Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * kexec: kexec_file_load system call
0004  *
0005  * Copyright (C) 2014 Red Hat Inc.
0006  * Authors:
0007  *      Vivek Goyal <vgoyal@redhat.com>
0008  */
0009 
0010 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0011 
0012 #include <linux/capability.h>
0013 #include <linux/mm.h>
0014 #include <linux/file.h>
0015 #include <linux/slab.h>
0016 #include <linux/kexec.h>
0017 #include <linux/memblock.h>
0018 #include <linux/mutex.h>
0019 #include <linux/list.h>
0020 #include <linux/fs.h>
0021 #include <linux/ima.h>
0022 #include <crypto/hash.h>
0023 #include <crypto/sha2.h>
0024 #include <linux/elf.h>
0025 #include <linux/elfcore.h>
0026 #include <linux/kernel.h>
0027 #include <linux/kernel_read_file.h>
0028 #include <linux/syscalls.h>
0029 #include <linux/vmalloc.h>
0030 #include "kexec_internal.h"
0031 
0032 #ifdef CONFIG_KEXEC_SIG
0033 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
0034 
0035 void set_kexec_sig_enforced(void)
0036 {
0037     sig_enforce = true;
0038 }
0039 #endif
0040 
0041 static int kexec_calculate_store_digests(struct kimage *image);
0042 
0043 /* Maximum size in bytes for kernel/initrd files. */
0044 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX)
0045 
0046 /*
0047  * Currently this is the only default function that is exported as some
0048  * architectures need it to do additional handlings.
0049  * In the future, other default functions may be exported too if required.
0050  */
0051 int kexec_image_probe_default(struct kimage *image, void *buf,
0052                   unsigned long buf_len)
0053 {
0054     const struct kexec_file_ops * const *fops;
0055     int ret = -ENOEXEC;
0056 
0057     for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
0058         ret = (*fops)->probe(buf, buf_len);
0059         if (!ret) {
0060             image->fops = *fops;
0061             return ret;
0062         }
0063     }
0064 
0065     return ret;
0066 }
0067 
0068 void *kexec_image_load_default(struct kimage *image)
0069 {
0070     if (!image->fops || !image->fops->load)
0071         return ERR_PTR(-ENOEXEC);
0072 
0073     return image->fops->load(image, image->kernel_buf,
0074                  image->kernel_buf_len, image->initrd_buf,
0075                  image->initrd_buf_len, image->cmdline_buf,
0076                  image->cmdline_buf_len);
0077 }
0078 
0079 int kexec_image_post_load_cleanup_default(struct kimage *image)
0080 {
0081     if (!image->fops || !image->fops->cleanup)
0082         return 0;
0083 
0084     return image->fops->cleanup(image->image_loader_data);
0085 }
0086 
0087 /*
0088  * Free up memory used by kernel, initrd, and command line. This is temporary
0089  * memory allocation which is not needed any more after these buffers have
0090  * been loaded into separate segments and have been copied elsewhere.
0091  */
0092 void kimage_file_post_load_cleanup(struct kimage *image)
0093 {
0094     struct purgatory_info *pi = &image->purgatory_info;
0095 
0096     vfree(image->kernel_buf);
0097     image->kernel_buf = NULL;
0098 
0099     vfree(image->initrd_buf);
0100     image->initrd_buf = NULL;
0101 
0102     kfree(image->cmdline_buf);
0103     image->cmdline_buf = NULL;
0104 
0105     vfree(pi->purgatory_buf);
0106     pi->purgatory_buf = NULL;
0107 
0108     vfree(pi->sechdrs);
0109     pi->sechdrs = NULL;
0110 
0111 #ifdef CONFIG_IMA_KEXEC
0112     vfree(image->ima_buffer);
0113     image->ima_buffer = NULL;
0114 #endif /* CONFIG_IMA_KEXEC */
0115 
0116     /* See if architecture has anything to cleanup post load */
0117     arch_kimage_file_post_load_cleanup(image);
0118 
0119     /*
0120      * Above call should have called into bootloader to free up
0121      * any data stored in kimage->image_loader_data. It should
0122      * be ok now to free it up.
0123      */
0124     kfree(image->image_loader_data);
0125     image->image_loader_data = NULL;
0126 }
0127 
0128 #ifdef CONFIG_KEXEC_SIG
0129 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
0130 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
0131 {
0132     int ret;
0133 
0134     ret = verify_pefile_signature(kernel, kernel_len,
0135                       VERIFY_USE_SECONDARY_KEYRING,
0136                       VERIFYING_KEXEC_PE_SIGNATURE);
0137     if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
0138         ret = verify_pefile_signature(kernel, kernel_len,
0139                           VERIFY_USE_PLATFORM_KEYRING,
0140                           VERIFYING_KEXEC_PE_SIGNATURE);
0141     }
0142     return ret;
0143 }
0144 #endif
0145 
0146 static int kexec_image_verify_sig(struct kimage *image, void *buf,
0147                   unsigned long buf_len)
0148 {
0149     if (!image->fops || !image->fops->verify_sig) {
0150         pr_debug("kernel loader does not support signature verification.\n");
0151         return -EKEYREJECTED;
0152     }
0153 
0154     return image->fops->verify_sig(buf, buf_len);
0155 }
0156 
0157 static int
0158 kimage_validate_signature(struct kimage *image)
0159 {
0160     int ret;
0161 
0162     ret = kexec_image_verify_sig(image, image->kernel_buf,
0163                      image->kernel_buf_len);
0164     if (ret) {
0165 
0166         if (sig_enforce) {
0167             pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
0168             return ret;
0169         }
0170 
0171         /*
0172          * If IMA is guaranteed to appraise a signature on the kexec
0173          * image, permit it even if the kernel is otherwise locked
0174          * down.
0175          */
0176         if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
0177             security_locked_down(LOCKDOWN_KEXEC))
0178             return -EPERM;
0179 
0180         pr_debug("kernel signature verification failed (%d).\n", ret);
0181     }
0182 
0183     return 0;
0184 }
0185 #endif
0186 
0187 /*
0188  * In file mode list of segments is prepared by kernel. Copy relevant
0189  * data from user space, do error checking, prepare segment list
0190  */
0191 static int
0192 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
0193                  const char __user *cmdline_ptr,
0194                  unsigned long cmdline_len, unsigned flags)
0195 {
0196     ssize_t ret;
0197     void *ldata;
0198 
0199     ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
0200                        KEXEC_FILE_SIZE_MAX, NULL,
0201                        READING_KEXEC_IMAGE);
0202     if (ret < 0)
0203         return ret;
0204     image->kernel_buf_len = ret;
0205 
0206     /* Call arch image probe handlers */
0207     ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
0208                         image->kernel_buf_len);
0209     if (ret)
0210         goto out;
0211 
0212 #ifdef CONFIG_KEXEC_SIG
0213     ret = kimage_validate_signature(image);
0214 
0215     if (ret)
0216         goto out;
0217 #endif
0218     /* It is possible that there no initramfs is being loaded */
0219     if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
0220         ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
0221                            KEXEC_FILE_SIZE_MAX, NULL,
0222                            READING_KEXEC_INITRAMFS);
0223         if (ret < 0)
0224             goto out;
0225         image->initrd_buf_len = ret;
0226         ret = 0;
0227     }
0228 
0229     if (cmdline_len) {
0230         image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
0231         if (IS_ERR(image->cmdline_buf)) {
0232             ret = PTR_ERR(image->cmdline_buf);
0233             image->cmdline_buf = NULL;
0234             goto out;
0235         }
0236 
0237         image->cmdline_buf_len = cmdline_len;
0238 
0239         /* command line should be a string with last byte null */
0240         if (image->cmdline_buf[cmdline_len - 1] != '\0') {
0241             ret = -EINVAL;
0242             goto out;
0243         }
0244 
0245         ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
0246                   image->cmdline_buf_len - 1);
0247     }
0248 
0249     /* IMA needs to pass the measurement list to the next kernel. */
0250     ima_add_kexec_buffer(image);
0251 
0252     /* Call arch image load handlers */
0253     ldata = arch_kexec_kernel_image_load(image);
0254 
0255     if (IS_ERR(ldata)) {
0256         ret = PTR_ERR(ldata);
0257         goto out;
0258     }
0259 
0260     image->image_loader_data = ldata;
0261 out:
0262     /* In case of error, free up all allocated memory in this function */
0263     if (ret)
0264         kimage_file_post_load_cleanup(image);
0265     return ret;
0266 }
0267 
0268 static int
0269 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
0270                int initrd_fd, const char __user *cmdline_ptr,
0271                unsigned long cmdline_len, unsigned long flags)
0272 {
0273     int ret;
0274     struct kimage *image;
0275     bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
0276 
0277     image = do_kimage_alloc_init();
0278     if (!image)
0279         return -ENOMEM;
0280 
0281     image->file_mode = 1;
0282 
0283     if (kexec_on_panic) {
0284         /* Enable special crash kernel control page alloc policy. */
0285         image->control_page = crashk_res.start;
0286         image->type = KEXEC_TYPE_CRASH;
0287     }
0288 
0289     ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
0290                        cmdline_ptr, cmdline_len, flags);
0291     if (ret)
0292         goto out_free_image;
0293 
0294     ret = sanity_check_segment_list(image);
0295     if (ret)
0296         goto out_free_post_load_bufs;
0297 
0298     ret = -ENOMEM;
0299     image->control_code_page = kimage_alloc_control_pages(image,
0300                        get_order(KEXEC_CONTROL_PAGE_SIZE));
0301     if (!image->control_code_page) {
0302         pr_err("Could not allocate control_code_buffer\n");
0303         goto out_free_post_load_bufs;
0304     }
0305 
0306     if (!kexec_on_panic) {
0307         image->swap_page = kimage_alloc_control_pages(image, 0);
0308         if (!image->swap_page) {
0309             pr_err("Could not allocate swap buffer\n");
0310             goto out_free_control_pages;
0311         }
0312     }
0313 
0314     *rimage = image;
0315     return 0;
0316 out_free_control_pages:
0317     kimage_free_page_list(&image->control_pages);
0318 out_free_post_load_bufs:
0319     kimage_file_post_load_cleanup(image);
0320 out_free_image:
0321     kfree(image);
0322     return ret;
0323 }
0324 
0325 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
0326         unsigned long, cmdline_len, const char __user *, cmdline_ptr,
0327         unsigned long, flags)
0328 {
0329     int ret = 0, i;
0330     struct kimage **dest_image, *image;
0331 
0332     /* We only trust the superuser with rebooting the system. */
0333     if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
0334         return -EPERM;
0335 
0336     /* Make sure we have a legal set of flags */
0337     if (flags != (flags & KEXEC_FILE_FLAGS))
0338         return -EINVAL;
0339 
0340     image = NULL;
0341 
0342     if (!mutex_trylock(&kexec_mutex))
0343         return -EBUSY;
0344 
0345     dest_image = &kexec_image;
0346     if (flags & KEXEC_FILE_ON_CRASH) {
0347         dest_image = &kexec_crash_image;
0348         if (kexec_crash_image)
0349             arch_kexec_unprotect_crashkres();
0350     }
0351 
0352     if (flags & KEXEC_FILE_UNLOAD)
0353         goto exchange;
0354 
0355     /*
0356      * In case of crash, new kernel gets loaded in reserved region. It is
0357      * same memory where old crash kernel might be loaded. Free any
0358      * current crash dump kernel before we corrupt it.
0359      */
0360     if (flags & KEXEC_FILE_ON_CRASH)
0361         kimage_free(xchg(&kexec_crash_image, NULL));
0362 
0363     ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
0364                      cmdline_len, flags);
0365     if (ret)
0366         goto out;
0367 
0368     ret = machine_kexec_prepare(image);
0369     if (ret)
0370         goto out;
0371 
0372     /*
0373      * Some architecture(like S390) may touch the crash memory before
0374      * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
0375      */
0376     ret = kimage_crash_copy_vmcoreinfo(image);
0377     if (ret)
0378         goto out;
0379 
0380     ret = kexec_calculate_store_digests(image);
0381     if (ret)
0382         goto out;
0383 
0384     for (i = 0; i < image->nr_segments; i++) {
0385         struct kexec_segment *ksegment;
0386 
0387         ksegment = &image->segment[i];
0388         pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
0389              i, ksegment->buf, ksegment->bufsz, ksegment->mem,
0390              ksegment->memsz);
0391 
0392         ret = kimage_load_segment(image, &image->segment[i]);
0393         if (ret)
0394             goto out;
0395     }
0396 
0397     kimage_terminate(image);
0398 
0399     ret = machine_kexec_post_load(image);
0400     if (ret)
0401         goto out;
0402 
0403     /*
0404      * Free up any temporary buffers allocated which are not needed
0405      * after image has been loaded
0406      */
0407     kimage_file_post_load_cleanup(image);
0408 exchange:
0409     image = xchg(dest_image, image);
0410 out:
0411     if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
0412         arch_kexec_protect_crashkres();
0413 
0414     mutex_unlock(&kexec_mutex);
0415     kimage_free(image);
0416     return ret;
0417 }
0418 
0419 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
0420                     struct kexec_buf *kbuf)
0421 {
0422     struct kimage *image = kbuf->image;
0423     unsigned long temp_start, temp_end;
0424 
0425     temp_end = min(end, kbuf->buf_max);
0426     temp_start = temp_end - kbuf->memsz;
0427 
0428     do {
0429         /* align down start */
0430         temp_start = temp_start & (~(kbuf->buf_align - 1));
0431 
0432         if (temp_start < start || temp_start < kbuf->buf_min)
0433             return 0;
0434 
0435         temp_end = temp_start + kbuf->memsz - 1;
0436 
0437         /*
0438          * Make sure this does not conflict with any of existing
0439          * segments
0440          */
0441         if (kimage_is_destination_range(image, temp_start, temp_end)) {
0442             temp_start = temp_start - PAGE_SIZE;
0443             continue;
0444         }
0445 
0446         /* We found a suitable memory range */
0447         break;
0448     } while (1);
0449 
0450     /* If we are here, we found a suitable memory range */
0451     kbuf->mem = temp_start;
0452 
0453     /* Success, stop navigating through remaining System RAM ranges */
0454     return 1;
0455 }
0456 
0457 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
0458                      struct kexec_buf *kbuf)
0459 {
0460     struct kimage *image = kbuf->image;
0461     unsigned long temp_start, temp_end;
0462 
0463     temp_start = max(start, kbuf->buf_min);
0464 
0465     do {
0466         temp_start = ALIGN(temp_start, kbuf->buf_align);
0467         temp_end = temp_start + kbuf->memsz - 1;
0468 
0469         if (temp_end > end || temp_end > kbuf->buf_max)
0470             return 0;
0471         /*
0472          * Make sure this does not conflict with any of existing
0473          * segments
0474          */
0475         if (kimage_is_destination_range(image, temp_start, temp_end)) {
0476             temp_start = temp_start + PAGE_SIZE;
0477             continue;
0478         }
0479 
0480         /* We found a suitable memory range */
0481         break;
0482     } while (1);
0483 
0484     /* If we are here, we found a suitable memory range */
0485     kbuf->mem = temp_start;
0486 
0487     /* Success, stop navigating through remaining System RAM ranges */
0488     return 1;
0489 }
0490 
0491 static int locate_mem_hole_callback(struct resource *res, void *arg)
0492 {
0493     struct kexec_buf *kbuf = (struct kexec_buf *)arg;
0494     u64 start = res->start, end = res->end;
0495     unsigned long sz = end - start + 1;
0496 
0497     /* Returning 0 will take to next memory range */
0498 
0499     /* Don't use memory that will be detected and handled by a driver. */
0500     if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
0501         return 0;
0502 
0503     if (sz < kbuf->memsz)
0504         return 0;
0505 
0506     if (end < kbuf->buf_min || start > kbuf->buf_max)
0507         return 0;
0508 
0509     /*
0510      * Allocate memory top down with-in ram range. Otherwise bottom up
0511      * allocation.
0512      */
0513     if (kbuf->top_down)
0514         return locate_mem_hole_top_down(start, end, kbuf);
0515     return locate_mem_hole_bottom_up(start, end, kbuf);
0516 }
0517 
0518 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
0519 static int kexec_walk_memblock(struct kexec_buf *kbuf,
0520                    int (*func)(struct resource *, void *))
0521 {
0522     int ret = 0;
0523     u64 i;
0524     phys_addr_t mstart, mend;
0525     struct resource res = { };
0526 
0527     if (kbuf->image->type == KEXEC_TYPE_CRASH)
0528         return func(&crashk_res, kbuf);
0529 
0530     /*
0531      * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
0532      * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
0533      * locate_mem_hole_callback().
0534      */
0535     if (kbuf->top_down) {
0536         for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
0537                         &mstart, &mend, NULL) {
0538             /*
0539              * In memblock, end points to the first byte after the
0540              * range while in kexec, end points to the last byte
0541              * in the range.
0542              */
0543             res.start = mstart;
0544             res.end = mend - 1;
0545             ret = func(&res, kbuf);
0546             if (ret)
0547                 break;
0548         }
0549     } else {
0550         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
0551                     &mstart, &mend, NULL) {
0552             /*
0553              * In memblock, end points to the first byte after the
0554              * range while in kexec, end points to the last byte
0555              * in the range.
0556              */
0557             res.start = mstart;
0558             res.end = mend - 1;
0559             ret = func(&res, kbuf);
0560             if (ret)
0561                 break;
0562         }
0563     }
0564 
0565     return ret;
0566 }
0567 #else
0568 static int kexec_walk_memblock(struct kexec_buf *kbuf,
0569                    int (*func)(struct resource *, void *))
0570 {
0571     return 0;
0572 }
0573 #endif
0574 
0575 /**
0576  * kexec_walk_resources - call func(data) on free memory regions
0577  * @kbuf:   Context info for the search. Also passed to @func.
0578  * @func:   Function to call for each memory region.
0579  *
0580  * Return: The memory walk will stop when func returns a non-zero value
0581  * and that value will be returned. If all free regions are visited without
0582  * func returning non-zero, then zero will be returned.
0583  */
0584 static int kexec_walk_resources(struct kexec_buf *kbuf,
0585                 int (*func)(struct resource *, void *))
0586 {
0587     if (kbuf->image->type == KEXEC_TYPE_CRASH)
0588         return walk_iomem_res_desc(crashk_res.desc,
0589                        IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
0590                        crashk_res.start, crashk_res.end,
0591                        kbuf, func);
0592     else
0593         return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
0594 }
0595 
0596 /**
0597  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
0598  * @kbuf:   Parameters for the memory search.
0599  *
0600  * On success, kbuf->mem will have the start address of the memory region found.
0601  *
0602  * Return: 0 on success, negative errno on error.
0603  */
0604 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
0605 {
0606     int ret;
0607 
0608     /* Arch knows where to place */
0609     if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
0610         return 0;
0611 
0612     if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
0613         ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
0614     else
0615         ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
0616 
0617     return ret == 1 ? 0 : -EADDRNOTAVAIL;
0618 }
0619 
0620 /**
0621  * kexec_add_buffer - place a buffer in a kexec segment
0622  * @kbuf:   Buffer contents and memory parameters.
0623  *
0624  * This function assumes that kexec_mutex is held.
0625  * On successful return, @kbuf->mem will have the physical address of
0626  * the buffer in memory.
0627  *
0628  * Return: 0 on success, negative errno on error.
0629  */
0630 int kexec_add_buffer(struct kexec_buf *kbuf)
0631 {
0632     struct kexec_segment *ksegment;
0633     int ret;
0634 
0635     /* Currently adding segment this way is allowed only in file mode */
0636     if (!kbuf->image->file_mode)
0637         return -EINVAL;
0638 
0639     if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
0640         return -EINVAL;
0641 
0642     /*
0643      * Make sure we are not trying to add buffer after allocating
0644      * control pages. All segments need to be placed first before
0645      * any control pages are allocated. As control page allocation
0646      * logic goes through list of segments to make sure there are
0647      * no destination overlaps.
0648      */
0649     if (!list_empty(&kbuf->image->control_pages)) {
0650         WARN_ON(1);
0651         return -EINVAL;
0652     }
0653 
0654     /* Ensure minimum alignment needed for segments. */
0655     kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
0656     kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
0657 
0658     /* Walk the RAM ranges and allocate a suitable range for the buffer */
0659     ret = arch_kexec_locate_mem_hole(kbuf);
0660     if (ret)
0661         return ret;
0662 
0663     /* Found a suitable memory range */
0664     ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
0665     ksegment->kbuf = kbuf->buffer;
0666     ksegment->bufsz = kbuf->bufsz;
0667     ksegment->mem = kbuf->mem;
0668     ksegment->memsz = kbuf->memsz;
0669     kbuf->image->nr_segments++;
0670     return 0;
0671 }
0672 
0673 /* Calculate and store the digest of segments */
0674 static int kexec_calculate_store_digests(struct kimage *image)
0675 {
0676     struct crypto_shash *tfm;
0677     struct shash_desc *desc;
0678     int ret = 0, i, j, zero_buf_sz, sha_region_sz;
0679     size_t desc_size, nullsz;
0680     char *digest;
0681     void *zero_buf;
0682     struct kexec_sha_region *sha_regions;
0683     struct purgatory_info *pi = &image->purgatory_info;
0684 
0685     if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
0686         return 0;
0687 
0688     zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
0689     zero_buf_sz = PAGE_SIZE;
0690 
0691     tfm = crypto_alloc_shash("sha256", 0, 0);
0692     if (IS_ERR(tfm)) {
0693         ret = PTR_ERR(tfm);
0694         goto out;
0695     }
0696 
0697     desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
0698     desc = kzalloc(desc_size, GFP_KERNEL);
0699     if (!desc) {
0700         ret = -ENOMEM;
0701         goto out_free_tfm;
0702     }
0703 
0704     sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
0705     sha_regions = vzalloc(sha_region_sz);
0706     if (!sha_regions) {
0707         ret = -ENOMEM;
0708         goto out_free_desc;
0709     }
0710 
0711     desc->tfm   = tfm;
0712 
0713     ret = crypto_shash_init(desc);
0714     if (ret < 0)
0715         goto out_free_sha_regions;
0716 
0717     digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
0718     if (!digest) {
0719         ret = -ENOMEM;
0720         goto out_free_sha_regions;
0721     }
0722 
0723     for (j = i = 0; i < image->nr_segments; i++) {
0724         struct kexec_segment *ksegment;
0725 
0726         ksegment = &image->segment[i];
0727         /*
0728          * Skip purgatory as it will be modified once we put digest
0729          * info in purgatory.
0730          */
0731         if (ksegment->kbuf == pi->purgatory_buf)
0732             continue;
0733 
0734         ret = crypto_shash_update(desc, ksegment->kbuf,
0735                       ksegment->bufsz);
0736         if (ret)
0737             break;
0738 
0739         /*
0740          * Assume rest of the buffer is filled with zero and
0741          * update digest accordingly.
0742          */
0743         nullsz = ksegment->memsz - ksegment->bufsz;
0744         while (nullsz) {
0745             unsigned long bytes = nullsz;
0746 
0747             if (bytes > zero_buf_sz)
0748                 bytes = zero_buf_sz;
0749             ret = crypto_shash_update(desc, zero_buf, bytes);
0750             if (ret)
0751                 break;
0752             nullsz -= bytes;
0753         }
0754 
0755         if (ret)
0756             break;
0757 
0758         sha_regions[j].start = ksegment->mem;
0759         sha_regions[j].len = ksegment->memsz;
0760         j++;
0761     }
0762 
0763     if (!ret) {
0764         ret = crypto_shash_final(desc, digest);
0765         if (ret)
0766             goto out_free_digest;
0767         ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
0768                              sha_regions, sha_region_sz, 0);
0769         if (ret)
0770             goto out_free_digest;
0771 
0772         ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
0773                              digest, SHA256_DIGEST_SIZE, 0);
0774         if (ret)
0775             goto out_free_digest;
0776     }
0777 
0778 out_free_digest:
0779     kfree(digest);
0780 out_free_sha_regions:
0781     vfree(sha_regions);
0782 out_free_desc:
0783     kfree(desc);
0784 out_free_tfm:
0785     kfree(tfm);
0786 out:
0787     return ret;
0788 }
0789 
0790 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
0791 /*
0792  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
0793  * @pi:     Purgatory to be loaded.
0794  * @kbuf:   Buffer to setup.
0795  *
0796  * Allocates the memory needed for the buffer. Caller is responsible to free
0797  * the memory after use.
0798  *
0799  * Return: 0 on success, negative errno on error.
0800  */
0801 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
0802                       struct kexec_buf *kbuf)
0803 {
0804     const Elf_Shdr *sechdrs;
0805     unsigned long bss_align;
0806     unsigned long bss_sz;
0807     unsigned long align;
0808     int i, ret;
0809 
0810     sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
0811     kbuf->buf_align = bss_align = 1;
0812     kbuf->bufsz = bss_sz = 0;
0813 
0814     for (i = 0; i < pi->ehdr->e_shnum; i++) {
0815         if (!(sechdrs[i].sh_flags & SHF_ALLOC))
0816             continue;
0817 
0818         align = sechdrs[i].sh_addralign;
0819         if (sechdrs[i].sh_type != SHT_NOBITS) {
0820             if (kbuf->buf_align < align)
0821                 kbuf->buf_align = align;
0822             kbuf->bufsz = ALIGN(kbuf->bufsz, align);
0823             kbuf->bufsz += sechdrs[i].sh_size;
0824         } else {
0825             if (bss_align < align)
0826                 bss_align = align;
0827             bss_sz = ALIGN(bss_sz, align);
0828             bss_sz += sechdrs[i].sh_size;
0829         }
0830     }
0831     kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
0832     kbuf->memsz = kbuf->bufsz + bss_sz;
0833     if (kbuf->buf_align < bss_align)
0834         kbuf->buf_align = bss_align;
0835 
0836     kbuf->buffer = vzalloc(kbuf->bufsz);
0837     if (!kbuf->buffer)
0838         return -ENOMEM;
0839     pi->purgatory_buf = kbuf->buffer;
0840 
0841     ret = kexec_add_buffer(kbuf);
0842     if (ret)
0843         goto out;
0844 
0845     return 0;
0846 out:
0847     vfree(pi->purgatory_buf);
0848     pi->purgatory_buf = NULL;
0849     return ret;
0850 }
0851 
0852 /*
0853  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
0854  * @pi:     Purgatory to be loaded.
0855  * @kbuf:   Buffer prepared to store purgatory.
0856  *
0857  * Allocates the memory needed for the buffer. Caller is responsible to free
0858  * the memory after use.
0859  *
0860  * Return: 0 on success, negative errno on error.
0861  */
0862 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
0863                      struct kexec_buf *kbuf)
0864 {
0865     unsigned long bss_addr;
0866     unsigned long offset;
0867     Elf_Shdr *sechdrs;
0868     int i;
0869 
0870     /*
0871      * The section headers in kexec_purgatory are read-only. In order to
0872      * have them modifiable make a temporary copy.
0873      */
0874     sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
0875     if (!sechdrs)
0876         return -ENOMEM;
0877     memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
0878            pi->ehdr->e_shnum * sizeof(Elf_Shdr));
0879     pi->sechdrs = sechdrs;
0880 
0881     offset = 0;
0882     bss_addr = kbuf->mem + kbuf->bufsz;
0883     kbuf->image->start = pi->ehdr->e_entry;
0884 
0885     for (i = 0; i < pi->ehdr->e_shnum; i++) {
0886         unsigned long align;
0887         void *src, *dst;
0888 
0889         if (!(sechdrs[i].sh_flags & SHF_ALLOC))
0890             continue;
0891 
0892         align = sechdrs[i].sh_addralign;
0893         if (sechdrs[i].sh_type == SHT_NOBITS) {
0894             bss_addr = ALIGN(bss_addr, align);
0895             sechdrs[i].sh_addr = bss_addr;
0896             bss_addr += sechdrs[i].sh_size;
0897             continue;
0898         }
0899 
0900         offset = ALIGN(offset, align);
0901         if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
0902             pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
0903             pi->ehdr->e_entry < (sechdrs[i].sh_addr
0904                      + sechdrs[i].sh_size)) {
0905             kbuf->image->start -= sechdrs[i].sh_addr;
0906             kbuf->image->start += kbuf->mem + offset;
0907         }
0908 
0909         src = (void *)pi->ehdr + sechdrs[i].sh_offset;
0910         dst = pi->purgatory_buf + offset;
0911         memcpy(dst, src, sechdrs[i].sh_size);
0912 
0913         sechdrs[i].sh_addr = kbuf->mem + offset;
0914         sechdrs[i].sh_offset = offset;
0915         offset += sechdrs[i].sh_size;
0916     }
0917 
0918     return 0;
0919 }
0920 
0921 static int kexec_apply_relocations(struct kimage *image)
0922 {
0923     int i, ret;
0924     struct purgatory_info *pi = &image->purgatory_info;
0925     const Elf_Shdr *sechdrs;
0926 
0927     sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
0928 
0929     for (i = 0; i < pi->ehdr->e_shnum; i++) {
0930         const Elf_Shdr *relsec;
0931         const Elf_Shdr *symtab;
0932         Elf_Shdr *section;
0933 
0934         relsec = sechdrs + i;
0935 
0936         if (relsec->sh_type != SHT_RELA &&
0937             relsec->sh_type != SHT_REL)
0938             continue;
0939 
0940         /*
0941          * For section of type SHT_RELA/SHT_REL,
0942          * ->sh_link contains section header index of associated
0943          * symbol table. And ->sh_info contains section header
0944          * index of section to which relocations apply.
0945          */
0946         if (relsec->sh_info >= pi->ehdr->e_shnum ||
0947             relsec->sh_link >= pi->ehdr->e_shnum)
0948             return -ENOEXEC;
0949 
0950         section = pi->sechdrs + relsec->sh_info;
0951         symtab = sechdrs + relsec->sh_link;
0952 
0953         if (!(section->sh_flags & SHF_ALLOC))
0954             continue;
0955 
0956         /*
0957          * symtab->sh_link contain section header index of associated
0958          * string table.
0959          */
0960         if (symtab->sh_link >= pi->ehdr->e_shnum)
0961             /* Invalid section number? */
0962             continue;
0963 
0964         /*
0965          * Respective architecture needs to provide support for applying
0966          * relocations of type SHT_RELA/SHT_REL.
0967          */
0968         if (relsec->sh_type == SHT_RELA)
0969             ret = arch_kexec_apply_relocations_add(pi, section,
0970                                    relsec, symtab);
0971         else if (relsec->sh_type == SHT_REL)
0972             ret = arch_kexec_apply_relocations(pi, section,
0973                                relsec, symtab);
0974         if (ret)
0975             return ret;
0976     }
0977 
0978     return 0;
0979 }
0980 
0981 /*
0982  * kexec_load_purgatory - Load and relocate the purgatory object.
0983  * @image:  Image to add the purgatory to.
0984  * @kbuf:   Memory parameters to use.
0985  *
0986  * Allocates the memory needed for image->purgatory_info.sechdrs and
0987  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
0988  * to free the memory after use.
0989  *
0990  * Return: 0 on success, negative errno on error.
0991  */
0992 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
0993 {
0994     struct purgatory_info *pi = &image->purgatory_info;
0995     int ret;
0996 
0997     if (kexec_purgatory_size <= 0)
0998         return -EINVAL;
0999 
1000     pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1001 
1002     ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003     if (ret)
1004         return ret;
1005 
1006     ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1007     if (ret)
1008         goto out_free_kbuf;
1009 
1010     ret = kexec_apply_relocations(image);
1011     if (ret)
1012         goto out;
1013 
1014     return 0;
1015 out:
1016     vfree(pi->sechdrs);
1017     pi->sechdrs = NULL;
1018 out_free_kbuf:
1019     vfree(pi->purgatory_buf);
1020     pi->purgatory_buf = NULL;
1021     return ret;
1022 }
1023 
1024 /*
1025  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026  * @pi:     Purgatory to search in.
1027  * @name:   Name of the symbol.
1028  *
1029  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030  */
1031 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032                           const char *name)
1033 {
1034     const Elf_Shdr *sechdrs;
1035     const Elf_Ehdr *ehdr;
1036     const Elf_Sym *syms;
1037     const char *strtab;
1038     int i, k;
1039 
1040     if (!pi->ehdr)
1041         return NULL;
1042 
1043     ehdr = pi->ehdr;
1044     sechdrs = (void *)ehdr + ehdr->e_shoff;
1045 
1046     for (i = 0; i < ehdr->e_shnum; i++) {
1047         if (sechdrs[i].sh_type != SHT_SYMTAB)
1048             continue;
1049 
1050         if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051             /* Invalid strtab section number */
1052             continue;
1053         strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054         syms = (void *)ehdr + sechdrs[i].sh_offset;
1055 
1056         /* Go through symbols for a match */
1057         for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058             if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059                 continue;
1060 
1061             if (strcmp(strtab + syms[k].st_name, name) != 0)
1062                 continue;
1063 
1064             if (syms[k].st_shndx == SHN_UNDEF ||
1065                 syms[k].st_shndx >= ehdr->e_shnum) {
1066                 pr_debug("Symbol: %s has bad section index %d.\n",
1067                         name, syms[k].st_shndx);
1068                 return NULL;
1069             }
1070 
1071             /* Found the symbol we are looking for */
1072             return &syms[k];
1073         }
1074     }
1075 
1076     return NULL;
1077 }
1078 
1079 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080 {
1081     struct purgatory_info *pi = &image->purgatory_info;
1082     const Elf_Sym *sym;
1083     Elf_Shdr *sechdr;
1084 
1085     sym = kexec_purgatory_find_symbol(pi, name);
1086     if (!sym)
1087         return ERR_PTR(-EINVAL);
1088 
1089     sechdr = &pi->sechdrs[sym->st_shndx];
1090 
1091     /*
1092      * Returns the address where symbol will finally be loaded after
1093      * kexec_load_segment()
1094      */
1095     return (void *)(sechdr->sh_addr + sym->st_value);
1096 }
1097 
1098 /*
1099  * Get or set value of a symbol. If "get_value" is true, symbol value is
1100  * returned in buf otherwise symbol value is set based on value in buf.
1101  */
1102 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103                    void *buf, unsigned int size, bool get_value)
1104 {
1105     struct purgatory_info *pi = &image->purgatory_info;
1106     const Elf_Sym *sym;
1107     Elf_Shdr *sec;
1108     char *sym_buf;
1109 
1110     sym = kexec_purgatory_find_symbol(pi, name);
1111     if (!sym)
1112         return -EINVAL;
1113 
1114     if (sym->st_size != size) {
1115         pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116                name, (unsigned long)sym->st_size, size);
1117         return -EINVAL;
1118     }
1119 
1120     sec = pi->sechdrs + sym->st_shndx;
1121 
1122     if (sec->sh_type == SHT_NOBITS) {
1123         pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124                get_value ? "get" : "set");
1125         return -EINVAL;
1126     }
1127 
1128     sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1129 
1130     if (get_value)
1131         memcpy((void *)buf, sym_buf, size);
1132     else
1133         memcpy((void *)sym_buf, buf, size);
1134 
1135     return 0;
1136 }
1137 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138 
1139 int crash_exclude_mem_range(struct crash_mem *mem,
1140                 unsigned long long mstart, unsigned long long mend)
1141 {
1142     int i, j;
1143     unsigned long long start, end, p_start, p_end;
1144     struct crash_mem_range temp_range = {0, 0};
1145 
1146     for (i = 0; i < mem->nr_ranges; i++) {
1147         start = mem->ranges[i].start;
1148         end = mem->ranges[i].end;
1149         p_start = mstart;
1150         p_end = mend;
1151 
1152         if (mstart > end || mend < start)
1153             continue;
1154 
1155         /* Truncate any area outside of range */
1156         if (mstart < start)
1157             p_start = start;
1158         if (mend > end)
1159             p_end = end;
1160 
1161         /* Found completely overlapping range */
1162         if (p_start == start && p_end == end) {
1163             mem->ranges[i].start = 0;
1164             mem->ranges[i].end = 0;
1165             if (i < mem->nr_ranges - 1) {
1166                 /* Shift rest of the ranges to left */
1167                 for (j = i; j < mem->nr_ranges - 1; j++) {
1168                     mem->ranges[j].start =
1169                         mem->ranges[j+1].start;
1170                     mem->ranges[j].end =
1171                             mem->ranges[j+1].end;
1172                 }
1173 
1174                 /*
1175                  * Continue to check if there are another overlapping ranges
1176                  * from the current position because of shifting the above
1177                  * mem ranges.
1178                  */
1179                 i--;
1180                 mem->nr_ranges--;
1181                 continue;
1182             }
1183             mem->nr_ranges--;
1184             return 0;
1185         }
1186 
1187         if (p_start > start && p_end < end) {
1188             /* Split original range */
1189             mem->ranges[i].end = p_start - 1;
1190             temp_range.start = p_end + 1;
1191             temp_range.end = end;
1192         } else if (p_start != start)
1193             mem->ranges[i].end = p_start - 1;
1194         else
1195             mem->ranges[i].start = p_end + 1;
1196         break;
1197     }
1198 
1199     /* If a split happened, add the split to array */
1200     if (!temp_range.end)
1201         return 0;
1202 
1203     /* Split happened */
1204     if (i == mem->max_nr_ranges - 1)
1205         return -ENOMEM;
1206 
1207     /* Location where new range should go */
1208     j = i + 1;
1209     if (j < mem->nr_ranges) {
1210         /* Move over all ranges one slot towards the end */
1211         for (i = mem->nr_ranges - 1; i >= j; i--)
1212             mem->ranges[i + 1] = mem->ranges[i];
1213     }
1214 
1215     mem->ranges[j].start = temp_range.start;
1216     mem->ranges[j].end = temp_range.end;
1217     mem->nr_ranges++;
1218     return 0;
1219 }
1220 
1221 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222               void **addr, unsigned long *sz)
1223 {
1224     Elf64_Ehdr *ehdr;
1225     Elf64_Phdr *phdr;
1226     unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227     unsigned char *buf;
1228     unsigned int cpu, i;
1229     unsigned long long notes_addr;
1230     unsigned long mstart, mend;
1231 
1232     /* extra phdr for vmcoreinfo ELF note */
1233     nr_phdr = nr_cpus + 1;
1234     nr_phdr += mem->nr_ranges;
1235 
1236     /*
1237      * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238      * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239      * I think this is required by tools like gdb. So same physical
1240      * memory will be mapped in two ELF headers. One will contain kernel
1241      * text virtual addresses and other will have __va(physical) addresses.
1242      */
1243 
1244     nr_phdr++;
1245     elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246     elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247 
1248     buf = vzalloc(elf_sz);
1249     if (!buf)
1250         return -ENOMEM;
1251 
1252     ehdr = (Elf64_Ehdr *)buf;
1253     phdr = (Elf64_Phdr *)(ehdr + 1);
1254     memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255     ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256     ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257     ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258     ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259     memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260     ehdr->e_type = ET_CORE;
1261     ehdr->e_machine = ELF_ARCH;
1262     ehdr->e_version = EV_CURRENT;
1263     ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264     ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265     ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266 
1267     /* Prepare one phdr of type PT_NOTE for each present CPU */
1268     for_each_present_cpu(cpu) {
1269         phdr->p_type = PT_NOTE;
1270         notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271         phdr->p_offset = phdr->p_paddr = notes_addr;
1272         phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273         (ehdr->e_phnum)++;
1274         phdr++;
1275     }
1276 
1277     /* Prepare one PT_NOTE header for vmcoreinfo */
1278     phdr->p_type = PT_NOTE;
1279     phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280     phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281     (ehdr->e_phnum)++;
1282     phdr++;
1283 
1284     /* Prepare PT_LOAD type program header for kernel text region */
1285     if (need_kernel_map) {
1286         phdr->p_type = PT_LOAD;
1287         phdr->p_flags = PF_R|PF_W|PF_X;
1288         phdr->p_vaddr = (unsigned long) _text;
1289         phdr->p_filesz = phdr->p_memsz = _end - _text;
1290         phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291         ehdr->e_phnum++;
1292         phdr++;
1293     }
1294 
1295     /* Go through all the ranges in mem->ranges[] and prepare phdr */
1296     for (i = 0; i < mem->nr_ranges; i++) {
1297         mstart = mem->ranges[i].start;
1298         mend = mem->ranges[i].end;
1299 
1300         phdr->p_type = PT_LOAD;
1301         phdr->p_flags = PF_R|PF_W|PF_X;
1302         phdr->p_offset  = mstart;
1303 
1304         phdr->p_paddr = mstart;
1305         phdr->p_vaddr = (unsigned long) __va(mstart);
1306         phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307         phdr->p_align = 0;
1308         ehdr->e_phnum++;
1309         pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1310             phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311             ehdr->e_phnum, phdr->p_offset);
1312         phdr++;
1313     }
1314 
1315     *addr = buf;
1316     *sz = elf_sz;
1317     return 0;
1318 }