![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0 */ 0002 #ifndef _GEN_PV_LOCK_SLOWPATH 0003 #error "do not include this file" 0004 #endif 0005 0006 #include <linux/hash.h> 0007 #include <linux/memblock.h> 0008 #include <linux/debug_locks.h> 0009 0010 /* 0011 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead 0012 * of spinning them. 0013 * 0014 * This relies on the architecture to provide two paravirt hypercalls: 0015 * 0016 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val 0017 * pv_kick(cpu) -- wakes a suspended vcpu 0018 * 0019 * Using these we implement __pv_queued_spin_lock_slowpath() and 0020 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and 0021 * native_queued_spin_unlock(). 0022 */ 0023 0024 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) 0025 0026 /* 0027 * Queue Node Adaptive Spinning 0028 * 0029 * A queue node vCPU will stop spinning if the vCPU in the previous node is 0030 * not running. The one lock stealing attempt allowed at slowpath entry 0031 * mitigates the slight slowdown for non-overcommitted guest with this 0032 * aggressive wait-early mechanism. 0033 * 0034 * The status of the previous node will be checked at fixed interval 0035 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't 0036 * pound on the cacheline of the previous node too heavily. 0037 */ 0038 #define PV_PREV_CHECK_MASK 0xff 0039 0040 /* 0041 * Queue node uses: vcpu_running & vcpu_halted. 0042 * Queue head uses: vcpu_running & vcpu_hashed. 0043 */ 0044 enum vcpu_state { 0045 vcpu_running = 0, 0046 vcpu_halted, /* Used only in pv_wait_node */ 0047 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */ 0048 }; 0049 0050 struct pv_node { 0051 struct mcs_spinlock mcs; 0052 int cpu; 0053 u8 state; 0054 }; 0055 0056 /* 0057 * Hybrid PV queued/unfair lock 0058 * 0059 * By replacing the regular queued_spin_trylock() with the function below, 0060 * it will be called once when a lock waiter enter the PV slowpath before 0061 * being queued. 0062 * 0063 * The pending bit is set by the queue head vCPU of the MCS wait queue in 0064 * pv_wait_head_or_lock() to signal that it is ready to spin on the lock. 0065 * When that bit becomes visible to the incoming waiters, no lock stealing 0066 * is allowed. The function will return immediately to make the waiters 0067 * enter the MCS wait queue. So lock starvation shouldn't happen as long 0068 * as the queued mode vCPUs are actively running to set the pending bit 0069 * and hence disabling lock stealing. 0070 * 0071 * When the pending bit isn't set, the lock waiters will stay in the unfair 0072 * mode spinning on the lock unless the MCS wait queue is empty. In this 0073 * case, the lock waiters will enter the queued mode slowpath trying to 0074 * become the queue head and set the pending bit. 0075 * 0076 * This hybrid PV queued/unfair lock combines the best attributes of a 0077 * queued lock (no lock starvation) and an unfair lock (good performance 0078 * on not heavily contended locks). 0079 */ 0080 #define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l) 0081 static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock) 0082 { 0083 /* 0084 * Stay in unfair lock mode as long as queued mode waiters are 0085 * present in the MCS wait queue but the pending bit isn't set. 0086 */ 0087 for (;;) { 0088 int val = atomic_read(&lock->val); 0089 0090 if (!(val & _Q_LOCKED_PENDING_MASK) && 0091 (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) { 0092 lockevent_inc(pv_lock_stealing); 0093 return true; 0094 } 0095 if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK)) 0096 break; 0097 0098 cpu_relax(); 0099 } 0100 0101 return false; 0102 } 0103 0104 /* 0105 * The pending bit is used by the queue head vCPU to indicate that it 0106 * is actively spinning on the lock and no lock stealing is allowed. 0107 */ 0108 #if _Q_PENDING_BITS == 8 0109 static __always_inline void set_pending(struct qspinlock *lock) 0110 { 0111 WRITE_ONCE(lock->pending, 1); 0112 } 0113 0114 /* 0115 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory 0116 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the 0117 * lock just to be sure that it will get it. 0118 */ 0119 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 0120 { 0121 return !READ_ONCE(lock->locked) && 0122 (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL, 0123 _Q_LOCKED_VAL) == _Q_PENDING_VAL); 0124 } 0125 #else /* _Q_PENDING_BITS == 8 */ 0126 static __always_inline void set_pending(struct qspinlock *lock) 0127 { 0128 atomic_or(_Q_PENDING_VAL, &lock->val); 0129 } 0130 0131 static __always_inline int trylock_clear_pending(struct qspinlock *lock) 0132 { 0133 int val = atomic_read(&lock->val); 0134 0135 for (;;) { 0136 int old, new; 0137 0138 if (val & _Q_LOCKED_MASK) 0139 break; 0140 0141 /* 0142 * Try to clear pending bit & set locked bit 0143 */ 0144 old = val; 0145 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL; 0146 val = atomic_cmpxchg_acquire(&lock->val, old, new); 0147 0148 if (val == old) 0149 return 1; 0150 } 0151 return 0; 0152 } 0153 #endif /* _Q_PENDING_BITS == 8 */ 0154 0155 /* 0156 * Lock and MCS node addresses hash table for fast lookup 0157 * 0158 * Hashing is done on a per-cacheline basis to minimize the need to access 0159 * more than one cacheline. 0160 * 0161 * Dynamically allocate a hash table big enough to hold at least 4X the 0162 * number of possible cpus in the system. Allocation is done on page 0163 * granularity. So the minimum number of hash buckets should be at least 0164 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page. 0165 * 0166 * Since we should not be holding locks from NMI context (very rare indeed) the 0167 * max load factor is 0.75, which is around the point where open addressing 0168 * breaks down. 0169 * 0170 */ 0171 struct pv_hash_entry { 0172 struct qspinlock *lock; 0173 struct pv_node *node; 0174 }; 0175 0176 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry)) 0177 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry)) 0178 0179 static struct pv_hash_entry *pv_lock_hash; 0180 static unsigned int pv_lock_hash_bits __read_mostly; 0181 0182 /* 0183 * Allocate memory for the PV qspinlock hash buckets 0184 * 0185 * This function should be called from the paravirt spinlock initialization 0186 * routine. 0187 */ 0188 void __init __pv_init_lock_hash(void) 0189 { 0190 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE); 0191 0192 if (pv_hash_size < PV_HE_MIN) 0193 pv_hash_size = PV_HE_MIN; 0194 0195 /* 0196 * Allocate space from bootmem which should be page-size aligned 0197 * and hence cacheline aligned. 0198 */ 0199 pv_lock_hash = alloc_large_system_hash("PV qspinlock", 0200 sizeof(struct pv_hash_entry), 0201 pv_hash_size, 0, 0202 HASH_EARLY | HASH_ZERO, 0203 &pv_lock_hash_bits, NULL, 0204 pv_hash_size, pv_hash_size); 0205 } 0206 0207 #define for_each_hash_entry(he, offset, hash) \ 0208 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \ 0209 offset < (1 << pv_lock_hash_bits); \ 0210 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)]) 0211 0212 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) 0213 { 0214 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 0215 struct pv_hash_entry *he; 0216 int hopcnt = 0; 0217 0218 for_each_hash_entry(he, offset, hash) { 0219 hopcnt++; 0220 if (!cmpxchg(&he->lock, NULL, lock)) { 0221 WRITE_ONCE(he->node, node); 0222 lockevent_pv_hop(hopcnt); 0223 return &he->lock; 0224 } 0225 } 0226 /* 0227 * Hard assume there is a free entry for us. 0228 * 0229 * This is guaranteed by ensuring every blocked lock only ever consumes 0230 * a single entry, and since we only have 4 nesting levels per CPU 0231 * and allocated 4*nr_possible_cpus(), this must be so. 0232 * 0233 * The single entry is guaranteed by having the lock owner unhash 0234 * before it releases. 0235 */ 0236 BUG(); 0237 } 0238 0239 static struct pv_node *pv_unhash(struct qspinlock *lock) 0240 { 0241 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits); 0242 struct pv_hash_entry *he; 0243 struct pv_node *node; 0244 0245 for_each_hash_entry(he, offset, hash) { 0246 if (READ_ONCE(he->lock) == lock) { 0247 node = READ_ONCE(he->node); 0248 WRITE_ONCE(he->lock, NULL); 0249 return node; 0250 } 0251 } 0252 /* 0253 * Hard assume we'll find an entry. 0254 * 0255 * This guarantees a limited lookup time and is itself guaranteed by 0256 * having the lock owner do the unhash -- IFF the unlock sees the 0257 * SLOW flag, there MUST be a hash entry. 0258 */ 0259 BUG(); 0260 } 0261 0262 /* 0263 * Return true if when it is time to check the previous node which is not 0264 * in a running state. 0265 */ 0266 static inline bool 0267 pv_wait_early(struct pv_node *prev, int loop) 0268 { 0269 if ((loop & PV_PREV_CHECK_MASK) != 0) 0270 return false; 0271 0272 return READ_ONCE(prev->state) != vcpu_running; 0273 } 0274 0275 /* 0276 * Initialize the PV part of the mcs_spinlock node. 0277 */ 0278 static void pv_init_node(struct mcs_spinlock *node) 0279 { 0280 struct pv_node *pn = (struct pv_node *)node; 0281 0282 BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode)); 0283 0284 pn->cpu = smp_processor_id(); 0285 pn->state = vcpu_running; 0286 } 0287 0288 /* 0289 * Wait for node->locked to become true, halt the vcpu after a short spin. 0290 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its 0291 * behalf. 0292 */ 0293 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev) 0294 { 0295 struct pv_node *pn = (struct pv_node *)node; 0296 struct pv_node *pp = (struct pv_node *)prev; 0297 int loop; 0298 bool wait_early; 0299 0300 for (;;) { 0301 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) { 0302 if (READ_ONCE(node->locked)) 0303 return; 0304 if (pv_wait_early(pp, loop)) { 0305 wait_early = true; 0306 break; 0307 } 0308 cpu_relax(); 0309 } 0310 0311 /* 0312 * Order pn->state vs pn->locked thusly: 0313 * 0314 * [S] pn->state = vcpu_halted [S] next->locked = 1 0315 * MB MB 0316 * [L] pn->locked [RmW] pn->state = vcpu_hashed 0317 * 0318 * Matches the cmpxchg() from pv_kick_node(). 0319 */ 0320 smp_store_mb(pn->state, vcpu_halted); 0321 0322 if (!READ_ONCE(node->locked)) { 0323 lockevent_inc(pv_wait_node); 0324 lockevent_cond_inc(pv_wait_early, wait_early); 0325 pv_wait(&pn->state, vcpu_halted); 0326 } 0327 0328 /* 0329 * If pv_kick_node() changed us to vcpu_hashed, retain that 0330 * value so that pv_wait_head_or_lock() knows to not also try 0331 * to hash this lock. 0332 */ 0333 cmpxchg(&pn->state, vcpu_halted, vcpu_running); 0334 0335 /* 0336 * If the locked flag is still not set after wakeup, it is a 0337 * spurious wakeup and the vCPU should wait again. However, 0338 * there is a pretty high overhead for CPU halting and kicking. 0339 * So it is better to spin for a while in the hope that the 0340 * MCS lock will be released soon. 0341 */ 0342 lockevent_cond_inc(pv_spurious_wakeup, 0343 !READ_ONCE(node->locked)); 0344 } 0345 0346 /* 0347 * By now our node->locked should be 1 and our caller will not actually 0348 * spin-wait for it. We do however rely on our caller to do a 0349 * load-acquire for us. 0350 */ 0351 } 0352 0353 /* 0354 * Called after setting next->locked = 1 when we're the lock owner. 0355 * 0356 * Instead of waking the waiters stuck in pv_wait_node() advance their state 0357 * such that they're waiting in pv_wait_head_or_lock(), this avoids a 0358 * wake/sleep cycle. 0359 */ 0360 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node) 0361 { 0362 struct pv_node *pn = (struct pv_node *)node; 0363 0364 /* 0365 * If the vCPU is indeed halted, advance its state to match that of 0366 * pv_wait_node(). If OTOH this fails, the vCPU was running and will 0367 * observe its next->locked value and advance itself. 0368 * 0369 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node() 0370 * 0371 * The write to next->locked in arch_mcs_spin_unlock_contended() 0372 * must be ordered before the read of pn->state in the cmpxchg() 0373 * below for the code to work correctly. To guarantee full ordering 0374 * irrespective of the success or failure of the cmpxchg(), 0375 * a relaxed version with explicit barrier is used. The control 0376 * dependency will order the reading of pn->state before any 0377 * subsequent writes. 0378 */ 0379 smp_mb__before_atomic(); 0380 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed) 0381 != vcpu_halted) 0382 return; 0383 0384 /* 0385 * Put the lock into the hash table and set the _Q_SLOW_VAL. 0386 * 0387 * As this is the same vCPU that will check the _Q_SLOW_VAL value and 0388 * the hash table later on at unlock time, no atomic instruction is 0389 * needed. 0390 */ 0391 WRITE_ONCE(lock->locked, _Q_SLOW_VAL); 0392 (void)pv_hash(lock, pn); 0393 } 0394 0395 /* 0396 * Wait for l->locked to become clear and acquire the lock; 0397 * halt the vcpu after a short spin. 0398 * __pv_queued_spin_unlock() will wake us. 0399 * 0400 * The current value of the lock will be returned for additional processing. 0401 */ 0402 static u32 0403 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node) 0404 { 0405 struct pv_node *pn = (struct pv_node *)node; 0406 struct qspinlock **lp = NULL; 0407 int waitcnt = 0; 0408 int loop; 0409 0410 /* 0411 * If pv_kick_node() already advanced our state, we don't need to 0412 * insert ourselves into the hash table anymore. 0413 */ 0414 if (READ_ONCE(pn->state) == vcpu_hashed) 0415 lp = (struct qspinlock **)1; 0416 0417 /* 0418 * Tracking # of slowpath locking operations 0419 */ 0420 lockevent_inc(lock_slowpath); 0421 0422 for (;; waitcnt++) { 0423 /* 0424 * Set correct vCPU state to be used by queue node wait-early 0425 * mechanism. 0426 */ 0427 WRITE_ONCE(pn->state, vcpu_running); 0428 0429 /* 0430 * Set the pending bit in the active lock spinning loop to 0431 * disable lock stealing before attempting to acquire the lock. 0432 */ 0433 set_pending(lock); 0434 for (loop = SPIN_THRESHOLD; loop; loop--) { 0435 if (trylock_clear_pending(lock)) 0436 goto gotlock; 0437 cpu_relax(); 0438 } 0439 clear_pending(lock); 0440 0441 0442 if (!lp) { /* ONCE */ 0443 lp = pv_hash(lock, pn); 0444 0445 /* 0446 * We must hash before setting _Q_SLOW_VAL, such that 0447 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock() 0448 * we'll be sure to be able to observe our hash entry. 0449 * 0450 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL 0451 * MB RMB 0452 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash> 0453 * 0454 * Matches the smp_rmb() in __pv_queued_spin_unlock(). 0455 */ 0456 if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) { 0457 /* 0458 * The lock was free and now we own the lock. 0459 * Change the lock value back to _Q_LOCKED_VAL 0460 * and unhash the table. 0461 */ 0462 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); 0463 WRITE_ONCE(*lp, NULL); 0464 goto gotlock; 0465 } 0466 } 0467 WRITE_ONCE(pn->state, vcpu_hashed); 0468 lockevent_inc(pv_wait_head); 0469 lockevent_cond_inc(pv_wait_again, waitcnt); 0470 pv_wait(&lock->locked, _Q_SLOW_VAL); 0471 0472 /* 0473 * Because of lock stealing, the queue head vCPU may not be 0474 * able to acquire the lock before it has to wait again. 0475 */ 0476 } 0477 0478 /* 0479 * The cmpxchg() or xchg() call before coming here provides the 0480 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL 0481 * here is to indicate to the compiler that the value will always 0482 * be nozero to enable better code optimization. 0483 */ 0484 gotlock: 0485 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL); 0486 } 0487 0488 /* 0489 * PV versions of the unlock fastpath and slowpath functions to be used 0490 * instead of queued_spin_unlock(). 0491 */ 0492 __visible void 0493 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked) 0494 { 0495 struct pv_node *node; 0496 0497 if (unlikely(locked != _Q_SLOW_VAL)) { 0498 WARN(!debug_locks_silent, 0499 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n", 0500 (unsigned long)lock, atomic_read(&lock->val)); 0501 return; 0502 } 0503 0504 /* 0505 * A failed cmpxchg doesn't provide any memory-ordering guarantees, 0506 * so we need a barrier to order the read of the node data in 0507 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL. 0508 * 0509 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL. 0510 */ 0511 smp_rmb(); 0512 0513 /* 0514 * Since the above failed to release, this must be the SLOW path. 0515 * Therefore start by looking up the blocked node and unhashing it. 0516 */ 0517 node = pv_unhash(lock); 0518 0519 /* 0520 * Now that we have a reference to the (likely) blocked pv_node, 0521 * release the lock. 0522 */ 0523 smp_store_release(&lock->locked, 0); 0524 0525 /* 0526 * At this point the memory pointed at by lock can be freed/reused, 0527 * however we can still use the pv_node to kick the CPU. 0528 * The other vCPU may not really be halted, but kicking an active 0529 * vCPU is harmless other than the additional latency in completing 0530 * the unlock. 0531 */ 0532 lockevent_inc(pv_kick_unlock); 0533 pv_kick(node->cpu); 0534 } 0535 0536 /* 0537 * Include the architecture specific callee-save thunk of the 0538 * __pv_queued_spin_unlock(). This thunk is put together with 0539 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock 0540 * function close to each other sharing consecutive instruction cachelines. 0541 * Alternatively, architecture specific version of __pv_queued_spin_unlock() 0542 * can be defined. 0543 */ 0544 #include <asm/qspinlock_paravirt.h> 0545 0546 #ifndef __pv_queued_spin_unlock 0547 __visible void __pv_queued_spin_unlock(struct qspinlock *lock) 0548 { 0549 u8 locked; 0550 0551 /* 0552 * We must not unlock if SLOW, because in that case we must first 0553 * unhash. Otherwise it would be possible to have multiple @lock 0554 * entries, which would be BAD. 0555 */ 0556 locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0); 0557 if (likely(locked == _Q_LOCKED_VAL)) 0558 return; 0559 0560 __pv_queued_spin_unlock_slowpath(lock, locked); 0561 } 0562 #endif /* __pv_queued_spin_unlock */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |