Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2002 Richard Henderson
0004  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
0005  */
0006 
0007 #define INCLUDE_VERMAGIC
0008 
0009 #include <linux/export.h>
0010 #include <linux/extable.h>
0011 #include <linux/moduleloader.h>
0012 #include <linux/module_signature.h>
0013 #include <linux/trace_events.h>
0014 #include <linux/init.h>
0015 #include <linux/kallsyms.h>
0016 #include <linux/buildid.h>
0017 #include <linux/fs.h>
0018 #include <linux/kernel.h>
0019 #include <linux/kernel_read_file.h>
0020 #include <linux/slab.h>
0021 #include <linux/vmalloc.h>
0022 #include <linux/elf.h>
0023 #include <linux/seq_file.h>
0024 #include <linux/syscalls.h>
0025 #include <linux/fcntl.h>
0026 #include <linux/rcupdate.h>
0027 #include <linux/capability.h>
0028 #include <linux/cpu.h>
0029 #include <linux/moduleparam.h>
0030 #include <linux/errno.h>
0031 #include <linux/err.h>
0032 #include <linux/vermagic.h>
0033 #include <linux/notifier.h>
0034 #include <linux/sched.h>
0035 #include <linux/device.h>
0036 #include <linux/string.h>
0037 #include <linux/mutex.h>
0038 #include <linux/rculist.h>
0039 #include <linux/uaccess.h>
0040 #include <asm/cacheflush.h>
0041 #include <linux/set_memory.h>
0042 #include <asm/mmu_context.h>
0043 #include <linux/license.h>
0044 #include <asm/sections.h>
0045 #include <linux/tracepoint.h>
0046 #include <linux/ftrace.h>
0047 #include <linux/livepatch.h>
0048 #include <linux/async.h>
0049 #include <linux/percpu.h>
0050 #include <linux/kmemleak.h>
0051 #include <linux/jump_label.h>
0052 #include <linux/pfn.h>
0053 #include <linux/bsearch.h>
0054 #include <linux/dynamic_debug.h>
0055 #include <linux/audit.h>
0056 #include <uapi/linux/module.h>
0057 #include "internal.h"
0058 
0059 #define CREATE_TRACE_POINTS
0060 #include <trace/events/module.h>
0061 
0062 /*
0063  * Mutex protects:
0064  * 1) List of modules (also safely readable with preempt_disable),
0065  * 2) module_use links,
0066  * 3) mod_tree.addr_min/mod_tree.addr_max.
0067  * (delete and add uses RCU list operations).
0068  */
0069 DEFINE_MUTEX(module_mutex);
0070 LIST_HEAD(modules);
0071 
0072 /* Work queue for freeing init sections in success case */
0073 static void do_free_init(struct work_struct *w);
0074 static DECLARE_WORK(init_free_wq, do_free_init);
0075 static LLIST_HEAD(init_free_list);
0076 
0077 struct mod_tree_root mod_tree __cacheline_aligned = {
0078     .addr_min = -1UL,
0079 };
0080 
0081 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
0082 struct mod_tree_root mod_data_tree __cacheline_aligned = {
0083     .addr_min = -1UL,
0084 };
0085 #endif
0086 
0087 #define module_addr_min mod_tree.addr_min
0088 #define module_addr_max mod_tree.addr_max
0089 
0090 struct symsearch {
0091     const struct kernel_symbol *start, *stop;
0092     const s32 *crcs;
0093     enum mod_license license;
0094 };
0095 
0096 /*
0097  * Bounds of module text, for speeding up __module_address.
0098  * Protected by module_mutex.
0099  */
0100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
0101 {
0102     unsigned long min = (unsigned long)base;
0103     unsigned long max = min + size;
0104 
0105     if (min < tree->addr_min)
0106         tree->addr_min = min;
0107     if (max > tree->addr_max)
0108         tree->addr_max = max;
0109 }
0110 
0111 static void mod_update_bounds(struct module *mod)
0112 {
0113     __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
0114     if (mod->init_layout.size)
0115         __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
0116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
0117     __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
0118 #endif
0119 }
0120 
0121 /* Block module loading/unloading? */
0122 int modules_disabled;
0123 core_param(nomodule, modules_disabled, bint, 0);
0124 
0125 /* Waiting for a module to finish initializing? */
0126 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
0127 
0128 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
0129 
0130 int register_module_notifier(struct notifier_block *nb)
0131 {
0132     return blocking_notifier_chain_register(&module_notify_list, nb);
0133 }
0134 EXPORT_SYMBOL(register_module_notifier);
0135 
0136 int unregister_module_notifier(struct notifier_block *nb)
0137 {
0138     return blocking_notifier_chain_unregister(&module_notify_list, nb);
0139 }
0140 EXPORT_SYMBOL(unregister_module_notifier);
0141 
0142 /*
0143  * We require a truly strong try_module_get(): 0 means success.
0144  * Otherwise an error is returned due to ongoing or failed
0145  * initialization etc.
0146  */
0147 static inline int strong_try_module_get(struct module *mod)
0148 {
0149     BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
0150     if (mod && mod->state == MODULE_STATE_COMING)
0151         return -EBUSY;
0152     if (try_module_get(mod))
0153         return 0;
0154     else
0155         return -ENOENT;
0156 }
0157 
0158 static inline void add_taint_module(struct module *mod, unsigned flag,
0159                     enum lockdep_ok lockdep_ok)
0160 {
0161     add_taint(flag, lockdep_ok);
0162     set_bit(flag, &mod->taints);
0163 }
0164 
0165 /*
0166  * A thread that wants to hold a reference to a module only while it
0167  * is running can call this to safely exit.
0168  */
0169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
0170 {
0171     module_put(mod);
0172     kthread_exit(code);
0173 }
0174 EXPORT_SYMBOL(__module_put_and_kthread_exit);
0175 
0176 /* Find a module section: 0 means not found. */
0177 static unsigned int find_sec(const struct load_info *info, const char *name)
0178 {
0179     unsigned int i;
0180 
0181     for (i = 1; i < info->hdr->e_shnum; i++) {
0182         Elf_Shdr *shdr = &info->sechdrs[i];
0183         /* Alloc bit cleared means "ignore it." */
0184         if ((shdr->sh_flags & SHF_ALLOC)
0185             && strcmp(info->secstrings + shdr->sh_name, name) == 0)
0186             return i;
0187     }
0188     return 0;
0189 }
0190 
0191 /* Find a module section, or NULL. */
0192 static void *section_addr(const struct load_info *info, const char *name)
0193 {
0194     /* Section 0 has sh_addr 0. */
0195     return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
0196 }
0197 
0198 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
0199 static void *section_objs(const struct load_info *info,
0200               const char *name,
0201               size_t object_size,
0202               unsigned int *num)
0203 {
0204     unsigned int sec = find_sec(info, name);
0205 
0206     /* Section 0 has sh_addr 0 and sh_size 0. */
0207     *num = info->sechdrs[sec].sh_size / object_size;
0208     return (void *)info->sechdrs[sec].sh_addr;
0209 }
0210 
0211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
0212 static unsigned int find_any_sec(const struct load_info *info, const char *name)
0213 {
0214     unsigned int i;
0215 
0216     for (i = 1; i < info->hdr->e_shnum; i++) {
0217         Elf_Shdr *shdr = &info->sechdrs[i];
0218         if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
0219             return i;
0220     }
0221     return 0;
0222 }
0223 
0224 /*
0225  * Find a module section, or NULL. Fill in number of "objects" in section.
0226  * Ignores SHF_ALLOC flag.
0227  */
0228 static __maybe_unused void *any_section_objs(const struct load_info *info,
0229                          const char *name,
0230                          size_t object_size,
0231                          unsigned int *num)
0232 {
0233     unsigned int sec = find_any_sec(info, name);
0234 
0235     /* Section 0 has sh_addr 0 and sh_size 0. */
0236     *num = info->sechdrs[sec].sh_size / object_size;
0237     return (void *)info->sechdrs[sec].sh_addr;
0238 }
0239 
0240 #ifndef CONFIG_MODVERSIONS
0241 #define symversion(base, idx) NULL
0242 #else
0243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
0244 #endif
0245 
0246 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
0247 {
0248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
0249     return offset_to_ptr(&sym->name_offset);
0250 #else
0251     return sym->name;
0252 #endif
0253 }
0254 
0255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
0256 {
0257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
0258     if (!sym->namespace_offset)
0259         return NULL;
0260     return offset_to_ptr(&sym->namespace_offset);
0261 #else
0262     return sym->namespace;
0263 #endif
0264 }
0265 
0266 int cmp_name(const void *name, const void *sym)
0267 {
0268     return strcmp(name, kernel_symbol_name(sym));
0269 }
0270 
0271 static bool find_exported_symbol_in_section(const struct symsearch *syms,
0272                         struct module *owner,
0273                         struct find_symbol_arg *fsa)
0274 {
0275     struct kernel_symbol *sym;
0276 
0277     if (!fsa->gplok && syms->license == GPL_ONLY)
0278         return false;
0279 
0280     sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
0281             sizeof(struct kernel_symbol), cmp_name);
0282     if (!sym)
0283         return false;
0284 
0285     fsa->owner = owner;
0286     fsa->crc = symversion(syms->crcs, sym - syms->start);
0287     fsa->sym = sym;
0288     fsa->license = syms->license;
0289 
0290     return true;
0291 }
0292 
0293 /*
0294  * Find an exported symbol and return it, along with, (optional) crc and
0295  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
0296  */
0297 bool find_symbol(struct find_symbol_arg *fsa)
0298 {
0299     static const struct symsearch arr[] = {
0300         { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
0301           NOT_GPL_ONLY },
0302         { __start___ksymtab_gpl, __stop___ksymtab_gpl,
0303           __start___kcrctab_gpl,
0304           GPL_ONLY },
0305     };
0306     struct module *mod;
0307     unsigned int i;
0308 
0309     module_assert_mutex_or_preempt();
0310 
0311     for (i = 0; i < ARRAY_SIZE(arr); i++)
0312         if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
0313             return true;
0314 
0315     list_for_each_entry_rcu(mod, &modules, list,
0316                 lockdep_is_held(&module_mutex)) {
0317         struct symsearch arr[] = {
0318             { mod->syms, mod->syms + mod->num_syms, mod->crcs,
0319               NOT_GPL_ONLY },
0320             { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
0321               mod->gpl_crcs,
0322               GPL_ONLY },
0323         };
0324 
0325         if (mod->state == MODULE_STATE_UNFORMED)
0326             continue;
0327 
0328         for (i = 0; i < ARRAY_SIZE(arr); i++)
0329             if (find_exported_symbol_in_section(&arr[i], mod, fsa))
0330                 return true;
0331     }
0332 
0333     pr_debug("Failed to find symbol %s\n", fsa->name);
0334     return false;
0335 }
0336 
0337 /*
0338  * Search for module by name: must hold module_mutex (or preempt disabled
0339  * for read-only access).
0340  */
0341 struct module *find_module_all(const char *name, size_t len,
0342                    bool even_unformed)
0343 {
0344     struct module *mod;
0345 
0346     module_assert_mutex_or_preempt();
0347 
0348     list_for_each_entry_rcu(mod, &modules, list,
0349                 lockdep_is_held(&module_mutex)) {
0350         if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
0351             continue;
0352         if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
0353             return mod;
0354     }
0355     return NULL;
0356 }
0357 
0358 struct module *find_module(const char *name)
0359 {
0360     return find_module_all(name, strlen(name), false);
0361 }
0362 
0363 #ifdef CONFIG_SMP
0364 
0365 static inline void __percpu *mod_percpu(struct module *mod)
0366 {
0367     return mod->percpu;
0368 }
0369 
0370 static int percpu_modalloc(struct module *mod, struct load_info *info)
0371 {
0372     Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
0373     unsigned long align = pcpusec->sh_addralign;
0374 
0375     if (!pcpusec->sh_size)
0376         return 0;
0377 
0378     if (align > PAGE_SIZE) {
0379         pr_warn("%s: per-cpu alignment %li > %li\n",
0380             mod->name, align, PAGE_SIZE);
0381         align = PAGE_SIZE;
0382     }
0383 
0384     mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
0385     if (!mod->percpu) {
0386         pr_warn("%s: Could not allocate %lu bytes percpu data\n",
0387             mod->name, (unsigned long)pcpusec->sh_size);
0388         return -ENOMEM;
0389     }
0390     mod->percpu_size = pcpusec->sh_size;
0391     return 0;
0392 }
0393 
0394 static void percpu_modfree(struct module *mod)
0395 {
0396     free_percpu(mod->percpu);
0397 }
0398 
0399 static unsigned int find_pcpusec(struct load_info *info)
0400 {
0401     return find_sec(info, ".data..percpu");
0402 }
0403 
0404 static void percpu_modcopy(struct module *mod,
0405                const void *from, unsigned long size)
0406 {
0407     int cpu;
0408 
0409     for_each_possible_cpu(cpu)
0410         memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
0411 }
0412 
0413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
0414 {
0415     struct module *mod;
0416     unsigned int cpu;
0417 
0418     preempt_disable();
0419 
0420     list_for_each_entry_rcu(mod, &modules, list) {
0421         if (mod->state == MODULE_STATE_UNFORMED)
0422             continue;
0423         if (!mod->percpu_size)
0424             continue;
0425         for_each_possible_cpu(cpu) {
0426             void *start = per_cpu_ptr(mod->percpu, cpu);
0427             void *va = (void *)addr;
0428 
0429             if (va >= start && va < start + mod->percpu_size) {
0430                 if (can_addr) {
0431                     *can_addr = (unsigned long) (va - start);
0432                     *can_addr += (unsigned long)
0433                         per_cpu_ptr(mod->percpu,
0434                                 get_boot_cpu_id());
0435                 }
0436                 preempt_enable();
0437                 return true;
0438             }
0439         }
0440     }
0441 
0442     preempt_enable();
0443     return false;
0444 }
0445 
0446 /**
0447  * is_module_percpu_address() - test whether address is from module static percpu
0448  * @addr: address to test
0449  *
0450  * Test whether @addr belongs to module static percpu area.
0451  *
0452  * Return: %true if @addr is from module static percpu area
0453  */
0454 bool is_module_percpu_address(unsigned long addr)
0455 {
0456     return __is_module_percpu_address(addr, NULL);
0457 }
0458 
0459 #else /* ... !CONFIG_SMP */
0460 
0461 static inline void __percpu *mod_percpu(struct module *mod)
0462 {
0463     return NULL;
0464 }
0465 static int percpu_modalloc(struct module *mod, struct load_info *info)
0466 {
0467     /* UP modules shouldn't have this section: ENOMEM isn't quite right */
0468     if (info->sechdrs[info->index.pcpu].sh_size != 0)
0469         return -ENOMEM;
0470     return 0;
0471 }
0472 static inline void percpu_modfree(struct module *mod)
0473 {
0474 }
0475 static unsigned int find_pcpusec(struct load_info *info)
0476 {
0477     return 0;
0478 }
0479 static inline void percpu_modcopy(struct module *mod,
0480                   const void *from, unsigned long size)
0481 {
0482     /* pcpusec should be 0, and size of that section should be 0. */
0483     BUG_ON(size != 0);
0484 }
0485 bool is_module_percpu_address(unsigned long addr)
0486 {
0487     return false;
0488 }
0489 
0490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
0491 {
0492     return false;
0493 }
0494 
0495 #endif /* CONFIG_SMP */
0496 
0497 #define MODINFO_ATTR(field) \
0498 static void setup_modinfo_##field(struct module *mod, const char *s)  \
0499 {                                                                     \
0500     mod->field = kstrdup(s, GFP_KERNEL);                          \
0501 }                                                                     \
0502 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
0503             struct module_kobject *mk, char *buffer)      \
0504 {                                                                     \
0505     return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
0506 }                                                                     \
0507 static int modinfo_##field##_exists(struct module *mod)               \
0508 {                                                                     \
0509     return mod->field != NULL;                                    \
0510 }                                                                     \
0511 static void free_modinfo_##field(struct module *mod)                  \
0512 {                                                                     \
0513     kfree(mod->field);                                            \
0514     mod->field = NULL;                                            \
0515 }                                                                     \
0516 static struct module_attribute modinfo_##field = {                    \
0517     .attr = { .name = __stringify(field), .mode = 0444 },         \
0518     .show = show_modinfo_##field,                                 \
0519     .setup = setup_modinfo_##field,                               \
0520     .test = modinfo_##field##_exists,                             \
0521     .free = free_modinfo_##field,                                 \
0522 };
0523 
0524 MODINFO_ATTR(version);
0525 MODINFO_ATTR(srcversion);
0526 
0527 static struct {
0528     char name[MODULE_NAME_LEN + 1];
0529     char taints[MODULE_FLAGS_BUF_SIZE];
0530 } last_unloaded_module;
0531 
0532 #ifdef CONFIG_MODULE_UNLOAD
0533 
0534 EXPORT_TRACEPOINT_SYMBOL(module_get);
0535 
0536 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
0537 #define MODULE_REF_BASE 1
0538 
0539 /* Init the unload section of the module. */
0540 static int module_unload_init(struct module *mod)
0541 {
0542     /*
0543      * Initialize reference counter to MODULE_REF_BASE.
0544      * refcnt == 0 means module is going.
0545      */
0546     atomic_set(&mod->refcnt, MODULE_REF_BASE);
0547 
0548     INIT_LIST_HEAD(&mod->source_list);
0549     INIT_LIST_HEAD(&mod->target_list);
0550 
0551     /* Hold reference count during initialization. */
0552     atomic_inc(&mod->refcnt);
0553 
0554     return 0;
0555 }
0556 
0557 /* Does a already use b? */
0558 static int already_uses(struct module *a, struct module *b)
0559 {
0560     struct module_use *use;
0561 
0562     list_for_each_entry(use, &b->source_list, source_list) {
0563         if (use->source == a) {
0564             pr_debug("%s uses %s!\n", a->name, b->name);
0565             return 1;
0566         }
0567     }
0568     pr_debug("%s does not use %s!\n", a->name, b->name);
0569     return 0;
0570 }
0571 
0572 /*
0573  * Module a uses b
0574  *  - we add 'a' as a "source", 'b' as a "target" of module use
0575  *  - the module_use is added to the list of 'b' sources (so
0576  *    'b' can walk the list to see who sourced them), and of 'a'
0577  *    targets (so 'a' can see what modules it targets).
0578  */
0579 static int add_module_usage(struct module *a, struct module *b)
0580 {
0581     struct module_use *use;
0582 
0583     pr_debug("Allocating new usage for %s.\n", a->name);
0584     use = kmalloc(sizeof(*use), GFP_ATOMIC);
0585     if (!use)
0586         return -ENOMEM;
0587 
0588     use->source = a;
0589     use->target = b;
0590     list_add(&use->source_list, &b->source_list);
0591     list_add(&use->target_list, &a->target_list);
0592     return 0;
0593 }
0594 
0595 /* Module a uses b: caller needs module_mutex() */
0596 static int ref_module(struct module *a, struct module *b)
0597 {
0598     int err;
0599 
0600     if (b == NULL || already_uses(a, b))
0601         return 0;
0602 
0603     /* If module isn't available, we fail. */
0604     err = strong_try_module_get(b);
0605     if (err)
0606         return err;
0607 
0608     err = add_module_usage(a, b);
0609     if (err) {
0610         module_put(b);
0611         return err;
0612     }
0613     return 0;
0614 }
0615 
0616 /* Clear the unload stuff of the module. */
0617 static void module_unload_free(struct module *mod)
0618 {
0619     struct module_use *use, *tmp;
0620 
0621     mutex_lock(&module_mutex);
0622     list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
0623         struct module *i = use->target;
0624         pr_debug("%s unusing %s\n", mod->name, i->name);
0625         module_put(i);
0626         list_del(&use->source_list);
0627         list_del(&use->target_list);
0628         kfree(use);
0629     }
0630     mutex_unlock(&module_mutex);
0631 }
0632 
0633 #ifdef CONFIG_MODULE_FORCE_UNLOAD
0634 static inline int try_force_unload(unsigned int flags)
0635 {
0636     int ret = (flags & O_TRUNC);
0637     if (ret)
0638         add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
0639     return ret;
0640 }
0641 #else
0642 static inline int try_force_unload(unsigned int flags)
0643 {
0644     return 0;
0645 }
0646 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
0647 
0648 /* Try to release refcount of module, 0 means success. */
0649 static int try_release_module_ref(struct module *mod)
0650 {
0651     int ret;
0652 
0653     /* Try to decrement refcnt which we set at loading */
0654     ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
0655     BUG_ON(ret < 0);
0656     if (ret)
0657         /* Someone can put this right now, recover with checking */
0658         ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
0659 
0660     return ret;
0661 }
0662 
0663 static int try_stop_module(struct module *mod, int flags, int *forced)
0664 {
0665     /* If it's not unused, quit unless we're forcing. */
0666     if (try_release_module_ref(mod) != 0) {
0667         *forced = try_force_unload(flags);
0668         if (!(*forced))
0669             return -EWOULDBLOCK;
0670     }
0671 
0672     /* Mark it as dying. */
0673     mod->state = MODULE_STATE_GOING;
0674 
0675     return 0;
0676 }
0677 
0678 /**
0679  * module_refcount() - return the refcount or -1 if unloading
0680  * @mod:    the module we're checking
0681  *
0682  * Return:
0683  *  -1 if the module is in the process of unloading
0684  *  otherwise the number of references in the kernel to the module
0685  */
0686 int module_refcount(struct module *mod)
0687 {
0688     return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
0689 }
0690 EXPORT_SYMBOL(module_refcount);
0691 
0692 /* This exists whether we can unload or not */
0693 static void free_module(struct module *mod);
0694 
0695 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
0696         unsigned int, flags)
0697 {
0698     struct module *mod;
0699     char name[MODULE_NAME_LEN];
0700     char buf[MODULE_FLAGS_BUF_SIZE];
0701     int ret, forced = 0;
0702 
0703     if (!capable(CAP_SYS_MODULE) || modules_disabled)
0704         return -EPERM;
0705 
0706     if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
0707         return -EFAULT;
0708     name[MODULE_NAME_LEN-1] = '\0';
0709 
0710     audit_log_kern_module(name);
0711 
0712     if (mutex_lock_interruptible(&module_mutex) != 0)
0713         return -EINTR;
0714 
0715     mod = find_module(name);
0716     if (!mod) {
0717         ret = -ENOENT;
0718         goto out;
0719     }
0720 
0721     if (!list_empty(&mod->source_list)) {
0722         /* Other modules depend on us: get rid of them first. */
0723         ret = -EWOULDBLOCK;
0724         goto out;
0725     }
0726 
0727     /* Doing init or already dying? */
0728     if (mod->state != MODULE_STATE_LIVE) {
0729         /* FIXME: if (force), slam module count damn the torpedoes */
0730         pr_debug("%s already dying\n", mod->name);
0731         ret = -EBUSY;
0732         goto out;
0733     }
0734 
0735     /* If it has an init func, it must have an exit func to unload */
0736     if (mod->init && !mod->exit) {
0737         forced = try_force_unload(flags);
0738         if (!forced) {
0739             /* This module can't be removed */
0740             ret = -EBUSY;
0741             goto out;
0742         }
0743     }
0744 
0745     ret = try_stop_module(mod, flags, &forced);
0746     if (ret != 0)
0747         goto out;
0748 
0749     mutex_unlock(&module_mutex);
0750     /* Final destruction now no one is using it. */
0751     if (mod->exit != NULL)
0752         mod->exit();
0753     blocking_notifier_call_chain(&module_notify_list,
0754                      MODULE_STATE_GOING, mod);
0755     klp_module_going(mod);
0756     ftrace_release_mod(mod);
0757 
0758     async_synchronize_full();
0759 
0760     /* Store the name and taints of the last unloaded module for diagnostic purposes */
0761     strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
0762     strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
0763 
0764     free_module(mod);
0765     /* someone could wait for the module in add_unformed_module() */
0766     wake_up_all(&module_wq);
0767     return 0;
0768 out:
0769     mutex_unlock(&module_mutex);
0770     return ret;
0771 }
0772 
0773 void __symbol_put(const char *symbol)
0774 {
0775     struct find_symbol_arg fsa = {
0776         .name   = symbol,
0777         .gplok  = true,
0778     };
0779 
0780     preempt_disable();
0781     BUG_ON(!find_symbol(&fsa));
0782     module_put(fsa.owner);
0783     preempt_enable();
0784 }
0785 EXPORT_SYMBOL(__symbol_put);
0786 
0787 /* Note this assumes addr is a function, which it currently always is. */
0788 void symbol_put_addr(void *addr)
0789 {
0790     struct module *modaddr;
0791     unsigned long a = (unsigned long)dereference_function_descriptor(addr);
0792 
0793     if (core_kernel_text(a))
0794         return;
0795 
0796     /*
0797      * Even though we hold a reference on the module; we still need to
0798      * disable preemption in order to safely traverse the data structure.
0799      */
0800     preempt_disable();
0801     modaddr = __module_text_address(a);
0802     BUG_ON(!modaddr);
0803     module_put(modaddr);
0804     preempt_enable();
0805 }
0806 EXPORT_SYMBOL_GPL(symbol_put_addr);
0807 
0808 static ssize_t show_refcnt(struct module_attribute *mattr,
0809                struct module_kobject *mk, char *buffer)
0810 {
0811     return sprintf(buffer, "%i\n", module_refcount(mk->mod));
0812 }
0813 
0814 static struct module_attribute modinfo_refcnt =
0815     __ATTR(refcnt, 0444, show_refcnt, NULL);
0816 
0817 void __module_get(struct module *module)
0818 {
0819     if (module) {
0820         preempt_disable();
0821         atomic_inc(&module->refcnt);
0822         trace_module_get(module, _RET_IP_);
0823         preempt_enable();
0824     }
0825 }
0826 EXPORT_SYMBOL(__module_get);
0827 
0828 bool try_module_get(struct module *module)
0829 {
0830     bool ret = true;
0831 
0832     if (module) {
0833         preempt_disable();
0834         /* Note: here, we can fail to get a reference */
0835         if (likely(module_is_live(module) &&
0836                atomic_inc_not_zero(&module->refcnt) != 0))
0837             trace_module_get(module, _RET_IP_);
0838         else
0839             ret = false;
0840 
0841         preempt_enable();
0842     }
0843     return ret;
0844 }
0845 EXPORT_SYMBOL(try_module_get);
0846 
0847 void module_put(struct module *module)
0848 {
0849     int ret;
0850 
0851     if (module) {
0852         preempt_disable();
0853         ret = atomic_dec_if_positive(&module->refcnt);
0854         WARN_ON(ret < 0);   /* Failed to put refcount */
0855         trace_module_put(module, _RET_IP_);
0856         preempt_enable();
0857     }
0858 }
0859 EXPORT_SYMBOL(module_put);
0860 
0861 #else /* !CONFIG_MODULE_UNLOAD */
0862 static inline void module_unload_free(struct module *mod)
0863 {
0864 }
0865 
0866 static int ref_module(struct module *a, struct module *b)
0867 {
0868     return strong_try_module_get(b);
0869 }
0870 
0871 static inline int module_unload_init(struct module *mod)
0872 {
0873     return 0;
0874 }
0875 #endif /* CONFIG_MODULE_UNLOAD */
0876 
0877 size_t module_flags_taint(unsigned long taints, char *buf)
0878 {
0879     size_t l = 0;
0880     int i;
0881 
0882     for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
0883         if (taint_flags[i].module && test_bit(i, &taints))
0884             buf[l++] = taint_flags[i].c_true;
0885     }
0886 
0887     return l;
0888 }
0889 
0890 static ssize_t show_initstate(struct module_attribute *mattr,
0891                   struct module_kobject *mk, char *buffer)
0892 {
0893     const char *state = "unknown";
0894 
0895     switch (mk->mod->state) {
0896     case MODULE_STATE_LIVE:
0897         state = "live";
0898         break;
0899     case MODULE_STATE_COMING:
0900         state = "coming";
0901         break;
0902     case MODULE_STATE_GOING:
0903         state = "going";
0904         break;
0905     default:
0906         BUG();
0907     }
0908     return sprintf(buffer, "%s\n", state);
0909 }
0910 
0911 static struct module_attribute modinfo_initstate =
0912     __ATTR(initstate, 0444, show_initstate, NULL);
0913 
0914 static ssize_t store_uevent(struct module_attribute *mattr,
0915                 struct module_kobject *mk,
0916                 const char *buffer, size_t count)
0917 {
0918     int rc;
0919 
0920     rc = kobject_synth_uevent(&mk->kobj, buffer, count);
0921     return rc ? rc : count;
0922 }
0923 
0924 struct module_attribute module_uevent =
0925     __ATTR(uevent, 0200, NULL, store_uevent);
0926 
0927 static ssize_t show_coresize(struct module_attribute *mattr,
0928                  struct module_kobject *mk, char *buffer)
0929 {
0930     return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
0931 }
0932 
0933 static struct module_attribute modinfo_coresize =
0934     __ATTR(coresize, 0444, show_coresize, NULL);
0935 
0936 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
0937 static ssize_t show_datasize(struct module_attribute *mattr,
0938                  struct module_kobject *mk, char *buffer)
0939 {
0940     return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
0941 }
0942 
0943 static struct module_attribute modinfo_datasize =
0944     __ATTR(datasize, 0444, show_datasize, NULL);
0945 #endif
0946 
0947 static ssize_t show_initsize(struct module_attribute *mattr,
0948                  struct module_kobject *mk, char *buffer)
0949 {
0950     return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
0951 }
0952 
0953 static struct module_attribute modinfo_initsize =
0954     __ATTR(initsize, 0444, show_initsize, NULL);
0955 
0956 static ssize_t show_taint(struct module_attribute *mattr,
0957               struct module_kobject *mk, char *buffer)
0958 {
0959     size_t l;
0960 
0961     l = module_flags_taint(mk->mod->taints, buffer);
0962     buffer[l++] = '\n';
0963     return l;
0964 }
0965 
0966 static struct module_attribute modinfo_taint =
0967     __ATTR(taint, 0444, show_taint, NULL);
0968 
0969 struct module_attribute *modinfo_attrs[] = {
0970     &module_uevent,
0971     &modinfo_version,
0972     &modinfo_srcversion,
0973     &modinfo_initstate,
0974     &modinfo_coresize,
0975 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
0976     &modinfo_datasize,
0977 #endif
0978     &modinfo_initsize,
0979     &modinfo_taint,
0980 #ifdef CONFIG_MODULE_UNLOAD
0981     &modinfo_refcnt,
0982 #endif
0983     NULL,
0984 };
0985 
0986 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
0987 
0988 static const char vermagic[] = VERMAGIC_STRING;
0989 
0990 int try_to_force_load(struct module *mod, const char *reason)
0991 {
0992 #ifdef CONFIG_MODULE_FORCE_LOAD
0993     if (!test_taint(TAINT_FORCED_MODULE))
0994         pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
0995     add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
0996     return 0;
0997 #else
0998     return -ENOEXEC;
0999 #endif
1000 }
1001 
1002 static char *get_modinfo(const struct load_info *info, const char *tag);
1003 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1004                   char *prev);
1005 
1006 static int verify_namespace_is_imported(const struct load_info *info,
1007                     const struct kernel_symbol *sym,
1008                     struct module *mod)
1009 {
1010     const char *namespace;
1011     char *imported_namespace;
1012 
1013     namespace = kernel_symbol_namespace(sym);
1014     if (namespace && namespace[0]) {
1015         imported_namespace = get_modinfo(info, "import_ns");
1016         while (imported_namespace) {
1017             if (strcmp(namespace, imported_namespace) == 0)
1018                 return 0;
1019             imported_namespace = get_next_modinfo(
1020                 info, "import_ns", imported_namespace);
1021         }
1022 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1023         pr_warn(
1024 #else
1025         pr_err(
1026 #endif
1027             "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1028             mod->name, kernel_symbol_name(sym), namespace);
1029 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1030         return -EINVAL;
1031 #endif
1032     }
1033     return 0;
1034 }
1035 
1036 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1037 {
1038     if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1039         return true;
1040 
1041     if (mod->using_gplonly_symbols) {
1042         pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1043             mod->name, name, owner->name);
1044         return false;
1045     }
1046 
1047     if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1048         pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1049             mod->name, name, owner->name);
1050         set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1051     }
1052     return true;
1053 }
1054 
1055 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1056 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1057                           const struct load_info *info,
1058                           const char *name,
1059                           char ownername[])
1060 {
1061     struct find_symbol_arg fsa = {
1062         .name   = name,
1063         .gplok  = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1064         .warn   = true,
1065     };
1066     int err;
1067 
1068     /*
1069      * The module_mutex should not be a heavily contended lock;
1070      * if we get the occasional sleep here, we'll go an extra iteration
1071      * in the wait_event_interruptible(), which is harmless.
1072      */
1073     sched_annotate_sleep();
1074     mutex_lock(&module_mutex);
1075     if (!find_symbol(&fsa))
1076         goto unlock;
1077 
1078     if (fsa.license == GPL_ONLY)
1079         mod->using_gplonly_symbols = true;
1080 
1081     if (!inherit_taint(mod, fsa.owner, name)) {
1082         fsa.sym = NULL;
1083         goto getname;
1084     }
1085 
1086     if (!check_version(info, name, mod, fsa.crc)) {
1087         fsa.sym = ERR_PTR(-EINVAL);
1088         goto getname;
1089     }
1090 
1091     err = verify_namespace_is_imported(info, fsa.sym, mod);
1092     if (err) {
1093         fsa.sym = ERR_PTR(err);
1094         goto getname;
1095     }
1096 
1097     err = ref_module(mod, fsa.owner);
1098     if (err) {
1099         fsa.sym = ERR_PTR(err);
1100         goto getname;
1101     }
1102 
1103 getname:
1104     /* We must make copy under the lock if we failed to get ref. */
1105     strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1106 unlock:
1107     mutex_unlock(&module_mutex);
1108     return fsa.sym;
1109 }
1110 
1111 static const struct kernel_symbol *
1112 resolve_symbol_wait(struct module *mod,
1113             const struct load_info *info,
1114             const char *name)
1115 {
1116     const struct kernel_symbol *ksym;
1117     char owner[MODULE_NAME_LEN];
1118 
1119     if (wait_event_interruptible_timeout(module_wq,
1120             !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1121             || PTR_ERR(ksym) != -EBUSY,
1122                          30 * HZ) <= 0) {
1123         pr_warn("%s: gave up waiting for init of module %s.\n",
1124             mod->name, owner);
1125     }
1126     return ksym;
1127 }
1128 
1129 void __weak module_memfree(void *module_region)
1130 {
1131     /*
1132      * This memory may be RO, and freeing RO memory in an interrupt is not
1133      * supported by vmalloc.
1134      */
1135     WARN_ON(in_interrupt());
1136     vfree(module_region);
1137 }
1138 
1139 void __weak module_arch_cleanup(struct module *mod)
1140 {
1141 }
1142 
1143 void __weak module_arch_freeing_init(struct module *mod)
1144 {
1145 }
1146 
1147 static void cfi_cleanup(struct module *mod);
1148 
1149 /* Free a module, remove from lists, etc. */
1150 static void free_module(struct module *mod)
1151 {
1152     trace_module_free(mod);
1153 
1154     mod_sysfs_teardown(mod);
1155 
1156     /*
1157      * We leave it in list to prevent duplicate loads, but make sure
1158      * that noone uses it while it's being deconstructed.
1159      */
1160     mutex_lock(&module_mutex);
1161     mod->state = MODULE_STATE_UNFORMED;
1162     mutex_unlock(&module_mutex);
1163 
1164     /* Remove dynamic debug info */
1165     ddebug_remove_module(mod->name);
1166 
1167     /* Arch-specific cleanup. */
1168     module_arch_cleanup(mod);
1169 
1170     /* Module unload stuff */
1171     module_unload_free(mod);
1172 
1173     /* Free any allocated parameters. */
1174     destroy_params(mod->kp, mod->num_kp);
1175 
1176     if (is_livepatch_module(mod))
1177         free_module_elf(mod);
1178 
1179     /* Now we can delete it from the lists */
1180     mutex_lock(&module_mutex);
1181     /* Unlink carefully: kallsyms could be walking list. */
1182     list_del_rcu(&mod->list);
1183     mod_tree_remove(mod);
1184     /* Remove this module from bug list, this uses list_del_rcu */
1185     module_bug_cleanup(mod);
1186     /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1187     synchronize_rcu();
1188     if (try_add_tainted_module(mod))
1189         pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1190                mod->name);
1191     mutex_unlock(&module_mutex);
1192 
1193     /* Clean up CFI for the module. */
1194     cfi_cleanup(mod);
1195 
1196     /* This may be empty, but that's OK */
1197     module_arch_freeing_init(mod);
1198     module_memfree(mod->init_layout.base);
1199     kfree(mod->args);
1200     percpu_modfree(mod);
1201 
1202     /* Free lock-classes; relies on the preceding sync_rcu(). */
1203     lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1204 
1205     /* Finally, free the core (containing the module structure) */
1206     module_memfree(mod->core_layout.base);
1207 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1208     vfree(mod->data_layout.base);
1209 #endif
1210 }
1211 
1212 void *__symbol_get(const char *symbol)
1213 {
1214     struct find_symbol_arg fsa = {
1215         .name   = symbol,
1216         .gplok  = true,
1217         .warn   = true,
1218     };
1219 
1220     preempt_disable();
1221     if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1222         preempt_enable();
1223         return NULL;
1224     }
1225     preempt_enable();
1226     return (void *)kernel_symbol_value(fsa.sym);
1227 }
1228 EXPORT_SYMBOL_GPL(__symbol_get);
1229 
1230 /*
1231  * Ensure that an exported symbol [global namespace] does not already exist
1232  * in the kernel or in some other module's exported symbol table.
1233  *
1234  * You must hold the module_mutex.
1235  */
1236 static int verify_exported_symbols(struct module *mod)
1237 {
1238     unsigned int i;
1239     const struct kernel_symbol *s;
1240     struct {
1241         const struct kernel_symbol *sym;
1242         unsigned int num;
1243     } arr[] = {
1244         { mod->syms, mod->num_syms },
1245         { mod->gpl_syms, mod->num_gpl_syms },
1246     };
1247 
1248     for (i = 0; i < ARRAY_SIZE(arr); i++) {
1249         for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1250             struct find_symbol_arg fsa = {
1251                 .name   = kernel_symbol_name(s),
1252                 .gplok  = true,
1253             };
1254             if (find_symbol(&fsa)) {
1255                 pr_err("%s: exports duplicate symbol %s"
1256                        " (owned by %s)\n",
1257                        mod->name, kernel_symbol_name(s),
1258                        module_name(fsa.owner));
1259                 return -ENOEXEC;
1260             }
1261         }
1262     }
1263     return 0;
1264 }
1265 
1266 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1267 {
1268     /*
1269      * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1270      * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1271      * i386 has a similar problem but may not deserve a fix.
1272      *
1273      * If we ever have to ignore many symbols, consider refactoring the code to
1274      * only warn if referenced by a relocation.
1275      */
1276     if (emachine == EM_386 || emachine == EM_X86_64)
1277         return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1278     return false;
1279 }
1280 
1281 /* Change all symbols so that st_value encodes the pointer directly. */
1282 static int simplify_symbols(struct module *mod, const struct load_info *info)
1283 {
1284     Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1285     Elf_Sym *sym = (void *)symsec->sh_addr;
1286     unsigned long secbase;
1287     unsigned int i;
1288     int ret = 0;
1289     const struct kernel_symbol *ksym;
1290 
1291     for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1292         const char *name = info->strtab + sym[i].st_name;
1293 
1294         switch (sym[i].st_shndx) {
1295         case SHN_COMMON:
1296             /* Ignore common symbols */
1297             if (!strncmp(name, "__gnu_lto", 9))
1298                 break;
1299 
1300             /*
1301              * We compiled with -fno-common.  These are not
1302              * supposed to happen.
1303              */
1304             pr_debug("Common symbol: %s\n", name);
1305             pr_warn("%s: please compile with -fno-common\n",
1306                    mod->name);
1307             ret = -ENOEXEC;
1308             break;
1309 
1310         case SHN_ABS:
1311             /* Don't need to do anything */
1312             pr_debug("Absolute symbol: 0x%08lx\n",
1313                    (long)sym[i].st_value);
1314             break;
1315 
1316         case SHN_LIVEPATCH:
1317             /* Livepatch symbols are resolved by livepatch */
1318             break;
1319 
1320         case SHN_UNDEF:
1321             ksym = resolve_symbol_wait(mod, info, name);
1322             /* Ok if resolved.  */
1323             if (ksym && !IS_ERR(ksym)) {
1324                 sym[i].st_value = kernel_symbol_value(ksym);
1325                 break;
1326             }
1327 
1328             /* Ok if weak or ignored.  */
1329             if (!ksym &&
1330                 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1331                  ignore_undef_symbol(info->hdr->e_machine, name)))
1332                 break;
1333 
1334             ret = PTR_ERR(ksym) ?: -ENOENT;
1335             pr_warn("%s: Unknown symbol %s (err %d)\n",
1336                 mod->name, name, ret);
1337             break;
1338 
1339         default:
1340             /* Divert to percpu allocation if a percpu var. */
1341             if (sym[i].st_shndx == info->index.pcpu)
1342                 secbase = (unsigned long)mod_percpu(mod);
1343             else
1344                 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1345             sym[i].st_value += secbase;
1346             break;
1347         }
1348     }
1349 
1350     return ret;
1351 }
1352 
1353 static int apply_relocations(struct module *mod, const struct load_info *info)
1354 {
1355     unsigned int i;
1356     int err = 0;
1357 
1358     /* Now do relocations. */
1359     for (i = 1; i < info->hdr->e_shnum; i++) {
1360         unsigned int infosec = info->sechdrs[i].sh_info;
1361 
1362         /* Not a valid relocation section? */
1363         if (infosec >= info->hdr->e_shnum)
1364             continue;
1365 
1366         /* Don't bother with non-allocated sections */
1367         if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1368             continue;
1369 
1370         if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1371             err = klp_apply_section_relocs(mod, info->sechdrs,
1372                                info->secstrings,
1373                                info->strtab,
1374                                info->index.sym, i,
1375                                NULL);
1376         else if (info->sechdrs[i].sh_type == SHT_REL)
1377             err = apply_relocate(info->sechdrs, info->strtab,
1378                          info->index.sym, i, mod);
1379         else if (info->sechdrs[i].sh_type == SHT_RELA)
1380             err = apply_relocate_add(info->sechdrs, info->strtab,
1381                          info->index.sym, i, mod);
1382         if (err < 0)
1383             break;
1384     }
1385     return err;
1386 }
1387 
1388 /* Additional bytes needed by arch in front of individual sections */
1389 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1390                          unsigned int section)
1391 {
1392     /* default implementation just returns zero */
1393     return 0;
1394 }
1395 
1396 /* Update size with this section: return offset. */
1397 long module_get_offset(struct module *mod, unsigned int *size,
1398                Elf_Shdr *sechdr, unsigned int section)
1399 {
1400     long ret;
1401 
1402     *size += arch_mod_section_prepend(mod, section);
1403     ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1404     *size = ret + sechdr->sh_size;
1405     return ret;
1406 }
1407 
1408 static bool module_init_layout_section(const char *sname)
1409 {
1410 #ifndef CONFIG_MODULE_UNLOAD
1411     if (module_exit_section(sname))
1412         return true;
1413 #endif
1414     return module_init_section(sname);
1415 }
1416 
1417 /*
1418  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1419  * might -- code, read-only data, read-write data, small data.  Tally
1420  * sizes, and place the offsets into sh_entsize fields: high bit means it
1421  * belongs in init.
1422  */
1423 static void layout_sections(struct module *mod, struct load_info *info)
1424 {
1425     static unsigned long const masks[][2] = {
1426         /*
1427          * NOTE: all executable code must be the first section
1428          * in this array; otherwise modify the text_size
1429          * finder in the two loops below
1430          */
1431         { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1432         { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1433         { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1434         { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1435         { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1436     };
1437     unsigned int m, i;
1438 
1439     for (i = 0; i < info->hdr->e_shnum; i++)
1440         info->sechdrs[i].sh_entsize = ~0UL;
1441 
1442     pr_debug("Core section allocation order:\n");
1443     for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1444         for (i = 0; i < info->hdr->e_shnum; ++i) {
1445             Elf_Shdr *s = &info->sechdrs[i];
1446             const char *sname = info->secstrings + s->sh_name;
1447             unsigned int *sizep;
1448 
1449             if ((s->sh_flags & masks[m][0]) != masks[m][0]
1450                 || (s->sh_flags & masks[m][1])
1451                 || s->sh_entsize != ~0UL
1452                 || module_init_layout_section(sname))
1453                 continue;
1454             sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1455             s->sh_entsize = module_get_offset(mod, sizep, s, i);
1456             pr_debug("\t%s\n", sname);
1457         }
1458         switch (m) {
1459         case 0: /* executable */
1460             mod->core_layout.size = strict_align(mod->core_layout.size);
1461             mod->core_layout.text_size = mod->core_layout.size;
1462             break;
1463         case 1: /* RO: text and ro-data */
1464             mod->data_layout.size = strict_align(mod->data_layout.size);
1465             mod->data_layout.ro_size = mod->data_layout.size;
1466             break;
1467         case 2: /* RO after init */
1468             mod->data_layout.size = strict_align(mod->data_layout.size);
1469             mod->data_layout.ro_after_init_size = mod->data_layout.size;
1470             break;
1471         case 4: /* whole core */
1472             mod->data_layout.size = strict_align(mod->data_layout.size);
1473             break;
1474         }
1475     }
1476 
1477     pr_debug("Init section allocation order:\n");
1478     for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1479         for (i = 0; i < info->hdr->e_shnum; ++i) {
1480             Elf_Shdr *s = &info->sechdrs[i];
1481             const char *sname = info->secstrings + s->sh_name;
1482 
1483             if ((s->sh_flags & masks[m][0]) != masks[m][0]
1484                 || (s->sh_flags & masks[m][1])
1485                 || s->sh_entsize != ~0UL
1486                 || !module_init_layout_section(sname))
1487                 continue;
1488             s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1489                      | INIT_OFFSET_MASK);
1490             pr_debug("\t%s\n", sname);
1491         }
1492         switch (m) {
1493         case 0: /* executable */
1494             mod->init_layout.size = strict_align(mod->init_layout.size);
1495             mod->init_layout.text_size = mod->init_layout.size;
1496             break;
1497         case 1: /* RO: text and ro-data */
1498             mod->init_layout.size = strict_align(mod->init_layout.size);
1499             mod->init_layout.ro_size = mod->init_layout.size;
1500             break;
1501         case 2:
1502             /*
1503              * RO after init doesn't apply to init_layout (only
1504              * core_layout), so it just takes the value of ro_size.
1505              */
1506             mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1507             break;
1508         case 4: /* whole init */
1509             mod->init_layout.size = strict_align(mod->init_layout.size);
1510             break;
1511         }
1512     }
1513 }
1514 
1515 static void set_license(struct module *mod, const char *license)
1516 {
1517     if (!license)
1518         license = "unspecified";
1519 
1520     if (!license_is_gpl_compatible(license)) {
1521         if (!test_taint(TAINT_PROPRIETARY_MODULE))
1522             pr_warn("%s: module license '%s' taints kernel.\n",
1523                 mod->name, license);
1524         add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1525                  LOCKDEP_NOW_UNRELIABLE);
1526     }
1527 }
1528 
1529 /* Parse tag=value strings from .modinfo section */
1530 static char *next_string(char *string, unsigned long *secsize)
1531 {
1532     /* Skip non-zero chars */
1533     while (string[0]) {
1534         string++;
1535         if ((*secsize)-- <= 1)
1536             return NULL;
1537     }
1538 
1539     /* Skip any zero padding. */
1540     while (!string[0]) {
1541         string++;
1542         if ((*secsize)-- <= 1)
1543             return NULL;
1544     }
1545     return string;
1546 }
1547 
1548 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1549                   char *prev)
1550 {
1551     char *p;
1552     unsigned int taglen = strlen(tag);
1553     Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1554     unsigned long size = infosec->sh_size;
1555 
1556     /*
1557      * get_modinfo() calls made before rewrite_section_headers()
1558      * must use sh_offset, as sh_addr isn't set!
1559      */
1560     char *modinfo = (char *)info->hdr + infosec->sh_offset;
1561 
1562     if (prev) {
1563         size -= prev - modinfo;
1564         modinfo = next_string(prev, &size);
1565     }
1566 
1567     for (p = modinfo; p; p = next_string(p, &size)) {
1568         if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1569             return p + taglen + 1;
1570     }
1571     return NULL;
1572 }
1573 
1574 static char *get_modinfo(const struct load_info *info, const char *tag)
1575 {
1576     return get_next_modinfo(info, tag, NULL);
1577 }
1578 
1579 static void setup_modinfo(struct module *mod, struct load_info *info)
1580 {
1581     struct module_attribute *attr;
1582     int i;
1583 
1584     for (i = 0; (attr = modinfo_attrs[i]); i++) {
1585         if (attr->setup)
1586             attr->setup(mod, get_modinfo(info, attr->attr.name));
1587     }
1588 }
1589 
1590 static void free_modinfo(struct module *mod)
1591 {
1592     struct module_attribute *attr;
1593     int i;
1594 
1595     for (i = 0; (attr = modinfo_attrs[i]); i++) {
1596         if (attr->free)
1597             attr->free(mod);
1598     }
1599 }
1600 
1601 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
1602 {
1603     if (!debug)
1604         return;
1605     ddebug_add_module(debug, num, mod->name);
1606 }
1607 
1608 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
1609 {
1610     if (debug)
1611         ddebug_remove_module(mod->name);
1612 }
1613 
1614 void * __weak module_alloc(unsigned long size)
1615 {
1616     return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1617             GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1618             NUMA_NO_NODE, __builtin_return_address(0));
1619 }
1620 
1621 bool __weak module_init_section(const char *name)
1622 {
1623     return strstarts(name, ".init");
1624 }
1625 
1626 bool __weak module_exit_section(const char *name)
1627 {
1628     return strstarts(name, ".exit");
1629 }
1630 
1631 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1632 {
1633 #if defined(CONFIG_64BIT)
1634     unsigned long long secend;
1635 #else
1636     unsigned long secend;
1637 #endif
1638 
1639     /*
1640      * Check for both overflow and offset/size being
1641      * too large.
1642      */
1643     secend = shdr->sh_offset + shdr->sh_size;
1644     if (secend < shdr->sh_offset || secend > info->len)
1645         return -ENOEXEC;
1646 
1647     return 0;
1648 }
1649 
1650 /*
1651  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1652  *
1653  * Also do basic validity checks against section offsets and sizes, the
1654  * section name string table, and the indices used for it (sh_name).
1655  */
1656 static int elf_validity_check(struct load_info *info)
1657 {
1658     unsigned int i;
1659     Elf_Shdr *shdr, *strhdr;
1660     int err;
1661 
1662     if (info->len < sizeof(*(info->hdr))) {
1663         pr_err("Invalid ELF header len %lu\n", info->len);
1664         goto no_exec;
1665     }
1666 
1667     if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1668         pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1669         goto no_exec;
1670     }
1671     if (info->hdr->e_type != ET_REL) {
1672         pr_err("Invalid ELF header type: %u != %u\n",
1673                info->hdr->e_type, ET_REL);
1674         goto no_exec;
1675     }
1676     if (!elf_check_arch(info->hdr)) {
1677         pr_err("Invalid architecture in ELF header: %u\n",
1678                info->hdr->e_machine);
1679         goto no_exec;
1680     }
1681     if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1682         pr_err("Invalid ELF section header size\n");
1683         goto no_exec;
1684     }
1685 
1686     /*
1687      * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1688      * known and small. So e_shnum * sizeof(Elf_Shdr)
1689      * will not overflow unsigned long on any platform.
1690      */
1691     if (info->hdr->e_shoff >= info->len
1692         || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1693         info->len - info->hdr->e_shoff)) {
1694         pr_err("Invalid ELF section header overflow\n");
1695         goto no_exec;
1696     }
1697 
1698     info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1699 
1700     /*
1701      * Verify if the section name table index is valid.
1702      */
1703     if (info->hdr->e_shstrndx == SHN_UNDEF
1704         || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1705         pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1706                info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1707                info->hdr->e_shnum);
1708         goto no_exec;
1709     }
1710 
1711     strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1712     err = validate_section_offset(info, strhdr);
1713     if (err < 0) {
1714         pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1715         return err;
1716     }
1717 
1718     /*
1719      * The section name table must be NUL-terminated, as required
1720      * by the spec. This makes strcmp and pr_* calls that access
1721      * strings in the section safe.
1722      */
1723     info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1724     if (strhdr->sh_size == 0) {
1725         pr_err("empty section name table\n");
1726         goto no_exec;
1727     }
1728     if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1729         pr_err("ELF Spec violation: section name table isn't null terminated\n");
1730         goto no_exec;
1731     }
1732 
1733     /*
1734      * The code assumes that section 0 has a length of zero and
1735      * an addr of zero, so check for it.
1736      */
1737     if (info->sechdrs[0].sh_type != SHT_NULL
1738         || info->sechdrs[0].sh_size != 0
1739         || info->sechdrs[0].sh_addr != 0) {
1740         pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1741                info->sechdrs[0].sh_type);
1742         goto no_exec;
1743     }
1744 
1745     for (i = 1; i < info->hdr->e_shnum; i++) {
1746         shdr = &info->sechdrs[i];
1747         switch (shdr->sh_type) {
1748         case SHT_NULL:
1749         case SHT_NOBITS:
1750             continue;
1751         case SHT_SYMTAB:
1752             if (shdr->sh_link == SHN_UNDEF
1753                 || shdr->sh_link >= info->hdr->e_shnum) {
1754                 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1755                        shdr->sh_link, shdr->sh_link,
1756                        info->hdr->e_shnum);
1757                 goto no_exec;
1758             }
1759             fallthrough;
1760         default:
1761             err = validate_section_offset(info, shdr);
1762             if (err < 0) {
1763                 pr_err("Invalid ELF section in module (section %u type %u)\n",
1764                     i, shdr->sh_type);
1765                 return err;
1766             }
1767 
1768             if (shdr->sh_flags & SHF_ALLOC) {
1769                 if (shdr->sh_name >= strhdr->sh_size) {
1770                     pr_err("Invalid ELF section name in module (section %u type %u)\n",
1771                            i, shdr->sh_type);
1772                     return -ENOEXEC;
1773                 }
1774             }
1775             break;
1776         }
1777     }
1778 
1779     return 0;
1780 
1781 no_exec:
1782     return -ENOEXEC;
1783 }
1784 
1785 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1786 
1787 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1788 {
1789     do {
1790         unsigned long n = min(len, COPY_CHUNK_SIZE);
1791 
1792         if (copy_from_user(dst, usrc, n) != 0)
1793             return -EFAULT;
1794         cond_resched();
1795         dst += n;
1796         usrc += n;
1797         len -= n;
1798     } while (len);
1799     return 0;
1800 }
1801 
1802 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1803 {
1804     if (!get_modinfo(info, "livepatch"))
1805         /* Nothing more to do */
1806         return 0;
1807 
1808     if (set_livepatch_module(mod)) {
1809         add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1810         pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1811                 mod->name);
1812         return 0;
1813     }
1814 
1815     pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1816            mod->name);
1817     return -ENOEXEC;
1818 }
1819 
1820 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1821 {
1822     if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1823         return;
1824 
1825     pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1826         mod->name);
1827 }
1828 
1829 /* Sets info->hdr and info->len. */
1830 static int copy_module_from_user(const void __user *umod, unsigned long len,
1831                   struct load_info *info)
1832 {
1833     int err;
1834 
1835     info->len = len;
1836     if (info->len < sizeof(*(info->hdr)))
1837         return -ENOEXEC;
1838 
1839     err = security_kernel_load_data(LOADING_MODULE, true);
1840     if (err)
1841         return err;
1842 
1843     /* Suck in entire file: we'll want most of it. */
1844     info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1845     if (!info->hdr)
1846         return -ENOMEM;
1847 
1848     if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1849         err = -EFAULT;
1850         goto out;
1851     }
1852 
1853     err = security_kernel_post_load_data((char *)info->hdr, info->len,
1854                          LOADING_MODULE, "init_module");
1855 out:
1856     if (err)
1857         vfree(info->hdr);
1858 
1859     return err;
1860 }
1861 
1862 static void free_copy(struct load_info *info, int flags)
1863 {
1864     if (flags & MODULE_INIT_COMPRESSED_FILE)
1865         module_decompress_cleanup(info);
1866     else
1867         vfree(info->hdr);
1868 }
1869 
1870 static int rewrite_section_headers(struct load_info *info, int flags)
1871 {
1872     unsigned int i;
1873 
1874     /* This should always be true, but let's be sure. */
1875     info->sechdrs[0].sh_addr = 0;
1876 
1877     for (i = 1; i < info->hdr->e_shnum; i++) {
1878         Elf_Shdr *shdr = &info->sechdrs[i];
1879 
1880         /*
1881          * Mark all sections sh_addr with their address in the
1882          * temporary image.
1883          */
1884         shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1885 
1886     }
1887 
1888     /* Track but don't keep modinfo and version sections. */
1889     info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1890     info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1891 
1892     return 0;
1893 }
1894 
1895 /*
1896  * Set up our basic convenience variables (pointers to section headers,
1897  * search for module section index etc), and do some basic section
1898  * verification.
1899  *
1900  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1901  * will be allocated in move_module().
1902  */
1903 static int setup_load_info(struct load_info *info, int flags)
1904 {
1905     unsigned int i;
1906 
1907     /* Try to find a name early so we can log errors with a module name */
1908     info->index.info = find_sec(info, ".modinfo");
1909     if (info->index.info)
1910         info->name = get_modinfo(info, "name");
1911 
1912     /* Find internal symbols and strings. */
1913     for (i = 1; i < info->hdr->e_shnum; i++) {
1914         if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1915             info->index.sym = i;
1916             info->index.str = info->sechdrs[i].sh_link;
1917             info->strtab = (char *)info->hdr
1918                 + info->sechdrs[info->index.str].sh_offset;
1919             break;
1920         }
1921     }
1922 
1923     if (info->index.sym == 0) {
1924         pr_warn("%s: module has no symbols (stripped?)\n",
1925             info->name ?: "(missing .modinfo section or name field)");
1926         return -ENOEXEC;
1927     }
1928 
1929     info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1930     if (!info->index.mod) {
1931         pr_warn("%s: No module found in object\n",
1932             info->name ?: "(missing .modinfo section or name field)");
1933         return -ENOEXEC;
1934     }
1935     /* This is temporary: point mod into copy of data. */
1936     info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1937 
1938     /*
1939      * If we didn't load the .modinfo 'name' field earlier, fall back to
1940      * on-disk struct mod 'name' field.
1941      */
1942     if (!info->name)
1943         info->name = info->mod->name;
1944 
1945     if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1946         info->index.vers = 0; /* Pretend no __versions section! */
1947     else
1948         info->index.vers = find_sec(info, "__versions");
1949 
1950     info->index.pcpu = find_pcpusec(info);
1951 
1952     return 0;
1953 }
1954 
1955 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1956 {
1957     const char *modmagic = get_modinfo(info, "vermagic");
1958     int err;
1959 
1960     if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1961         modmagic = NULL;
1962 
1963     /* This is allowed: modprobe --force will invalidate it. */
1964     if (!modmagic) {
1965         err = try_to_force_load(mod, "bad vermagic");
1966         if (err)
1967             return err;
1968     } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1969         pr_err("%s: version magic '%s' should be '%s'\n",
1970                info->name, modmagic, vermagic);
1971         return -ENOEXEC;
1972     }
1973 
1974     if (!get_modinfo(info, "intree")) {
1975         if (!test_taint(TAINT_OOT_MODULE))
1976             pr_warn("%s: loading out-of-tree module taints kernel.\n",
1977                 mod->name);
1978         add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1979     }
1980 
1981     check_modinfo_retpoline(mod, info);
1982 
1983     if (get_modinfo(info, "staging")) {
1984         add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1985         pr_warn("%s: module is from the staging directory, the quality "
1986             "is unknown, you have been warned.\n", mod->name);
1987     }
1988 
1989     err = check_modinfo_livepatch(mod, info);
1990     if (err)
1991         return err;
1992 
1993     /* Set up license info based on the info section */
1994     set_license(mod, get_modinfo(info, "license"));
1995 
1996     if (get_modinfo(info, "test")) {
1997         if (!test_taint(TAINT_TEST))
1998             pr_warn("%s: loading test module taints kernel.\n",
1999                 mod->name);
2000         add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2001     }
2002 
2003     return 0;
2004 }
2005 
2006 static int find_module_sections(struct module *mod, struct load_info *info)
2007 {
2008     mod->kp = section_objs(info, "__param",
2009                    sizeof(*mod->kp), &mod->num_kp);
2010     mod->syms = section_objs(info, "__ksymtab",
2011                  sizeof(*mod->syms), &mod->num_syms);
2012     mod->crcs = section_addr(info, "__kcrctab");
2013     mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2014                      sizeof(*mod->gpl_syms),
2015                      &mod->num_gpl_syms);
2016     mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2017 
2018 #ifdef CONFIG_CONSTRUCTORS
2019     mod->ctors = section_objs(info, ".ctors",
2020                   sizeof(*mod->ctors), &mod->num_ctors);
2021     if (!mod->ctors)
2022         mod->ctors = section_objs(info, ".init_array",
2023                 sizeof(*mod->ctors), &mod->num_ctors);
2024     else if (find_sec(info, ".init_array")) {
2025         /*
2026          * This shouldn't happen with same compiler and binutils
2027          * building all parts of the module.
2028          */
2029         pr_warn("%s: has both .ctors and .init_array.\n",
2030                mod->name);
2031         return -EINVAL;
2032     }
2033 #endif
2034 
2035     mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2036                         &mod->noinstr_text_size);
2037 
2038 #ifdef CONFIG_TRACEPOINTS
2039     mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2040                          sizeof(*mod->tracepoints_ptrs),
2041                          &mod->num_tracepoints);
2042 #endif
2043 #ifdef CONFIG_TREE_SRCU
2044     mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2045                          sizeof(*mod->srcu_struct_ptrs),
2046                          &mod->num_srcu_structs);
2047 #endif
2048 #ifdef CONFIG_BPF_EVENTS
2049     mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2050                        sizeof(*mod->bpf_raw_events),
2051                        &mod->num_bpf_raw_events);
2052 #endif
2053 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2054     mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2055 #endif
2056 #ifdef CONFIG_JUMP_LABEL
2057     mod->jump_entries = section_objs(info, "__jump_table",
2058                     sizeof(*mod->jump_entries),
2059                     &mod->num_jump_entries);
2060 #endif
2061 #ifdef CONFIG_EVENT_TRACING
2062     mod->trace_events = section_objs(info, "_ftrace_events",
2063                      sizeof(*mod->trace_events),
2064                      &mod->num_trace_events);
2065     mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2066                     sizeof(*mod->trace_evals),
2067                     &mod->num_trace_evals);
2068 #endif
2069 #ifdef CONFIG_TRACING
2070     mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2071                      sizeof(*mod->trace_bprintk_fmt_start),
2072                      &mod->num_trace_bprintk_fmt);
2073 #endif
2074 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2075     /* sechdrs[0].sh_size is always zero */
2076     mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2077                          sizeof(*mod->ftrace_callsites),
2078                          &mod->num_ftrace_callsites);
2079 #endif
2080 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2081     mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2082                         sizeof(*mod->ei_funcs),
2083                         &mod->num_ei_funcs);
2084 #endif
2085 #ifdef CONFIG_KPROBES
2086     mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2087                         &mod->kprobes_text_size);
2088     mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2089                         sizeof(unsigned long),
2090                         &mod->num_kprobe_blacklist);
2091 #endif
2092 #ifdef CONFIG_PRINTK_INDEX
2093     mod->printk_index_start = section_objs(info, ".printk_index",
2094                            sizeof(*mod->printk_index_start),
2095                            &mod->printk_index_size);
2096 #endif
2097 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2098     mod->static_call_sites = section_objs(info, ".static_call_sites",
2099                           sizeof(*mod->static_call_sites),
2100                           &mod->num_static_call_sites);
2101 #endif
2102 #if IS_ENABLED(CONFIG_KUNIT)
2103     mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2104                           sizeof(*mod->kunit_suites),
2105                           &mod->num_kunit_suites);
2106 #endif
2107 
2108     mod->extable = section_objs(info, "__ex_table",
2109                     sizeof(*mod->extable), &mod->num_exentries);
2110 
2111     if (section_addr(info, "__obsparm"))
2112         pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2113 
2114     info->debug = section_objs(info, "__dyndbg",
2115                    sizeof(*info->debug), &info->num_debug);
2116 
2117     return 0;
2118 }
2119 
2120 static int move_module(struct module *mod, struct load_info *info)
2121 {
2122     int i;
2123     void *ptr;
2124 
2125     /* Do the allocs. */
2126     ptr = module_alloc(mod->core_layout.size);
2127     /*
2128      * The pointer to this block is stored in the module structure
2129      * which is inside the block. Just mark it as not being a
2130      * leak.
2131      */
2132     kmemleak_not_leak(ptr);
2133     if (!ptr)
2134         return -ENOMEM;
2135 
2136     memset(ptr, 0, mod->core_layout.size);
2137     mod->core_layout.base = ptr;
2138 
2139     if (mod->init_layout.size) {
2140         ptr = module_alloc(mod->init_layout.size);
2141         /*
2142          * The pointer to this block is stored in the module structure
2143          * which is inside the block. This block doesn't need to be
2144          * scanned as it contains data and code that will be freed
2145          * after the module is initialized.
2146          */
2147         kmemleak_ignore(ptr);
2148         if (!ptr) {
2149             module_memfree(mod->core_layout.base);
2150             return -ENOMEM;
2151         }
2152         memset(ptr, 0, mod->init_layout.size);
2153         mod->init_layout.base = ptr;
2154     } else
2155         mod->init_layout.base = NULL;
2156 
2157 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2158     /* Do the allocs. */
2159     ptr = vzalloc(mod->data_layout.size);
2160     /*
2161      * The pointer to this block is stored in the module structure
2162      * which is inside the block. Just mark it as not being a
2163      * leak.
2164      */
2165     kmemleak_not_leak(ptr);
2166     if (!ptr) {
2167         module_memfree(mod->core_layout.base);
2168         module_memfree(mod->init_layout.base);
2169         return -ENOMEM;
2170     }
2171 
2172     mod->data_layout.base = ptr;
2173 #endif
2174     /* Transfer each section which specifies SHF_ALLOC */
2175     pr_debug("final section addresses:\n");
2176     for (i = 0; i < info->hdr->e_shnum; i++) {
2177         void *dest;
2178         Elf_Shdr *shdr = &info->sechdrs[i];
2179 
2180         if (!(shdr->sh_flags & SHF_ALLOC))
2181             continue;
2182 
2183         if (shdr->sh_entsize & INIT_OFFSET_MASK)
2184             dest = mod->init_layout.base
2185                 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2186         else if (!(shdr->sh_flags & SHF_EXECINSTR))
2187             dest = mod->data_layout.base + shdr->sh_entsize;
2188         else
2189             dest = mod->core_layout.base + shdr->sh_entsize;
2190 
2191         if (shdr->sh_type != SHT_NOBITS)
2192             memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2193         /* Update sh_addr to point to copy in image. */
2194         shdr->sh_addr = (unsigned long)dest;
2195         pr_debug("\t0x%lx %s\n",
2196              (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2197     }
2198 
2199     return 0;
2200 }
2201 
2202 static int check_module_license_and_versions(struct module *mod)
2203 {
2204     int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2205 
2206     /*
2207      * ndiswrapper is under GPL by itself, but loads proprietary modules.
2208      * Don't use add_taint_module(), as it would prevent ndiswrapper from
2209      * using GPL-only symbols it needs.
2210      */
2211     if (strcmp(mod->name, "ndiswrapper") == 0)
2212         add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2213 
2214     /* driverloader was caught wrongly pretending to be under GPL */
2215     if (strcmp(mod->name, "driverloader") == 0)
2216         add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2217                  LOCKDEP_NOW_UNRELIABLE);
2218 
2219     /* lve claims to be GPL but upstream won't provide source */
2220     if (strcmp(mod->name, "lve") == 0)
2221         add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2222                  LOCKDEP_NOW_UNRELIABLE);
2223 
2224     if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2225         pr_warn("%s: module license taints kernel.\n", mod->name);
2226 
2227 #ifdef CONFIG_MODVERSIONS
2228     if ((mod->num_syms && !mod->crcs) ||
2229         (mod->num_gpl_syms && !mod->gpl_crcs)) {
2230         return try_to_force_load(mod,
2231                      "no versions for exported symbols");
2232     }
2233 #endif
2234     return 0;
2235 }
2236 
2237 static void flush_module_icache(const struct module *mod)
2238 {
2239     /*
2240      * Flush the instruction cache, since we've played with text.
2241      * Do it before processing of module parameters, so the module
2242      * can provide parameter accessor functions of its own.
2243      */
2244     if (mod->init_layout.base)
2245         flush_icache_range((unsigned long)mod->init_layout.base,
2246                    (unsigned long)mod->init_layout.base
2247                    + mod->init_layout.size);
2248     flush_icache_range((unsigned long)mod->core_layout.base,
2249                (unsigned long)mod->core_layout.base + mod->core_layout.size);
2250 }
2251 
2252 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2253                      Elf_Shdr *sechdrs,
2254                      char *secstrings,
2255                      struct module *mod)
2256 {
2257     return 0;
2258 }
2259 
2260 /* module_blacklist is a comma-separated list of module names */
2261 static char *module_blacklist;
2262 static bool blacklisted(const char *module_name)
2263 {
2264     const char *p;
2265     size_t len;
2266 
2267     if (!module_blacklist)
2268         return false;
2269 
2270     for (p = module_blacklist; *p; p += len) {
2271         len = strcspn(p, ",");
2272         if (strlen(module_name) == len && !memcmp(module_name, p, len))
2273             return true;
2274         if (p[len] == ',')
2275             len++;
2276     }
2277     return false;
2278 }
2279 core_param(module_blacklist, module_blacklist, charp, 0400);
2280 
2281 static struct module *layout_and_allocate(struct load_info *info, int flags)
2282 {
2283     struct module *mod;
2284     unsigned int ndx;
2285     int err;
2286 
2287     err = check_modinfo(info->mod, info, flags);
2288     if (err)
2289         return ERR_PTR(err);
2290 
2291     /* Allow arches to frob section contents and sizes.  */
2292     err = module_frob_arch_sections(info->hdr, info->sechdrs,
2293                     info->secstrings, info->mod);
2294     if (err < 0)
2295         return ERR_PTR(err);
2296 
2297     err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2298                       info->secstrings, info->mod);
2299     if (err < 0)
2300         return ERR_PTR(err);
2301 
2302     /* We will do a special allocation for per-cpu sections later. */
2303     info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2304 
2305     /*
2306      * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2307      * layout_sections() can put it in the right place.
2308      * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2309      */
2310     ndx = find_sec(info, ".data..ro_after_init");
2311     if (ndx)
2312         info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2313     /*
2314      * Mark the __jump_table section as ro_after_init as well: these data
2315      * structures are never modified, with the exception of entries that
2316      * refer to code in the __init section, which are annotated as such
2317      * at module load time.
2318      */
2319     ndx = find_sec(info, "__jump_table");
2320     if (ndx)
2321         info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2322 
2323     /*
2324      * Determine total sizes, and put offsets in sh_entsize.  For now
2325      * this is done generically; there doesn't appear to be any
2326      * special cases for the architectures.
2327      */
2328     layout_sections(info->mod, info);
2329     layout_symtab(info->mod, info);
2330 
2331     /* Allocate and move to the final place */
2332     err = move_module(info->mod, info);
2333     if (err)
2334         return ERR_PTR(err);
2335 
2336     /* Module has been copied to its final place now: return it. */
2337     mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2338     kmemleak_load_module(mod, info);
2339     return mod;
2340 }
2341 
2342 /* mod is no longer valid after this! */
2343 static void module_deallocate(struct module *mod, struct load_info *info)
2344 {
2345     percpu_modfree(mod);
2346     module_arch_freeing_init(mod);
2347     module_memfree(mod->init_layout.base);
2348     module_memfree(mod->core_layout.base);
2349 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2350     vfree(mod->data_layout.base);
2351 #endif
2352 }
2353 
2354 int __weak module_finalize(const Elf_Ehdr *hdr,
2355                const Elf_Shdr *sechdrs,
2356                struct module *me)
2357 {
2358     return 0;
2359 }
2360 
2361 static int post_relocation(struct module *mod, const struct load_info *info)
2362 {
2363     /* Sort exception table now relocations are done. */
2364     sort_extable(mod->extable, mod->extable + mod->num_exentries);
2365 
2366     /* Copy relocated percpu area over. */
2367     percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2368                info->sechdrs[info->index.pcpu].sh_size);
2369 
2370     /* Setup kallsyms-specific fields. */
2371     add_kallsyms(mod, info);
2372 
2373     /* Arch-specific module finalizing. */
2374     return module_finalize(info->hdr, info->sechdrs, mod);
2375 }
2376 
2377 /* Is this module of this name done loading?  No locks held. */
2378 static bool finished_loading(const char *name)
2379 {
2380     struct module *mod;
2381     bool ret;
2382 
2383     /*
2384      * The module_mutex should not be a heavily contended lock;
2385      * if we get the occasional sleep here, we'll go an extra iteration
2386      * in the wait_event_interruptible(), which is harmless.
2387      */
2388     sched_annotate_sleep();
2389     mutex_lock(&module_mutex);
2390     mod = find_module_all(name, strlen(name), true);
2391     ret = !mod || mod->state == MODULE_STATE_LIVE;
2392     mutex_unlock(&module_mutex);
2393 
2394     return ret;
2395 }
2396 
2397 /* Call module constructors. */
2398 static void do_mod_ctors(struct module *mod)
2399 {
2400 #ifdef CONFIG_CONSTRUCTORS
2401     unsigned long i;
2402 
2403     for (i = 0; i < mod->num_ctors; i++)
2404         mod->ctors[i]();
2405 #endif
2406 }
2407 
2408 /* For freeing module_init on success, in case kallsyms traversing */
2409 struct mod_initfree {
2410     struct llist_node node;
2411     void *module_init;
2412 };
2413 
2414 static void do_free_init(struct work_struct *w)
2415 {
2416     struct llist_node *pos, *n, *list;
2417     struct mod_initfree *initfree;
2418 
2419     list = llist_del_all(&init_free_list);
2420 
2421     synchronize_rcu();
2422 
2423     llist_for_each_safe(pos, n, list) {
2424         initfree = container_of(pos, struct mod_initfree, node);
2425         module_memfree(initfree->module_init);
2426         kfree(initfree);
2427     }
2428 }
2429 
2430 #undef MODULE_PARAM_PREFIX
2431 #define MODULE_PARAM_PREFIX "module."
2432 /* Default value for module->async_probe_requested */
2433 static bool async_probe;
2434 module_param(async_probe, bool, 0644);
2435 
2436 /*
2437  * This is where the real work happens.
2438  *
2439  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2440  * helper command 'lx-symbols'.
2441  */
2442 static noinline int do_init_module(struct module *mod)
2443 {
2444     int ret = 0;
2445     struct mod_initfree *freeinit;
2446 
2447     freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2448     if (!freeinit) {
2449         ret = -ENOMEM;
2450         goto fail;
2451     }
2452     freeinit->module_init = mod->init_layout.base;
2453 
2454     do_mod_ctors(mod);
2455     /* Start the module */
2456     if (mod->init != NULL)
2457         ret = do_one_initcall(mod->init);
2458     if (ret < 0) {
2459         goto fail_free_freeinit;
2460     }
2461     if (ret > 0) {
2462         pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2463             "follow 0/-E convention\n"
2464             "%s: loading module anyway...\n",
2465             __func__, mod->name, ret, __func__);
2466         dump_stack();
2467     }
2468 
2469     /* Now it's a first class citizen! */
2470     mod->state = MODULE_STATE_LIVE;
2471     blocking_notifier_call_chain(&module_notify_list,
2472                      MODULE_STATE_LIVE, mod);
2473 
2474     /* Delay uevent until module has finished its init routine */
2475     kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2476 
2477     /*
2478      * We need to finish all async code before the module init sequence
2479      * is done. This has potential to deadlock if synchronous module
2480      * loading is requested from async (which is not allowed!).
2481      *
2482      * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2483      * request_module() from async workers") for more details.
2484      */
2485     if (!mod->async_probe_requested)
2486         async_synchronize_full();
2487 
2488     ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2489             mod->init_layout.size);
2490     mutex_lock(&module_mutex);
2491     /* Drop initial reference. */
2492     module_put(mod);
2493     trim_init_extable(mod);
2494 #ifdef CONFIG_KALLSYMS
2495     /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2496     rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2497 #endif
2498     module_enable_ro(mod, true);
2499     mod_tree_remove_init(mod);
2500     module_arch_freeing_init(mod);
2501     mod->init_layout.base = NULL;
2502     mod->init_layout.size = 0;
2503     mod->init_layout.ro_size = 0;
2504     mod->init_layout.ro_after_init_size = 0;
2505     mod->init_layout.text_size = 0;
2506 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2507     /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2508     mod->btf_data = NULL;
2509 #endif
2510     /*
2511      * We want to free module_init, but be aware that kallsyms may be
2512      * walking this with preempt disabled.  In all the failure paths, we
2513      * call synchronize_rcu(), but we don't want to slow down the success
2514      * path. module_memfree() cannot be called in an interrupt, so do the
2515      * work and call synchronize_rcu() in a work queue.
2516      *
2517      * Note that module_alloc() on most architectures creates W+X page
2518      * mappings which won't be cleaned up until do_free_init() runs.  Any
2519      * code such as mark_rodata_ro() which depends on those mappings to
2520      * be cleaned up needs to sync with the queued work - ie
2521      * rcu_barrier()
2522      */
2523     if (llist_add(&freeinit->node, &init_free_list))
2524         schedule_work(&init_free_wq);
2525 
2526     mutex_unlock(&module_mutex);
2527     wake_up_all(&module_wq);
2528 
2529     return 0;
2530 
2531 fail_free_freeinit:
2532     kfree(freeinit);
2533 fail:
2534     /* Try to protect us from buggy refcounters. */
2535     mod->state = MODULE_STATE_GOING;
2536     synchronize_rcu();
2537     module_put(mod);
2538     blocking_notifier_call_chain(&module_notify_list,
2539                      MODULE_STATE_GOING, mod);
2540     klp_module_going(mod);
2541     ftrace_release_mod(mod);
2542     free_module(mod);
2543     wake_up_all(&module_wq);
2544     return ret;
2545 }
2546 
2547 static int may_init_module(void)
2548 {
2549     if (!capable(CAP_SYS_MODULE) || modules_disabled)
2550         return -EPERM;
2551 
2552     return 0;
2553 }
2554 
2555 /*
2556  * We try to place it in the list now to make sure it's unique before
2557  * we dedicate too many resources.  In particular, temporary percpu
2558  * memory exhaustion.
2559  */
2560 static int add_unformed_module(struct module *mod)
2561 {
2562     int err;
2563     struct module *old;
2564 
2565     mod->state = MODULE_STATE_UNFORMED;
2566 
2567 again:
2568     mutex_lock(&module_mutex);
2569     old = find_module_all(mod->name, strlen(mod->name), true);
2570     if (old != NULL) {
2571         if (old->state != MODULE_STATE_LIVE) {
2572             /* Wait in case it fails to load. */
2573             mutex_unlock(&module_mutex);
2574             err = wait_event_interruptible(module_wq,
2575                            finished_loading(mod->name));
2576             if (err)
2577                 goto out_unlocked;
2578             goto again;
2579         }
2580         err = -EEXIST;
2581         goto out;
2582     }
2583     mod_update_bounds(mod);
2584     list_add_rcu(&mod->list, &modules);
2585     mod_tree_insert(mod);
2586     err = 0;
2587 
2588 out:
2589     mutex_unlock(&module_mutex);
2590 out_unlocked:
2591     return err;
2592 }
2593 
2594 static int complete_formation(struct module *mod, struct load_info *info)
2595 {
2596     int err;
2597 
2598     mutex_lock(&module_mutex);
2599 
2600     /* Find duplicate symbols (must be called under lock). */
2601     err = verify_exported_symbols(mod);
2602     if (err < 0)
2603         goto out;
2604 
2605     /* This relies on module_mutex for list integrity. */
2606     module_bug_finalize(info->hdr, info->sechdrs, mod);
2607 
2608     if (module_check_misalignment(mod))
2609         goto out_misaligned;
2610 
2611     module_enable_ro(mod, false);
2612     module_enable_nx(mod);
2613     module_enable_x(mod);
2614 
2615     /*
2616      * Mark state as coming so strong_try_module_get() ignores us,
2617      * but kallsyms etc. can see us.
2618      */
2619     mod->state = MODULE_STATE_COMING;
2620     mutex_unlock(&module_mutex);
2621 
2622     return 0;
2623 
2624 out_misaligned:
2625     err = -EINVAL;
2626 out:
2627     mutex_unlock(&module_mutex);
2628     return err;
2629 }
2630 
2631 static int prepare_coming_module(struct module *mod)
2632 {
2633     int err;
2634 
2635     ftrace_module_enable(mod);
2636     err = klp_module_coming(mod);
2637     if (err)
2638         return err;
2639 
2640     err = blocking_notifier_call_chain_robust(&module_notify_list,
2641             MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2642     err = notifier_to_errno(err);
2643     if (err)
2644         klp_module_going(mod);
2645 
2646     return err;
2647 }
2648 
2649 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2650                    void *arg)
2651 {
2652     struct module *mod = arg;
2653     int ret;
2654 
2655     if (strcmp(param, "async_probe") == 0) {
2656         if (strtobool(val, &mod->async_probe_requested))
2657             mod->async_probe_requested = true;
2658         return 0;
2659     }
2660 
2661     /* Check for magic 'dyndbg' arg */
2662     ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2663     if (ret != 0)
2664         pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2665     return 0;
2666 }
2667 
2668 static void cfi_init(struct module *mod);
2669 
2670 /*
2671  * Allocate and load the module: note that size of section 0 is always
2672  * zero, and we rely on this for optional sections.
2673  */
2674 static int load_module(struct load_info *info, const char __user *uargs,
2675                int flags)
2676 {
2677     struct module *mod;
2678     long err = 0;
2679     char *after_dashes;
2680 
2681     /*
2682      * Do the signature check (if any) first. All that
2683      * the signature check needs is info->len, it does
2684      * not need any of the section info. That can be
2685      * set up later. This will minimize the chances
2686      * of a corrupt module causing problems before
2687      * we even get to the signature check.
2688      *
2689      * The check will also adjust info->len by stripping
2690      * off the sig length at the end of the module, making
2691      * checks against info->len more correct.
2692      */
2693     err = module_sig_check(info, flags);
2694     if (err)
2695         goto free_copy;
2696 
2697     /*
2698      * Do basic sanity checks against the ELF header and
2699      * sections.
2700      */
2701     err = elf_validity_check(info);
2702     if (err)
2703         goto free_copy;
2704 
2705     /*
2706      * Everything checks out, so set up the section info
2707      * in the info structure.
2708      */
2709     err = setup_load_info(info, flags);
2710     if (err)
2711         goto free_copy;
2712 
2713     /*
2714      * Now that we know we have the correct module name, check
2715      * if it's blacklisted.
2716      */
2717     if (blacklisted(info->name)) {
2718         err = -EPERM;
2719         pr_err("Module %s is blacklisted\n", info->name);
2720         goto free_copy;
2721     }
2722 
2723     err = rewrite_section_headers(info, flags);
2724     if (err)
2725         goto free_copy;
2726 
2727     /* Check module struct version now, before we try to use module. */
2728     if (!check_modstruct_version(info, info->mod)) {
2729         err = -ENOEXEC;
2730         goto free_copy;
2731     }
2732 
2733     /* Figure out module layout, and allocate all the memory. */
2734     mod = layout_and_allocate(info, flags);
2735     if (IS_ERR(mod)) {
2736         err = PTR_ERR(mod);
2737         goto free_copy;
2738     }
2739 
2740     audit_log_kern_module(mod->name);
2741 
2742     /* Reserve our place in the list. */
2743     err = add_unformed_module(mod);
2744     if (err)
2745         goto free_module;
2746 
2747 #ifdef CONFIG_MODULE_SIG
2748     mod->sig_ok = info->sig_ok;
2749     if (!mod->sig_ok) {
2750         pr_notice_once("%s: module verification failed: signature "
2751                    "and/or required key missing - tainting "
2752                    "kernel\n", mod->name);
2753         add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2754     }
2755 #endif
2756 
2757     /* To avoid stressing percpu allocator, do this once we're unique. */
2758     err = percpu_modalloc(mod, info);
2759     if (err)
2760         goto unlink_mod;
2761 
2762     /* Now module is in final location, initialize linked lists, etc. */
2763     err = module_unload_init(mod);
2764     if (err)
2765         goto unlink_mod;
2766 
2767     init_param_lock(mod);
2768 
2769     /*
2770      * Now we've got everything in the final locations, we can
2771      * find optional sections.
2772      */
2773     err = find_module_sections(mod, info);
2774     if (err)
2775         goto free_unload;
2776 
2777     err = check_module_license_and_versions(mod);
2778     if (err)
2779         goto free_unload;
2780 
2781     /* Set up MODINFO_ATTR fields */
2782     setup_modinfo(mod, info);
2783 
2784     /* Fix up syms, so that st_value is a pointer to location. */
2785     err = simplify_symbols(mod, info);
2786     if (err < 0)
2787         goto free_modinfo;
2788 
2789     err = apply_relocations(mod, info);
2790     if (err < 0)
2791         goto free_modinfo;
2792 
2793     err = post_relocation(mod, info);
2794     if (err < 0)
2795         goto free_modinfo;
2796 
2797     flush_module_icache(mod);
2798 
2799     /* Setup CFI for the module. */
2800     cfi_init(mod);
2801 
2802     /* Now copy in args */
2803     mod->args = strndup_user(uargs, ~0UL >> 1);
2804     if (IS_ERR(mod->args)) {
2805         err = PTR_ERR(mod->args);
2806         goto free_arch_cleanup;
2807     }
2808 
2809     init_build_id(mod, info);
2810     dynamic_debug_setup(mod, info->debug, info->num_debug);
2811 
2812     /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2813     ftrace_module_init(mod);
2814 
2815     /* Finally it's fully formed, ready to start executing. */
2816     err = complete_formation(mod, info);
2817     if (err)
2818         goto ddebug_cleanup;
2819 
2820     err = prepare_coming_module(mod);
2821     if (err)
2822         goto bug_cleanup;
2823 
2824     mod->async_probe_requested = async_probe;
2825 
2826     /* Module is ready to execute: parsing args may do that. */
2827     after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2828                   -32768, 32767, mod,
2829                   unknown_module_param_cb);
2830     if (IS_ERR(after_dashes)) {
2831         err = PTR_ERR(after_dashes);
2832         goto coming_cleanup;
2833     } else if (after_dashes) {
2834         pr_warn("%s: parameters '%s' after `--' ignored\n",
2835                mod->name, after_dashes);
2836     }
2837 
2838     /* Link in to sysfs. */
2839     err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2840     if (err < 0)
2841         goto coming_cleanup;
2842 
2843     if (is_livepatch_module(mod)) {
2844         err = copy_module_elf(mod, info);
2845         if (err < 0)
2846             goto sysfs_cleanup;
2847     }
2848 
2849     /* Get rid of temporary copy. */
2850     free_copy(info, flags);
2851 
2852     /* Done! */
2853     trace_module_load(mod);
2854 
2855     return do_init_module(mod);
2856 
2857  sysfs_cleanup:
2858     mod_sysfs_teardown(mod);
2859  coming_cleanup:
2860     mod->state = MODULE_STATE_GOING;
2861     destroy_params(mod->kp, mod->num_kp);
2862     blocking_notifier_call_chain(&module_notify_list,
2863                      MODULE_STATE_GOING, mod);
2864     klp_module_going(mod);
2865  bug_cleanup:
2866     mod->state = MODULE_STATE_GOING;
2867     /* module_bug_cleanup needs module_mutex protection */
2868     mutex_lock(&module_mutex);
2869     module_bug_cleanup(mod);
2870     mutex_unlock(&module_mutex);
2871 
2872  ddebug_cleanup:
2873     ftrace_release_mod(mod);
2874     dynamic_debug_remove(mod, info->debug);
2875     synchronize_rcu();
2876     kfree(mod->args);
2877  free_arch_cleanup:
2878     cfi_cleanup(mod);
2879     module_arch_cleanup(mod);
2880  free_modinfo:
2881     free_modinfo(mod);
2882  free_unload:
2883     module_unload_free(mod);
2884  unlink_mod:
2885     mutex_lock(&module_mutex);
2886     /* Unlink carefully: kallsyms could be walking list. */
2887     list_del_rcu(&mod->list);
2888     mod_tree_remove(mod);
2889     wake_up_all(&module_wq);
2890     /* Wait for RCU-sched synchronizing before releasing mod->list. */
2891     synchronize_rcu();
2892     mutex_unlock(&module_mutex);
2893  free_module:
2894     /* Free lock-classes; relies on the preceding sync_rcu() */
2895     lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2896 
2897     module_deallocate(mod, info);
2898  free_copy:
2899     free_copy(info, flags);
2900     return err;
2901 }
2902 
2903 SYSCALL_DEFINE3(init_module, void __user *, umod,
2904         unsigned long, len, const char __user *, uargs)
2905 {
2906     int err;
2907     struct load_info info = { };
2908 
2909     err = may_init_module();
2910     if (err)
2911         return err;
2912 
2913     pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2914            umod, len, uargs);
2915 
2916     err = copy_module_from_user(umod, len, &info);
2917     if (err)
2918         return err;
2919 
2920     return load_module(&info, uargs, 0);
2921 }
2922 
2923 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2924 {
2925     struct load_info info = { };
2926     void *buf = NULL;
2927     int len;
2928     int err;
2929 
2930     err = may_init_module();
2931     if (err)
2932         return err;
2933 
2934     pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2935 
2936     if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2937               |MODULE_INIT_IGNORE_VERMAGIC
2938               |MODULE_INIT_COMPRESSED_FILE))
2939         return -EINVAL;
2940 
2941     len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2942                        READING_MODULE);
2943     if (len < 0)
2944         return len;
2945 
2946     if (flags & MODULE_INIT_COMPRESSED_FILE) {
2947         err = module_decompress(&info, buf, len);
2948         vfree(buf); /* compressed data is no longer needed */
2949         if (err)
2950             return err;
2951     } else {
2952         info.hdr = buf;
2953         info.len = len;
2954     }
2955 
2956     return load_module(&info, uargs, flags);
2957 }
2958 
2959 static inline int within(unsigned long addr, void *start, unsigned long size)
2960 {
2961     return ((void *)addr >= start && (void *)addr < start + size);
2962 }
2963 
2964 static void cfi_init(struct module *mod)
2965 {
2966 #ifdef CONFIG_CFI_CLANG
2967     initcall_t *init;
2968 #ifdef CONFIG_MODULE_UNLOAD
2969     exitcall_t *exit;
2970 #endif
2971 
2972     rcu_read_lock_sched();
2973     mod->cfi_check = (cfi_check_fn)
2974         find_kallsyms_symbol_value(mod, "__cfi_check");
2975     init = (initcall_t *)
2976         find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
2977     /* Fix init/exit functions to point to the CFI jump table */
2978     if (init)
2979         mod->init = *init;
2980 #ifdef CONFIG_MODULE_UNLOAD
2981     exit = (exitcall_t *)
2982         find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
2983     if (exit)
2984         mod->exit = *exit;
2985 #endif
2986     rcu_read_unlock_sched();
2987 
2988     cfi_module_add(mod, mod_tree.addr_min);
2989 #endif
2990 }
2991 
2992 static void cfi_cleanup(struct module *mod)
2993 {
2994 #ifdef CONFIG_CFI_CLANG
2995     cfi_module_remove(mod, mod_tree.addr_min);
2996 #endif
2997 }
2998 
2999 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3000 char *module_flags(struct module *mod, char *buf, bool show_state)
3001 {
3002     int bx = 0;
3003 
3004     BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3005     if (!mod->taints && !show_state)
3006         goto out;
3007     if (mod->taints ||
3008         mod->state == MODULE_STATE_GOING ||
3009         mod->state == MODULE_STATE_COMING) {
3010         buf[bx++] = '(';
3011         bx += module_flags_taint(mod->taints, buf + bx);
3012         /* Show a - for module-is-being-unloaded */
3013         if (mod->state == MODULE_STATE_GOING && show_state)
3014             buf[bx++] = '-';
3015         /* Show a + for module-is-being-loaded */
3016         if (mod->state == MODULE_STATE_COMING && show_state)
3017             buf[bx++] = '+';
3018         buf[bx++] = ')';
3019     }
3020 out:
3021     buf[bx] = '\0';
3022 
3023     return buf;
3024 }
3025 
3026 /* Given an address, look for it in the module exception tables. */
3027 const struct exception_table_entry *search_module_extables(unsigned long addr)
3028 {
3029     const struct exception_table_entry *e = NULL;
3030     struct module *mod;
3031 
3032     preempt_disable();
3033     mod = __module_address(addr);
3034     if (!mod)
3035         goto out;
3036 
3037     if (!mod->num_exentries)
3038         goto out;
3039 
3040     e = search_extable(mod->extable,
3041                mod->num_exentries,
3042                addr);
3043 out:
3044     preempt_enable();
3045 
3046     /*
3047      * Now, if we found one, we are running inside it now, hence
3048      * we cannot unload the module, hence no refcnt needed.
3049      */
3050     return e;
3051 }
3052 
3053 /**
3054  * is_module_address() - is this address inside a module?
3055  * @addr: the address to check.
3056  *
3057  * See is_module_text_address() if you simply want to see if the address
3058  * is code (not data).
3059  */
3060 bool is_module_address(unsigned long addr)
3061 {
3062     bool ret;
3063 
3064     preempt_disable();
3065     ret = __module_address(addr) != NULL;
3066     preempt_enable();
3067 
3068     return ret;
3069 }
3070 
3071 /**
3072  * __module_address() - get the module which contains an address.
3073  * @addr: the address.
3074  *
3075  * Must be called with preempt disabled or module mutex held so that
3076  * module doesn't get freed during this.
3077  */
3078 struct module *__module_address(unsigned long addr)
3079 {
3080     struct module *mod;
3081     struct mod_tree_root *tree;
3082 
3083     if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3084         tree = &mod_tree;
3085 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3086     else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3087         tree = &mod_data_tree;
3088 #endif
3089     else
3090         return NULL;
3091 
3092     module_assert_mutex_or_preempt();
3093 
3094     mod = mod_find(addr, tree);
3095     if (mod) {
3096         BUG_ON(!within_module(addr, mod));
3097         if (mod->state == MODULE_STATE_UNFORMED)
3098             mod = NULL;
3099     }
3100     return mod;
3101 }
3102 
3103 /**
3104  * is_module_text_address() - is this address inside module code?
3105  * @addr: the address to check.
3106  *
3107  * See is_module_address() if you simply want to see if the address is
3108  * anywhere in a module.  See kernel_text_address() for testing if an
3109  * address corresponds to kernel or module code.
3110  */
3111 bool is_module_text_address(unsigned long addr)
3112 {
3113     bool ret;
3114 
3115     preempt_disable();
3116     ret = __module_text_address(addr) != NULL;
3117     preempt_enable();
3118 
3119     return ret;
3120 }
3121 
3122 /**
3123  * __module_text_address() - get the module whose code contains an address.
3124  * @addr: the address.
3125  *
3126  * Must be called with preempt disabled or module mutex held so that
3127  * module doesn't get freed during this.
3128  */
3129 struct module *__module_text_address(unsigned long addr)
3130 {
3131     struct module *mod = __module_address(addr);
3132     if (mod) {
3133         /* Make sure it's within the text section. */
3134         if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3135             && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3136             mod = NULL;
3137     }
3138     return mod;
3139 }
3140 
3141 /* Don't grab lock, we're oopsing. */
3142 void print_modules(void)
3143 {
3144     struct module *mod;
3145     char buf[MODULE_FLAGS_BUF_SIZE];
3146 
3147     printk(KERN_DEFAULT "Modules linked in:");
3148     /* Most callers should already have preempt disabled, but make sure */
3149     preempt_disable();
3150     list_for_each_entry_rcu(mod, &modules, list) {
3151         if (mod->state == MODULE_STATE_UNFORMED)
3152             continue;
3153         pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3154     }
3155 
3156     print_unloaded_tainted_modules();
3157     preempt_enable();
3158     if (last_unloaded_module.name[0])
3159         pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3160             last_unloaded_module.taints);
3161     pr_cont("\n");
3162 }