Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* Kernel thread helper functions.
0003  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
0004  *   Copyright (C) 2009 Red Hat, Inc.
0005  *
0006  * Creation is done via kthreadd, so that we get a clean environment
0007  * even if we're invoked from userspace (think modprobe, hotplug cpu,
0008  * etc.).
0009  */
0010 #include <uapi/linux/sched/types.h>
0011 #include <linux/mm.h>
0012 #include <linux/mmu_context.h>
0013 #include <linux/sched.h>
0014 #include <linux/sched/mm.h>
0015 #include <linux/sched/task.h>
0016 #include <linux/kthread.h>
0017 #include <linux/completion.h>
0018 #include <linux/err.h>
0019 #include <linux/cgroup.h>
0020 #include <linux/cpuset.h>
0021 #include <linux/unistd.h>
0022 #include <linux/file.h>
0023 #include <linux/export.h>
0024 #include <linux/mutex.h>
0025 #include <linux/slab.h>
0026 #include <linux/freezer.h>
0027 #include <linux/ptrace.h>
0028 #include <linux/uaccess.h>
0029 #include <linux/numa.h>
0030 #include <linux/sched/isolation.h>
0031 #include <trace/events/sched.h>
0032 
0033 
0034 static DEFINE_SPINLOCK(kthread_create_lock);
0035 static LIST_HEAD(kthread_create_list);
0036 struct task_struct *kthreadd_task;
0037 
0038 struct kthread_create_info
0039 {
0040     /* Information passed to kthread() from kthreadd. */
0041     int (*threadfn)(void *data);
0042     void *data;
0043     int node;
0044 
0045     /* Result passed back to kthread_create() from kthreadd. */
0046     struct task_struct *result;
0047     struct completion *done;
0048 
0049     struct list_head list;
0050 };
0051 
0052 struct kthread {
0053     unsigned long flags;
0054     unsigned int cpu;
0055     int result;
0056     int (*threadfn)(void *);
0057     void *data;
0058     struct completion parked;
0059     struct completion exited;
0060 #ifdef CONFIG_BLK_CGROUP
0061     struct cgroup_subsys_state *blkcg_css;
0062 #endif
0063     /* To store the full name if task comm is truncated. */
0064     char *full_name;
0065 };
0066 
0067 enum KTHREAD_BITS {
0068     KTHREAD_IS_PER_CPU = 0,
0069     KTHREAD_SHOULD_STOP,
0070     KTHREAD_SHOULD_PARK,
0071 };
0072 
0073 static inline struct kthread *to_kthread(struct task_struct *k)
0074 {
0075     WARN_ON(!(k->flags & PF_KTHREAD));
0076     return k->worker_private;
0077 }
0078 
0079 /*
0080  * Variant of to_kthread() that doesn't assume @p is a kthread.
0081  *
0082  * Per construction; when:
0083  *
0084  *   (p->flags & PF_KTHREAD) && p->worker_private
0085  *
0086  * the task is both a kthread and struct kthread is persistent. However
0087  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
0088  * begin_new_exec()).
0089  */
0090 static inline struct kthread *__to_kthread(struct task_struct *p)
0091 {
0092     void *kthread = p->worker_private;
0093     if (kthread && !(p->flags & PF_KTHREAD))
0094         kthread = NULL;
0095     return kthread;
0096 }
0097 
0098 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
0099 {
0100     struct kthread *kthread = to_kthread(tsk);
0101 
0102     if (!kthread || !kthread->full_name) {
0103         __get_task_comm(buf, buf_size, tsk);
0104         return;
0105     }
0106 
0107     strscpy_pad(buf, kthread->full_name, buf_size);
0108 }
0109 
0110 bool set_kthread_struct(struct task_struct *p)
0111 {
0112     struct kthread *kthread;
0113 
0114     if (WARN_ON_ONCE(to_kthread(p)))
0115         return false;
0116 
0117     kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
0118     if (!kthread)
0119         return false;
0120 
0121     init_completion(&kthread->exited);
0122     init_completion(&kthread->parked);
0123     p->vfork_done = &kthread->exited;
0124 
0125     p->worker_private = kthread;
0126     return true;
0127 }
0128 
0129 void free_kthread_struct(struct task_struct *k)
0130 {
0131     struct kthread *kthread;
0132 
0133     /*
0134      * Can be NULL if kmalloc() in set_kthread_struct() failed.
0135      */
0136     kthread = to_kthread(k);
0137     if (!kthread)
0138         return;
0139 
0140 #ifdef CONFIG_BLK_CGROUP
0141     WARN_ON_ONCE(kthread->blkcg_css);
0142 #endif
0143     k->worker_private = NULL;
0144     kfree(kthread->full_name);
0145     kfree(kthread);
0146 }
0147 
0148 /**
0149  * kthread_should_stop - should this kthread return now?
0150  *
0151  * When someone calls kthread_stop() on your kthread, it will be woken
0152  * and this will return true.  You should then return, and your return
0153  * value will be passed through to kthread_stop().
0154  */
0155 bool kthread_should_stop(void)
0156 {
0157     return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
0158 }
0159 EXPORT_SYMBOL(kthread_should_stop);
0160 
0161 bool __kthread_should_park(struct task_struct *k)
0162 {
0163     return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
0164 }
0165 EXPORT_SYMBOL_GPL(__kthread_should_park);
0166 
0167 /**
0168  * kthread_should_park - should this kthread park now?
0169  *
0170  * When someone calls kthread_park() on your kthread, it will be woken
0171  * and this will return true.  You should then do the necessary
0172  * cleanup and call kthread_parkme()
0173  *
0174  * Similar to kthread_should_stop(), but this keeps the thread alive
0175  * and in a park position. kthread_unpark() "restarts" the thread and
0176  * calls the thread function again.
0177  */
0178 bool kthread_should_park(void)
0179 {
0180     return __kthread_should_park(current);
0181 }
0182 EXPORT_SYMBOL_GPL(kthread_should_park);
0183 
0184 /**
0185  * kthread_freezable_should_stop - should this freezable kthread return now?
0186  * @was_frozen: optional out parameter, indicates whether %current was frozen
0187  *
0188  * kthread_should_stop() for freezable kthreads, which will enter
0189  * refrigerator if necessary.  This function is safe from kthread_stop() /
0190  * freezer deadlock and freezable kthreads should use this function instead
0191  * of calling try_to_freeze() directly.
0192  */
0193 bool kthread_freezable_should_stop(bool *was_frozen)
0194 {
0195     bool frozen = false;
0196 
0197     might_sleep();
0198 
0199     if (unlikely(freezing(current)))
0200         frozen = __refrigerator(true);
0201 
0202     if (was_frozen)
0203         *was_frozen = frozen;
0204 
0205     return kthread_should_stop();
0206 }
0207 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
0208 
0209 /**
0210  * kthread_func - return the function specified on kthread creation
0211  * @task: kthread task in question
0212  *
0213  * Returns NULL if the task is not a kthread.
0214  */
0215 void *kthread_func(struct task_struct *task)
0216 {
0217     struct kthread *kthread = __to_kthread(task);
0218     if (kthread)
0219         return kthread->threadfn;
0220     return NULL;
0221 }
0222 EXPORT_SYMBOL_GPL(kthread_func);
0223 
0224 /**
0225  * kthread_data - return data value specified on kthread creation
0226  * @task: kthread task in question
0227  *
0228  * Return the data value specified when kthread @task was created.
0229  * The caller is responsible for ensuring the validity of @task when
0230  * calling this function.
0231  */
0232 void *kthread_data(struct task_struct *task)
0233 {
0234     return to_kthread(task)->data;
0235 }
0236 EXPORT_SYMBOL_GPL(kthread_data);
0237 
0238 /**
0239  * kthread_probe_data - speculative version of kthread_data()
0240  * @task: possible kthread task in question
0241  *
0242  * @task could be a kthread task.  Return the data value specified when it
0243  * was created if accessible.  If @task isn't a kthread task or its data is
0244  * inaccessible for any reason, %NULL is returned.  This function requires
0245  * that @task itself is safe to dereference.
0246  */
0247 void *kthread_probe_data(struct task_struct *task)
0248 {
0249     struct kthread *kthread = __to_kthread(task);
0250     void *data = NULL;
0251 
0252     if (kthread)
0253         copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
0254     return data;
0255 }
0256 
0257 static void __kthread_parkme(struct kthread *self)
0258 {
0259     for (;;) {
0260         /*
0261          * TASK_PARKED is a special state; we must serialize against
0262          * possible pending wakeups to avoid store-store collisions on
0263          * task->state.
0264          *
0265          * Such a collision might possibly result in the task state
0266          * changin from TASK_PARKED and us failing the
0267          * wait_task_inactive() in kthread_park().
0268          */
0269         set_special_state(TASK_PARKED);
0270         if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
0271             break;
0272 
0273         /*
0274          * Thread is going to call schedule(), do not preempt it,
0275          * or the caller of kthread_park() may spend more time in
0276          * wait_task_inactive().
0277          */
0278         preempt_disable();
0279         complete(&self->parked);
0280         schedule_preempt_disabled();
0281         preempt_enable();
0282     }
0283     __set_current_state(TASK_RUNNING);
0284 }
0285 
0286 void kthread_parkme(void)
0287 {
0288     __kthread_parkme(to_kthread(current));
0289 }
0290 EXPORT_SYMBOL_GPL(kthread_parkme);
0291 
0292 /**
0293  * kthread_exit - Cause the current kthread return @result to kthread_stop().
0294  * @result: The integer value to return to kthread_stop().
0295  *
0296  * While kthread_exit can be called directly, it exists so that
0297  * functions which do some additional work in non-modular code such as
0298  * module_put_and_kthread_exit can be implemented.
0299  *
0300  * Does not return.
0301  */
0302 void __noreturn kthread_exit(long result)
0303 {
0304     struct kthread *kthread = to_kthread(current);
0305     kthread->result = result;
0306     do_exit(0);
0307 }
0308 
0309 /**
0310  * kthread_complete_and_exit - Exit the current kthread.
0311  * @comp: Completion to complete
0312  * @code: The integer value to return to kthread_stop().
0313  *
0314  * If present complete @comp and the reuturn code to kthread_stop().
0315  *
0316  * A kernel thread whose module may be removed after the completion of
0317  * @comp can use this function exit safely.
0318  *
0319  * Does not return.
0320  */
0321 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
0322 {
0323     if (comp)
0324         complete(comp);
0325 
0326     kthread_exit(code);
0327 }
0328 EXPORT_SYMBOL(kthread_complete_and_exit);
0329 
0330 static int kthread(void *_create)
0331 {
0332     static const struct sched_param param = { .sched_priority = 0 };
0333     /* Copy data: it's on kthread's stack */
0334     struct kthread_create_info *create = _create;
0335     int (*threadfn)(void *data) = create->threadfn;
0336     void *data = create->data;
0337     struct completion *done;
0338     struct kthread *self;
0339     int ret;
0340 
0341     self = to_kthread(current);
0342 
0343     /* Release the structure when caller killed by a fatal signal. */
0344     done = xchg(&create->done, NULL);
0345     if (!done) {
0346         kfree(create);
0347         kthread_exit(-EINTR);
0348     }
0349 
0350     self->threadfn = threadfn;
0351     self->data = data;
0352 
0353     /*
0354      * The new thread inherited kthreadd's priority and CPU mask. Reset
0355      * back to default in case they have been changed.
0356      */
0357     sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
0358     set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
0359 
0360     /* OK, tell user we're spawned, wait for stop or wakeup */
0361     __set_current_state(TASK_UNINTERRUPTIBLE);
0362     create->result = current;
0363     /*
0364      * Thread is going to call schedule(), do not preempt it,
0365      * or the creator may spend more time in wait_task_inactive().
0366      */
0367     preempt_disable();
0368     complete(done);
0369     schedule_preempt_disabled();
0370     preempt_enable();
0371 
0372     ret = -EINTR;
0373     if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
0374         cgroup_kthread_ready();
0375         __kthread_parkme(self);
0376         ret = threadfn(data);
0377     }
0378     kthread_exit(ret);
0379 }
0380 
0381 /* called from kernel_clone() to get node information for about to be created task */
0382 int tsk_fork_get_node(struct task_struct *tsk)
0383 {
0384 #ifdef CONFIG_NUMA
0385     if (tsk == kthreadd_task)
0386         return tsk->pref_node_fork;
0387 #endif
0388     return NUMA_NO_NODE;
0389 }
0390 
0391 static void create_kthread(struct kthread_create_info *create)
0392 {
0393     int pid;
0394 
0395 #ifdef CONFIG_NUMA
0396     current->pref_node_fork = create->node;
0397 #endif
0398     /* We want our own signal handler (we take no signals by default). */
0399     pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
0400     if (pid < 0) {
0401         /* Release the structure when caller killed by a fatal signal. */
0402         struct completion *done = xchg(&create->done, NULL);
0403 
0404         if (!done) {
0405             kfree(create);
0406             return;
0407         }
0408         create->result = ERR_PTR(pid);
0409         complete(done);
0410     }
0411 }
0412 
0413 static __printf(4, 0)
0414 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
0415                             void *data, int node,
0416                             const char namefmt[],
0417                             va_list args)
0418 {
0419     DECLARE_COMPLETION_ONSTACK(done);
0420     struct task_struct *task;
0421     struct kthread_create_info *create = kmalloc(sizeof(*create),
0422                              GFP_KERNEL);
0423 
0424     if (!create)
0425         return ERR_PTR(-ENOMEM);
0426     create->threadfn = threadfn;
0427     create->data = data;
0428     create->node = node;
0429     create->done = &done;
0430 
0431     spin_lock(&kthread_create_lock);
0432     list_add_tail(&create->list, &kthread_create_list);
0433     spin_unlock(&kthread_create_lock);
0434 
0435     wake_up_process(kthreadd_task);
0436     /*
0437      * Wait for completion in killable state, for I might be chosen by
0438      * the OOM killer while kthreadd is trying to allocate memory for
0439      * new kernel thread.
0440      */
0441     if (unlikely(wait_for_completion_killable(&done))) {
0442         /*
0443          * If I was killed by a fatal signal before kthreadd (or new
0444          * kernel thread) calls complete(), leave the cleanup of this
0445          * structure to that thread.
0446          */
0447         if (xchg(&create->done, NULL))
0448             return ERR_PTR(-EINTR);
0449         /*
0450          * kthreadd (or new kernel thread) will call complete()
0451          * shortly.
0452          */
0453         wait_for_completion(&done);
0454     }
0455     task = create->result;
0456     if (!IS_ERR(task)) {
0457         char name[TASK_COMM_LEN];
0458         va_list aq;
0459         int len;
0460 
0461         /*
0462          * task is already visible to other tasks, so updating
0463          * COMM must be protected.
0464          */
0465         va_copy(aq, args);
0466         len = vsnprintf(name, sizeof(name), namefmt, aq);
0467         va_end(aq);
0468         if (len >= TASK_COMM_LEN) {
0469             struct kthread *kthread = to_kthread(task);
0470 
0471             /* leave it truncated when out of memory. */
0472             kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
0473         }
0474         set_task_comm(task, name);
0475     }
0476     kfree(create);
0477     return task;
0478 }
0479 
0480 /**
0481  * kthread_create_on_node - create a kthread.
0482  * @threadfn: the function to run until signal_pending(current).
0483  * @data: data ptr for @threadfn.
0484  * @node: task and thread structures for the thread are allocated on this node
0485  * @namefmt: printf-style name for the thread.
0486  *
0487  * Description: This helper function creates and names a kernel
0488  * thread.  The thread will be stopped: use wake_up_process() to start
0489  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
0490  * is affine to all CPUs.
0491  *
0492  * If thread is going to be bound on a particular cpu, give its node
0493  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
0494  * When woken, the thread will run @threadfn() with @data as its
0495  * argument. @threadfn() can either return directly if it is a
0496  * standalone thread for which no one will call kthread_stop(), or
0497  * return when 'kthread_should_stop()' is true (which means
0498  * kthread_stop() has been called).  The return value should be zero
0499  * or a negative error number; it will be passed to kthread_stop().
0500  *
0501  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
0502  */
0503 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
0504                        void *data, int node,
0505                        const char namefmt[],
0506                        ...)
0507 {
0508     struct task_struct *task;
0509     va_list args;
0510 
0511     va_start(args, namefmt);
0512     task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
0513     va_end(args);
0514 
0515     return task;
0516 }
0517 EXPORT_SYMBOL(kthread_create_on_node);
0518 
0519 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
0520 {
0521     unsigned long flags;
0522 
0523     if (!wait_task_inactive(p, state)) {
0524         WARN_ON(1);
0525         return;
0526     }
0527 
0528     /* It's safe because the task is inactive. */
0529     raw_spin_lock_irqsave(&p->pi_lock, flags);
0530     do_set_cpus_allowed(p, mask);
0531     p->flags |= PF_NO_SETAFFINITY;
0532     raw_spin_unlock_irqrestore(&p->pi_lock, flags);
0533 }
0534 
0535 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
0536 {
0537     __kthread_bind_mask(p, cpumask_of(cpu), state);
0538 }
0539 
0540 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
0541 {
0542     __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
0543 }
0544 
0545 /**
0546  * kthread_bind - bind a just-created kthread to a cpu.
0547  * @p: thread created by kthread_create().
0548  * @cpu: cpu (might not be online, must be possible) for @k to run on.
0549  *
0550  * Description: This function is equivalent to set_cpus_allowed(),
0551  * except that @cpu doesn't need to be online, and the thread must be
0552  * stopped (i.e., just returned from kthread_create()).
0553  */
0554 void kthread_bind(struct task_struct *p, unsigned int cpu)
0555 {
0556     __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
0557 }
0558 EXPORT_SYMBOL(kthread_bind);
0559 
0560 /**
0561  * kthread_create_on_cpu - Create a cpu bound kthread
0562  * @threadfn: the function to run until signal_pending(current).
0563  * @data: data ptr for @threadfn.
0564  * @cpu: The cpu on which the thread should be bound,
0565  * @namefmt: printf-style name for the thread. Format is restricted
0566  *       to "name.*%u". Code fills in cpu number.
0567  *
0568  * Description: This helper function creates and names a kernel thread
0569  */
0570 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
0571                       void *data, unsigned int cpu,
0572                       const char *namefmt)
0573 {
0574     struct task_struct *p;
0575 
0576     p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
0577                    cpu);
0578     if (IS_ERR(p))
0579         return p;
0580     kthread_bind(p, cpu);
0581     /* CPU hotplug need to bind once again when unparking the thread. */
0582     to_kthread(p)->cpu = cpu;
0583     return p;
0584 }
0585 EXPORT_SYMBOL(kthread_create_on_cpu);
0586 
0587 void kthread_set_per_cpu(struct task_struct *k, int cpu)
0588 {
0589     struct kthread *kthread = to_kthread(k);
0590     if (!kthread)
0591         return;
0592 
0593     WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
0594 
0595     if (cpu < 0) {
0596         clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
0597         return;
0598     }
0599 
0600     kthread->cpu = cpu;
0601     set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
0602 }
0603 
0604 bool kthread_is_per_cpu(struct task_struct *p)
0605 {
0606     struct kthread *kthread = __to_kthread(p);
0607     if (!kthread)
0608         return false;
0609 
0610     return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
0611 }
0612 
0613 /**
0614  * kthread_unpark - unpark a thread created by kthread_create().
0615  * @k:      thread created by kthread_create().
0616  *
0617  * Sets kthread_should_park() for @k to return false, wakes it, and
0618  * waits for it to return. If the thread is marked percpu then its
0619  * bound to the cpu again.
0620  */
0621 void kthread_unpark(struct task_struct *k)
0622 {
0623     struct kthread *kthread = to_kthread(k);
0624 
0625     /*
0626      * Newly created kthread was parked when the CPU was offline.
0627      * The binding was lost and we need to set it again.
0628      */
0629     if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
0630         __kthread_bind(k, kthread->cpu, TASK_PARKED);
0631 
0632     clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
0633     /*
0634      * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
0635      */
0636     wake_up_state(k, TASK_PARKED);
0637 }
0638 EXPORT_SYMBOL_GPL(kthread_unpark);
0639 
0640 /**
0641  * kthread_park - park a thread created by kthread_create().
0642  * @k: thread created by kthread_create().
0643  *
0644  * Sets kthread_should_park() for @k to return true, wakes it, and
0645  * waits for it to return. This can also be called after kthread_create()
0646  * instead of calling wake_up_process(): the thread will park without
0647  * calling threadfn().
0648  *
0649  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
0650  * If called by the kthread itself just the park bit is set.
0651  */
0652 int kthread_park(struct task_struct *k)
0653 {
0654     struct kthread *kthread = to_kthread(k);
0655 
0656     if (WARN_ON(k->flags & PF_EXITING))
0657         return -ENOSYS;
0658 
0659     if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
0660         return -EBUSY;
0661 
0662     set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
0663     if (k != current) {
0664         wake_up_process(k);
0665         /*
0666          * Wait for __kthread_parkme() to complete(), this means we
0667          * _will_ have TASK_PARKED and are about to call schedule().
0668          */
0669         wait_for_completion(&kthread->parked);
0670         /*
0671          * Now wait for that schedule() to complete and the task to
0672          * get scheduled out.
0673          */
0674         WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
0675     }
0676 
0677     return 0;
0678 }
0679 EXPORT_SYMBOL_GPL(kthread_park);
0680 
0681 /**
0682  * kthread_stop - stop a thread created by kthread_create().
0683  * @k: thread created by kthread_create().
0684  *
0685  * Sets kthread_should_stop() for @k to return true, wakes it, and
0686  * waits for it to exit. This can also be called after kthread_create()
0687  * instead of calling wake_up_process(): the thread will exit without
0688  * calling threadfn().
0689  *
0690  * If threadfn() may call kthread_exit() itself, the caller must ensure
0691  * task_struct can't go away.
0692  *
0693  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
0694  * was never called.
0695  */
0696 int kthread_stop(struct task_struct *k)
0697 {
0698     struct kthread *kthread;
0699     int ret;
0700 
0701     trace_sched_kthread_stop(k);
0702 
0703     get_task_struct(k);
0704     kthread = to_kthread(k);
0705     set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
0706     kthread_unpark(k);
0707     wake_up_process(k);
0708     wait_for_completion(&kthread->exited);
0709     ret = kthread->result;
0710     put_task_struct(k);
0711 
0712     trace_sched_kthread_stop_ret(ret);
0713     return ret;
0714 }
0715 EXPORT_SYMBOL(kthread_stop);
0716 
0717 int kthreadd(void *unused)
0718 {
0719     struct task_struct *tsk = current;
0720 
0721     /* Setup a clean context for our children to inherit. */
0722     set_task_comm(tsk, "kthreadd");
0723     ignore_signals(tsk);
0724     set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
0725     set_mems_allowed(node_states[N_MEMORY]);
0726 
0727     current->flags |= PF_NOFREEZE;
0728     cgroup_init_kthreadd();
0729 
0730     for (;;) {
0731         set_current_state(TASK_INTERRUPTIBLE);
0732         if (list_empty(&kthread_create_list))
0733             schedule();
0734         __set_current_state(TASK_RUNNING);
0735 
0736         spin_lock(&kthread_create_lock);
0737         while (!list_empty(&kthread_create_list)) {
0738             struct kthread_create_info *create;
0739 
0740             create = list_entry(kthread_create_list.next,
0741                         struct kthread_create_info, list);
0742             list_del_init(&create->list);
0743             spin_unlock(&kthread_create_lock);
0744 
0745             create_kthread(create);
0746 
0747             spin_lock(&kthread_create_lock);
0748         }
0749         spin_unlock(&kthread_create_lock);
0750     }
0751 
0752     return 0;
0753 }
0754 
0755 void __kthread_init_worker(struct kthread_worker *worker,
0756                 const char *name,
0757                 struct lock_class_key *key)
0758 {
0759     memset(worker, 0, sizeof(struct kthread_worker));
0760     raw_spin_lock_init(&worker->lock);
0761     lockdep_set_class_and_name(&worker->lock, key, name);
0762     INIT_LIST_HEAD(&worker->work_list);
0763     INIT_LIST_HEAD(&worker->delayed_work_list);
0764 }
0765 EXPORT_SYMBOL_GPL(__kthread_init_worker);
0766 
0767 /**
0768  * kthread_worker_fn - kthread function to process kthread_worker
0769  * @worker_ptr: pointer to initialized kthread_worker
0770  *
0771  * This function implements the main cycle of kthread worker. It processes
0772  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
0773  * is empty.
0774  *
0775  * The works are not allowed to keep any locks, disable preemption or interrupts
0776  * when they finish. There is defined a safe point for freezing when one work
0777  * finishes and before a new one is started.
0778  *
0779  * Also the works must not be handled by more than one worker at the same time,
0780  * see also kthread_queue_work().
0781  */
0782 int kthread_worker_fn(void *worker_ptr)
0783 {
0784     struct kthread_worker *worker = worker_ptr;
0785     struct kthread_work *work;
0786 
0787     /*
0788      * FIXME: Update the check and remove the assignment when all kthread
0789      * worker users are created using kthread_create_worker*() functions.
0790      */
0791     WARN_ON(worker->task && worker->task != current);
0792     worker->task = current;
0793 
0794     if (worker->flags & KTW_FREEZABLE)
0795         set_freezable();
0796 
0797 repeat:
0798     set_current_state(TASK_INTERRUPTIBLE);  /* mb paired w/ kthread_stop */
0799 
0800     if (kthread_should_stop()) {
0801         __set_current_state(TASK_RUNNING);
0802         raw_spin_lock_irq(&worker->lock);
0803         worker->task = NULL;
0804         raw_spin_unlock_irq(&worker->lock);
0805         return 0;
0806     }
0807 
0808     work = NULL;
0809     raw_spin_lock_irq(&worker->lock);
0810     if (!list_empty(&worker->work_list)) {
0811         work = list_first_entry(&worker->work_list,
0812                     struct kthread_work, node);
0813         list_del_init(&work->node);
0814     }
0815     worker->current_work = work;
0816     raw_spin_unlock_irq(&worker->lock);
0817 
0818     if (work) {
0819         kthread_work_func_t func = work->func;
0820         __set_current_state(TASK_RUNNING);
0821         trace_sched_kthread_work_execute_start(work);
0822         work->func(work);
0823         /*
0824          * Avoid dereferencing work after this point.  The trace
0825          * event only cares about the address.
0826          */
0827         trace_sched_kthread_work_execute_end(work, func);
0828     } else if (!freezing(current))
0829         schedule();
0830 
0831     try_to_freeze();
0832     cond_resched();
0833     goto repeat;
0834 }
0835 EXPORT_SYMBOL_GPL(kthread_worker_fn);
0836 
0837 static __printf(3, 0) struct kthread_worker *
0838 __kthread_create_worker(int cpu, unsigned int flags,
0839             const char namefmt[], va_list args)
0840 {
0841     struct kthread_worker *worker;
0842     struct task_struct *task;
0843     int node = NUMA_NO_NODE;
0844 
0845     worker = kzalloc(sizeof(*worker), GFP_KERNEL);
0846     if (!worker)
0847         return ERR_PTR(-ENOMEM);
0848 
0849     kthread_init_worker(worker);
0850 
0851     if (cpu >= 0)
0852         node = cpu_to_node(cpu);
0853 
0854     task = __kthread_create_on_node(kthread_worker_fn, worker,
0855                         node, namefmt, args);
0856     if (IS_ERR(task))
0857         goto fail_task;
0858 
0859     if (cpu >= 0)
0860         kthread_bind(task, cpu);
0861 
0862     worker->flags = flags;
0863     worker->task = task;
0864     wake_up_process(task);
0865     return worker;
0866 
0867 fail_task:
0868     kfree(worker);
0869     return ERR_CAST(task);
0870 }
0871 
0872 /**
0873  * kthread_create_worker - create a kthread worker
0874  * @flags: flags modifying the default behavior of the worker
0875  * @namefmt: printf-style name for the kthread worker (task).
0876  *
0877  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
0878  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
0879  * when the caller was killed by a fatal signal.
0880  */
0881 struct kthread_worker *
0882 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
0883 {
0884     struct kthread_worker *worker;
0885     va_list args;
0886 
0887     va_start(args, namefmt);
0888     worker = __kthread_create_worker(-1, flags, namefmt, args);
0889     va_end(args);
0890 
0891     return worker;
0892 }
0893 EXPORT_SYMBOL(kthread_create_worker);
0894 
0895 /**
0896  * kthread_create_worker_on_cpu - create a kthread worker and bind it
0897  *  to a given CPU and the associated NUMA node.
0898  * @cpu: CPU number
0899  * @flags: flags modifying the default behavior of the worker
0900  * @namefmt: printf-style name for the kthread worker (task).
0901  *
0902  * Use a valid CPU number if you want to bind the kthread worker
0903  * to the given CPU and the associated NUMA node.
0904  *
0905  * A good practice is to add the cpu number also into the worker name.
0906  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
0907  *
0908  * CPU hotplug:
0909  * The kthread worker API is simple and generic. It just provides a way
0910  * to create, use, and destroy workers.
0911  *
0912  * It is up to the API user how to handle CPU hotplug. They have to decide
0913  * how to handle pending work items, prevent queuing new ones, and
0914  * restore the functionality when the CPU goes off and on. There are a
0915  * few catches:
0916  *
0917  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
0918  *
0919  *    - The worker might not exist when the CPU was off when the user
0920  *      created the workers.
0921  *
0922  * Good practice is to implement two CPU hotplug callbacks and to
0923  * destroy/create the worker when the CPU goes down/up.
0924  *
0925  * Return:
0926  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
0927  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
0928  * when the caller was killed by a fatal signal.
0929  */
0930 struct kthread_worker *
0931 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
0932                  const char namefmt[], ...)
0933 {
0934     struct kthread_worker *worker;
0935     va_list args;
0936 
0937     va_start(args, namefmt);
0938     worker = __kthread_create_worker(cpu, flags, namefmt, args);
0939     va_end(args);
0940 
0941     return worker;
0942 }
0943 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
0944 
0945 /*
0946  * Returns true when the work could not be queued at the moment.
0947  * It happens when it is already pending in a worker list
0948  * or when it is being cancelled.
0949  */
0950 static inline bool queuing_blocked(struct kthread_worker *worker,
0951                    struct kthread_work *work)
0952 {
0953     lockdep_assert_held(&worker->lock);
0954 
0955     return !list_empty(&work->node) || work->canceling;
0956 }
0957 
0958 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
0959                          struct kthread_work *work)
0960 {
0961     lockdep_assert_held(&worker->lock);
0962     WARN_ON_ONCE(!list_empty(&work->node));
0963     /* Do not use a work with >1 worker, see kthread_queue_work() */
0964     WARN_ON_ONCE(work->worker && work->worker != worker);
0965 }
0966 
0967 /* insert @work before @pos in @worker */
0968 static void kthread_insert_work(struct kthread_worker *worker,
0969                 struct kthread_work *work,
0970                 struct list_head *pos)
0971 {
0972     kthread_insert_work_sanity_check(worker, work);
0973 
0974     trace_sched_kthread_work_queue_work(worker, work);
0975 
0976     list_add_tail(&work->node, pos);
0977     work->worker = worker;
0978     if (!worker->current_work && likely(worker->task))
0979         wake_up_process(worker->task);
0980 }
0981 
0982 /**
0983  * kthread_queue_work - queue a kthread_work
0984  * @worker: target kthread_worker
0985  * @work: kthread_work to queue
0986  *
0987  * Queue @work to work processor @task for async execution.  @task
0988  * must have been created with kthread_worker_create().  Returns %true
0989  * if @work was successfully queued, %false if it was already pending.
0990  *
0991  * Reinitialize the work if it needs to be used by another worker.
0992  * For example, when the worker was stopped and started again.
0993  */
0994 bool kthread_queue_work(struct kthread_worker *worker,
0995             struct kthread_work *work)
0996 {
0997     bool ret = false;
0998     unsigned long flags;
0999 
1000     raw_spin_lock_irqsave(&worker->lock, flags);
1001     if (!queuing_blocked(worker, work)) {
1002         kthread_insert_work(worker, work, &worker->work_list);
1003         ret = true;
1004     }
1005     raw_spin_unlock_irqrestore(&worker->lock, flags);
1006     return ret;
1007 }
1008 EXPORT_SYMBOL_GPL(kthread_queue_work);
1009 
1010 /**
1011  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1012  *  delayed work when the timer expires.
1013  * @t: pointer to the expired timer
1014  *
1015  * The format of the function is defined by struct timer_list.
1016  * It should have been called from irqsafe timer with irq already off.
1017  */
1018 void kthread_delayed_work_timer_fn(struct timer_list *t)
1019 {
1020     struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1021     struct kthread_work *work = &dwork->work;
1022     struct kthread_worker *worker = work->worker;
1023     unsigned long flags;
1024 
1025     /*
1026      * This might happen when a pending work is reinitialized.
1027      * It means that it is used a wrong way.
1028      */
1029     if (WARN_ON_ONCE(!worker))
1030         return;
1031 
1032     raw_spin_lock_irqsave(&worker->lock, flags);
1033     /* Work must not be used with >1 worker, see kthread_queue_work(). */
1034     WARN_ON_ONCE(work->worker != worker);
1035 
1036     /* Move the work from worker->delayed_work_list. */
1037     WARN_ON_ONCE(list_empty(&work->node));
1038     list_del_init(&work->node);
1039     if (!work->canceling)
1040         kthread_insert_work(worker, work, &worker->work_list);
1041 
1042     raw_spin_unlock_irqrestore(&worker->lock, flags);
1043 }
1044 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1045 
1046 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1047                      struct kthread_delayed_work *dwork,
1048                      unsigned long delay)
1049 {
1050     struct timer_list *timer = &dwork->timer;
1051     struct kthread_work *work = &dwork->work;
1052 
1053     WARN_ON_FUNCTION_MISMATCH(timer->function,
1054                   kthread_delayed_work_timer_fn);
1055 
1056     /*
1057      * If @delay is 0, queue @dwork->work immediately.  This is for
1058      * both optimization and correctness.  The earliest @timer can
1059      * expire is on the closest next tick and delayed_work users depend
1060      * on that there's no such delay when @delay is 0.
1061      */
1062     if (!delay) {
1063         kthread_insert_work(worker, work, &worker->work_list);
1064         return;
1065     }
1066 
1067     /* Be paranoid and try to detect possible races already now. */
1068     kthread_insert_work_sanity_check(worker, work);
1069 
1070     list_add(&work->node, &worker->delayed_work_list);
1071     work->worker = worker;
1072     timer->expires = jiffies + delay;
1073     add_timer(timer);
1074 }
1075 
1076 /**
1077  * kthread_queue_delayed_work - queue the associated kthread work
1078  *  after a delay.
1079  * @worker: target kthread_worker
1080  * @dwork: kthread_delayed_work to queue
1081  * @delay: number of jiffies to wait before queuing
1082  *
1083  * If the work has not been pending it starts a timer that will queue
1084  * the work after the given @delay. If @delay is zero, it queues the
1085  * work immediately.
1086  *
1087  * Return: %false if the @work has already been pending. It means that
1088  * either the timer was running or the work was queued. It returns %true
1089  * otherwise.
1090  */
1091 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1092                 struct kthread_delayed_work *dwork,
1093                 unsigned long delay)
1094 {
1095     struct kthread_work *work = &dwork->work;
1096     unsigned long flags;
1097     bool ret = false;
1098 
1099     raw_spin_lock_irqsave(&worker->lock, flags);
1100 
1101     if (!queuing_blocked(worker, work)) {
1102         __kthread_queue_delayed_work(worker, dwork, delay);
1103         ret = true;
1104     }
1105 
1106     raw_spin_unlock_irqrestore(&worker->lock, flags);
1107     return ret;
1108 }
1109 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1110 
1111 struct kthread_flush_work {
1112     struct kthread_work work;
1113     struct completion   done;
1114 };
1115 
1116 static void kthread_flush_work_fn(struct kthread_work *work)
1117 {
1118     struct kthread_flush_work *fwork =
1119         container_of(work, struct kthread_flush_work, work);
1120     complete(&fwork->done);
1121 }
1122 
1123 /**
1124  * kthread_flush_work - flush a kthread_work
1125  * @work: work to flush
1126  *
1127  * If @work is queued or executing, wait for it to finish execution.
1128  */
1129 void kthread_flush_work(struct kthread_work *work)
1130 {
1131     struct kthread_flush_work fwork = {
1132         KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1133         COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1134     };
1135     struct kthread_worker *worker;
1136     bool noop = false;
1137 
1138     worker = work->worker;
1139     if (!worker)
1140         return;
1141 
1142     raw_spin_lock_irq(&worker->lock);
1143     /* Work must not be used with >1 worker, see kthread_queue_work(). */
1144     WARN_ON_ONCE(work->worker != worker);
1145 
1146     if (!list_empty(&work->node))
1147         kthread_insert_work(worker, &fwork.work, work->node.next);
1148     else if (worker->current_work == work)
1149         kthread_insert_work(worker, &fwork.work,
1150                     worker->work_list.next);
1151     else
1152         noop = true;
1153 
1154     raw_spin_unlock_irq(&worker->lock);
1155 
1156     if (!noop)
1157         wait_for_completion(&fwork.done);
1158 }
1159 EXPORT_SYMBOL_GPL(kthread_flush_work);
1160 
1161 /*
1162  * Make sure that the timer is neither set nor running and could
1163  * not manipulate the work list_head any longer.
1164  *
1165  * The function is called under worker->lock. The lock is temporary
1166  * released but the timer can't be set again in the meantime.
1167  */
1168 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1169                           unsigned long *flags)
1170 {
1171     struct kthread_delayed_work *dwork =
1172         container_of(work, struct kthread_delayed_work, work);
1173     struct kthread_worker *worker = work->worker;
1174 
1175     /*
1176      * del_timer_sync() must be called to make sure that the timer
1177      * callback is not running. The lock must be temporary released
1178      * to avoid a deadlock with the callback. In the meantime,
1179      * any queuing is blocked by setting the canceling counter.
1180      */
1181     work->canceling++;
1182     raw_spin_unlock_irqrestore(&worker->lock, *flags);
1183     del_timer_sync(&dwork->timer);
1184     raw_spin_lock_irqsave(&worker->lock, *flags);
1185     work->canceling--;
1186 }
1187 
1188 /*
1189  * This function removes the work from the worker queue.
1190  *
1191  * It is called under worker->lock. The caller must make sure that
1192  * the timer used by delayed work is not running, e.g. by calling
1193  * kthread_cancel_delayed_work_timer().
1194  *
1195  * The work might still be in use when this function finishes. See the
1196  * current_work proceed by the worker.
1197  *
1198  * Return: %true if @work was pending and successfully canceled,
1199  *  %false if @work was not pending
1200  */
1201 static bool __kthread_cancel_work(struct kthread_work *work)
1202 {
1203     /*
1204      * Try to remove the work from a worker list. It might either
1205      * be from worker->work_list or from worker->delayed_work_list.
1206      */
1207     if (!list_empty(&work->node)) {
1208         list_del_init(&work->node);
1209         return true;
1210     }
1211 
1212     return false;
1213 }
1214 
1215 /**
1216  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1217  * @worker: kthread worker to use
1218  * @dwork: kthread delayed work to queue
1219  * @delay: number of jiffies to wait before queuing
1220  *
1221  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1222  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1223  * @work is guaranteed to be queued immediately.
1224  *
1225  * Return: %false if @dwork was idle and queued, %true otherwise.
1226  *
1227  * A special case is when the work is being canceled in parallel.
1228  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1229  * or yet another kthread_mod_delayed_work() call. We let the other command
1230  * win and return %true here. The return value can be used for reference
1231  * counting and the number of queued works stays the same. Anyway, the caller
1232  * is supposed to synchronize these operations a reasonable way.
1233  *
1234  * This function is safe to call from any context including IRQ handler.
1235  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1236  * for details.
1237  */
1238 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1239                   struct kthread_delayed_work *dwork,
1240                   unsigned long delay)
1241 {
1242     struct kthread_work *work = &dwork->work;
1243     unsigned long flags;
1244     int ret;
1245 
1246     raw_spin_lock_irqsave(&worker->lock, flags);
1247 
1248     /* Do not bother with canceling when never queued. */
1249     if (!work->worker) {
1250         ret = false;
1251         goto fast_queue;
1252     }
1253 
1254     /* Work must not be used with >1 worker, see kthread_queue_work() */
1255     WARN_ON_ONCE(work->worker != worker);
1256 
1257     /*
1258      * Temporary cancel the work but do not fight with another command
1259      * that is canceling the work as well.
1260      *
1261      * It is a bit tricky because of possible races with another
1262      * mod_delayed_work() and cancel_delayed_work() callers.
1263      *
1264      * The timer must be canceled first because worker->lock is released
1265      * when doing so. But the work can be removed from the queue (list)
1266      * only when it can be queued again so that the return value can
1267      * be used for reference counting.
1268      */
1269     kthread_cancel_delayed_work_timer(work, &flags);
1270     if (work->canceling) {
1271         /* The number of works in the queue does not change. */
1272         ret = true;
1273         goto out;
1274     }
1275     ret = __kthread_cancel_work(work);
1276 
1277 fast_queue:
1278     __kthread_queue_delayed_work(worker, dwork, delay);
1279 out:
1280     raw_spin_unlock_irqrestore(&worker->lock, flags);
1281     return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1284 
1285 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1286 {
1287     struct kthread_worker *worker = work->worker;
1288     unsigned long flags;
1289     int ret = false;
1290 
1291     if (!worker)
1292         goto out;
1293 
1294     raw_spin_lock_irqsave(&worker->lock, flags);
1295     /* Work must not be used with >1 worker, see kthread_queue_work(). */
1296     WARN_ON_ONCE(work->worker != worker);
1297 
1298     if (is_dwork)
1299         kthread_cancel_delayed_work_timer(work, &flags);
1300 
1301     ret = __kthread_cancel_work(work);
1302 
1303     if (worker->current_work != work)
1304         goto out_fast;
1305 
1306     /*
1307      * The work is in progress and we need to wait with the lock released.
1308      * In the meantime, block any queuing by setting the canceling counter.
1309      */
1310     work->canceling++;
1311     raw_spin_unlock_irqrestore(&worker->lock, flags);
1312     kthread_flush_work(work);
1313     raw_spin_lock_irqsave(&worker->lock, flags);
1314     work->canceling--;
1315 
1316 out_fast:
1317     raw_spin_unlock_irqrestore(&worker->lock, flags);
1318 out:
1319     return ret;
1320 }
1321 
1322 /**
1323  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1324  * @work: the kthread work to cancel
1325  *
1326  * Cancel @work and wait for its execution to finish.  This function
1327  * can be used even if the work re-queues itself. On return from this
1328  * function, @work is guaranteed to be not pending or executing on any CPU.
1329  *
1330  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1331  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1332  *
1333  * The caller must ensure that the worker on which @work was last
1334  * queued can't be destroyed before this function returns.
1335  *
1336  * Return: %true if @work was pending, %false otherwise.
1337  */
1338 bool kthread_cancel_work_sync(struct kthread_work *work)
1339 {
1340     return __kthread_cancel_work_sync(work, false);
1341 }
1342 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1343 
1344 /**
1345  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1346  *  wait for it to finish.
1347  * @dwork: the kthread delayed work to cancel
1348  *
1349  * This is kthread_cancel_work_sync() for delayed works.
1350  *
1351  * Return: %true if @dwork was pending, %false otherwise.
1352  */
1353 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1354 {
1355     return __kthread_cancel_work_sync(&dwork->work, true);
1356 }
1357 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1358 
1359 /**
1360  * kthread_flush_worker - flush all current works on a kthread_worker
1361  * @worker: worker to flush
1362  *
1363  * Wait until all currently executing or pending works on @worker are
1364  * finished.
1365  */
1366 void kthread_flush_worker(struct kthread_worker *worker)
1367 {
1368     struct kthread_flush_work fwork = {
1369         KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1370         COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1371     };
1372 
1373     kthread_queue_work(worker, &fwork.work);
1374     wait_for_completion(&fwork.done);
1375 }
1376 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1377 
1378 /**
1379  * kthread_destroy_worker - destroy a kthread worker
1380  * @worker: worker to be destroyed
1381  *
1382  * Flush and destroy @worker.  The simple flush is enough because the kthread
1383  * worker API is used only in trivial scenarios.  There are no multi-step state
1384  * machines needed.
1385  */
1386 void kthread_destroy_worker(struct kthread_worker *worker)
1387 {
1388     struct task_struct *task;
1389 
1390     task = worker->task;
1391     if (WARN_ON(!task))
1392         return;
1393 
1394     kthread_flush_worker(worker);
1395     kthread_stop(task);
1396     WARN_ON(!list_empty(&worker->work_list));
1397     kfree(worker);
1398 }
1399 EXPORT_SYMBOL(kthread_destroy_worker);
1400 
1401 /**
1402  * kthread_use_mm - make the calling kthread operate on an address space
1403  * @mm: address space to operate on
1404  */
1405 void kthread_use_mm(struct mm_struct *mm)
1406 {
1407     struct mm_struct *active_mm;
1408     struct task_struct *tsk = current;
1409 
1410     WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1411     WARN_ON_ONCE(tsk->mm);
1412 
1413     task_lock(tsk);
1414     /* Hold off tlb flush IPIs while switching mm's */
1415     local_irq_disable();
1416     active_mm = tsk->active_mm;
1417     if (active_mm != mm) {
1418         mmgrab(mm);
1419         tsk->active_mm = mm;
1420     }
1421     tsk->mm = mm;
1422     membarrier_update_current_mm(mm);
1423     switch_mm_irqs_off(active_mm, mm, tsk);
1424     local_irq_enable();
1425     task_unlock(tsk);
1426 #ifdef finish_arch_post_lock_switch
1427     finish_arch_post_lock_switch();
1428 #endif
1429 
1430     /*
1431      * When a kthread starts operating on an address space, the loop
1432      * in membarrier_{private,global}_expedited() may not observe
1433      * that tsk->mm, and not issue an IPI. Membarrier requires a
1434      * memory barrier after storing to tsk->mm, before accessing
1435      * user-space memory. A full memory barrier for membarrier
1436      * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1437      * mmdrop(), or explicitly with smp_mb().
1438      */
1439     if (active_mm != mm)
1440         mmdrop(active_mm);
1441     else
1442         smp_mb();
1443 }
1444 EXPORT_SYMBOL_GPL(kthread_use_mm);
1445 
1446 /**
1447  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1448  * @mm: address space to operate on
1449  */
1450 void kthread_unuse_mm(struct mm_struct *mm)
1451 {
1452     struct task_struct *tsk = current;
1453 
1454     WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1455     WARN_ON_ONCE(!tsk->mm);
1456 
1457     task_lock(tsk);
1458     /*
1459      * When a kthread stops operating on an address space, the loop
1460      * in membarrier_{private,global}_expedited() may not observe
1461      * that tsk->mm, and not issue an IPI. Membarrier requires a
1462      * memory barrier after accessing user-space memory, before
1463      * clearing tsk->mm.
1464      */
1465     smp_mb__after_spinlock();
1466     sync_mm_rss(mm);
1467     local_irq_disable();
1468     tsk->mm = NULL;
1469     membarrier_update_current_mm(NULL);
1470     /* active_mm is still 'mm' */
1471     enter_lazy_tlb(mm, tsk);
1472     local_irq_enable();
1473     task_unlock(tsk);
1474 }
1475 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1476 
1477 #ifdef CONFIG_BLK_CGROUP
1478 /**
1479  * kthread_associate_blkcg - associate blkcg to current kthread
1480  * @css: the cgroup info
1481  *
1482  * Current thread must be a kthread. The thread is running jobs on behalf of
1483  * other threads. In some cases, we expect the jobs attach cgroup info of
1484  * original threads instead of that of current thread. This function stores
1485  * original thread's cgroup info in current kthread context for later
1486  * retrieval.
1487  */
1488 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1489 {
1490     struct kthread *kthread;
1491 
1492     if (!(current->flags & PF_KTHREAD))
1493         return;
1494     kthread = to_kthread(current);
1495     if (!kthread)
1496         return;
1497 
1498     if (kthread->blkcg_css) {
1499         css_put(kthread->blkcg_css);
1500         kthread->blkcg_css = NULL;
1501     }
1502     if (css) {
1503         css_get(css);
1504         kthread->blkcg_css = css;
1505     }
1506 }
1507 EXPORT_SYMBOL(kthread_associate_blkcg);
1508 
1509 /**
1510  * kthread_blkcg - get associated blkcg css of current kthread
1511  *
1512  * Current thread must be a kthread.
1513  */
1514 struct cgroup_subsys_state *kthread_blkcg(void)
1515 {
1516     struct kthread *kthread;
1517 
1518     if (current->flags & PF_KTHREAD) {
1519         kthread = to_kthread(current);
1520         if (kthread)
1521             return kthread->blkcg_css;
1522     }
1523     return NULL;
1524 }
1525 #endif