text_buf_size && !r->text_buf) {
1558         prb_commit(e);
1559         /* prb_commit() re-enabled interrupts. */
1560         goto fail;
1561     }
1562 
1563     r->info = info;
1564 
1565     /* Record full text space used by record. */
1566     e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1567 
1568     return true;
1569 fail:
1570     /* Make it clear to the caller that the reserve failed. */
1571     memset(r, 0, sizeof(*r));
1572     return false;
1573 }
1574 
1575 /* Commit the data (possibly finalizing it) and restore interrupts. */
1576 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1577 {
1578     struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1579     struct prb_desc *d = to_desc(desc_ring, e->id);
1580     unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1581 
1582     /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1583 
1584     /*
1585      * Set the descriptor as committed. See "ABA Issues" about why
1586      * cmpxchg() instead of set() is used.
1587      *
1588      * 1  Guarantee all record data is stored before the descriptor state
1589      *    is stored as committed. A write memory barrier is sufficient
1590      *    for this. This pairs with desc_read:B and desc_reopen_last:A.
1591      *
1592      * 2. Guarantee the descriptor state is stored as committed before
1593      *    re-checking the head ID in order to possibly finalize this
1594      *    descriptor. This pairs with desc_reserve:D.
1595      *
1596      *    Memory barrier involvement:
1597      *
1598      *    If prb_commit:A reads from desc_reserve:D, then
1599      *    desc_make_final:A reads from _prb_commit:B.
1600      *
1601      *    Relies on:
1602      *
1603      *    MB _prb_commit:B to prb_commit:A
1604      *       matching
1605      *    MB desc_reserve:D to desc_make_final:A
1606      */
1607     if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1608             DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1609         WARN_ON_ONCE(1);
1610     }
1611 
1612     /* Restore interrupts, the reserve/commit window is finished. */
1613     local_irq_restore(e->irqflags);
1614 }
1615 
1616 /**
1617  * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1618  *
1619  * @e: The entry containing the reserved data information.
1620  *
1621  * This is the public function available to writers to commit data.
1622  *
1623  * Note that the data is not yet available to readers until it is finalized.
1624  * Finalizing happens automatically when space for the next record is
1625  * reserved.
1626  *
1627  * See prb_final_commit() for a version of this function that finalizes
1628  * immediately.
1629  *
1630  * Context: Any context. Enables local interrupts.
1631  */
1632 void prb_commit(struct prb_reserved_entry *e)
1633 {
1634     struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1635     unsigned long head_id;
1636 
1637     _prb_commit(e, desc_committed);
1638 
1639     /*
1640      * If this descriptor is no longer the head (i.e. a new record has
1641      * been allocated), extending the data for this record is no longer
1642      * allowed and therefore it must be finalized.
1643      */
1644     head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1645     if (head_id != e->id)
1646         desc_make_final(desc_ring, e->id);
1647 }
1648 
1649 /**
1650  * prb_final_commit() - Commit and finalize (previously reserved) data to
1651  *                      the ringbuffer.
1652  *
1653  * @e: The entry containing the reserved data information.
1654  *
1655  * This is the public function available to writers to commit+finalize data.
1656  *
1657  * By finalizing, the data is made immediately available to readers.
1658  *
1659  * This function should only be used if there are no intentions of extending
1660  * this data using prb_reserve_in_last().
1661  *
1662  * Context: Any context. Enables local interrupts.
1663  */
1664 void prb_final_commit(struct prb_reserved_entry *e)
1665 {
1666     struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1667 
1668     _prb_commit(e, desc_finalized);
1669 
1670     /* Best effort to remember the last finalized @id. */
1671     atomic_long_set(&desc_ring->last_finalized_id, e->id);
1672 }
1673 
1674 /*
1675  * Count the number of lines in provided text. All text has at least 1 line
1676  * (even if @text_size is 0). Each '\n' processed is counted as an additional
1677  * line.
1678  */
1679 static unsigned int count_lines(const char *text, unsigned int text_size)
1680 {
1681     unsigned int next_size = text_size;
1682     unsigned int line_count = 1;
1683     const char *next = text;
1684 
1685     while (next_size) {
1686         next = memchr(next, '\n', next_size);
1687         if (!next)
1688             break;
1689         line_count++;
1690         next++;
1691         next_size = text_size - (next - text);
1692     }
1693 
1694     return line_count;
1695 }
1696 
1697 /*
1698  * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1699  * If @line_count is provided, count the number of lines in the data.
1700  *
1701  * This function (used by readers) performs strict validation on the data
1702  * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1703  * triggered if an internal error is detected.
1704  */
1705 static bool copy_data(struct prb_data_ring *data_ring,
1706               struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1707               unsigned int buf_size, unsigned int *line_count)
1708 {
1709     unsigned int data_size;
1710     const char *data;
1711 
1712     /* Caller might not want any data. */
1713     if ((!buf || !buf_size) && !line_count)
1714         return true;
1715 
1716     data = get_data(data_ring, blk_lpos, &data_size);
1717     if (!data)
1718         return false;
1719 
1720     /*
1721      * Actual cannot be less than expected. It can be more than expected
1722      * because of the trailing alignment padding.
1723      *
1724      * Note that invalid @len values can occur because the caller loads
1725      * the value during an allowed data race.
1726      */
1727     if (data_size < (unsigned int)len)
1728         return false;
1729 
1730     /* Caller interested in the line count? */
1731     if (line_count)
1732         *line_count = count_lines(data, len);
1733 
1734     /* Caller interested in the data content? */
1735     if (!buf || !buf_size)
1736         return true;
1737 
1738     data_size = min_t(u16, buf_size, len);
1739 
1740     memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1741     return true;
1742 }
1743 
1744 /*
1745  * This is an extended version of desc_read(). It gets a copy of a specified
1746  * descriptor. However, it also verifies that the record is finalized and has
1747  * the sequence number @seq. On success, 0 is returned.
1748  *
1749  * Error return values:
1750  * -EINVAL: A finalized record with sequence number @seq does not exist.
1751  * -ENOENT: A finalized record with sequence number @seq exists, but its data
1752  *          is not available. This is a valid record, so readers should
1753  *          continue with the next record.
1754  */
1755 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1756                    unsigned long id, u64 seq,
1757                    struct prb_desc *desc_out)
1758 {
1759     struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1760     enum desc_state d_state;
1761     u64 s;
1762 
1763     d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1764 
1765     /*
1766      * An unexpected @id (desc_miss) or @seq mismatch means the record
1767      * does not exist. A descriptor in the reserved or committed state
1768      * means the record does not yet exist for the reader.
1769      */
1770     if (d_state == desc_miss ||
1771         d_state == desc_reserved ||
1772         d_state == desc_committed ||
1773         s != seq) {
1774         return -EINVAL;
1775     }
1776 
1777     /*
1778      * A descriptor in the reusable state may no longer have its data
1779      * available; report it as existing but with lost data. Or the record
1780      * may actually be a record with lost data.
1781      */
1782     if (d_state == desc_reusable ||
1783         (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1784         return -ENOENT;
1785     }
1786 
1787     return 0;
1788 }
1789 
1790 /*
1791  * Copy the ringbuffer data from the record with @seq to the provided
1792  * @r buffer. On success, 0 is returned.
1793  *
1794  * See desc_read_finalized_seq() for error return values.
1795  */
1796 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1797             struct printk_record *r, unsigned int *line_count)
1798 {
1799     struct prb_desc_ring *desc_ring = &rb->desc_ring;
1800     struct printk_info *info = to_info(desc_ring, seq);
1801     struct prb_desc *rdesc = to_desc(desc_ring, seq);
1802     atomic_long_t *state_var = &rdesc->state_var;
1803     struct prb_desc desc;
1804     unsigned long id;
1805     int err;
1806 
1807     /* Extract the ID, used to specify the descriptor to read. */
1808     id = DESC_ID(atomic_long_read(state_var));
1809 
1810     /* Get a local copy of the correct descriptor (if available). */
1811     err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1812 
1813     /*
1814      * If @r is NULL, the caller is only interested in the availability
1815      * of the record.
1816      */
1817     if (err || !r)
1818         return err;
1819 
1820     /* If requested, copy meta data. */
1821     if (r->info)
1822         memcpy(r->info, info, sizeof(*(r->info)));
1823 
1824     /* Copy text data. If it fails, this is a data-less record. */
1825     if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1826                r->text_buf, r->text_buf_size, line_count)) {
1827         return -ENOENT;
1828     }
1829 
1830     /* Ensure the record is still finalized and has the same @seq. */
1831     return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1832 }
1833 
1834 /* Get the sequence number of the tail descriptor. */
1835 static u64 prb_first_seq(struct printk_ringbuffer *rb)
1836 {
1837     struct prb_desc_ring *desc_ring = &rb->desc_ring;
1838     enum desc_state d_state;
1839     struct prb_desc desc;
1840     unsigned long id;
1841     u64 seq;
1842 
1843     for (;;) {
1844         id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1845 
1846         d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1847 
1848         /*
1849          * This loop will not be infinite because the tail is
1850          * _always_ in the finalized or reusable state.
1851          */
1852         if (d_state == desc_finalized || d_state == desc_reusable)
1853             break;
1854 
1855         /*
1856          * Guarantee the last state load from desc_read() is before
1857          * reloading @tail_id in order to see a new tail in the case
1858          * that the descriptor has been recycled. This pairs with
1859          * desc_reserve:D.
1860          *
1861          * Memory barrier involvement:
1862          *
1863          * If prb_first_seq:B reads from desc_reserve:F, then
1864          * prb_first_seq:A reads from desc_push_tail:B.
1865          *
1866          * Relies on:
1867          *
1868          * MB from desc_push_tail:B to desc_reserve:F
1869          *    matching
1870          * RMB prb_first_seq:B to prb_first_seq:A
1871          */
1872         smp_rmb(); /* LMM(prb_first_seq:C) */
1873     }
1874 
1875     return seq;
1876 }
1877 
1878 /*
1879  * Non-blocking read of a record. Updates @seq to the last finalized record
1880  * (which may have no data available).
1881  *
1882  * See the description of prb_read_valid() and prb_read_valid_info()
1883  * for details.
1884  */
1885 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1886                 struct printk_record *r, unsigned int *line_count)
1887 {
1888     u64 tail_seq;
1889     int err;
1890 
1891     while ((err = prb_read(rb, *seq, r, line_count))) {
1892         tail_seq = prb_first_seq(rb);
1893 
1894         if (*seq < tail_seq) {
1895             /*
1896              * Behind the tail. Catch up and try again. This
1897              * can happen for -ENOENT and -EINVAL cases.
1898              */
1899             *seq = tail_seq;
1900 
1901         } else if (err == -ENOENT) {
1902             /* Record exists, but no data available. Skip. */
1903             (*seq)++;
1904 
1905         } else {
1906             /* Non-existent/non-finalized record. Must stop. */
1907             return false;
1908         }
1909     }
1910 
1911     return true;
1912 }
1913 
1914 /**
1915  * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1916  *                    the next available record.
1917  *
1918  * @rb:  The ringbuffer to read from.
1919  * @seq: The sequence number of the record to read.
1920  * @r:   A record data buffer to store the read record to.
1921  *
1922  * This is the public function available to readers to read a record.
1923  *
1924  * The reader provides the @info and @text_buf buffers of @r to be
1925  * filled in. Any of the buffer pointers can be set to NULL if the reader
1926  * is not interested in that data. To ensure proper initialization of @r,
1927  * prb_rec_init_rd() should be used.
1928  *
1929  * Context: Any context.
1930  * Return: true if a record was read, otherwise false.
1931  *
1932  * On success, the reader must check r->info.seq to see which record was
1933  * actually read. This allows the reader to detect dropped records.
1934  *
1935  * Failure means @seq refers to a not yet written record.
1936  */
1937 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1938             struct printk_record *r)
1939 {
1940     return _prb_read_valid(rb, &seq, r, NULL);
1941 }
1942 
1943 /**
1944  * prb_read_valid_info() - Non-blocking read of meta data for a requested
1945  *                         record or (if gone) the next available record.
1946  *
1947  * @rb:         The ringbuffer to read from.
1948  * @seq:        The sequence number of the record to read.
1949  * @info:       A buffer to store the read record meta data to.
1950  * @line_count: A buffer to store the number of lines in the record text.
1951  *
1952  * This is the public function available to readers to read only the
1953  * meta data of a record.
1954  *
1955  * The reader provides the @info, @line_count buffers to be filled in.
1956  * Either of the buffer pointers can be set to NULL if the reader is not
1957  * interested in that data.
1958  *
1959  * Context: Any context.
1960  * Return: true if a record's meta data was read, otherwise false.
1961  *
1962  * On success, the reader must check info->seq to see which record meta data
1963  * was actually read. This allows the reader to detect dropped records.
1964  *
1965  * Failure means @seq refers to a not yet written record.
1966  */
1967 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1968              struct printk_info *info, unsigned int *line_count)
1969 {
1970     struct printk_record r;
1971 
1972     prb_rec_init_rd(&r, info, NULL, 0);
1973 
1974     return _prb_read_valid(rb, &seq, &r, line_count);
1975 }
1976 
1977 /**
1978  * prb_first_valid_seq() - Get the sequence number of the oldest available
1979  *                         record.
1980  *
1981  * @rb: The ringbuffer to get the sequence number from.
1982  *
1983  * This is the public function available to readers to see what the
1984  * first/oldest valid sequence number is.
1985  *
1986  * This provides readers a starting point to begin iterating the ringbuffer.
1987  *
1988  * Context: Any context.
1989  * Return: The sequence number of the first/oldest record or, if the
1990  *         ringbuffer is empty, 0 is returned.
1991  */
1992 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1993 {
1994     u64 seq = 0;
1995 
1996     if (!_prb_read_valid(rb, &seq, NULL, NULL))
1997         return 0;
1998 
1999     return seq;
2000 }
2001 
2002 /**
2003  * prb_next_seq() - Get the sequence number after the last available record.
2004  *
2005  * @rb:  The ringbuffer to get the sequence number from.
2006  *
2007  * This is the public function available to readers to see what the next
2008  * newest sequence number available to readers will be.
2009  *
2010  * This provides readers a sequence number to jump to if all currently
2011  * available records should be skipped.
2012  *
2013  * Context: Any context.
2014  * Return: The sequence number of the next newest (not yet available) record
2015  *         for readers.
2016  */
2017 u64 prb_next_seq(struct printk_ringbuffer *rb)
2018 {
2019     struct prb_desc_ring *desc_ring = &rb->desc_ring;
2020     enum desc_state d_state;
2021     unsigned long id;
2022     u64 seq;
2023 
2024     /* Check if the cached @id still points to a valid @seq. */
2025     id = atomic_long_read(&desc_ring->last_finalized_id);
2026     d_state = desc_read(desc_ring, id, NULL, &seq, NULL);
2027 
2028     if (d_state == desc_finalized || d_state == desc_reusable) {
2029         /*
2030          * Begin searching after the last finalized record.
2031          *
2032          * On 0, the search must begin at 0 because of hack#2
2033          * of the bootstrapping phase it is not known if a
2034          * record at index 0 exists.
2035          */
2036         if (seq != 0)
2037             seq++;
2038     } else {
2039         /*
2040          * The information about the last finalized sequence number
2041          * has gone. It should happen only when there is a flood of
2042          * new messages and the ringbuffer is rapidly recycled.
2043          * Give up and start from the beginning.
2044          */
2045         seq = 0;
2046     }
2047 
2048     /*
2049      * The information about the last finalized @seq might be inaccurate.
2050      * Search forward to find the current one.
2051      */
2052     while (_prb_read_valid(rb, &seq, NULL, NULL))
2053         seq++;
2054 
2055     return seq;
2056 }
2057 
2058 /**
2059  * prb_init() - Initialize a ringbuffer to use provided external buffers.
2060  *
2061  * @rb:       The ringbuffer to initialize.
2062  * @text_buf: The data buffer for text data.
2063  * @textbits: The size of @text_buf as a power-of-2 value.
2064  * @descs:    The descriptor buffer for ringbuffer records.
2065  * @descbits: The count of @descs items as a power-of-2 value.
2066  * @infos:    The printk_info buffer for ringbuffer records.
2067  *
2068  * This is the public function available to writers to setup a ringbuffer
2069  * during runtime using provided buffers.
2070  *
2071  * This must match the initialization of DEFINE_PRINTKRB().
2072  *
2073  * Context: Any context.
2074  */
2075 void prb_init(struct printk_ringbuffer *rb,
2076           char *text_buf, unsigned int textbits,
2077           struct prb_desc *descs, unsigned int descbits,
2078           struct printk_info *infos)
2079 {
2080     memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2081     memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2082 
2083     rb->desc_ring.count_bits = descbits;
2084     rb->desc_ring.descs = descs;
2085     rb->desc_ring.infos = infos;
2086     atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2087     atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2088     atomic_long_set(&rb->desc_ring.last_finalized_id, DESC0_ID(descbits));
2089 
2090     rb->text_data_ring.size_bits = textbits;
2091     rb->text_data_ring.data = text_buf;
2092     atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2093     atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2094 
2095     atomic_long_set(&rb->fail, 0);
2096 
2097     atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2098     descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2099     descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2100 
2101     infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2102     infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2103 }
2104 
2105 /**
2106  * prb_record_text_space() - Query the full actual used ringbuffer space for
2107  *                           the text data of a reserved entry.
2108  *
2109  * @e: The successfully reserved entry to query.
2110  *
2111  * This is the public function available to writers to see how much actual
2112  * space is used in the ringbuffer to store the text data of the specified
2113  * entry.
2114  *
2115  * This function is only valid if @e has been successfully reserved using
2116  * prb_reserve().
2117  *
2118  * Context: Any context.
2119  * Return: The size in bytes used by the text data of the associated record.
2120  */
2121 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2122 {
2123     return e->text_space;
2124 }