![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0 0002 0003 #include <linux/kernel.h> 0004 #include <linux/irqflags.h> 0005 #include <linux/string.h> 0006 #include <linux/errno.h> 0007 #include <linux/bug.h> 0008 #include "printk_ringbuffer.h" 0009 0010 /** 0011 * DOC: printk_ringbuffer overview 0012 * 0013 * Data Structure 0014 * -------------- 0015 * The printk_ringbuffer is made up of 3 internal ringbuffers: 0016 * 0017 * desc_ring 0018 * A ring of descriptors and their meta data (such as sequence number, 0019 * timestamp, loglevel, etc.) as well as internal state information about 0020 * the record and logical positions specifying where in the other 0021 * ringbuffer the text strings are located. 0022 * 0023 * text_data_ring 0024 * A ring of data blocks. A data block consists of an unsigned long 0025 * integer (ID) that maps to a desc_ring index followed by the text 0026 * string of the record. 0027 * 0028 * The internal state information of a descriptor is the key element to allow 0029 * readers and writers to locklessly synchronize access to the data. 0030 * 0031 * Implementation 0032 * -------------- 0033 * 0034 * Descriptor Ring 0035 * ~~~~~~~~~~~~~~~ 0036 * The descriptor ring is an array of descriptors. A descriptor contains 0037 * essential meta data to track the data of a printk record using 0038 * blk_lpos structs pointing to associated text data blocks (see 0039 * "Data Rings" below). Each descriptor is assigned an ID that maps 0040 * directly to index values of the descriptor array and has a state. The ID 0041 * and the state are bitwise combined into a single descriptor field named 0042 * @state_var, allowing ID and state to be synchronously and atomically 0043 * updated. 0044 * 0045 * Descriptors have four states: 0046 * 0047 * reserved 0048 * A writer is modifying the record. 0049 * 0050 * committed 0051 * The record and all its data are written. A writer can reopen the 0052 * descriptor (transitioning it back to reserved), but in the committed 0053 * state the data is consistent. 0054 * 0055 * finalized 0056 * The record and all its data are complete and available for reading. A 0057 * writer cannot reopen the descriptor. 0058 * 0059 * reusable 0060 * The record exists, but its text and/or meta data may no longer be 0061 * available. 0062 * 0063 * Querying the @state_var of a record requires providing the ID of the 0064 * descriptor to query. This can yield a possible fifth (pseudo) state: 0065 * 0066 * miss 0067 * The descriptor being queried has an unexpected ID. 0068 * 0069 * The descriptor ring has a @tail_id that contains the ID of the oldest 0070 * descriptor and @head_id that contains the ID of the newest descriptor. 0071 * 0072 * When a new descriptor should be created (and the ring is full), the tail 0073 * descriptor is invalidated by first transitioning to the reusable state and 0074 * then invalidating all tail data blocks up to and including the data blocks 0075 * associated with the tail descriptor (for the text ring). Then 0076 * @tail_id is advanced, followed by advancing @head_id. And finally the 0077 * @state_var of the new descriptor is initialized to the new ID and reserved 0078 * state. 0079 * 0080 * The @tail_id can only be advanced if the new @tail_id would be in the 0081 * committed or reusable queried state. This makes it possible that a valid 0082 * sequence number of the tail is always available. 0083 * 0084 * Descriptor Finalization 0085 * ~~~~~~~~~~~~~~~~~~~~~~~ 0086 * When a writer calls the commit function prb_commit(), record data is 0087 * fully stored and is consistent within the ringbuffer. However, a writer can 0088 * reopen that record, claiming exclusive access (as with prb_reserve()), and 0089 * modify that record. When finished, the writer must again commit the record. 0090 * 0091 * In order for a record to be made available to readers (and also become 0092 * recyclable for writers), it must be finalized. A finalized record cannot be 0093 * reopened and can never become "unfinalized". Record finalization can occur 0094 * in three different scenarios: 0095 * 0096 * 1) A writer can simultaneously commit and finalize its record by calling 0097 * prb_final_commit() instead of prb_commit(). 0098 * 0099 * 2) When a new record is reserved and the previous record has been 0100 * committed via prb_commit(), that previous record is automatically 0101 * finalized. 0102 * 0103 * 3) When a record is committed via prb_commit() and a newer record 0104 * already exists, the record being committed is automatically finalized. 0105 * 0106 * Data Ring 0107 * ~~~~~~~~~ 0108 * The text data ring is a byte array composed of data blocks. Data blocks are 0109 * referenced by blk_lpos structs that point to the logical position of the 0110 * beginning of a data block and the beginning of the next adjacent data 0111 * block. Logical positions are mapped directly to index values of the byte 0112 * array ringbuffer. 0113 * 0114 * Each data block consists of an ID followed by the writer data. The ID is 0115 * the identifier of a descriptor that is associated with the data block. A 0116 * given data block is considered valid if all of the following conditions 0117 * are met: 0118 * 0119 * 1) The descriptor associated with the data block is in the committed 0120 * or finalized queried state. 0121 * 0122 * 2) The blk_lpos struct within the descriptor associated with the data 0123 * block references back to the same data block. 0124 * 0125 * 3) The data block is within the head/tail logical position range. 0126 * 0127 * If the writer data of a data block would extend beyond the end of the 0128 * byte array, only the ID of the data block is stored at the logical 0129 * position and the full data block (ID and writer data) is stored at the 0130 * beginning of the byte array. The referencing blk_lpos will point to the 0131 * ID before the wrap and the next data block will be at the logical 0132 * position adjacent the full data block after the wrap. 0133 * 0134 * Data rings have a @tail_lpos that points to the beginning of the oldest 0135 * data block and a @head_lpos that points to the logical position of the 0136 * next (not yet existing) data block. 0137 * 0138 * When a new data block should be created (and the ring is full), tail data 0139 * blocks will first be invalidated by putting their associated descriptors 0140 * into the reusable state and then pushing the @tail_lpos forward beyond 0141 * them. Then the @head_lpos is pushed forward and is associated with a new 0142 * descriptor. If a data block is not valid, the @tail_lpos cannot be 0143 * advanced beyond it. 0144 * 0145 * Info Array 0146 * ~~~~~~~~~~ 0147 * The general meta data of printk records are stored in printk_info structs, 0148 * stored in an array with the same number of elements as the descriptor ring. 0149 * Each info corresponds to the descriptor of the same index in the 0150 * descriptor ring. Info validity is confirmed by evaluating the corresponding 0151 * descriptor before and after loading the info. 0152 * 0153 * Usage 0154 * ----- 0155 * Here are some simple examples demonstrating writers and readers. For the 0156 * examples a global ringbuffer (test_rb) is available (which is not the 0157 * actual ringbuffer used by printk):: 0158 * 0159 * DEFINE_PRINTKRB(test_rb, 15, 5); 0160 * 0161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of 0162 * 1 MiB (2 ^ (15 + 5)) for text data. 0163 * 0164 * Sample writer code:: 0165 * 0166 * const char *textstr = "message text"; 0167 * struct prb_reserved_entry e; 0168 * struct printk_record r; 0169 * 0170 * // specify how much to allocate 0171 * prb_rec_init_wr(&r, strlen(textstr) + 1); 0172 * 0173 * if (prb_reserve(&e, &test_rb, &r)) { 0174 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr); 0175 * 0176 * r.info->text_len = strlen(textstr); 0177 * r.info->ts_nsec = local_clock(); 0178 * r.info->caller_id = printk_caller_id(); 0179 * 0180 * // commit and finalize the record 0181 * prb_final_commit(&e); 0182 * } 0183 * 0184 * Note that additional writer functions are available to extend a record 0185 * after it has been committed but not yet finalized. This can be done as 0186 * long as no new records have been reserved and the caller is the same. 0187 * 0188 * Sample writer code (record extending):: 0189 * 0190 * // alternate rest of previous example 0191 * 0192 * r.info->text_len = strlen(textstr); 0193 * r.info->ts_nsec = local_clock(); 0194 * r.info->caller_id = printk_caller_id(); 0195 * 0196 * // commit the record (but do not finalize yet) 0197 * prb_commit(&e); 0198 * } 0199 * 0200 * ... 0201 * 0202 * // specify additional 5 bytes text space to extend 0203 * prb_rec_init_wr(&r, 5); 0204 * 0205 * // try to extend, but only if it does not exceed 32 bytes 0206 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) { 0207 * snprintf(&r.text_buf[r.info->text_len], 0208 * r.text_buf_size - r.info->text_len, "hello"); 0209 * 0210 * r.info->text_len += 5; 0211 * 0212 * // commit and finalize the record 0213 * prb_final_commit(&e); 0214 * } 0215 * 0216 * Sample reader code:: 0217 * 0218 * struct printk_info info; 0219 * struct printk_record r; 0220 * char text_buf[32]; 0221 * u64 seq; 0222 * 0223 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf)); 0224 * 0225 * prb_for_each_record(0, &test_rb, &seq, &r) { 0226 * if (info.seq != seq) 0227 * pr_warn("lost %llu records\n", info.seq - seq); 0228 * 0229 * if (info.text_len > r.text_buf_size) { 0230 * pr_warn("record %llu text truncated\n", info.seq); 0231 * text_buf[r.text_buf_size - 1] = 0; 0232 * } 0233 * 0234 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec, 0235 * &text_buf[0]); 0236 * } 0237 * 0238 * Note that additional less convenient reader functions are available to 0239 * allow complex record access. 0240 * 0241 * ABA Issues 0242 * ~~~~~~~~~~ 0243 * To help avoid ABA issues, descriptors are referenced by IDs (array index 0244 * values combined with tagged bits counting array wraps) and data blocks are 0245 * referenced by logical positions (array index values combined with tagged 0246 * bits counting array wraps). However, on 32-bit systems the number of 0247 * tagged bits is relatively small such that an ABA incident is (at least 0248 * theoretically) possible. For example, if 4 million maximally sized (1KiB) 0249 * printk messages were to occur in NMI context on a 32-bit system, the 0250 * interrupted context would not be able to recognize that the 32-bit integer 0251 * completely wrapped and thus represents a different data block than the one 0252 * the interrupted context expects. 0253 * 0254 * To help combat this possibility, additional state checking is performed 0255 * (such as using cmpxchg() even though set() would suffice). These extra 0256 * checks are commented as such and will hopefully catch any ABA issue that 0257 * a 32-bit system might experience. 0258 * 0259 * Memory Barriers 0260 * ~~~~~~~~~~~~~~~ 0261 * Multiple memory barriers are used. To simplify proving correctness and 0262 * generating litmus tests, lines of code related to memory barriers 0263 * (loads, stores, and the associated memory barriers) are labeled:: 0264 * 0265 * LMM(function:letter) 0266 * 0267 * Comments reference the labels using only the "function:letter" part. 0268 * 0269 * The memory barrier pairs and their ordering are: 0270 * 0271 * desc_reserve:D / desc_reserve:B 0272 * push descriptor tail (id), then push descriptor head (id) 0273 * 0274 * desc_reserve:D / data_push_tail:B 0275 * push data tail (lpos), then set new descriptor reserved (state) 0276 * 0277 * desc_reserve:D / desc_push_tail:C 0278 * push descriptor tail (id), then set new descriptor reserved (state) 0279 * 0280 * desc_reserve:D / prb_first_seq:C 0281 * push descriptor tail (id), then set new descriptor reserved (state) 0282 * 0283 * desc_reserve:F / desc_read:D 0284 * set new descriptor id and reserved (state), then allow writer changes 0285 * 0286 * data_alloc:A (or data_realloc:A) / desc_read:D 0287 * set old descriptor reusable (state), then modify new data block area 0288 * 0289 * data_alloc:A (or data_realloc:A) / data_push_tail:B 0290 * push data tail (lpos), then modify new data block area 0291 * 0292 * _prb_commit:B / desc_read:B 0293 * store writer changes, then set new descriptor committed (state) 0294 * 0295 * desc_reopen_last:A / _prb_commit:B 0296 * set descriptor reserved (state), then read descriptor data 0297 * 0298 * _prb_commit:B / desc_reserve:D 0299 * set new descriptor committed (state), then check descriptor head (id) 0300 * 0301 * data_push_tail:D / data_push_tail:A 0302 * set descriptor reusable (state), then push data tail (lpos) 0303 * 0304 * desc_push_tail:B / desc_reserve:D 0305 * set descriptor reusable (state), then push descriptor tail (id) 0306 */ 0307 0308 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits) 0309 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1) 0310 0311 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits) 0312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1) 0313 0314 /* Determine the data array index from a logical position. */ 0315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring)) 0316 0317 /* Determine the desc array index from an ID or sequence number. */ 0318 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring)) 0319 0320 /* Determine how many times the data array has wrapped. */ 0321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits) 0322 0323 /* Determine if a logical position refers to a data-less block. */ 0324 #define LPOS_DATALESS(lpos) ((lpos) & 1UL) 0325 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \ 0326 LPOS_DATALESS((blk)->next)) 0327 0328 /* Get the logical position at index 0 of the current wrap. */ 0329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \ 0330 ((lpos) & ~DATA_SIZE_MASK(data_ring)) 0331 0332 /* Get the ID for the same index of the previous wrap as the given ID. */ 0333 #define DESC_ID_PREV_WRAP(desc_ring, id) \ 0334 DESC_ID((id) - DESCS_COUNT(desc_ring)) 0335 0336 /* 0337 * A data block: mapped directly to the beginning of the data block area 0338 * specified as a logical position within the data ring. 0339 * 0340 * @id: the ID of the associated descriptor 0341 * @data: the writer data 0342 * 0343 * Note that the size of a data block is only known by its associated 0344 * descriptor. 0345 */ 0346 struct prb_data_block { 0347 unsigned long id; 0348 char data[]; 0349 }; 0350 0351 /* 0352 * Return the descriptor associated with @n. @n can be either a 0353 * descriptor ID or a sequence number. 0354 */ 0355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n) 0356 { 0357 return &desc_ring->descs[DESC_INDEX(desc_ring, n)]; 0358 } 0359 0360 /* 0361 * Return the printk_info associated with @n. @n can be either a 0362 * descriptor ID or a sequence number. 0363 */ 0364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n) 0365 { 0366 return &desc_ring->infos[DESC_INDEX(desc_ring, n)]; 0367 } 0368 0369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring, 0370 unsigned long begin_lpos) 0371 { 0372 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)]; 0373 } 0374 0375 /* 0376 * Increase the data size to account for data block meta data plus any 0377 * padding so that the adjacent data block is aligned on the ID size. 0378 */ 0379 static unsigned int to_blk_size(unsigned int size) 0380 { 0381 struct prb_data_block *db = NULL; 0382 0383 size += sizeof(*db); 0384 size = ALIGN(size, sizeof(db->id)); 0385 return size; 0386 } 0387 0388 /* 0389 * Sanity checker for reserve size. The ringbuffer code assumes that a data 0390 * block does not exceed the maximum possible size that could fit within the 0391 * ringbuffer. This function provides that basic size check so that the 0392 * assumption is safe. 0393 */ 0394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size) 0395 { 0396 struct prb_data_block *db = NULL; 0397 0398 if (size == 0) 0399 return true; 0400 0401 /* 0402 * Ensure the alignment padded size could possibly fit in the data 0403 * array. The largest possible data block must still leave room for 0404 * at least the ID of the next block. 0405 */ 0406 size = to_blk_size(size); 0407 if (size > DATA_SIZE(data_ring) - sizeof(db->id)) 0408 return false; 0409 0410 return true; 0411 } 0412 0413 /* Query the state of a descriptor. */ 0414 static enum desc_state get_desc_state(unsigned long id, 0415 unsigned long state_val) 0416 { 0417 if (id != DESC_ID(state_val)) 0418 return desc_miss; 0419 0420 return DESC_STATE(state_val); 0421 } 0422 0423 /* 0424 * Get a copy of a specified descriptor and return its queried state. If the 0425 * descriptor is in an inconsistent state (miss or reserved), the caller can 0426 * only expect the descriptor's @state_var field to be valid. 0427 * 0428 * The sequence number and caller_id can be optionally retrieved. Like all 0429 * non-state_var data, they are only valid if the descriptor is in a 0430 * consistent state. 0431 */ 0432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring, 0433 unsigned long id, struct prb_desc *desc_out, 0434 u64 *seq_out, u32 *caller_id_out) 0435 { 0436 struct printk_info *info = to_info(desc_ring, id); 0437 struct prb_desc *desc = to_desc(desc_ring, id); 0438 atomic_long_t *state_var = &desc->state_var; 0439 enum desc_state d_state; 0440 unsigned long state_val; 0441 0442 /* Check the descriptor state. */ 0443 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */ 0444 d_state = get_desc_state(id, state_val); 0445 if (d_state == desc_miss || d_state == desc_reserved) { 0446 /* 0447 * The descriptor is in an inconsistent state. Set at least 0448 * @state_var so that the caller can see the details of 0449 * the inconsistent state. 0450 */ 0451 goto out; 0452 } 0453 0454 /* 0455 * Guarantee the state is loaded before copying the descriptor 0456 * content. This avoids copying obsolete descriptor content that might 0457 * not apply to the descriptor state. This pairs with _prb_commit:B. 0458 * 0459 * Memory barrier involvement: 0460 * 0461 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads 0462 * from _prb_commit:A. 0463 * 0464 * Relies on: 0465 * 0466 * WMB from _prb_commit:A to _prb_commit:B 0467 * matching 0468 * RMB from desc_read:A to desc_read:C 0469 */ 0470 smp_rmb(); /* LMM(desc_read:B) */ 0471 0472 /* 0473 * Copy the descriptor data. The data is not valid until the 0474 * state has been re-checked. A memcpy() for all of @desc 0475 * cannot be used because of the atomic_t @state_var field. 0476 */ 0477 if (desc_out) { 0478 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos, 0479 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */ 0480 } 0481 if (seq_out) 0482 *seq_out = info->seq; /* also part of desc_read:C */ 0483 if (caller_id_out) 0484 *caller_id_out = info->caller_id; /* also part of desc_read:C */ 0485 0486 /* 0487 * 1. Guarantee the descriptor content is loaded before re-checking 0488 * the state. This avoids reading an obsolete descriptor state 0489 * that may not apply to the copied content. This pairs with 0490 * desc_reserve:F. 0491 * 0492 * Memory barrier involvement: 0493 * 0494 * If desc_read:C reads from desc_reserve:G, then desc_read:E 0495 * reads from desc_reserve:F. 0496 * 0497 * Relies on: 0498 * 0499 * WMB from desc_reserve:F to desc_reserve:G 0500 * matching 0501 * RMB from desc_read:C to desc_read:E 0502 * 0503 * 2. Guarantee the record data is loaded before re-checking the 0504 * state. This avoids reading an obsolete descriptor state that may 0505 * not apply to the copied data. This pairs with data_alloc:A and 0506 * data_realloc:A. 0507 * 0508 * Memory barrier involvement: 0509 * 0510 * If copy_data:A reads from data_alloc:B, then desc_read:E 0511 * reads from desc_make_reusable:A. 0512 * 0513 * Relies on: 0514 * 0515 * MB from desc_make_reusable:A to data_alloc:B 0516 * matching 0517 * RMB from desc_read:C to desc_read:E 0518 * 0519 * Note: desc_make_reusable:A and data_alloc:B can be different 0520 * CPUs. However, the data_alloc:B CPU (which performs the 0521 * full memory barrier) must have previously seen 0522 * desc_make_reusable:A. 0523 */ 0524 smp_rmb(); /* LMM(desc_read:D) */ 0525 0526 /* 0527 * The data has been copied. Return the current descriptor state, 0528 * which may have changed since the load above. 0529 */ 0530 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */ 0531 d_state = get_desc_state(id, state_val); 0532 out: 0533 if (desc_out) 0534 atomic_long_set(&desc_out->state_var, state_val); 0535 return d_state; 0536 } 0537 0538 /* 0539 * Take a specified descriptor out of the finalized state by attempting 0540 * the transition from finalized to reusable. Either this context or some 0541 * other context will have been successful. 0542 */ 0543 static void desc_make_reusable(struct prb_desc_ring *desc_ring, 0544 unsigned long id) 0545 { 0546 unsigned long val_finalized = DESC_SV(id, desc_finalized); 0547 unsigned long val_reusable = DESC_SV(id, desc_reusable); 0548 struct prb_desc *desc = to_desc(desc_ring, id); 0549 atomic_long_t *state_var = &desc->state_var; 0550 0551 atomic_long_cmpxchg_relaxed(state_var, val_finalized, 0552 val_reusable); /* LMM(desc_make_reusable:A) */ 0553 } 0554 0555 /* 0556 * Given the text data ring, put the associated descriptor of each 0557 * data block from @lpos_begin until @lpos_end into the reusable state. 0558 * 0559 * If there is any problem making the associated descriptor reusable, either 0560 * the descriptor has not yet been finalized or another writer context has 0561 * already pushed the tail lpos past the problematic data block. Regardless, 0562 * on error the caller can re-load the tail lpos to determine the situation. 0563 */ 0564 static bool data_make_reusable(struct printk_ringbuffer *rb, 0565 unsigned long lpos_begin, 0566 unsigned long lpos_end, 0567 unsigned long *lpos_out) 0568 { 0569 0570 struct prb_data_ring *data_ring = &rb->text_data_ring; 0571 struct prb_desc_ring *desc_ring = &rb->desc_ring; 0572 struct prb_data_block *blk; 0573 enum desc_state d_state; 0574 struct prb_desc desc; 0575 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos; 0576 unsigned long id; 0577 0578 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */ 0579 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) { 0580 blk = to_block(data_ring, lpos_begin); 0581 0582 /* 0583 * Load the block ID from the data block. This is a data race 0584 * against a writer that may have newly reserved this data 0585 * area. If the loaded value matches a valid descriptor ID, 0586 * the blk_lpos of that descriptor will be checked to make 0587 * sure it points back to this data block. If the check fails, 0588 * the data area has been recycled by another writer. 0589 */ 0590 id = blk->id; /* LMM(data_make_reusable:A) */ 0591 0592 d_state = desc_read(desc_ring, id, &desc, 0593 NULL, NULL); /* LMM(data_make_reusable:B) */ 0594 0595 switch (d_state) { 0596 case desc_miss: 0597 case desc_reserved: 0598 case desc_committed: 0599 return false; 0600 case desc_finalized: 0601 /* 0602 * This data block is invalid if the descriptor 0603 * does not point back to it. 0604 */ 0605 if (blk_lpos->begin != lpos_begin) 0606 return false; 0607 desc_make_reusable(desc_ring, id); 0608 break; 0609 case desc_reusable: 0610 /* 0611 * This data block is invalid if the descriptor 0612 * does not point back to it. 0613 */ 0614 if (blk_lpos->begin != lpos_begin) 0615 return false; 0616 break; 0617 } 0618 0619 /* Advance @lpos_begin to the next data block. */ 0620 lpos_begin = blk_lpos->next; 0621 } 0622 0623 *lpos_out = lpos_begin; 0624 return true; 0625 } 0626 0627 /* 0628 * Advance the data ring tail to at least @lpos. This function puts 0629 * descriptors into the reusable state if the tail is pushed beyond 0630 * their associated data block. 0631 */ 0632 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos) 0633 { 0634 struct prb_data_ring *data_ring = &rb->text_data_ring; 0635 unsigned long tail_lpos_new; 0636 unsigned long tail_lpos; 0637 unsigned long next_lpos; 0638 0639 /* If @lpos is from a data-less block, there is nothing to do. */ 0640 if (LPOS_DATALESS(lpos)) 0641 return true; 0642 0643 /* 0644 * Any descriptor states that have transitioned to reusable due to the 0645 * data tail being pushed to this loaded value will be visible to this 0646 * CPU. This pairs with data_push_tail:D. 0647 * 0648 * Memory barrier involvement: 0649 * 0650 * If data_push_tail:A reads from data_push_tail:D, then this CPU can 0651 * see desc_make_reusable:A. 0652 * 0653 * Relies on: 0654 * 0655 * MB from desc_make_reusable:A to data_push_tail:D 0656 * matches 0657 * READFROM from data_push_tail:D to data_push_tail:A 0658 * thus 0659 * READFROM from desc_make_reusable:A to this CPU 0660 */ 0661 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */ 0662 0663 /* 0664 * Loop until the tail lpos is at or beyond @lpos. This condition 0665 * may already be satisfied, resulting in no full memory barrier 0666 * from data_push_tail:D being performed. However, since this CPU 0667 * sees the new tail lpos, any descriptor states that transitioned to 0668 * the reusable state must already be visible. 0669 */ 0670 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) { 0671 /* 0672 * Make all descriptors reusable that are associated with 0673 * data blocks before @lpos. 0674 */ 0675 if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) { 0676 /* 0677 * 1. Guarantee the block ID loaded in 0678 * data_make_reusable() is performed before 0679 * reloading the tail lpos. The failed 0680 * data_make_reusable() may be due to a newly 0681 * recycled data area causing the tail lpos to 0682 * have been previously pushed. This pairs with 0683 * data_alloc:A and data_realloc:A. 0684 * 0685 * Memory barrier involvement: 0686 * 0687 * If data_make_reusable:A reads from data_alloc:B, 0688 * then data_push_tail:C reads from 0689 * data_push_tail:D. 0690 * 0691 * Relies on: 0692 * 0693 * MB from data_push_tail:D to data_alloc:B 0694 * matching 0695 * RMB from data_make_reusable:A to 0696 * data_push_tail:C 0697 * 0698 * Note: data_push_tail:D and data_alloc:B can be 0699 * different CPUs. However, the data_alloc:B 0700 * CPU (which performs the full memory 0701 * barrier) must have previously seen 0702 * data_push_tail:D. 0703 * 0704 * 2. Guarantee the descriptor state loaded in 0705 * data_make_reusable() is performed before 0706 * reloading the tail lpos. The failed 0707 * data_make_reusable() may be due to a newly 0708 * recycled descriptor causing the tail lpos to 0709 * have been previously pushed. This pairs with 0710 * desc_reserve:D. 0711 * 0712 * Memory barrier involvement: 0713 * 0714 * If data_make_reusable:B reads from 0715 * desc_reserve:F, then data_push_tail:C reads 0716 * from data_push_tail:D. 0717 * 0718 * Relies on: 0719 * 0720 * MB from data_push_tail:D to desc_reserve:F 0721 * matching 0722 * RMB from data_make_reusable:B to 0723 * data_push_tail:C 0724 * 0725 * Note: data_push_tail:D and desc_reserve:F can 0726 * be different CPUs. However, the 0727 * desc_reserve:F CPU (which performs the 0728 * full memory barrier) must have previously 0729 * seen data_push_tail:D. 0730 */ 0731 smp_rmb(); /* LMM(data_push_tail:B) */ 0732 0733 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos 0734 ); /* LMM(data_push_tail:C) */ 0735 if (tail_lpos_new == tail_lpos) 0736 return false; 0737 0738 /* Another CPU pushed the tail. Try again. */ 0739 tail_lpos = tail_lpos_new; 0740 continue; 0741 } 0742 0743 /* 0744 * Guarantee any descriptor states that have transitioned to 0745 * reusable are stored before pushing the tail lpos. A full 0746 * memory barrier is needed since other CPUs may have made 0747 * the descriptor states reusable. This pairs with 0748 * data_push_tail:A. 0749 */ 0750 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos, 0751 next_lpos)) { /* LMM(data_push_tail:D) */ 0752 break; 0753 } 0754 } 0755 0756 return true; 0757 } 0758 0759 /* 0760 * Advance the desc ring tail. This function advances the tail by one 0761 * descriptor, thus invalidating the oldest descriptor. Before advancing 0762 * the tail, the tail descriptor is made reusable and all data blocks up to 0763 * and including the descriptor's data block are invalidated (i.e. the data 0764 * ring tail is pushed past the data block of the descriptor being made 0765 * reusable). 0766 */ 0767 static bool desc_push_tail(struct printk_ringbuffer *rb, 0768 unsigned long tail_id) 0769 { 0770 struct prb_desc_ring *desc_ring = &rb->desc_ring; 0771 enum desc_state d_state; 0772 struct prb_desc desc; 0773 0774 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL); 0775 0776 switch (d_state) { 0777 case desc_miss: 0778 /* 0779 * If the ID is exactly 1 wrap behind the expected, it is 0780 * in the process of being reserved by another writer and 0781 * must be considered reserved. 0782 */ 0783 if (DESC_ID(atomic_long_read(&desc.state_var)) == 0784 DESC_ID_PREV_WRAP(desc_ring, tail_id)) { 0785 return false; 0786 } 0787 0788 /* 0789 * The ID has changed. Another writer must have pushed the 0790 * tail and recycled the descriptor already. Success is 0791 * returned because the caller is only interested in the 0792 * specified tail being pushed, which it was. 0793 */ 0794 return true; 0795 case desc_reserved: 0796 case desc_committed: 0797 return false; 0798 case desc_finalized: 0799 desc_make_reusable(desc_ring, tail_id); 0800 break; 0801 case desc_reusable: 0802 break; 0803 } 0804 0805 /* 0806 * Data blocks must be invalidated before their associated 0807 * descriptor can be made available for recycling. Invalidating 0808 * them later is not possible because there is no way to trust 0809 * data blocks once their associated descriptor is gone. 0810 */ 0811 0812 if (!data_push_tail(rb, desc.text_blk_lpos.next)) 0813 return false; 0814 0815 /* 0816 * Check the next descriptor after @tail_id before pushing the tail 0817 * to it because the tail must always be in a finalized or reusable 0818 * state. The implementation of prb_first_seq() relies on this. 0819 * 0820 * A successful read implies that the next descriptor is less than or 0821 * equal to @head_id so there is no risk of pushing the tail past the 0822 * head. 0823 */ 0824 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc, 0825 NULL, NULL); /* LMM(desc_push_tail:A) */ 0826 0827 if (d_state == desc_finalized || d_state == desc_reusable) { 0828 /* 0829 * Guarantee any descriptor states that have transitioned to 0830 * reusable are stored before pushing the tail ID. This allows 0831 * verifying the recycled descriptor state. A full memory 0832 * barrier is needed since other CPUs may have made the 0833 * descriptor states reusable. This pairs with desc_reserve:D. 0834 */ 0835 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id, 0836 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */ 0837 } else { 0838 /* 0839 * Guarantee the last state load from desc_read() is before 0840 * reloading @tail_id in order to see a new tail ID in the 0841 * case that the descriptor has been recycled. This pairs 0842 * with desc_reserve:D. 0843 * 0844 * Memory barrier involvement: 0845 * 0846 * If desc_push_tail:A reads from desc_reserve:F, then 0847 * desc_push_tail:D reads from desc_push_tail:B. 0848 * 0849 * Relies on: 0850 * 0851 * MB from desc_push_tail:B to desc_reserve:F 0852 * matching 0853 * RMB from desc_push_tail:A to desc_push_tail:D 0854 * 0855 * Note: desc_push_tail:B and desc_reserve:F can be different 0856 * CPUs. However, the desc_reserve:F CPU (which performs 0857 * the full memory barrier) must have previously seen 0858 * desc_push_tail:B. 0859 */ 0860 smp_rmb(); /* LMM(desc_push_tail:C) */ 0861 0862 /* 0863 * Re-check the tail ID. The descriptor following @tail_id is 0864 * not in an allowed tail state. But if the tail has since 0865 * been moved by another CPU, then it does not matter. 0866 */ 0867 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */ 0868 return false; 0869 } 0870 0871 return true; 0872 } 0873 0874 /* Reserve a new descriptor, invalidating the oldest if necessary. */ 0875 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out) 0876 { 0877 struct prb_desc_ring *desc_ring = &rb->desc_ring; 0878 unsigned long prev_state_val; 0879 unsigned long id_prev_wrap; 0880 struct prb_desc *desc; 0881 unsigned long head_id; 0882 unsigned long id; 0883 0884 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */ 0885 0886 do { 0887 id = DESC_ID(head_id + 1); 0888 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id); 0889 0890 /* 0891 * Guarantee the head ID is read before reading the tail ID. 0892 * Since the tail ID is updated before the head ID, this 0893 * guarantees that @id_prev_wrap is never ahead of the tail 0894 * ID. This pairs with desc_reserve:D. 0895 * 0896 * Memory barrier involvement: 0897 * 0898 * If desc_reserve:A reads from desc_reserve:D, then 0899 * desc_reserve:C reads from desc_push_tail:B. 0900 * 0901 * Relies on: 0902 * 0903 * MB from desc_push_tail:B to desc_reserve:D 0904 * matching 0905 * RMB from desc_reserve:A to desc_reserve:C 0906 * 0907 * Note: desc_push_tail:B and desc_reserve:D can be different 0908 * CPUs. However, the desc_reserve:D CPU (which performs 0909 * the full memory barrier) must have previously seen 0910 * desc_push_tail:B. 0911 */ 0912 smp_rmb(); /* LMM(desc_reserve:B) */ 0913 0914 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id 0915 )) { /* LMM(desc_reserve:C) */ 0916 /* 0917 * Make space for the new descriptor by 0918 * advancing the tail. 0919 */ 0920 if (!desc_push_tail(rb, id_prev_wrap)) 0921 return false; 0922 } 0923 0924 /* 0925 * 1. Guarantee the tail ID is read before validating the 0926 * recycled descriptor state. A read memory barrier is 0927 * sufficient for this. This pairs with desc_push_tail:B. 0928 * 0929 * Memory barrier involvement: 0930 * 0931 * If desc_reserve:C reads from desc_push_tail:B, then 0932 * desc_reserve:E reads from desc_make_reusable:A. 0933 * 0934 * Relies on: 0935 * 0936 * MB from desc_make_reusable:A to desc_push_tail:B 0937 * matching 0938 * RMB from desc_reserve:C to desc_reserve:E 0939 * 0940 * Note: desc_make_reusable:A and desc_push_tail:B can be 0941 * different CPUs. However, the desc_push_tail:B CPU 0942 * (which performs the full memory barrier) must have 0943 * previously seen desc_make_reusable:A. 0944 * 0945 * 2. Guarantee the tail ID is stored before storing the head 0946 * ID. This pairs with desc_reserve:B. 0947 * 0948 * 3. Guarantee any data ring tail changes are stored before 0949 * recycling the descriptor. Data ring tail changes can 0950 * happen via desc_push_tail()->data_push_tail(). A full 0951 * memory barrier is needed since another CPU may have 0952 * pushed the data ring tails. This pairs with 0953 * data_push_tail:B. 0954 * 0955 * 4. Guarantee a new tail ID is stored before recycling the 0956 * descriptor. A full memory barrier is needed since 0957 * another CPU may have pushed the tail ID. This pairs 0958 * with desc_push_tail:C and this also pairs with 0959 * prb_first_seq:C. 0960 * 0961 * 5. Guarantee the head ID is stored before trying to 0962 * finalize the previous descriptor. This pairs with 0963 * _prb_commit:B. 0964 */ 0965 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id, 0966 id)); /* LMM(desc_reserve:D) */ 0967 0968 desc = to_desc(desc_ring, id); 0969 0970 /* 0971 * If the descriptor has been recycled, verify the old state val. 0972 * See "ABA Issues" about why this verification is performed. 0973 */ 0974 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */ 0975 if (prev_state_val && 0976 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) { 0977 WARN_ON_ONCE(1); 0978 return false; 0979 } 0980 0981 /* 0982 * Assign the descriptor a new ID and set its state to reserved. 0983 * See "ABA Issues" about why cmpxchg() instead of set() is used. 0984 * 0985 * Guarantee the new descriptor ID and state is stored before making 0986 * any other changes. A write memory barrier is sufficient for this. 0987 * This pairs with desc_read:D. 0988 */ 0989 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val, 0990 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */ 0991 WARN_ON_ONCE(1); 0992 return false; 0993 } 0994 0995 /* Now data in @desc can be modified: LMM(desc_reserve:G) */ 0996 0997 *id_out = id; 0998 return true; 0999 } 1000 1001 /* Determine the end of a data block. */ 1002 static unsigned long get_next_lpos(struct prb_data_ring *data_ring, 1003 unsigned long lpos, unsigned int size) 1004 { 1005 unsigned long begin_lpos; 1006 unsigned long next_lpos; 1007 1008 begin_lpos = lpos; 1009 next_lpos = lpos + size; 1010 1011 /* First check if the data block does not wrap. */ 1012 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos)) 1013 return next_lpos; 1014 1015 /* Wrapping data blocks store their data at the beginning. */ 1016 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size); 1017 } 1018 1019 /* 1020 * Allocate a new data block, invalidating the oldest data block(s) 1021 * if necessary. This function also associates the data block with 1022 * a specified descriptor. 1023 */ 1024 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size, 1025 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1026 { 1027 struct prb_data_ring *data_ring = &rb->text_data_ring; 1028 struct prb_data_block *blk; 1029 unsigned long begin_lpos; 1030 unsigned long next_lpos; 1031 1032 if (size == 0) { 1033 /* Specify a data-less block. */ 1034 blk_lpos->begin = NO_LPOS; 1035 blk_lpos->next = NO_LPOS; 1036 return NULL; 1037 } 1038 1039 size = to_blk_size(size); 1040 1041 begin_lpos = atomic_long_read(&data_ring->head_lpos); 1042 1043 do { 1044 next_lpos = get_next_lpos(data_ring, begin_lpos, size); 1045 1046 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) { 1047 /* Failed to allocate, specify a data-less block. */ 1048 blk_lpos->begin = FAILED_LPOS; 1049 blk_lpos->next = FAILED_LPOS; 1050 return NULL; 1051 } 1052 1053 /* 1054 * 1. Guarantee any descriptor states that have transitioned 1055 * to reusable are stored before modifying the newly 1056 * allocated data area. A full memory barrier is needed 1057 * since other CPUs may have made the descriptor states 1058 * reusable. See data_push_tail:A about why the reusable 1059 * states are visible. This pairs with desc_read:D. 1060 * 1061 * 2. Guarantee any updated tail lpos is stored before 1062 * modifying the newly allocated data area. Another CPU may 1063 * be in data_make_reusable() and is reading a block ID 1064 * from this area. data_make_reusable() can handle reading 1065 * a garbage block ID value, but then it must be able to 1066 * load a new tail lpos. A full memory barrier is needed 1067 * since other CPUs may have updated the tail lpos. This 1068 * pairs with data_push_tail:B. 1069 */ 1070 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos, 1071 next_lpos)); /* LMM(data_alloc:A) */ 1072 1073 blk = to_block(data_ring, begin_lpos); 1074 blk->id = id; /* LMM(data_alloc:B) */ 1075 1076 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) { 1077 /* Wrapping data blocks store their data at the beginning. */ 1078 blk = to_block(data_ring, 0); 1079 1080 /* 1081 * Store the ID on the wrapped block for consistency. 1082 * The printk_ringbuffer does not actually use it. 1083 */ 1084 blk->id = id; 1085 } 1086 1087 blk_lpos->begin = begin_lpos; 1088 blk_lpos->next = next_lpos; 1089 1090 return &blk->data[0]; 1091 } 1092 1093 /* 1094 * Try to resize an existing data block associated with the descriptor 1095 * specified by @id. If the resized data block should become wrapped, it 1096 * copies the old data to the new data block. If @size yields a data block 1097 * with the same or less size, the data block is left as is. 1098 * 1099 * Fail if this is not the last allocated data block or if there is not 1100 * enough space or it is not possible make enough space. 1101 * 1102 * Return a pointer to the beginning of the entire data buffer or NULL on 1103 * failure. 1104 */ 1105 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size, 1106 struct prb_data_blk_lpos *blk_lpos, unsigned long id) 1107 { 1108 struct prb_data_ring *data_ring = &rb->text_data_ring; 1109 struct prb_data_block *blk; 1110 unsigned long head_lpos; 1111 unsigned long next_lpos; 1112 bool wrapped; 1113 1114 /* Reallocation only works if @blk_lpos is the newest data block. */ 1115 head_lpos = atomic_long_read(&data_ring->head_lpos); 1116 if (head_lpos != blk_lpos->next) 1117 return NULL; 1118 1119 /* Keep track if @blk_lpos was a wrapping data block. */ 1120 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next)); 1121 1122 size = to_blk_size(size); 1123 1124 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size); 1125 1126 /* If the data block does not increase, there is nothing to do. */ 1127 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) { 1128 if (wrapped) 1129 blk = to_block(data_ring, 0); 1130 else 1131 blk = to_block(data_ring, blk_lpos->begin); 1132 return &blk->data[0]; 1133 } 1134 1135 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) 1136 return NULL; 1137 1138 /* The memory barrier involvement is the same as data_alloc:A. */ 1139 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos, 1140 next_lpos)) { /* LMM(data_realloc:A) */ 1141 return NULL; 1142 } 1143 1144 blk = to_block(data_ring, blk_lpos->begin); 1145 1146 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) { 1147 struct prb_data_block *old_blk = blk; 1148 1149 /* Wrapping data blocks store their data at the beginning. */ 1150 blk = to_block(data_ring, 0); 1151 1152 /* 1153 * Store the ID on the wrapped block for consistency. 1154 * The printk_ringbuffer does not actually use it. 1155 */ 1156 blk->id = id; 1157 1158 if (!wrapped) { 1159 /* 1160 * Since the allocated space is now in the newly 1161 * created wrapping data block, copy the content 1162 * from the old data block. 1163 */ 1164 memcpy(&blk->data[0], &old_blk->data[0], 1165 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id)); 1166 } 1167 } 1168 1169 blk_lpos->next = next_lpos; 1170 1171 return &blk->data[0]; 1172 } 1173 1174 /* Return the number of bytes used by a data block. */ 1175 static unsigned int space_used(struct prb_data_ring *data_ring, 1176 struct prb_data_blk_lpos *blk_lpos) 1177 { 1178 /* Data-less blocks take no space. */ 1179 if (BLK_DATALESS(blk_lpos)) 1180 return 0; 1181 1182 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) { 1183 /* Data block does not wrap. */ 1184 return (DATA_INDEX(data_ring, blk_lpos->next) - 1185 DATA_INDEX(data_ring, blk_lpos->begin)); 1186 } 1187 1188 /* 1189 * For wrapping data blocks, the trailing (wasted) space is 1190 * also counted. 1191 */ 1192 return (DATA_INDEX(data_ring, blk_lpos->next) + 1193 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin)); 1194 } 1195 1196 /* 1197 * Given @blk_lpos, return a pointer to the writer data from the data block 1198 * and calculate the size of the data part. A NULL pointer is returned if 1199 * @blk_lpos specifies values that could never be legal. 1200 * 1201 * This function (used by readers) performs strict validation on the lpos 1202 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1203 * triggered if an internal error is detected. 1204 */ 1205 static const char *get_data(struct prb_data_ring *data_ring, 1206 struct prb_data_blk_lpos *blk_lpos, 1207 unsigned int *data_size) 1208 { 1209 struct prb_data_block *db; 1210 1211 /* Data-less data block description. */ 1212 if (BLK_DATALESS(blk_lpos)) { 1213 if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) { 1214 *data_size = 0; 1215 return ""; 1216 } 1217 return NULL; 1218 } 1219 1220 /* Regular data block: @begin less than @next and in same wrap. */ 1221 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) && 1222 blk_lpos->begin < blk_lpos->next) { 1223 db = to_block(data_ring, blk_lpos->begin); 1224 *data_size = blk_lpos->next - blk_lpos->begin; 1225 1226 /* Wrapping data block: @begin is one wrap behind @next. */ 1227 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) == 1228 DATA_WRAPS(data_ring, blk_lpos->next)) { 1229 db = to_block(data_ring, 0); 1230 *data_size = DATA_INDEX(data_ring, blk_lpos->next); 1231 1232 /* Illegal block description. */ 1233 } else { 1234 WARN_ON_ONCE(1); 1235 return NULL; 1236 } 1237 1238 /* A valid data block will always be aligned to the ID size. */ 1239 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) || 1240 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) { 1241 return NULL; 1242 } 1243 1244 /* A valid data block will always have at least an ID. */ 1245 if (WARN_ON_ONCE(*data_size < sizeof(db->id))) 1246 return NULL; 1247 1248 /* Subtract block ID space from size to reflect data size. */ 1249 *data_size -= sizeof(db->id); 1250 1251 return &db->data[0]; 1252 } 1253 1254 /* 1255 * Attempt to transition the newest descriptor from committed back to reserved 1256 * so that the record can be modified by a writer again. This is only possible 1257 * if the descriptor is not yet finalized and the provided @caller_id matches. 1258 */ 1259 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring, 1260 u32 caller_id, unsigned long *id_out) 1261 { 1262 unsigned long prev_state_val; 1263 enum desc_state d_state; 1264 struct prb_desc desc; 1265 struct prb_desc *d; 1266 unsigned long id; 1267 u32 cid; 1268 1269 id = atomic_long_read(&desc_ring->head_id); 1270 1271 /* 1272 * To reduce unnecessarily reopening, first check if the descriptor 1273 * state and caller ID are correct. 1274 */ 1275 d_state = desc_read(desc_ring, id, &desc, NULL, &cid); 1276 if (d_state != desc_committed || cid != caller_id) 1277 return NULL; 1278 1279 d = to_desc(desc_ring, id); 1280 1281 prev_state_val = DESC_SV(id, desc_committed); 1282 1283 /* 1284 * Guarantee the reserved state is stored before reading any 1285 * record data. A full memory barrier is needed because @state_var 1286 * modification is followed by reading. This pairs with _prb_commit:B. 1287 * 1288 * Memory barrier involvement: 1289 * 1290 * If desc_reopen_last:A reads from _prb_commit:B, then 1291 * prb_reserve_in_last:A reads from _prb_commit:A. 1292 * 1293 * Relies on: 1294 * 1295 * WMB from _prb_commit:A to _prb_commit:B 1296 * matching 1297 * MB If desc_reopen_last:A to prb_reserve_in_last:A 1298 */ 1299 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1300 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */ 1301 return NULL; 1302 } 1303 1304 *id_out = id; 1305 return d; 1306 } 1307 1308 /** 1309 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer 1310 * used by the newest record. 1311 * 1312 * @e: The entry structure to setup. 1313 * @rb: The ringbuffer to re-reserve and extend data in. 1314 * @r: The record structure to allocate buffers for. 1315 * @caller_id: The caller ID of the caller (reserving writer). 1316 * @max_size: Fail if the extended size would be greater than this. 1317 * 1318 * This is the public function available to writers to re-reserve and extend 1319 * data. 1320 * 1321 * The writer specifies the text size to extend (not the new total size) by 1322 * setting the @text_buf_size field of @r. To ensure proper initialization 1323 * of @r, prb_rec_init_wr() should be used. 1324 * 1325 * This function will fail if @caller_id does not match the caller ID of the 1326 * newest record. In that case the caller must reserve new data using 1327 * prb_reserve(). 1328 * 1329 * Context: Any context. Disables local interrupts on success. 1330 * Return: true if text data could be extended, otherwise false. 1331 * 1332 * On success: 1333 * 1334 * - @r->text_buf points to the beginning of the entire text buffer. 1335 * 1336 * - @r->text_buf_size is set to the new total size of the buffer. 1337 * 1338 * - @r->info is not touched so that @r->info->text_len could be used 1339 * to append the text. 1340 * 1341 * - prb_record_text_space() can be used on @e to query the new 1342 * actually used space. 1343 * 1344 * Important: All @r->info fields will already be set with the current values 1345 * for the record. I.e. @r->info->text_len will be less than 1346 * @text_buf_size. Writers can use @r->info->text_len to know 1347 * where concatenation begins and writers should update 1348 * @r->info->text_len after concatenating. 1349 */ 1350 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1351 struct printk_record *r, u32 caller_id, unsigned int max_size) 1352 { 1353 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1354 struct printk_info *info; 1355 unsigned int data_size; 1356 struct prb_desc *d; 1357 unsigned long id; 1358 1359 local_irq_save(e->irqflags); 1360 1361 /* Transition the newest descriptor back to the reserved state. */ 1362 d = desc_reopen_last(desc_ring, caller_id, &id); 1363 if (!d) { 1364 local_irq_restore(e->irqflags); 1365 goto fail_reopen; 1366 } 1367 1368 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */ 1369 1370 info = to_info(desc_ring, id); 1371 1372 /* 1373 * Set the @e fields here so that prb_commit() can be used if 1374 * anything fails from now on. 1375 */ 1376 e->rb = rb; 1377 e->id = id; 1378 1379 /* 1380 * desc_reopen_last() checked the caller_id, but there was no 1381 * exclusive access at that point. The descriptor may have 1382 * changed since then. 1383 */ 1384 if (caller_id != info->caller_id) 1385 goto fail; 1386 1387 if (BLK_DATALESS(&d->text_blk_lpos)) { 1388 if (WARN_ON_ONCE(info->text_len != 0)) { 1389 pr_warn_once("wrong text_len value (%hu, expecting 0)\n", 1390 info->text_len); 1391 info->text_len = 0; 1392 } 1393 1394 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1395 goto fail; 1396 1397 if (r->text_buf_size > max_size) 1398 goto fail; 1399 1400 r->text_buf = data_alloc(rb, r->text_buf_size, 1401 &d->text_blk_lpos, id); 1402 } else { 1403 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size)) 1404 goto fail; 1405 1406 /* 1407 * Increase the buffer size to include the original size. If 1408 * the meta data (@text_len) is not sane, use the full data 1409 * block size. 1410 */ 1411 if (WARN_ON_ONCE(info->text_len > data_size)) { 1412 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n", 1413 info->text_len, data_size); 1414 info->text_len = data_size; 1415 } 1416 r->text_buf_size += info->text_len; 1417 1418 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1419 goto fail; 1420 1421 if (r->text_buf_size > max_size) 1422 goto fail; 1423 1424 r->text_buf = data_realloc(rb, r->text_buf_size, 1425 &d->text_blk_lpos, id); 1426 } 1427 if (r->text_buf_size && !r->text_buf) 1428 goto fail; 1429 1430 r->info = info; 1431 1432 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1433 1434 return true; 1435 fail: 1436 prb_commit(e); 1437 /* prb_commit() re-enabled interrupts. */ 1438 fail_reopen: 1439 /* Make it clear to the caller that the re-reserve failed. */ 1440 memset(r, 0, sizeof(*r)); 1441 return false; 1442 } 1443 1444 /* 1445 * Attempt to finalize a specified descriptor. If this fails, the descriptor 1446 * is either already final or it will finalize itself when the writer commits. 1447 */ 1448 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id) 1449 { 1450 unsigned long prev_state_val = DESC_SV(id, desc_committed); 1451 struct prb_desc *d = to_desc(desc_ring, id); 1452 1453 atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val, 1454 DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */ 1455 1456 /* Best effort to remember the last finalized @id. */ 1457 atomic_long_set(&desc_ring->last_finalized_id, id); 1458 } 1459 1460 /** 1461 * prb_reserve() - Reserve space in the ringbuffer. 1462 * 1463 * @e: The entry structure to setup. 1464 * @rb: The ringbuffer to reserve data in. 1465 * @r: The record structure to allocate buffers for. 1466 * 1467 * This is the public function available to writers to reserve data. 1468 * 1469 * The writer specifies the text size to reserve by setting the 1470 * @text_buf_size field of @r. To ensure proper initialization of @r, 1471 * prb_rec_init_wr() should be used. 1472 * 1473 * Context: Any context. Disables local interrupts on success. 1474 * Return: true if at least text data could be allocated, otherwise false. 1475 * 1476 * On success, the fields @info and @text_buf of @r will be set by this 1477 * function and should be filled in by the writer before committing. Also 1478 * on success, prb_record_text_space() can be used on @e to query the actual 1479 * space used for the text data block. 1480 * 1481 * Important: @info->text_len needs to be set correctly by the writer in 1482 * order for data to be readable and/or extended. Its value 1483 * is initialized to 0. 1484 */ 1485 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, 1486 struct printk_record *r) 1487 { 1488 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1489 struct printk_info *info; 1490 struct prb_desc *d; 1491 unsigned long id; 1492 u64 seq; 1493 1494 if (!data_check_size(&rb->text_data_ring, r->text_buf_size)) 1495 goto fail; 1496 1497 /* 1498 * Descriptors in the reserved state act as blockers to all further 1499 * reservations once the desc_ring has fully wrapped. Disable 1500 * interrupts during the reserve/commit window in order to minimize 1501 * the likelihood of this happening. 1502 */ 1503 local_irq_save(e->irqflags); 1504 1505 if (!desc_reserve(rb, &id)) { 1506 /* Descriptor reservation failures are tracked. */ 1507 atomic_long_inc(&rb->fail); 1508 local_irq_restore(e->irqflags); 1509 goto fail; 1510 } 1511 1512 d = to_desc(desc_ring, id); 1513 info = to_info(desc_ring, id); 1514 1515 /* 1516 * All @info fields (except @seq) are cleared and must be filled in 1517 * by the writer. Save @seq before clearing because it is used to 1518 * determine the new sequence number. 1519 */ 1520 seq = info->seq; 1521 memset(info, 0, sizeof(*info)); 1522 1523 /* 1524 * Set the @e fields here so that prb_commit() can be used if 1525 * text data allocation fails. 1526 */ 1527 e->rb = rb; 1528 e->id = id; 1529 1530 /* 1531 * Initialize the sequence number if it has "never been set". 1532 * Otherwise just increment it by a full wrap. 1533 * 1534 * @seq is considered "never been set" if it has a value of 0, 1535 * _except_ for @infos[0], which was specially setup by the ringbuffer 1536 * initializer and therefore is always considered as set. 1537 * 1538 * See the "Bootstrap" comment block in printk_ringbuffer.h for 1539 * details about how the initializer bootstraps the descriptors. 1540 */ 1541 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0) 1542 info->seq = DESC_INDEX(desc_ring, id); 1543 else 1544 info->seq = seq + DESCS_COUNT(desc_ring); 1545 1546 /* 1547 * New data is about to be reserved. Once that happens, previous 1548 * descriptors are no longer able to be extended. Finalize the 1549 * previous descriptor now so that it can be made available to 1550 * readers. (For seq==0 there is no previous descriptor.) 1551 */ 1552 if (info->seq > 0) 1553 desc_make_final(desc_ring, DESC_ID(id - 1)); 1554 1555 r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id); 1556 /* If text data allocation fails, a data-less record is committed. */ 1557 if (r->text_buf_size && !r->text_buf) { 1558 prb_commit(e); 1559 /* prb_commit() re-enabled interrupts. */ 1560 goto fail; 1561 } 1562 1563 r->info = info; 1564 1565 /* Record full text space used by record. */ 1566 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos); 1567 1568 return true; 1569 fail: 1570 /* Make it clear to the caller that the reserve failed. */ 1571 memset(r, 0, sizeof(*r)); 1572 return false; 1573 } 1574 1575 /* Commit the data (possibly finalizing it) and restore interrupts. */ 1576 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val) 1577 { 1578 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1579 struct prb_desc *d = to_desc(desc_ring, e->id); 1580 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved); 1581 1582 /* Now the writer has finished all writing: LMM(_prb_commit:A) */ 1583 1584 /* 1585 * Set the descriptor as committed. See "ABA Issues" about why 1586 * cmpxchg() instead of set() is used. 1587 * 1588 * 1 Guarantee all record data is stored before the descriptor state 1589 * is stored as committed. A write memory barrier is sufficient 1590 * for this. This pairs with desc_read:B and desc_reopen_last:A. 1591 * 1592 * 2. Guarantee the descriptor state is stored as committed before 1593 * re-checking the head ID in order to possibly finalize this 1594 * descriptor. This pairs with desc_reserve:D. 1595 * 1596 * Memory barrier involvement: 1597 * 1598 * If prb_commit:A reads from desc_reserve:D, then 1599 * desc_make_final:A reads from _prb_commit:B. 1600 * 1601 * Relies on: 1602 * 1603 * MB _prb_commit:B to prb_commit:A 1604 * matching 1605 * MB desc_reserve:D to desc_make_final:A 1606 */ 1607 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val, 1608 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */ 1609 WARN_ON_ONCE(1); 1610 } 1611 1612 /* Restore interrupts, the reserve/commit window is finished. */ 1613 local_irq_restore(e->irqflags); 1614 } 1615 1616 /** 1617 * prb_commit() - Commit (previously reserved) data to the ringbuffer. 1618 * 1619 * @e: The entry containing the reserved data information. 1620 * 1621 * This is the public function available to writers to commit data. 1622 * 1623 * Note that the data is not yet available to readers until it is finalized. 1624 * Finalizing happens automatically when space for the next record is 1625 * reserved. 1626 * 1627 * See prb_final_commit() for a version of this function that finalizes 1628 * immediately. 1629 * 1630 * Context: Any context. Enables local interrupts. 1631 */ 1632 void prb_commit(struct prb_reserved_entry *e) 1633 { 1634 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1635 unsigned long head_id; 1636 1637 _prb_commit(e, desc_committed); 1638 1639 /* 1640 * If this descriptor is no longer the head (i.e. a new record has 1641 * been allocated), extending the data for this record is no longer 1642 * allowed and therefore it must be finalized. 1643 */ 1644 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */ 1645 if (head_id != e->id) 1646 desc_make_final(desc_ring, e->id); 1647 } 1648 1649 /** 1650 * prb_final_commit() - Commit and finalize (previously reserved) data to 1651 * the ringbuffer. 1652 * 1653 * @e: The entry containing the reserved data information. 1654 * 1655 * This is the public function available to writers to commit+finalize data. 1656 * 1657 * By finalizing, the data is made immediately available to readers. 1658 * 1659 * This function should only be used if there are no intentions of extending 1660 * this data using prb_reserve_in_last(). 1661 * 1662 * Context: Any context. Enables local interrupts. 1663 */ 1664 void prb_final_commit(struct prb_reserved_entry *e) 1665 { 1666 struct prb_desc_ring *desc_ring = &e->rb->desc_ring; 1667 1668 _prb_commit(e, desc_finalized); 1669 1670 /* Best effort to remember the last finalized @id. */ 1671 atomic_long_set(&desc_ring->last_finalized_id, e->id); 1672 } 1673 1674 /* 1675 * Count the number of lines in provided text. All text has at least 1 line 1676 * (even if @text_size is 0). Each '\n' processed is counted as an additional 1677 * line. 1678 */ 1679 static unsigned int count_lines(const char *text, unsigned int text_size) 1680 { 1681 unsigned int next_size = text_size; 1682 unsigned int line_count = 1; 1683 const char *next = text; 1684 1685 while (next_size) { 1686 next = memchr(next, '\n', next_size); 1687 if (!next) 1688 break; 1689 line_count++; 1690 next++; 1691 next_size = text_size - (next - text); 1692 } 1693 1694 return line_count; 1695 } 1696 1697 /* 1698 * Given @blk_lpos, copy an expected @len of data into the provided buffer. 1699 * If @line_count is provided, count the number of lines in the data. 1700 * 1701 * This function (used by readers) performs strict validation on the data 1702 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is 1703 * triggered if an internal error is detected. 1704 */ 1705 static bool copy_data(struct prb_data_ring *data_ring, 1706 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf, 1707 unsigned int buf_size, unsigned int *line_count) 1708 { 1709 unsigned int data_size; 1710 const char *data; 1711 1712 /* Caller might not want any data. */ 1713 if ((!buf || !buf_size) && !line_count) 1714 return true; 1715 1716 data = get_data(data_ring, blk_lpos, &data_size); 1717 if (!data) 1718 return false; 1719 1720 /* 1721 * Actual cannot be less than expected. It can be more than expected 1722 * because of the trailing alignment padding. 1723 * 1724 * Note that invalid @len values can occur because the caller loads 1725 * the value during an allowed data race. 1726 */ 1727 if (data_size < (unsigned int)len) 1728 return false; 1729 1730 /* Caller interested in the line count? */ 1731 if (line_count) 1732 *line_count = count_lines(data, len); 1733 1734 /* Caller interested in the data content? */ 1735 if (!buf || !buf_size) 1736 return true; 1737 1738 data_size = min_t(u16, buf_size, len); 1739 1740 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */ 1741 return true; 1742 } 1743 1744 /* 1745 * This is an extended version of desc_read(). It gets a copy of a specified 1746 * descriptor. However, it also verifies that the record is finalized and has 1747 * the sequence number @seq. On success, 0 is returned. 1748 * 1749 * Error return values: 1750 * -EINVAL: A finalized record with sequence number @seq does not exist. 1751 * -ENOENT: A finalized record with sequence number @seq exists, but its data 1752 * is not available. This is a valid record, so readers should 1753 * continue with the next record. 1754 */ 1755 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring, 1756 unsigned long id, u64 seq, 1757 struct prb_desc *desc_out) 1758 { 1759 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos; 1760 enum desc_state d_state; 1761 u64 s; 1762 1763 d_state = desc_read(desc_ring, id, desc_out, &s, NULL); 1764 1765 /* 1766 * An unexpected @id (desc_miss) or @seq mismatch means the record 1767 * does not exist. A descriptor in the reserved or committed state 1768 * means the record does not yet exist for the reader. 1769 */ 1770 if (d_state == desc_miss || 1771 d_state == desc_reserved || 1772 d_state == desc_committed || 1773 s != seq) { 1774 return -EINVAL; 1775 } 1776 1777 /* 1778 * A descriptor in the reusable state may no longer have its data 1779 * available; report it as existing but with lost data. Or the record 1780 * may actually be a record with lost data. 1781 */ 1782 if (d_state == desc_reusable || 1783 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) { 1784 return -ENOENT; 1785 } 1786 1787 return 0; 1788 } 1789 1790 /* 1791 * Copy the ringbuffer data from the record with @seq to the provided 1792 * @r buffer. On success, 0 is returned. 1793 * 1794 * See desc_read_finalized_seq() for error return values. 1795 */ 1796 static int prb_read(struct printk_ringbuffer *rb, u64 seq, 1797 struct printk_record *r, unsigned int *line_count) 1798 { 1799 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1800 struct printk_info *info = to_info(desc_ring, seq); 1801 struct prb_desc *rdesc = to_desc(desc_ring, seq); 1802 atomic_long_t *state_var = &rdesc->state_var; 1803 struct prb_desc desc; 1804 unsigned long id; 1805 int err; 1806 1807 /* Extract the ID, used to specify the descriptor to read. */ 1808 id = DESC_ID(atomic_long_read(state_var)); 1809 1810 /* Get a local copy of the correct descriptor (if available). */ 1811 err = desc_read_finalized_seq(desc_ring, id, seq, &desc); 1812 1813 /* 1814 * If @r is NULL, the caller is only interested in the availability 1815 * of the record. 1816 */ 1817 if (err || !r) 1818 return err; 1819 1820 /* If requested, copy meta data. */ 1821 if (r->info) 1822 memcpy(r->info, info, sizeof(*(r->info))); 1823 1824 /* Copy text data. If it fails, this is a data-less record. */ 1825 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len, 1826 r->text_buf, r->text_buf_size, line_count)) { 1827 return -ENOENT; 1828 } 1829 1830 /* Ensure the record is still finalized and has the same @seq. */ 1831 return desc_read_finalized_seq(desc_ring, id, seq, &desc); 1832 } 1833 1834 /* Get the sequence number of the tail descriptor. */ 1835 static u64 prb_first_seq(struct printk_ringbuffer *rb) 1836 { 1837 struct prb_desc_ring *desc_ring = &rb->desc_ring; 1838 enum desc_state d_state; 1839 struct prb_desc desc; 1840 unsigned long id; 1841 u64 seq; 1842 1843 for (;;) { 1844 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */ 1845 1846 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */ 1847 1848 /* 1849 * This loop will not be infinite because the tail is 1850 * _always_ in the finalized or reusable state. 1851 */ 1852 if (d_state == desc_finalized || d_state == desc_reusable) 1853 break; 1854 1855 /* 1856 * Guarantee the last state load from desc_read() is before 1857 * reloading @tail_id in order to see a new tail in the case 1858 * that the descriptor has been recycled. This pairs with 1859 * desc_reserve:D. 1860 * 1861 * Memory barrier involvement: 1862 * 1863 * If prb_first_seq:B reads from desc_reserve:F, then 1864 * prb_first_seq:A reads from desc_push_tail:B. 1865 * 1866 * Relies on: 1867 * 1868 * MB from desc_push_tail:B to desc_reserve:F 1869 * matching 1870 * RMB prb_first_seq:B to prb_first_seq:A 1871 */ 1872 smp_rmb(); /* LMM(prb_first_seq:C) */ 1873 } 1874 1875 return seq; 1876 } 1877 1878 /* 1879 * Non-blocking read of a record. Updates @seq to the last finalized record 1880 * (which may have no data available). 1881 * 1882 * See the description of prb_read_valid() and prb_read_valid_info() 1883 * for details. 1884 */ 1885 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq, 1886 struct printk_record *r, unsigned int *line_count) 1887 { 1888 u64 tail_seq; 1889 int err; 1890 1891 while ((err = prb_read(rb, *seq, r, line_count))) { 1892 tail_seq = prb_first_seq(rb); 1893 1894 if (*seq < tail_seq) { 1895 /* 1896 * Behind the tail. Catch up and try again. This 1897 * can happen for -ENOENT and -EINVAL cases. 1898 */ 1899 *seq = tail_seq; 1900 1901 } else if (err == -ENOENT) { 1902 /* Record exists, but no data available. Skip. */ 1903 (*seq)++; 1904 1905 } else { 1906 /* Non-existent/non-finalized record. Must stop. */ 1907 return false; 1908 } 1909 } 1910 1911 return true; 1912 } 1913 1914 /** 1915 * prb_read_valid() - Non-blocking read of a requested record or (if gone) 1916 * the next available record. 1917 * 1918 * @rb: The ringbuffer to read from. 1919 * @seq: The sequence number of the record to read. 1920 * @r: A record data buffer to store the read record to. 1921 * 1922 * This is the public function available to readers to read a record. 1923 * 1924 * The reader provides the @info and @text_buf buffers of @r to be 1925 * filled in. Any of the buffer pointers can be set to NULL if the reader 1926 * is not interested in that data. To ensure proper initialization of @r, 1927 * prb_rec_init_rd() should be used. 1928 * 1929 * Context: Any context. 1930 * Return: true if a record was read, otherwise false. 1931 * 1932 * On success, the reader must check r->info.seq to see which record was 1933 * actually read. This allows the reader to detect dropped records. 1934 * 1935 * Failure means @seq refers to a not yet written record. 1936 */ 1937 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, 1938 struct printk_record *r) 1939 { 1940 return _prb_read_valid(rb, &seq, r, NULL); 1941 } 1942 1943 /** 1944 * prb_read_valid_info() - Non-blocking read of meta data for a requested 1945 * record or (if gone) the next available record. 1946 * 1947 * @rb: The ringbuffer to read from. 1948 * @seq: The sequence number of the record to read. 1949 * @info: A buffer to store the read record meta data to. 1950 * @line_count: A buffer to store the number of lines in the record text. 1951 * 1952 * This is the public function available to readers to read only the 1953 * meta data of a record. 1954 * 1955 * The reader provides the @info, @line_count buffers to be filled in. 1956 * Either of the buffer pointers can be set to NULL if the reader is not 1957 * interested in that data. 1958 * 1959 * Context: Any context. 1960 * Return: true if a record's meta data was read, otherwise false. 1961 * 1962 * On success, the reader must check info->seq to see which record meta data 1963 * was actually read. This allows the reader to detect dropped records. 1964 * 1965 * Failure means @seq refers to a not yet written record. 1966 */ 1967 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, 1968 struct printk_info *info, unsigned int *line_count) 1969 { 1970 struct printk_record r; 1971 1972 prb_rec_init_rd(&r, info, NULL, 0); 1973 1974 return _prb_read_valid(rb, &seq, &r, line_count); 1975 } 1976 1977 /** 1978 * prb_first_valid_seq() - Get the sequence number of the oldest available 1979 * record. 1980 * 1981 * @rb: The ringbuffer to get the sequence number from. 1982 * 1983 * This is the public function available to readers to see what the 1984 * first/oldest valid sequence number is. 1985 * 1986 * This provides readers a starting point to begin iterating the ringbuffer. 1987 * 1988 * Context: Any context. 1989 * Return: The sequence number of the first/oldest record or, if the 1990 * ringbuffer is empty, 0 is returned. 1991 */ 1992 u64 prb_first_valid_seq(struct printk_ringbuffer *rb) 1993 { 1994 u64 seq = 0; 1995 1996 if (!_prb_read_valid(rb, &seq, NULL, NULL)) 1997 return 0; 1998 1999 return seq; 2000 } 2001 2002 /** 2003 * prb_next_seq() - Get the sequence number after the last available record. 2004 * 2005 * @rb: The ringbuffer to get the sequence number from. 2006 * 2007 * This is the public function available to readers to see what the next 2008 * newest sequence number available to readers will be. 2009 * 2010 * This provides readers a sequence number to jump to if all currently 2011 * available records should be skipped. 2012 * 2013 * Context: Any context. 2014 * Return: The sequence number of the next newest (not yet available) record 2015 * for readers. 2016 */ 2017 u64 prb_next_seq(struct printk_ringbuffer *rb) 2018 { 2019 struct prb_desc_ring *desc_ring = &rb->desc_ring; 2020 enum desc_state d_state; 2021 unsigned long id; 2022 u64 seq; 2023 2024 /* Check if the cached @id still points to a valid @seq. */ 2025 id = atomic_long_read(&desc_ring->last_finalized_id); 2026 d_state = desc_read(desc_ring, id, NULL, &seq, NULL); 2027 2028 if (d_state == desc_finalized || d_state == desc_reusable) { 2029 /* 2030 * Begin searching after the last finalized record. 2031 * 2032 * On 0, the search must begin at 0 because of hack#2 2033 * of the bootstrapping phase it is not known if a 2034 * record at index 0 exists. 2035 */ 2036 if (seq != 0) 2037 seq++; 2038 } else { 2039 /* 2040 * The information about the last finalized sequence number 2041 * has gone. It should happen only when there is a flood of 2042 * new messages and the ringbuffer is rapidly recycled. 2043 * Give up and start from the beginning. 2044 */ 2045 seq = 0; 2046 } 2047 2048 /* 2049 * The information about the last finalized @seq might be inaccurate. 2050 * Search forward to find the current one. 2051 */ 2052 while (_prb_read_valid(rb, &seq, NULL, NULL)) 2053 seq++; 2054 2055 return seq; 2056 } 2057 2058 /** 2059 * prb_init() - Initialize a ringbuffer to use provided external buffers. 2060 * 2061 * @rb: The ringbuffer to initialize. 2062 * @text_buf: The data buffer for text data. 2063 * @textbits: The size of @text_buf as a power-of-2 value. 2064 * @descs: The descriptor buffer for ringbuffer records. 2065 * @descbits: The count of @descs items as a power-of-2 value. 2066 * @infos: The printk_info buffer for ringbuffer records. 2067 * 2068 * This is the public function available to writers to setup a ringbuffer 2069 * during runtime using provided buffers. 2070 * 2071 * This must match the initialization of DEFINE_PRINTKRB(). 2072 * 2073 * Context: Any context. 2074 */ 2075 void prb_init(struct printk_ringbuffer *rb, 2076 char *text_buf, unsigned int textbits, 2077 struct prb_desc *descs, unsigned int descbits, 2078 struct printk_info *infos) 2079 { 2080 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0])); 2081 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0])); 2082 2083 rb->desc_ring.count_bits = descbits; 2084 rb->desc_ring.descs = descs; 2085 rb->desc_ring.infos = infos; 2086 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits)); 2087 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits)); 2088 atomic_long_set(&rb->desc_ring.last_finalized_id, DESC0_ID(descbits)); 2089 2090 rb->text_data_ring.size_bits = textbits; 2091 rb->text_data_ring.data = text_buf; 2092 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits)); 2093 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits)); 2094 2095 atomic_long_set(&rb->fail, 0); 2096 2097 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits)); 2098 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS; 2099 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS; 2100 2101 infos[0].seq = -(u64)_DESCS_COUNT(descbits); 2102 infos[_DESCS_COUNT(descbits) - 1].seq = 0; 2103 } 2104 2105 /** 2106 * prb_record_text_space() - Query the full actual used ringbuffer space for 2107 * the text data of a reserved entry. 2108 * 2109 * @e: The successfully reserved entry to query. 2110 * 2111 * This is the public function available to writers to see how much actual 2112 * space is used in the ringbuffer to store the text data of the specified 2113 * entry. 2114 * 2115 * This function is only valid if @e has been successfully reserved using 2116 * prb_reserve(). 2117 * 2118 * Context: Any context. 2119 * Return: The size in bytes used by the text data of the associated record. 2120 */ 2121 unsigned int prb_record_text_space(struct prb_reserved_entry *e) 2122 { 2123 return e->text_space; 2124 }
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |