Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Pid namespaces
0004  *
0005  * Authors:
0006  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
0007  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
0008  *     Many thanks to Oleg Nesterov for comments and help
0009  *
0010  */
0011 
0012 #include <linux/pid.h>
0013 #include <linux/pid_namespace.h>
0014 #include <linux/user_namespace.h>
0015 #include <linux/syscalls.h>
0016 #include <linux/cred.h>
0017 #include <linux/err.h>
0018 #include <linux/acct.h>
0019 #include <linux/slab.h>
0020 #include <linux/proc_ns.h>
0021 #include <linux/reboot.h>
0022 #include <linux/export.h>
0023 #include <linux/sched/task.h>
0024 #include <linux/sched/signal.h>
0025 #include <linux/idr.h>
0026 
0027 static DEFINE_MUTEX(pid_caches_mutex);
0028 static struct kmem_cache *pid_ns_cachep;
0029 /* Write once array, filled from the beginning. */
0030 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
0031 
0032 /*
0033  * creates the kmem cache to allocate pids from.
0034  * @level: pid namespace level
0035  */
0036 
0037 static struct kmem_cache *create_pid_cachep(unsigned int level)
0038 {
0039     /* Level 0 is init_pid_ns.pid_cachep */
0040     struct kmem_cache **pkc = &pid_cache[level - 1];
0041     struct kmem_cache *kc;
0042     char name[4 + 10 + 1];
0043     unsigned int len;
0044 
0045     kc = READ_ONCE(*pkc);
0046     if (kc)
0047         return kc;
0048 
0049     snprintf(name, sizeof(name), "pid_%u", level + 1);
0050     len = sizeof(struct pid) + level * sizeof(struct upid);
0051     mutex_lock(&pid_caches_mutex);
0052     /* Name collision forces to do allocation under mutex. */
0053     if (!*pkc)
0054         *pkc = kmem_cache_create(name, len, 0,
0055                      SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
0056     mutex_unlock(&pid_caches_mutex);
0057     /* current can fail, but someone else can succeed. */
0058     return READ_ONCE(*pkc);
0059 }
0060 
0061 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
0062 {
0063     return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
0064 }
0065 
0066 static void dec_pid_namespaces(struct ucounts *ucounts)
0067 {
0068     dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
0069 }
0070 
0071 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
0072     struct pid_namespace *parent_pid_ns)
0073 {
0074     struct pid_namespace *ns;
0075     unsigned int level = parent_pid_ns->level + 1;
0076     struct ucounts *ucounts;
0077     int err;
0078 
0079     err = -EINVAL;
0080     if (!in_userns(parent_pid_ns->user_ns, user_ns))
0081         goto out;
0082 
0083     err = -ENOSPC;
0084     if (level > MAX_PID_NS_LEVEL)
0085         goto out;
0086     ucounts = inc_pid_namespaces(user_ns);
0087     if (!ucounts)
0088         goto out;
0089 
0090     err = -ENOMEM;
0091     ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
0092     if (ns == NULL)
0093         goto out_dec;
0094 
0095     idr_init(&ns->idr);
0096 
0097     ns->pid_cachep = create_pid_cachep(level);
0098     if (ns->pid_cachep == NULL)
0099         goto out_free_idr;
0100 
0101     err = ns_alloc_inum(&ns->ns);
0102     if (err)
0103         goto out_free_idr;
0104     ns->ns.ops = &pidns_operations;
0105 
0106     refcount_set(&ns->ns.count, 1);
0107     ns->level = level;
0108     ns->parent = get_pid_ns(parent_pid_ns);
0109     ns->user_ns = get_user_ns(user_ns);
0110     ns->ucounts = ucounts;
0111     ns->pid_allocated = PIDNS_ADDING;
0112 
0113     return ns;
0114 
0115 out_free_idr:
0116     idr_destroy(&ns->idr);
0117     kmem_cache_free(pid_ns_cachep, ns);
0118 out_dec:
0119     dec_pid_namespaces(ucounts);
0120 out:
0121     return ERR_PTR(err);
0122 }
0123 
0124 static void delayed_free_pidns(struct rcu_head *p)
0125 {
0126     struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
0127 
0128     dec_pid_namespaces(ns->ucounts);
0129     put_user_ns(ns->user_ns);
0130 
0131     kmem_cache_free(pid_ns_cachep, ns);
0132 }
0133 
0134 static void destroy_pid_namespace(struct pid_namespace *ns)
0135 {
0136     ns_free_inum(&ns->ns);
0137 
0138     idr_destroy(&ns->idr);
0139     call_rcu(&ns->rcu, delayed_free_pidns);
0140 }
0141 
0142 struct pid_namespace *copy_pid_ns(unsigned long flags,
0143     struct user_namespace *user_ns, struct pid_namespace *old_ns)
0144 {
0145     if (!(flags & CLONE_NEWPID))
0146         return get_pid_ns(old_ns);
0147     if (task_active_pid_ns(current) != old_ns)
0148         return ERR_PTR(-EINVAL);
0149     return create_pid_namespace(user_ns, old_ns);
0150 }
0151 
0152 void put_pid_ns(struct pid_namespace *ns)
0153 {
0154     struct pid_namespace *parent;
0155 
0156     while (ns != &init_pid_ns) {
0157         parent = ns->parent;
0158         if (!refcount_dec_and_test(&ns->ns.count))
0159             break;
0160         destroy_pid_namespace(ns);
0161         ns = parent;
0162     }
0163 }
0164 EXPORT_SYMBOL_GPL(put_pid_ns);
0165 
0166 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
0167 {
0168     int nr;
0169     int rc;
0170     struct task_struct *task, *me = current;
0171     int init_pids = thread_group_leader(me) ? 1 : 2;
0172     struct pid *pid;
0173 
0174     /* Don't allow any more processes into the pid namespace */
0175     disable_pid_allocation(pid_ns);
0176 
0177     /*
0178      * Ignore SIGCHLD causing any terminated children to autoreap.
0179      * This speeds up the namespace shutdown, plus see the comment
0180      * below.
0181      */
0182     spin_lock_irq(&me->sighand->siglock);
0183     me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
0184     spin_unlock_irq(&me->sighand->siglock);
0185 
0186     /*
0187      * The last thread in the cgroup-init thread group is terminating.
0188      * Find remaining pid_ts in the namespace, signal and wait for them
0189      * to exit.
0190      *
0191      * Note:  This signals each threads in the namespace - even those that
0192      *    belong to the same thread group, To avoid this, we would have
0193      *    to walk the entire tasklist looking a processes in this
0194      *    namespace, but that could be unnecessarily expensive if the
0195      *    pid namespace has just a few processes. Or we need to
0196      *    maintain a tasklist for each pid namespace.
0197      *
0198      */
0199     rcu_read_lock();
0200     read_lock(&tasklist_lock);
0201     nr = 2;
0202     idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
0203         task = pid_task(pid, PIDTYPE_PID);
0204         if (task && !__fatal_signal_pending(task))
0205             group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
0206     }
0207     read_unlock(&tasklist_lock);
0208     rcu_read_unlock();
0209 
0210     /*
0211      * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
0212      * kernel_wait4() will also block until our children traced from the
0213      * parent namespace are detached and become EXIT_DEAD.
0214      */
0215     do {
0216         clear_thread_flag(TIF_SIGPENDING);
0217         rc = kernel_wait4(-1, NULL, __WALL, NULL);
0218     } while (rc != -ECHILD);
0219 
0220     /*
0221      * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
0222      * process whose parents processes are outside of the pid
0223      * namespace.  Such processes are created with setns()+fork().
0224      *
0225      * If those EXIT_ZOMBIE processes are not reaped by their
0226      * parents before their parents exit, they will be reparented
0227      * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
0228      * stay valid until they all go away.
0229      *
0230      * The code relies on the pid_ns->child_reaper ignoring
0231      * SIGCHILD to cause those EXIT_ZOMBIE processes to be
0232      * autoreaped if reparented.
0233      *
0234      * Semantically it is also desirable to wait for EXIT_ZOMBIE
0235      * processes before allowing the child_reaper to be reaped, as
0236      * that gives the invariant that when the init process of a
0237      * pid namespace is reaped all of the processes in the pid
0238      * namespace are gone.
0239      *
0240      * Once all of the other tasks are gone from the pid_namespace
0241      * free_pid() will awaken this task.
0242      */
0243     for (;;) {
0244         set_current_state(TASK_INTERRUPTIBLE);
0245         if (pid_ns->pid_allocated == init_pids)
0246             break;
0247         schedule();
0248     }
0249     __set_current_state(TASK_RUNNING);
0250 
0251     if (pid_ns->reboot)
0252         current->signal->group_exit_code = pid_ns->reboot;
0253 
0254     acct_exit_ns(pid_ns);
0255     return;
0256 }
0257 
0258 #ifdef CONFIG_CHECKPOINT_RESTORE
0259 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
0260         void *buffer, size_t *lenp, loff_t *ppos)
0261 {
0262     struct pid_namespace *pid_ns = task_active_pid_ns(current);
0263     struct ctl_table tmp = *table;
0264     int ret, next;
0265 
0266     if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
0267         return -EPERM;
0268 
0269     /*
0270      * Writing directly to ns' last_pid field is OK, since this field
0271      * is volatile in a living namespace anyway and a code writing to
0272      * it should synchronize its usage with external means.
0273      */
0274 
0275     next = idr_get_cursor(&pid_ns->idr) - 1;
0276 
0277     tmp.data = &next;
0278     ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
0279     if (!ret && write)
0280         idr_set_cursor(&pid_ns->idr, next + 1);
0281 
0282     return ret;
0283 }
0284 
0285 extern int pid_max;
0286 static struct ctl_table pid_ns_ctl_table[] = {
0287     {
0288         .procname = "ns_last_pid",
0289         .maxlen = sizeof(int),
0290         .mode = 0666, /* permissions are checked in the handler */
0291         .proc_handler = pid_ns_ctl_handler,
0292         .extra1 = SYSCTL_ZERO,
0293         .extra2 = &pid_max,
0294     },
0295     { }
0296 };
0297 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
0298 #endif  /* CONFIG_CHECKPOINT_RESTORE */
0299 
0300 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
0301 {
0302     if (pid_ns == &init_pid_ns)
0303         return 0;
0304 
0305     switch (cmd) {
0306     case LINUX_REBOOT_CMD_RESTART2:
0307     case LINUX_REBOOT_CMD_RESTART:
0308         pid_ns->reboot = SIGHUP;
0309         break;
0310 
0311     case LINUX_REBOOT_CMD_POWER_OFF:
0312     case LINUX_REBOOT_CMD_HALT:
0313         pid_ns->reboot = SIGINT;
0314         break;
0315     default:
0316         return -EINVAL;
0317     }
0318 
0319     read_lock(&tasklist_lock);
0320     send_sig(SIGKILL, pid_ns->child_reaper, 1);
0321     read_unlock(&tasklist_lock);
0322 
0323     do_exit(0);
0324 
0325     /* Not reached */
0326     return 0;
0327 }
0328 
0329 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
0330 {
0331     return container_of(ns, struct pid_namespace, ns);
0332 }
0333 
0334 static struct ns_common *pidns_get(struct task_struct *task)
0335 {
0336     struct pid_namespace *ns;
0337 
0338     rcu_read_lock();
0339     ns = task_active_pid_ns(task);
0340     if (ns)
0341         get_pid_ns(ns);
0342     rcu_read_unlock();
0343 
0344     return ns ? &ns->ns : NULL;
0345 }
0346 
0347 static struct ns_common *pidns_for_children_get(struct task_struct *task)
0348 {
0349     struct pid_namespace *ns = NULL;
0350 
0351     task_lock(task);
0352     if (task->nsproxy) {
0353         ns = task->nsproxy->pid_ns_for_children;
0354         get_pid_ns(ns);
0355     }
0356     task_unlock(task);
0357 
0358     if (ns) {
0359         read_lock(&tasklist_lock);
0360         if (!ns->child_reaper) {
0361             put_pid_ns(ns);
0362             ns = NULL;
0363         }
0364         read_unlock(&tasklist_lock);
0365     }
0366 
0367     return ns ? &ns->ns : NULL;
0368 }
0369 
0370 static void pidns_put(struct ns_common *ns)
0371 {
0372     put_pid_ns(to_pid_ns(ns));
0373 }
0374 
0375 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
0376 {
0377     struct nsproxy *nsproxy = nsset->nsproxy;
0378     struct pid_namespace *active = task_active_pid_ns(current);
0379     struct pid_namespace *ancestor, *new = to_pid_ns(ns);
0380 
0381     if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
0382         !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
0383         return -EPERM;
0384 
0385     /*
0386      * Only allow entering the current active pid namespace
0387      * or a child of the current active pid namespace.
0388      *
0389      * This is required for fork to return a usable pid value and
0390      * this maintains the property that processes and their
0391      * children can not escape their current pid namespace.
0392      */
0393     if (new->level < active->level)
0394         return -EINVAL;
0395 
0396     ancestor = new;
0397     while (ancestor->level > active->level)
0398         ancestor = ancestor->parent;
0399     if (ancestor != active)
0400         return -EINVAL;
0401 
0402     put_pid_ns(nsproxy->pid_ns_for_children);
0403     nsproxy->pid_ns_for_children = get_pid_ns(new);
0404     return 0;
0405 }
0406 
0407 static struct ns_common *pidns_get_parent(struct ns_common *ns)
0408 {
0409     struct pid_namespace *active = task_active_pid_ns(current);
0410     struct pid_namespace *pid_ns, *p;
0411 
0412     /* See if the parent is in the current namespace */
0413     pid_ns = p = to_pid_ns(ns)->parent;
0414     for (;;) {
0415         if (!p)
0416             return ERR_PTR(-EPERM);
0417         if (p == active)
0418             break;
0419         p = p->parent;
0420     }
0421 
0422     return &get_pid_ns(pid_ns)->ns;
0423 }
0424 
0425 static struct user_namespace *pidns_owner(struct ns_common *ns)
0426 {
0427     return to_pid_ns(ns)->user_ns;
0428 }
0429 
0430 const struct proc_ns_operations pidns_operations = {
0431     .name       = "pid",
0432     .type       = CLONE_NEWPID,
0433     .get        = pidns_get,
0434     .put        = pidns_put,
0435     .install    = pidns_install,
0436     .owner      = pidns_owner,
0437     .get_parent = pidns_get_parent,
0438 };
0439 
0440 const struct proc_ns_operations pidns_for_children_operations = {
0441     .name       = "pid_for_children",
0442     .real_ns_name   = "pid",
0443     .type       = CLONE_NEWPID,
0444     .get        = pidns_for_children_get,
0445     .put        = pidns_put,
0446     .install    = pidns_install,
0447     .owner      = pidns_owner,
0448     .get_parent = pidns_get_parent,
0449 };
0450 
0451 static __init int pid_namespaces_init(void)
0452 {
0453     pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
0454 
0455 #ifdef CONFIG_CHECKPOINT_RESTORE
0456     register_sysctl_paths(kern_path, pid_ns_ctl_table);
0457 #endif
0458     return 0;
0459 }
0460 
0461 __initcall(pid_namespaces_init);