Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/kernel/fork.c
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  */
0007 
0008 /*
0009  *  'fork.c' contains the help-routines for the 'fork' system call
0010  * (see also entry.S and others).
0011  * Fork is rather simple, once you get the hang of it, but the memory
0012  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
0013  */
0014 
0015 #include <linux/anon_inodes.h>
0016 #include <linux/slab.h>
0017 #include <linux/sched/autogroup.h>
0018 #include <linux/sched/mm.h>
0019 #include <linux/sched/coredump.h>
0020 #include <linux/sched/user.h>
0021 #include <linux/sched/numa_balancing.h>
0022 #include <linux/sched/stat.h>
0023 #include <linux/sched/task.h>
0024 #include <linux/sched/task_stack.h>
0025 #include <linux/sched/cputime.h>
0026 #include <linux/seq_file.h>
0027 #include <linux/rtmutex.h>
0028 #include <linux/init.h>
0029 #include <linux/unistd.h>
0030 #include <linux/module.h>
0031 #include <linux/vmalloc.h>
0032 #include <linux/completion.h>
0033 #include <linux/personality.h>
0034 #include <linux/mempolicy.h>
0035 #include <linux/sem.h>
0036 #include <linux/file.h>
0037 #include <linux/fdtable.h>
0038 #include <linux/iocontext.h>
0039 #include <linux/key.h>
0040 #include <linux/binfmts.h>
0041 #include <linux/mman.h>
0042 #include <linux/mmu_notifier.h>
0043 #include <linux/fs.h>
0044 #include <linux/mm.h>
0045 #include <linux/mm_inline.h>
0046 #include <linux/vmacache.h>
0047 #include <linux/nsproxy.h>
0048 #include <linux/capability.h>
0049 #include <linux/cpu.h>
0050 #include <linux/cgroup.h>
0051 #include <linux/security.h>
0052 #include <linux/hugetlb.h>
0053 #include <linux/seccomp.h>
0054 #include <linux/swap.h>
0055 #include <linux/syscalls.h>
0056 #include <linux/jiffies.h>
0057 #include <linux/futex.h>
0058 #include <linux/compat.h>
0059 #include <linux/kthread.h>
0060 #include <linux/task_io_accounting_ops.h>
0061 #include <linux/rcupdate.h>
0062 #include <linux/ptrace.h>
0063 #include <linux/mount.h>
0064 #include <linux/audit.h>
0065 #include <linux/memcontrol.h>
0066 #include <linux/ftrace.h>
0067 #include <linux/proc_fs.h>
0068 #include <linux/profile.h>
0069 #include <linux/rmap.h>
0070 #include <linux/ksm.h>
0071 #include <linux/acct.h>
0072 #include <linux/userfaultfd_k.h>
0073 #include <linux/tsacct_kern.h>
0074 #include <linux/cn_proc.h>
0075 #include <linux/freezer.h>
0076 #include <linux/delayacct.h>
0077 #include <linux/taskstats_kern.h>
0078 #include <linux/random.h>
0079 #include <linux/tty.h>
0080 #include <linux/fs_struct.h>
0081 #include <linux/magic.h>
0082 #include <linux/perf_event.h>
0083 #include <linux/posix-timers.h>
0084 #include <linux/user-return-notifier.h>
0085 #include <linux/oom.h>
0086 #include <linux/khugepaged.h>
0087 #include <linux/signalfd.h>
0088 #include <linux/uprobes.h>
0089 #include <linux/aio.h>
0090 #include <linux/compiler.h>
0091 #include <linux/sysctl.h>
0092 #include <linux/kcov.h>
0093 #include <linux/livepatch.h>
0094 #include <linux/thread_info.h>
0095 #include <linux/stackleak.h>
0096 #include <linux/kasan.h>
0097 #include <linux/scs.h>
0098 #include <linux/io_uring.h>
0099 #include <linux/bpf.h>
0100 #include <linux/sched/mm.h>
0101 
0102 #include <asm/pgalloc.h>
0103 #include <linux/uaccess.h>
0104 #include <asm/mmu_context.h>
0105 #include <asm/cacheflush.h>
0106 #include <asm/tlbflush.h>
0107 
0108 #include <trace/events/sched.h>
0109 
0110 #define CREATE_TRACE_POINTS
0111 #include <trace/events/task.h>
0112 
0113 /*
0114  * Minimum number of threads to boot the kernel
0115  */
0116 #define MIN_THREADS 20
0117 
0118 /*
0119  * Maximum number of threads
0120  */
0121 #define MAX_THREADS FUTEX_TID_MASK
0122 
0123 /*
0124  * Protected counters by write_lock_irq(&tasklist_lock)
0125  */
0126 unsigned long total_forks;  /* Handle normal Linux uptimes. */
0127 int nr_threads;         /* The idle threads do not count.. */
0128 
0129 static int max_threads;     /* tunable limit on nr_threads */
0130 
0131 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
0132 
0133 static const char * const resident_page_types[] = {
0134     NAMED_ARRAY_INDEX(MM_FILEPAGES),
0135     NAMED_ARRAY_INDEX(MM_ANONPAGES),
0136     NAMED_ARRAY_INDEX(MM_SWAPENTS),
0137     NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
0138 };
0139 
0140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
0141 
0142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
0143 
0144 #ifdef CONFIG_PROVE_RCU
0145 int lockdep_tasklist_lock_is_held(void)
0146 {
0147     return lockdep_is_held(&tasklist_lock);
0148 }
0149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
0150 #endif /* #ifdef CONFIG_PROVE_RCU */
0151 
0152 int nr_processes(void)
0153 {
0154     int cpu;
0155     int total = 0;
0156 
0157     for_each_possible_cpu(cpu)
0158         total += per_cpu(process_counts, cpu);
0159 
0160     return total;
0161 }
0162 
0163 void __weak arch_release_task_struct(struct task_struct *tsk)
0164 {
0165 }
0166 
0167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
0168 static struct kmem_cache *task_struct_cachep;
0169 
0170 static inline struct task_struct *alloc_task_struct_node(int node)
0171 {
0172     return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
0173 }
0174 
0175 static inline void free_task_struct(struct task_struct *tsk)
0176 {
0177     kmem_cache_free(task_struct_cachep, tsk);
0178 }
0179 #endif
0180 
0181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
0182 
0183 /*
0184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
0185  * kmemcache based allocator.
0186  */
0187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
0188 
0189 #  ifdef CONFIG_VMAP_STACK
0190 /*
0191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
0192  * flush.  Try to minimize the number of calls by caching stacks.
0193  */
0194 #define NR_CACHED_STACKS 2
0195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
0196 
0197 struct vm_stack {
0198     struct rcu_head rcu;
0199     struct vm_struct *stack_vm_area;
0200 };
0201 
0202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
0203 {
0204     unsigned int i;
0205 
0206     for (i = 0; i < NR_CACHED_STACKS; i++) {
0207         if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
0208             continue;
0209         return true;
0210     }
0211     return false;
0212 }
0213 
0214 static void thread_stack_free_rcu(struct rcu_head *rh)
0215 {
0216     struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
0217 
0218     if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
0219         return;
0220 
0221     vfree(vm_stack);
0222 }
0223 
0224 static void thread_stack_delayed_free(struct task_struct *tsk)
0225 {
0226     struct vm_stack *vm_stack = tsk->stack;
0227 
0228     vm_stack->stack_vm_area = tsk->stack_vm_area;
0229     call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
0230 }
0231 
0232 static int free_vm_stack_cache(unsigned int cpu)
0233 {
0234     struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
0235     int i;
0236 
0237     for (i = 0; i < NR_CACHED_STACKS; i++) {
0238         struct vm_struct *vm_stack = cached_vm_stacks[i];
0239 
0240         if (!vm_stack)
0241             continue;
0242 
0243         vfree(vm_stack->addr);
0244         cached_vm_stacks[i] = NULL;
0245     }
0246 
0247     return 0;
0248 }
0249 
0250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
0251 {
0252     int i;
0253     int ret;
0254 
0255     BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
0256     BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
0257 
0258     for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
0259         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
0260         if (ret)
0261             goto err;
0262     }
0263     return 0;
0264 err:
0265     /*
0266      * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
0267      * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
0268      * ignore this page.
0269      */
0270     for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
0271         memcg_kmem_uncharge_page(vm->pages[i], 0);
0272     return ret;
0273 }
0274 
0275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0276 {
0277     struct vm_struct *vm;
0278     void *stack;
0279     int i;
0280 
0281     for (i = 0; i < NR_CACHED_STACKS; i++) {
0282         struct vm_struct *s;
0283 
0284         s = this_cpu_xchg(cached_stacks[i], NULL);
0285 
0286         if (!s)
0287             continue;
0288 
0289         /* Reset stack metadata. */
0290         kasan_unpoison_range(s->addr, THREAD_SIZE);
0291 
0292         stack = kasan_reset_tag(s->addr);
0293 
0294         /* Clear stale pointers from reused stack. */
0295         memset(stack, 0, THREAD_SIZE);
0296 
0297         if (memcg_charge_kernel_stack(s)) {
0298             vfree(s->addr);
0299             return -ENOMEM;
0300         }
0301 
0302         tsk->stack_vm_area = s;
0303         tsk->stack = stack;
0304         return 0;
0305     }
0306 
0307     /*
0308      * Allocated stacks are cached and later reused by new threads,
0309      * so memcg accounting is performed manually on assigning/releasing
0310      * stacks to tasks. Drop __GFP_ACCOUNT.
0311      */
0312     stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
0313                      VMALLOC_START, VMALLOC_END,
0314                      THREADINFO_GFP & ~__GFP_ACCOUNT,
0315                      PAGE_KERNEL,
0316                      0, node, __builtin_return_address(0));
0317     if (!stack)
0318         return -ENOMEM;
0319 
0320     vm = find_vm_area(stack);
0321     if (memcg_charge_kernel_stack(vm)) {
0322         vfree(stack);
0323         return -ENOMEM;
0324     }
0325     /*
0326      * We can't call find_vm_area() in interrupt context, and
0327      * free_thread_stack() can be called in interrupt context,
0328      * so cache the vm_struct.
0329      */
0330     tsk->stack_vm_area = vm;
0331     stack = kasan_reset_tag(stack);
0332     tsk->stack = stack;
0333     return 0;
0334 }
0335 
0336 static void free_thread_stack(struct task_struct *tsk)
0337 {
0338     if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
0339         thread_stack_delayed_free(tsk);
0340 
0341     tsk->stack = NULL;
0342     tsk->stack_vm_area = NULL;
0343 }
0344 
0345 #  else /* !CONFIG_VMAP_STACK */
0346 
0347 static void thread_stack_free_rcu(struct rcu_head *rh)
0348 {
0349     __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
0350 }
0351 
0352 static void thread_stack_delayed_free(struct task_struct *tsk)
0353 {
0354     struct rcu_head *rh = tsk->stack;
0355 
0356     call_rcu(rh, thread_stack_free_rcu);
0357 }
0358 
0359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0360 {
0361     struct page *page = alloc_pages_node(node, THREADINFO_GFP,
0362                          THREAD_SIZE_ORDER);
0363 
0364     if (likely(page)) {
0365         tsk->stack = kasan_reset_tag(page_address(page));
0366         return 0;
0367     }
0368     return -ENOMEM;
0369 }
0370 
0371 static void free_thread_stack(struct task_struct *tsk)
0372 {
0373     thread_stack_delayed_free(tsk);
0374     tsk->stack = NULL;
0375 }
0376 
0377 #  endif /* CONFIG_VMAP_STACK */
0378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
0379 
0380 static struct kmem_cache *thread_stack_cache;
0381 
0382 static void thread_stack_free_rcu(struct rcu_head *rh)
0383 {
0384     kmem_cache_free(thread_stack_cache, rh);
0385 }
0386 
0387 static void thread_stack_delayed_free(struct task_struct *tsk)
0388 {
0389     struct rcu_head *rh = tsk->stack;
0390 
0391     call_rcu(rh, thread_stack_free_rcu);
0392 }
0393 
0394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0395 {
0396     unsigned long *stack;
0397     stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
0398     stack = kasan_reset_tag(stack);
0399     tsk->stack = stack;
0400     return stack ? 0 : -ENOMEM;
0401 }
0402 
0403 static void free_thread_stack(struct task_struct *tsk)
0404 {
0405     thread_stack_delayed_free(tsk);
0406     tsk->stack = NULL;
0407 }
0408 
0409 void thread_stack_cache_init(void)
0410 {
0411     thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
0412                     THREAD_SIZE, THREAD_SIZE, 0, 0,
0413                     THREAD_SIZE, NULL);
0414     BUG_ON(thread_stack_cache == NULL);
0415 }
0416 
0417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
0418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
0419 
0420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0421 {
0422     unsigned long *stack;
0423 
0424     stack = arch_alloc_thread_stack_node(tsk, node);
0425     tsk->stack = stack;
0426     return stack ? 0 : -ENOMEM;
0427 }
0428 
0429 static void free_thread_stack(struct task_struct *tsk)
0430 {
0431     arch_free_thread_stack(tsk);
0432     tsk->stack = NULL;
0433 }
0434 
0435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
0436 
0437 /* SLAB cache for signal_struct structures (tsk->signal) */
0438 static struct kmem_cache *signal_cachep;
0439 
0440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
0441 struct kmem_cache *sighand_cachep;
0442 
0443 /* SLAB cache for files_struct structures (tsk->files) */
0444 struct kmem_cache *files_cachep;
0445 
0446 /* SLAB cache for fs_struct structures (tsk->fs) */
0447 struct kmem_cache *fs_cachep;
0448 
0449 /* SLAB cache for vm_area_struct structures */
0450 static struct kmem_cache *vm_area_cachep;
0451 
0452 /* SLAB cache for mm_struct structures (tsk->mm) */
0453 static struct kmem_cache *mm_cachep;
0454 
0455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
0456 {
0457     struct vm_area_struct *vma;
0458 
0459     vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
0460     if (vma)
0461         vma_init(vma, mm);
0462     return vma;
0463 }
0464 
0465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
0466 {
0467     struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
0468 
0469     if (new) {
0470         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
0471         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
0472         /*
0473          * orig->shared.rb may be modified concurrently, but the clone
0474          * will be reinitialized.
0475          */
0476         *new = data_race(*orig);
0477         INIT_LIST_HEAD(&new->anon_vma_chain);
0478         new->vm_next = new->vm_prev = NULL;
0479         dup_anon_vma_name(orig, new);
0480     }
0481     return new;
0482 }
0483 
0484 void vm_area_free(struct vm_area_struct *vma)
0485 {
0486     free_anon_vma_name(vma);
0487     kmem_cache_free(vm_area_cachep, vma);
0488 }
0489 
0490 static void account_kernel_stack(struct task_struct *tsk, int account)
0491 {
0492     if (IS_ENABLED(CONFIG_VMAP_STACK)) {
0493         struct vm_struct *vm = task_stack_vm_area(tsk);
0494         int i;
0495 
0496         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
0497             mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
0498                           account * (PAGE_SIZE / 1024));
0499     } else {
0500         void *stack = task_stack_page(tsk);
0501 
0502         /* All stack pages are in the same node. */
0503         mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
0504                       account * (THREAD_SIZE / 1024));
0505     }
0506 }
0507 
0508 void exit_task_stack_account(struct task_struct *tsk)
0509 {
0510     account_kernel_stack(tsk, -1);
0511 
0512     if (IS_ENABLED(CONFIG_VMAP_STACK)) {
0513         struct vm_struct *vm;
0514         int i;
0515 
0516         vm = task_stack_vm_area(tsk);
0517         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
0518             memcg_kmem_uncharge_page(vm->pages[i], 0);
0519     }
0520 }
0521 
0522 static void release_task_stack(struct task_struct *tsk)
0523 {
0524     if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
0525         return;  /* Better to leak the stack than to free prematurely */
0526 
0527     free_thread_stack(tsk);
0528 }
0529 
0530 #ifdef CONFIG_THREAD_INFO_IN_TASK
0531 void put_task_stack(struct task_struct *tsk)
0532 {
0533     if (refcount_dec_and_test(&tsk->stack_refcount))
0534         release_task_stack(tsk);
0535 }
0536 #endif
0537 
0538 void free_task(struct task_struct *tsk)
0539 {
0540     release_user_cpus_ptr(tsk);
0541     scs_release(tsk);
0542 
0543 #ifndef CONFIG_THREAD_INFO_IN_TASK
0544     /*
0545      * The task is finally done with both the stack and thread_info,
0546      * so free both.
0547      */
0548     release_task_stack(tsk);
0549 #else
0550     /*
0551      * If the task had a separate stack allocation, it should be gone
0552      * by now.
0553      */
0554     WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
0555 #endif
0556     rt_mutex_debug_task_free(tsk);
0557     ftrace_graph_exit_task(tsk);
0558     arch_release_task_struct(tsk);
0559     if (tsk->flags & PF_KTHREAD)
0560         free_kthread_struct(tsk);
0561     free_task_struct(tsk);
0562 }
0563 EXPORT_SYMBOL(free_task);
0564 
0565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
0566 {
0567     struct file *exe_file;
0568 
0569     exe_file = get_mm_exe_file(oldmm);
0570     RCU_INIT_POINTER(mm->exe_file, exe_file);
0571     /*
0572      * We depend on the oldmm having properly denied write access to the
0573      * exe_file already.
0574      */
0575     if (exe_file && deny_write_access(exe_file))
0576         pr_warn_once("deny_write_access() failed in %s\n", __func__);
0577 }
0578 
0579 #ifdef CONFIG_MMU
0580 static __latent_entropy int dup_mmap(struct mm_struct *mm,
0581                     struct mm_struct *oldmm)
0582 {
0583     struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
0584     struct rb_node **rb_link, *rb_parent;
0585     int retval;
0586     unsigned long charge;
0587     LIST_HEAD(uf);
0588 
0589     uprobe_start_dup_mmap();
0590     if (mmap_write_lock_killable(oldmm)) {
0591         retval = -EINTR;
0592         goto fail_uprobe_end;
0593     }
0594     flush_cache_dup_mm(oldmm);
0595     uprobe_dup_mmap(oldmm, mm);
0596     /*
0597      * Not linked in yet - no deadlock potential:
0598      */
0599     mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
0600 
0601     /* No ordering required: file already has been exposed. */
0602     dup_mm_exe_file(mm, oldmm);
0603 
0604     mm->total_vm = oldmm->total_vm;
0605     mm->data_vm = oldmm->data_vm;
0606     mm->exec_vm = oldmm->exec_vm;
0607     mm->stack_vm = oldmm->stack_vm;
0608 
0609     rb_link = &mm->mm_rb.rb_node;
0610     rb_parent = NULL;
0611     pprev = &mm->mmap;
0612     retval = ksm_fork(mm, oldmm);
0613     if (retval)
0614         goto out;
0615     khugepaged_fork(mm, oldmm);
0616 
0617     prev = NULL;
0618     for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
0619         struct file *file;
0620 
0621         if (mpnt->vm_flags & VM_DONTCOPY) {
0622             vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
0623             continue;
0624         }
0625         charge = 0;
0626         /*
0627          * Don't duplicate many vmas if we've been oom-killed (for
0628          * example)
0629          */
0630         if (fatal_signal_pending(current)) {
0631             retval = -EINTR;
0632             goto out;
0633         }
0634         if (mpnt->vm_flags & VM_ACCOUNT) {
0635             unsigned long len = vma_pages(mpnt);
0636 
0637             if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
0638                 goto fail_nomem;
0639             charge = len;
0640         }
0641         tmp = vm_area_dup(mpnt);
0642         if (!tmp)
0643             goto fail_nomem;
0644         retval = vma_dup_policy(mpnt, tmp);
0645         if (retval)
0646             goto fail_nomem_policy;
0647         tmp->vm_mm = mm;
0648         retval = dup_userfaultfd(tmp, &uf);
0649         if (retval)
0650             goto fail_nomem_anon_vma_fork;
0651         if (tmp->vm_flags & VM_WIPEONFORK) {
0652             /*
0653              * VM_WIPEONFORK gets a clean slate in the child.
0654              * Don't prepare anon_vma until fault since we don't
0655              * copy page for current vma.
0656              */
0657             tmp->anon_vma = NULL;
0658         } else if (anon_vma_fork(tmp, mpnt))
0659             goto fail_nomem_anon_vma_fork;
0660         tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
0661         file = tmp->vm_file;
0662         if (file) {
0663             struct address_space *mapping = file->f_mapping;
0664 
0665             get_file(file);
0666             i_mmap_lock_write(mapping);
0667             if (tmp->vm_flags & VM_SHARED)
0668                 mapping_allow_writable(mapping);
0669             flush_dcache_mmap_lock(mapping);
0670             /* insert tmp into the share list, just after mpnt */
0671             vma_interval_tree_insert_after(tmp, mpnt,
0672                     &mapping->i_mmap);
0673             flush_dcache_mmap_unlock(mapping);
0674             i_mmap_unlock_write(mapping);
0675         }
0676 
0677         /*
0678          * Clear hugetlb-related page reserves for children. This only
0679          * affects MAP_PRIVATE mappings. Faults generated by the child
0680          * are not guaranteed to succeed, even if read-only
0681          */
0682         if (is_vm_hugetlb_page(tmp))
0683             reset_vma_resv_huge_pages(tmp);
0684 
0685         /*
0686          * Link in the new vma and copy the page table entries.
0687          */
0688         *pprev = tmp;
0689         pprev = &tmp->vm_next;
0690         tmp->vm_prev = prev;
0691         prev = tmp;
0692 
0693         __vma_link_rb(mm, tmp, rb_link, rb_parent);
0694         rb_link = &tmp->vm_rb.rb_right;
0695         rb_parent = &tmp->vm_rb;
0696 
0697         mm->map_count++;
0698         if (!(tmp->vm_flags & VM_WIPEONFORK))
0699             retval = copy_page_range(tmp, mpnt);
0700 
0701         if (tmp->vm_ops && tmp->vm_ops->open)
0702             tmp->vm_ops->open(tmp);
0703 
0704         if (retval)
0705             goto out;
0706     }
0707     /* a new mm has just been created */
0708     retval = arch_dup_mmap(oldmm, mm);
0709 out:
0710     mmap_write_unlock(mm);
0711     flush_tlb_mm(oldmm);
0712     mmap_write_unlock(oldmm);
0713     dup_userfaultfd_complete(&uf);
0714 fail_uprobe_end:
0715     uprobe_end_dup_mmap();
0716     return retval;
0717 fail_nomem_anon_vma_fork:
0718     mpol_put(vma_policy(tmp));
0719 fail_nomem_policy:
0720     vm_area_free(tmp);
0721 fail_nomem:
0722     retval = -ENOMEM;
0723     vm_unacct_memory(charge);
0724     goto out;
0725 }
0726 
0727 static inline int mm_alloc_pgd(struct mm_struct *mm)
0728 {
0729     mm->pgd = pgd_alloc(mm);
0730     if (unlikely(!mm->pgd))
0731         return -ENOMEM;
0732     return 0;
0733 }
0734 
0735 static inline void mm_free_pgd(struct mm_struct *mm)
0736 {
0737     pgd_free(mm, mm->pgd);
0738 }
0739 #else
0740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
0741 {
0742     mmap_write_lock(oldmm);
0743     dup_mm_exe_file(mm, oldmm);
0744     mmap_write_unlock(oldmm);
0745     return 0;
0746 }
0747 #define mm_alloc_pgd(mm)    (0)
0748 #define mm_free_pgd(mm)
0749 #endif /* CONFIG_MMU */
0750 
0751 static void check_mm(struct mm_struct *mm)
0752 {
0753     int i;
0754 
0755     BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
0756              "Please make sure 'struct resident_page_types[]' is updated as well");
0757 
0758     for (i = 0; i < NR_MM_COUNTERS; i++) {
0759         long x = atomic_long_read(&mm->rss_stat.count[i]);
0760 
0761         if (unlikely(x))
0762             pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
0763                  mm, resident_page_types[i], x);
0764     }
0765 
0766     if (mm_pgtables_bytes(mm))
0767         pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
0768                 mm_pgtables_bytes(mm));
0769 
0770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
0771     VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
0772 #endif
0773 }
0774 
0775 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
0776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
0777 
0778 /*
0779  * Called when the last reference to the mm
0780  * is dropped: either by a lazy thread or by
0781  * mmput. Free the page directory and the mm.
0782  */
0783 void __mmdrop(struct mm_struct *mm)
0784 {
0785     BUG_ON(mm == &init_mm);
0786     WARN_ON_ONCE(mm == current->mm);
0787     WARN_ON_ONCE(mm == current->active_mm);
0788     mm_free_pgd(mm);
0789     destroy_context(mm);
0790     mmu_notifier_subscriptions_destroy(mm);
0791     check_mm(mm);
0792     put_user_ns(mm->user_ns);
0793     mm_pasid_drop(mm);
0794     free_mm(mm);
0795 }
0796 EXPORT_SYMBOL_GPL(__mmdrop);
0797 
0798 static void mmdrop_async_fn(struct work_struct *work)
0799 {
0800     struct mm_struct *mm;
0801 
0802     mm = container_of(work, struct mm_struct, async_put_work);
0803     __mmdrop(mm);
0804 }
0805 
0806 static void mmdrop_async(struct mm_struct *mm)
0807 {
0808     if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
0809         INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
0810         schedule_work(&mm->async_put_work);
0811     }
0812 }
0813 
0814 static inline void free_signal_struct(struct signal_struct *sig)
0815 {
0816     taskstats_tgid_free(sig);
0817     sched_autogroup_exit(sig);
0818     /*
0819      * __mmdrop is not safe to call from softirq context on x86 due to
0820      * pgd_dtor so postpone it to the async context
0821      */
0822     if (sig->oom_mm)
0823         mmdrop_async(sig->oom_mm);
0824     kmem_cache_free(signal_cachep, sig);
0825 }
0826 
0827 static inline void put_signal_struct(struct signal_struct *sig)
0828 {
0829     if (refcount_dec_and_test(&sig->sigcnt))
0830         free_signal_struct(sig);
0831 }
0832 
0833 void __put_task_struct(struct task_struct *tsk)
0834 {
0835     WARN_ON(!tsk->exit_state);
0836     WARN_ON(refcount_read(&tsk->usage));
0837     WARN_ON(tsk == current);
0838 
0839     io_uring_free(tsk);
0840     cgroup_free(tsk);
0841     task_numa_free(tsk, true);
0842     security_task_free(tsk);
0843     bpf_task_storage_free(tsk);
0844     exit_creds(tsk);
0845     delayacct_tsk_free(tsk);
0846     put_signal_struct(tsk->signal);
0847     sched_core_free(tsk);
0848     free_task(tsk);
0849 }
0850 EXPORT_SYMBOL_GPL(__put_task_struct);
0851 
0852 void __init __weak arch_task_cache_init(void) { }
0853 
0854 /*
0855  * set_max_threads
0856  */
0857 static void set_max_threads(unsigned int max_threads_suggested)
0858 {
0859     u64 threads;
0860     unsigned long nr_pages = totalram_pages();
0861 
0862     /*
0863      * The number of threads shall be limited such that the thread
0864      * structures may only consume a small part of the available memory.
0865      */
0866     if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
0867         threads = MAX_THREADS;
0868     else
0869         threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
0870                     (u64) THREAD_SIZE * 8UL);
0871 
0872     if (threads > max_threads_suggested)
0873         threads = max_threads_suggested;
0874 
0875     max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
0876 }
0877 
0878 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
0879 /* Initialized by the architecture: */
0880 int arch_task_struct_size __read_mostly;
0881 #endif
0882 
0883 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
0884 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
0885 {
0886     /* Fetch thread_struct whitelist for the architecture. */
0887     arch_thread_struct_whitelist(offset, size);
0888 
0889     /*
0890      * Handle zero-sized whitelist or empty thread_struct, otherwise
0891      * adjust offset to position of thread_struct in task_struct.
0892      */
0893     if (unlikely(*size == 0))
0894         *offset = 0;
0895     else
0896         *offset += offsetof(struct task_struct, thread);
0897 }
0898 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
0899 
0900 void __init fork_init(void)
0901 {
0902     int i;
0903 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
0904 #ifndef ARCH_MIN_TASKALIGN
0905 #define ARCH_MIN_TASKALIGN  0
0906 #endif
0907     int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
0908     unsigned long useroffset, usersize;
0909 
0910     /* create a slab on which task_structs can be allocated */
0911     task_struct_whitelist(&useroffset, &usersize);
0912     task_struct_cachep = kmem_cache_create_usercopy("task_struct",
0913             arch_task_struct_size, align,
0914             SLAB_PANIC|SLAB_ACCOUNT,
0915             useroffset, usersize, NULL);
0916 #endif
0917 
0918     /* do the arch specific task caches init */
0919     arch_task_cache_init();
0920 
0921     set_max_threads(MAX_THREADS);
0922 
0923     init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
0924     init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
0925     init_task.signal->rlim[RLIMIT_SIGPENDING] =
0926         init_task.signal->rlim[RLIMIT_NPROC];
0927 
0928     for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
0929         init_user_ns.ucount_max[i] = max_threads/2;
0930 
0931     set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
0932     set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
0933     set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
0934     set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
0935 
0936 #ifdef CONFIG_VMAP_STACK
0937     cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
0938               NULL, free_vm_stack_cache);
0939 #endif
0940 
0941     scs_init();
0942 
0943     lockdep_init_task(&init_task);
0944     uprobes_init();
0945 }
0946 
0947 int __weak arch_dup_task_struct(struct task_struct *dst,
0948                            struct task_struct *src)
0949 {
0950     *dst = *src;
0951     return 0;
0952 }
0953 
0954 void set_task_stack_end_magic(struct task_struct *tsk)
0955 {
0956     unsigned long *stackend;
0957 
0958     stackend = end_of_stack(tsk);
0959     *stackend = STACK_END_MAGIC;    /* for overflow detection */
0960 }
0961 
0962 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
0963 {
0964     struct task_struct *tsk;
0965     int err;
0966 
0967     if (node == NUMA_NO_NODE)
0968         node = tsk_fork_get_node(orig);
0969     tsk = alloc_task_struct_node(node);
0970     if (!tsk)
0971         return NULL;
0972 
0973     err = arch_dup_task_struct(tsk, orig);
0974     if (err)
0975         goto free_tsk;
0976 
0977     err = alloc_thread_stack_node(tsk, node);
0978     if (err)
0979         goto free_tsk;
0980 
0981 #ifdef CONFIG_THREAD_INFO_IN_TASK
0982     refcount_set(&tsk->stack_refcount, 1);
0983 #endif
0984     account_kernel_stack(tsk, 1);
0985 
0986     err = scs_prepare(tsk, node);
0987     if (err)
0988         goto free_stack;
0989 
0990 #ifdef CONFIG_SECCOMP
0991     /*
0992      * We must handle setting up seccomp filters once we're under
0993      * the sighand lock in case orig has changed between now and
0994      * then. Until then, filter must be NULL to avoid messing up
0995      * the usage counts on the error path calling free_task.
0996      */
0997     tsk->seccomp.filter = NULL;
0998 #endif
0999 
1000     setup_thread_stack(tsk, orig);
1001     clear_user_return_notifier(tsk);
1002     clear_tsk_need_resched(tsk);
1003     set_task_stack_end_magic(tsk);
1004     clear_syscall_work_syscall_user_dispatch(tsk);
1005 
1006 #ifdef CONFIG_STACKPROTECTOR
1007     tsk->stack_canary = get_random_canary();
1008 #endif
1009     if (orig->cpus_ptr == &orig->cpus_mask)
1010         tsk->cpus_ptr = &tsk->cpus_mask;
1011     dup_user_cpus_ptr(tsk, orig, node);
1012 
1013     /*
1014      * One for the user space visible state that goes away when reaped.
1015      * One for the scheduler.
1016      */
1017     refcount_set(&tsk->rcu_users, 2);
1018     /* One for the rcu users */
1019     refcount_set(&tsk->usage, 1);
1020 #ifdef CONFIG_BLK_DEV_IO_TRACE
1021     tsk->btrace_seq = 0;
1022 #endif
1023     tsk->splice_pipe = NULL;
1024     tsk->task_frag.page = NULL;
1025     tsk->wake_q.next = NULL;
1026     tsk->worker_private = NULL;
1027 
1028     kcov_task_init(tsk);
1029     kmap_local_fork(tsk);
1030 
1031 #ifdef CONFIG_FAULT_INJECTION
1032     tsk->fail_nth = 0;
1033 #endif
1034 
1035 #ifdef CONFIG_BLK_CGROUP
1036     tsk->throttle_queue = NULL;
1037     tsk->use_memdelay = 0;
1038 #endif
1039 
1040 #ifdef CONFIG_IOMMU_SVA
1041     tsk->pasid_activated = 0;
1042 #endif
1043 
1044 #ifdef CONFIG_MEMCG
1045     tsk->active_memcg = NULL;
1046 #endif
1047 
1048 #ifdef CONFIG_CPU_SUP_INTEL
1049     tsk->reported_split_lock = 0;
1050 #endif
1051 
1052     return tsk;
1053 
1054 free_stack:
1055     exit_task_stack_account(tsk);
1056     free_thread_stack(tsk);
1057 free_tsk:
1058     free_task_struct(tsk);
1059     return NULL;
1060 }
1061 
1062 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1063 
1064 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1065 
1066 static int __init coredump_filter_setup(char *s)
1067 {
1068     default_dump_filter =
1069         (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1070         MMF_DUMP_FILTER_MASK;
1071     return 1;
1072 }
1073 
1074 __setup("coredump_filter=", coredump_filter_setup);
1075 
1076 #include <linux/init_task.h>
1077 
1078 static void mm_init_aio(struct mm_struct *mm)
1079 {
1080 #ifdef CONFIG_AIO
1081     spin_lock_init(&mm->ioctx_lock);
1082     mm->ioctx_table = NULL;
1083 #endif
1084 }
1085 
1086 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1087                        struct task_struct *p)
1088 {
1089 #ifdef CONFIG_MEMCG
1090     if (mm->owner == p)
1091         WRITE_ONCE(mm->owner, NULL);
1092 #endif
1093 }
1094 
1095 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1096 {
1097 #ifdef CONFIG_MEMCG
1098     mm->owner = p;
1099 #endif
1100 }
1101 
1102 static void mm_init_uprobes_state(struct mm_struct *mm)
1103 {
1104 #ifdef CONFIG_UPROBES
1105     mm->uprobes_state.xol_area = NULL;
1106 #endif
1107 }
1108 
1109 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1110     struct user_namespace *user_ns)
1111 {
1112     mm->mmap = NULL;
1113     mm->mm_rb = RB_ROOT;
1114     mm->vmacache_seqnum = 0;
1115     atomic_set(&mm->mm_users, 1);
1116     atomic_set(&mm->mm_count, 1);
1117     seqcount_init(&mm->write_protect_seq);
1118     mmap_init_lock(mm);
1119     INIT_LIST_HEAD(&mm->mmlist);
1120     mm_pgtables_bytes_init(mm);
1121     mm->map_count = 0;
1122     mm->locked_vm = 0;
1123     atomic64_set(&mm->pinned_vm, 0);
1124     memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1125     spin_lock_init(&mm->page_table_lock);
1126     spin_lock_init(&mm->arg_lock);
1127     mm_init_cpumask(mm);
1128     mm_init_aio(mm);
1129     mm_init_owner(mm, p);
1130     mm_pasid_init(mm);
1131     RCU_INIT_POINTER(mm->exe_file, NULL);
1132     mmu_notifier_subscriptions_init(mm);
1133     init_tlb_flush_pending(mm);
1134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1135     mm->pmd_huge_pte = NULL;
1136 #endif
1137     mm_init_uprobes_state(mm);
1138     hugetlb_count_init(mm);
1139 
1140     if (current->mm) {
1141         mm->flags = current->mm->flags & MMF_INIT_MASK;
1142         mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1143     } else {
1144         mm->flags = default_dump_filter;
1145         mm->def_flags = 0;
1146     }
1147 
1148     if (mm_alloc_pgd(mm))
1149         goto fail_nopgd;
1150 
1151     if (init_new_context(p, mm))
1152         goto fail_nocontext;
1153 
1154     mm->user_ns = get_user_ns(user_ns);
1155     return mm;
1156 
1157 fail_nocontext:
1158     mm_free_pgd(mm);
1159 fail_nopgd:
1160     free_mm(mm);
1161     return NULL;
1162 }
1163 
1164 /*
1165  * Allocate and initialize an mm_struct.
1166  */
1167 struct mm_struct *mm_alloc(void)
1168 {
1169     struct mm_struct *mm;
1170 
1171     mm = allocate_mm();
1172     if (!mm)
1173         return NULL;
1174 
1175     memset(mm, 0, sizeof(*mm));
1176     return mm_init(mm, current, current_user_ns());
1177 }
1178 
1179 static inline void __mmput(struct mm_struct *mm)
1180 {
1181     VM_BUG_ON(atomic_read(&mm->mm_users));
1182 
1183     uprobe_clear_state(mm);
1184     exit_aio(mm);
1185     ksm_exit(mm);
1186     khugepaged_exit(mm); /* must run before exit_mmap */
1187     exit_mmap(mm);
1188     mm_put_huge_zero_page(mm);
1189     set_mm_exe_file(mm, NULL);
1190     if (!list_empty(&mm->mmlist)) {
1191         spin_lock(&mmlist_lock);
1192         list_del(&mm->mmlist);
1193         spin_unlock(&mmlist_lock);
1194     }
1195     if (mm->binfmt)
1196         module_put(mm->binfmt->module);
1197     mmdrop(mm);
1198 }
1199 
1200 /*
1201  * Decrement the use count and release all resources for an mm.
1202  */
1203 void mmput(struct mm_struct *mm)
1204 {
1205     might_sleep();
1206 
1207     if (atomic_dec_and_test(&mm->mm_users))
1208         __mmput(mm);
1209 }
1210 EXPORT_SYMBOL_GPL(mmput);
1211 
1212 #ifdef CONFIG_MMU
1213 static void mmput_async_fn(struct work_struct *work)
1214 {
1215     struct mm_struct *mm = container_of(work, struct mm_struct,
1216                         async_put_work);
1217 
1218     __mmput(mm);
1219 }
1220 
1221 void mmput_async(struct mm_struct *mm)
1222 {
1223     if (atomic_dec_and_test(&mm->mm_users)) {
1224         INIT_WORK(&mm->async_put_work, mmput_async_fn);
1225         schedule_work(&mm->async_put_work);
1226     }
1227 }
1228 EXPORT_SYMBOL_GPL(mmput_async);
1229 #endif
1230 
1231 /**
1232  * set_mm_exe_file - change a reference to the mm's executable file
1233  *
1234  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1235  *
1236  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1237  * invocations: in mmput() nobody alive left, in execve task is single
1238  * threaded.
1239  *
1240  * Can only fail if new_exe_file != NULL.
1241  */
1242 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1243 {
1244     struct file *old_exe_file;
1245 
1246     /*
1247      * It is safe to dereference the exe_file without RCU as
1248      * this function is only called if nobody else can access
1249      * this mm -- see comment above for justification.
1250      */
1251     old_exe_file = rcu_dereference_raw(mm->exe_file);
1252 
1253     if (new_exe_file) {
1254         /*
1255          * We expect the caller (i.e., sys_execve) to already denied
1256          * write access, so this is unlikely to fail.
1257          */
1258         if (unlikely(deny_write_access(new_exe_file)))
1259             return -EACCES;
1260         get_file(new_exe_file);
1261     }
1262     rcu_assign_pointer(mm->exe_file, new_exe_file);
1263     if (old_exe_file) {
1264         allow_write_access(old_exe_file);
1265         fput(old_exe_file);
1266     }
1267     return 0;
1268 }
1269 
1270 /**
1271  * replace_mm_exe_file - replace a reference to the mm's executable file
1272  *
1273  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1274  * dealing with concurrent invocation and without grabbing the mmap lock in
1275  * write mode.
1276  *
1277  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1278  */
1279 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1280 {
1281     struct vm_area_struct *vma;
1282     struct file *old_exe_file;
1283     int ret = 0;
1284 
1285     /* Forbid mm->exe_file change if old file still mapped. */
1286     old_exe_file = get_mm_exe_file(mm);
1287     if (old_exe_file) {
1288         mmap_read_lock(mm);
1289         for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1290             if (!vma->vm_file)
1291                 continue;
1292             if (path_equal(&vma->vm_file->f_path,
1293                        &old_exe_file->f_path))
1294                 ret = -EBUSY;
1295         }
1296         mmap_read_unlock(mm);
1297         fput(old_exe_file);
1298         if (ret)
1299             return ret;
1300     }
1301 
1302     /* set the new file, lockless */
1303     ret = deny_write_access(new_exe_file);
1304     if (ret)
1305         return -EACCES;
1306     get_file(new_exe_file);
1307 
1308     old_exe_file = xchg(&mm->exe_file, new_exe_file);
1309     if (old_exe_file) {
1310         /*
1311          * Don't race with dup_mmap() getting the file and disallowing
1312          * write access while someone might open the file writable.
1313          */
1314         mmap_read_lock(mm);
1315         allow_write_access(old_exe_file);
1316         fput(old_exe_file);
1317         mmap_read_unlock(mm);
1318     }
1319     return 0;
1320 }
1321 
1322 /**
1323  * get_mm_exe_file - acquire a reference to the mm's executable file
1324  *
1325  * Returns %NULL if mm has no associated executable file.
1326  * User must release file via fput().
1327  */
1328 struct file *get_mm_exe_file(struct mm_struct *mm)
1329 {
1330     struct file *exe_file;
1331 
1332     rcu_read_lock();
1333     exe_file = rcu_dereference(mm->exe_file);
1334     if (exe_file && !get_file_rcu(exe_file))
1335         exe_file = NULL;
1336     rcu_read_unlock();
1337     return exe_file;
1338 }
1339 
1340 /**
1341  * get_task_exe_file - acquire a reference to the task's executable file
1342  *
1343  * Returns %NULL if task's mm (if any) has no associated executable file or
1344  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1345  * User must release file via fput().
1346  */
1347 struct file *get_task_exe_file(struct task_struct *task)
1348 {
1349     struct file *exe_file = NULL;
1350     struct mm_struct *mm;
1351 
1352     task_lock(task);
1353     mm = task->mm;
1354     if (mm) {
1355         if (!(task->flags & PF_KTHREAD))
1356             exe_file = get_mm_exe_file(mm);
1357     }
1358     task_unlock(task);
1359     return exe_file;
1360 }
1361 
1362 /**
1363  * get_task_mm - acquire a reference to the task's mm
1364  *
1365  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1366  * this kernel workthread has transiently adopted a user mm with use_mm,
1367  * to do its AIO) is not set and if so returns a reference to it, after
1368  * bumping up the use count.  User must release the mm via mmput()
1369  * after use.  Typically used by /proc and ptrace.
1370  */
1371 struct mm_struct *get_task_mm(struct task_struct *task)
1372 {
1373     struct mm_struct *mm;
1374 
1375     task_lock(task);
1376     mm = task->mm;
1377     if (mm) {
1378         if (task->flags & PF_KTHREAD)
1379             mm = NULL;
1380         else
1381             mmget(mm);
1382     }
1383     task_unlock(task);
1384     return mm;
1385 }
1386 EXPORT_SYMBOL_GPL(get_task_mm);
1387 
1388 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1389 {
1390     struct mm_struct *mm;
1391     int err;
1392 
1393     err =  down_read_killable(&task->signal->exec_update_lock);
1394     if (err)
1395         return ERR_PTR(err);
1396 
1397     mm = get_task_mm(task);
1398     if (mm && mm != current->mm &&
1399             !ptrace_may_access(task, mode)) {
1400         mmput(mm);
1401         mm = ERR_PTR(-EACCES);
1402     }
1403     up_read(&task->signal->exec_update_lock);
1404 
1405     return mm;
1406 }
1407 
1408 static void complete_vfork_done(struct task_struct *tsk)
1409 {
1410     struct completion *vfork;
1411 
1412     task_lock(tsk);
1413     vfork = tsk->vfork_done;
1414     if (likely(vfork)) {
1415         tsk->vfork_done = NULL;
1416         complete(vfork);
1417     }
1418     task_unlock(tsk);
1419 }
1420 
1421 static int wait_for_vfork_done(struct task_struct *child,
1422                 struct completion *vfork)
1423 {
1424     int killed;
1425 
1426     freezer_do_not_count();
1427     cgroup_enter_frozen();
1428     killed = wait_for_completion_killable(vfork);
1429     cgroup_leave_frozen(false);
1430     freezer_count();
1431 
1432     if (killed) {
1433         task_lock(child);
1434         child->vfork_done = NULL;
1435         task_unlock(child);
1436     }
1437 
1438     put_task_struct(child);
1439     return killed;
1440 }
1441 
1442 /* Please note the differences between mmput and mm_release.
1443  * mmput is called whenever we stop holding onto a mm_struct,
1444  * error success whatever.
1445  *
1446  * mm_release is called after a mm_struct has been removed
1447  * from the current process.
1448  *
1449  * This difference is important for error handling, when we
1450  * only half set up a mm_struct for a new process and need to restore
1451  * the old one.  Because we mmput the new mm_struct before
1452  * restoring the old one. . .
1453  * Eric Biederman 10 January 1998
1454  */
1455 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1456 {
1457     uprobe_free_utask(tsk);
1458 
1459     /* Get rid of any cached register state */
1460     deactivate_mm(tsk, mm);
1461 
1462     /*
1463      * Signal userspace if we're not exiting with a core dump
1464      * because we want to leave the value intact for debugging
1465      * purposes.
1466      */
1467     if (tsk->clear_child_tid) {
1468         if (atomic_read(&mm->mm_users) > 1) {
1469             /*
1470              * We don't check the error code - if userspace has
1471              * not set up a proper pointer then tough luck.
1472              */
1473             put_user(0, tsk->clear_child_tid);
1474             do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1475                     1, NULL, NULL, 0, 0);
1476         }
1477         tsk->clear_child_tid = NULL;
1478     }
1479 
1480     /*
1481      * All done, finally we can wake up parent and return this mm to him.
1482      * Also kthread_stop() uses this completion for synchronization.
1483      */
1484     if (tsk->vfork_done)
1485         complete_vfork_done(tsk);
1486 }
1487 
1488 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1489 {
1490     futex_exit_release(tsk);
1491     mm_release(tsk, mm);
1492 }
1493 
1494 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1495 {
1496     futex_exec_release(tsk);
1497     mm_release(tsk, mm);
1498 }
1499 
1500 /**
1501  * dup_mm() - duplicates an existing mm structure
1502  * @tsk: the task_struct with which the new mm will be associated.
1503  * @oldmm: the mm to duplicate.
1504  *
1505  * Allocates a new mm structure and duplicates the provided @oldmm structure
1506  * content into it.
1507  *
1508  * Return: the duplicated mm or NULL on failure.
1509  */
1510 static struct mm_struct *dup_mm(struct task_struct *tsk,
1511                 struct mm_struct *oldmm)
1512 {
1513     struct mm_struct *mm;
1514     int err;
1515 
1516     mm = allocate_mm();
1517     if (!mm)
1518         goto fail_nomem;
1519 
1520     memcpy(mm, oldmm, sizeof(*mm));
1521 
1522     if (!mm_init(mm, tsk, mm->user_ns))
1523         goto fail_nomem;
1524 
1525     err = dup_mmap(mm, oldmm);
1526     if (err)
1527         goto free_pt;
1528 
1529     mm->hiwater_rss = get_mm_rss(mm);
1530     mm->hiwater_vm = mm->total_vm;
1531 
1532     if (mm->binfmt && !try_module_get(mm->binfmt->module))
1533         goto free_pt;
1534 
1535     return mm;
1536 
1537 free_pt:
1538     /* don't put binfmt in mmput, we haven't got module yet */
1539     mm->binfmt = NULL;
1540     mm_init_owner(mm, NULL);
1541     mmput(mm);
1542 
1543 fail_nomem:
1544     return NULL;
1545 }
1546 
1547 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1548 {
1549     struct mm_struct *mm, *oldmm;
1550 
1551     tsk->min_flt = tsk->maj_flt = 0;
1552     tsk->nvcsw = tsk->nivcsw = 0;
1553 #ifdef CONFIG_DETECT_HUNG_TASK
1554     tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1555     tsk->last_switch_time = 0;
1556 #endif
1557 
1558     tsk->mm = NULL;
1559     tsk->active_mm = NULL;
1560 
1561     /*
1562      * Are we cloning a kernel thread?
1563      *
1564      * We need to steal a active VM for that..
1565      */
1566     oldmm = current->mm;
1567     if (!oldmm)
1568         return 0;
1569 
1570     /* initialize the new vmacache entries */
1571     vmacache_flush(tsk);
1572 
1573     if (clone_flags & CLONE_VM) {
1574         mmget(oldmm);
1575         mm = oldmm;
1576     } else {
1577         mm = dup_mm(tsk, current->mm);
1578         if (!mm)
1579             return -ENOMEM;
1580     }
1581 
1582     tsk->mm = mm;
1583     tsk->active_mm = mm;
1584     return 0;
1585 }
1586 
1587 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1588 {
1589     struct fs_struct *fs = current->fs;
1590     if (clone_flags & CLONE_FS) {
1591         /* tsk->fs is already what we want */
1592         spin_lock(&fs->lock);
1593         if (fs->in_exec) {
1594             spin_unlock(&fs->lock);
1595             return -EAGAIN;
1596         }
1597         fs->users++;
1598         spin_unlock(&fs->lock);
1599         return 0;
1600     }
1601     tsk->fs = copy_fs_struct(fs);
1602     if (!tsk->fs)
1603         return -ENOMEM;
1604     return 0;
1605 }
1606 
1607 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1608 {
1609     struct files_struct *oldf, *newf;
1610     int error = 0;
1611 
1612     /*
1613      * A background process may not have any files ...
1614      */
1615     oldf = current->files;
1616     if (!oldf)
1617         goto out;
1618 
1619     if (clone_flags & CLONE_FILES) {
1620         atomic_inc(&oldf->count);
1621         goto out;
1622     }
1623 
1624     newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1625     if (!newf)
1626         goto out;
1627 
1628     tsk->files = newf;
1629     error = 0;
1630 out:
1631     return error;
1632 }
1633 
1634 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1635 {
1636     struct sighand_struct *sig;
1637 
1638     if (clone_flags & CLONE_SIGHAND) {
1639         refcount_inc(&current->sighand->count);
1640         return 0;
1641     }
1642     sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1643     RCU_INIT_POINTER(tsk->sighand, sig);
1644     if (!sig)
1645         return -ENOMEM;
1646 
1647     refcount_set(&sig->count, 1);
1648     spin_lock_irq(&current->sighand->siglock);
1649     memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1650     spin_unlock_irq(&current->sighand->siglock);
1651 
1652     /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1653     if (clone_flags & CLONE_CLEAR_SIGHAND)
1654         flush_signal_handlers(tsk, 0);
1655 
1656     return 0;
1657 }
1658 
1659 void __cleanup_sighand(struct sighand_struct *sighand)
1660 {
1661     if (refcount_dec_and_test(&sighand->count)) {
1662         signalfd_cleanup(sighand);
1663         /*
1664          * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1665          * without an RCU grace period, see __lock_task_sighand().
1666          */
1667         kmem_cache_free(sighand_cachep, sighand);
1668     }
1669 }
1670 
1671 /*
1672  * Initialize POSIX timer handling for a thread group.
1673  */
1674 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1675 {
1676     struct posix_cputimers *pct = &sig->posix_cputimers;
1677     unsigned long cpu_limit;
1678 
1679     cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1680     posix_cputimers_group_init(pct, cpu_limit);
1681 }
1682 
1683 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1684 {
1685     struct signal_struct *sig;
1686 
1687     if (clone_flags & CLONE_THREAD)
1688         return 0;
1689 
1690     sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1691     tsk->signal = sig;
1692     if (!sig)
1693         return -ENOMEM;
1694 
1695     sig->nr_threads = 1;
1696     atomic_set(&sig->live, 1);
1697     refcount_set(&sig->sigcnt, 1);
1698 
1699     /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1700     sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1701     tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1702 
1703     init_waitqueue_head(&sig->wait_chldexit);
1704     sig->curr_target = tsk;
1705     init_sigpending(&sig->shared_pending);
1706     INIT_HLIST_HEAD(&sig->multiprocess);
1707     seqlock_init(&sig->stats_lock);
1708     prev_cputime_init(&sig->prev_cputime);
1709 
1710 #ifdef CONFIG_POSIX_TIMERS
1711     INIT_LIST_HEAD(&sig->posix_timers);
1712     hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1713     sig->real_timer.function = it_real_fn;
1714 #endif
1715 
1716     task_lock(current->group_leader);
1717     memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1718     task_unlock(current->group_leader);
1719 
1720     posix_cpu_timers_init_group(sig);
1721 
1722     tty_audit_fork(sig);
1723     sched_autogroup_fork(sig);
1724 
1725     sig->oom_score_adj = current->signal->oom_score_adj;
1726     sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1727 
1728     mutex_init(&sig->cred_guard_mutex);
1729     init_rwsem(&sig->exec_update_lock);
1730 
1731     return 0;
1732 }
1733 
1734 static void copy_seccomp(struct task_struct *p)
1735 {
1736 #ifdef CONFIG_SECCOMP
1737     /*
1738      * Must be called with sighand->lock held, which is common to
1739      * all threads in the group. Holding cred_guard_mutex is not
1740      * needed because this new task is not yet running and cannot
1741      * be racing exec.
1742      */
1743     assert_spin_locked(&current->sighand->siglock);
1744 
1745     /* Ref-count the new filter user, and assign it. */
1746     get_seccomp_filter(current);
1747     p->seccomp = current->seccomp;
1748 
1749     /*
1750      * Explicitly enable no_new_privs here in case it got set
1751      * between the task_struct being duplicated and holding the
1752      * sighand lock. The seccomp state and nnp must be in sync.
1753      */
1754     if (task_no_new_privs(current))
1755         task_set_no_new_privs(p);
1756 
1757     /*
1758      * If the parent gained a seccomp mode after copying thread
1759      * flags and between before we held the sighand lock, we have
1760      * to manually enable the seccomp thread flag here.
1761      */
1762     if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1763         set_task_syscall_work(p, SECCOMP);
1764 #endif
1765 }
1766 
1767 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1768 {
1769     current->clear_child_tid = tidptr;
1770 
1771     return task_pid_vnr(current);
1772 }
1773 
1774 static void rt_mutex_init_task(struct task_struct *p)
1775 {
1776     raw_spin_lock_init(&p->pi_lock);
1777 #ifdef CONFIG_RT_MUTEXES
1778     p->pi_waiters = RB_ROOT_CACHED;
1779     p->pi_top_task = NULL;
1780     p->pi_blocked_on = NULL;
1781 #endif
1782 }
1783 
1784 static inline void init_task_pid_links(struct task_struct *task)
1785 {
1786     enum pid_type type;
1787 
1788     for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1789         INIT_HLIST_NODE(&task->pid_links[type]);
1790 }
1791 
1792 static inline void
1793 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1794 {
1795     if (type == PIDTYPE_PID)
1796         task->thread_pid = pid;
1797     else
1798         task->signal->pids[type] = pid;
1799 }
1800 
1801 static inline void rcu_copy_process(struct task_struct *p)
1802 {
1803 #ifdef CONFIG_PREEMPT_RCU
1804     p->rcu_read_lock_nesting = 0;
1805     p->rcu_read_unlock_special.s = 0;
1806     p->rcu_blocked_node = NULL;
1807     INIT_LIST_HEAD(&p->rcu_node_entry);
1808 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1809 #ifdef CONFIG_TASKS_RCU
1810     p->rcu_tasks_holdout = false;
1811     INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1812     p->rcu_tasks_idle_cpu = -1;
1813 #endif /* #ifdef CONFIG_TASKS_RCU */
1814 #ifdef CONFIG_TASKS_TRACE_RCU
1815     p->trc_reader_nesting = 0;
1816     p->trc_reader_special.s = 0;
1817     INIT_LIST_HEAD(&p->trc_holdout_list);
1818     INIT_LIST_HEAD(&p->trc_blkd_node);
1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1820 }
1821 
1822 struct pid *pidfd_pid(const struct file *file)
1823 {
1824     if (file->f_op == &pidfd_fops)
1825         return file->private_data;
1826 
1827     return ERR_PTR(-EBADF);
1828 }
1829 
1830 static int pidfd_release(struct inode *inode, struct file *file)
1831 {
1832     struct pid *pid = file->private_data;
1833 
1834     file->private_data = NULL;
1835     put_pid(pid);
1836     return 0;
1837 }
1838 
1839 #ifdef CONFIG_PROC_FS
1840 /**
1841  * pidfd_show_fdinfo - print information about a pidfd
1842  * @m: proc fdinfo file
1843  * @f: file referencing a pidfd
1844  *
1845  * Pid:
1846  * This function will print the pid that a given pidfd refers to in the
1847  * pid namespace of the procfs instance.
1848  * If the pid namespace of the process is not a descendant of the pid
1849  * namespace of the procfs instance 0 will be shown as its pid. This is
1850  * similar to calling getppid() on a process whose parent is outside of
1851  * its pid namespace.
1852  *
1853  * NSpid:
1854  * If pid namespaces are supported then this function will also print
1855  * the pid of a given pidfd refers to for all descendant pid namespaces
1856  * starting from the current pid namespace of the instance, i.e. the
1857  * Pid field and the first entry in the NSpid field will be identical.
1858  * If the pid namespace of the process is not a descendant of the pid
1859  * namespace of the procfs instance 0 will be shown as its first NSpid
1860  * entry and no others will be shown.
1861  * Note that this differs from the Pid and NSpid fields in
1862  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1863  * the  pid namespace of the procfs instance. The difference becomes
1864  * obvious when sending around a pidfd between pid namespaces from a
1865  * different branch of the tree, i.e. where no ancestral relation is
1866  * present between the pid namespaces:
1867  * - create two new pid namespaces ns1 and ns2 in the initial pid
1868  *   namespace (also take care to create new mount namespaces in the
1869  *   new pid namespace and mount procfs)
1870  * - create a process with a pidfd in ns1
1871  * - send pidfd from ns1 to ns2
1872  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1873  *   have exactly one entry, which is 0
1874  */
1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1876 {
1877     struct pid *pid = f->private_data;
1878     struct pid_namespace *ns;
1879     pid_t nr = -1;
1880 
1881     if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1882         ns = proc_pid_ns(file_inode(m->file)->i_sb);
1883         nr = pid_nr_ns(pid, ns);
1884     }
1885 
1886     seq_put_decimal_ll(m, "Pid:\t", nr);
1887 
1888 #ifdef CONFIG_PID_NS
1889     seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1890     if (nr > 0) {
1891         int i;
1892 
1893         /* If nr is non-zero it means that 'pid' is valid and that
1894          * ns, i.e. the pid namespace associated with the procfs
1895          * instance, is in the pid namespace hierarchy of pid.
1896          * Start at one below the already printed level.
1897          */
1898         for (i = ns->level + 1; i <= pid->level; i++)
1899             seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1900     }
1901 #endif
1902     seq_putc(m, '\n');
1903 }
1904 #endif
1905 
1906 /*
1907  * Poll support for process exit notification.
1908  */
1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1910 {
1911     struct pid *pid = file->private_data;
1912     __poll_t poll_flags = 0;
1913 
1914     poll_wait(file, &pid->wait_pidfd, pts);
1915 
1916     /*
1917      * Inform pollers only when the whole thread group exits.
1918      * If the thread group leader exits before all other threads in the
1919      * group, then poll(2) should block, similar to the wait(2) family.
1920      */
1921     if (thread_group_exited(pid))
1922         poll_flags = EPOLLIN | EPOLLRDNORM;
1923 
1924     return poll_flags;
1925 }
1926 
1927 const struct file_operations pidfd_fops = {
1928     .release = pidfd_release,
1929     .poll = pidfd_poll,
1930 #ifdef CONFIG_PROC_FS
1931     .show_fdinfo = pidfd_show_fdinfo,
1932 #endif
1933 };
1934 
1935 static void __delayed_free_task(struct rcu_head *rhp)
1936 {
1937     struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1938 
1939     free_task(tsk);
1940 }
1941 
1942 static __always_inline void delayed_free_task(struct task_struct *tsk)
1943 {
1944     if (IS_ENABLED(CONFIG_MEMCG))
1945         call_rcu(&tsk->rcu, __delayed_free_task);
1946     else
1947         free_task(tsk);
1948 }
1949 
1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1951 {
1952     /* Skip if kernel thread */
1953     if (!tsk->mm)
1954         return;
1955 
1956     /* Skip if spawning a thread or using vfork */
1957     if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1958         return;
1959 
1960     /* We need to synchronize with __set_oom_adj */
1961     mutex_lock(&oom_adj_mutex);
1962     set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1963     /* Update the values in case they were changed after copy_signal */
1964     tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1965     tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1966     mutex_unlock(&oom_adj_mutex);
1967 }
1968 
1969 #ifdef CONFIG_RV
1970 static void rv_task_fork(struct task_struct *p)
1971 {
1972     int i;
1973 
1974     for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1975         p->rv[i].da_mon.monitoring = false;
1976 }
1977 #else
1978 #define rv_task_fork(p) do {} while (0)
1979 #endif
1980 
1981 /*
1982  * This creates a new process as a copy of the old one,
1983  * but does not actually start it yet.
1984  *
1985  * It copies the registers, and all the appropriate
1986  * parts of the process environment (as per the clone
1987  * flags). The actual kick-off is left to the caller.
1988  */
1989 static __latent_entropy struct task_struct *copy_process(
1990                     struct pid *pid,
1991                     int trace,
1992                     int node,
1993                     struct kernel_clone_args *args)
1994 {
1995     int pidfd = -1, retval;
1996     struct task_struct *p;
1997     struct multiprocess_signals delayed;
1998     struct file *pidfile = NULL;
1999     const u64 clone_flags = args->flags;
2000     struct nsproxy *nsp = current->nsproxy;
2001 
2002     /*
2003      * Don't allow sharing the root directory with processes in a different
2004      * namespace
2005      */
2006     if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2007         return ERR_PTR(-EINVAL);
2008 
2009     if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2010         return ERR_PTR(-EINVAL);
2011 
2012     /*
2013      * Thread groups must share signals as well, and detached threads
2014      * can only be started up within the thread group.
2015      */
2016     if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2017         return ERR_PTR(-EINVAL);
2018 
2019     /*
2020      * Shared signal handlers imply shared VM. By way of the above,
2021      * thread groups also imply shared VM. Blocking this case allows
2022      * for various simplifications in other code.
2023      */
2024     if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2025         return ERR_PTR(-EINVAL);
2026 
2027     /*
2028      * Siblings of global init remain as zombies on exit since they are
2029      * not reaped by their parent (swapper). To solve this and to avoid
2030      * multi-rooted process trees, prevent global and container-inits
2031      * from creating siblings.
2032      */
2033     if ((clone_flags & CLONE_PARENT) &&
2034                 current->signal->flags & SIGNAL_UNKILLABLE)
2035         return ERR_PTR(-EINVAL);
2036 
2037     /*
2038      * If the new process will be in a different pid or user namespace
2039      * do not allow it to share a thread group with the forking task.
2040      */
2041     if (clone_flags & CLONE_THREAD) {
2042         if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2043             (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2044             return ERR_PTR(-EINVAL);
2045     }
2046 
2047     /*
2048      * If the new process will be in a different time namespace
2049      * do not allow it to share VM or a thread group with the forking task.
2050      */
2051     if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2052         if (nsp->time_ns != nsp->time_ns_for_children)
2053             return ERR_PTR(-EINVAL);
2054     }
2055 
2056     if (clone_flags & CLONE_PIDFD) {
2057         /*
2058          * - CLONE_DETACHED is blocked so that we can potentially
2059          *   reuse it later for CLONE_PIDFD.
2060          * - CLONE_THREAD is blocked until someone really needs it.
2061          */
2062         if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2063             return ERR_PTR(-EINVAL);
2064     }
2065 
2066     /*
2067      * Force any signals received before this point to be delivered
2068      * before the fork happens.  Collect up signals sent to multiple
2069      * processes that happen during the fork and delay them so that
2070      * they appear to happen after the fork.
2071      */
2072     sigemptyset(&delayed.signal);
2073     INIT_HLIST_NODE(&delayed.node);
2074 
2075     spin_lock_irq(&current->sighand->siglock);
2076     if (!(clone_flags & CLONE_THREAD))
2077         hlist_add_head(&delayed.node, &current->signal->multiprocess);
2078     recalc_sigpending();
2079     spin_unlock_irq(&current->sighand->siglock);
2080     retval = -ERESTARTNOINTR;
2081     if (task_sigpending(current))
2082         goto fork_out;
2083 
2084     retval = -ENOMEM;
2085     p = dup_task_struct(current, node);
2086     if (!p)
2087         goto fork_out;
2088     p->flags &= ~PF_KTHREAD;
2089     if (args->kthread)
2090         p->flags |= PF_KTHREAD;
2091     if (args->io_thread) {
2092         /*
2093          * Mark us an IO worker, and block any signal that isn't
2094          * fatal or STOP
2095          */
2096         p->flags |= PF_IO_WORKER;
2097         siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2098     }
2099 
2100     p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2101     /*
2102      * Clear TID on mm_release()?
2103      */
2104     p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2105 
2106     ftrace_graph_init_task(p);
2107 
2108     rt_mutex_init_task(p);
2109 
2110     lockdep_assert_irqs_enabled();
2111 #ifdef CONFIG_PROVE_LOCKING
2112     DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2113 #endif
2114     retval = copy_creds(p, clone_flags);
2115     if (retval < 0)
2116         goto bad_fork_free;
2117 
2118     retval = -EAGAIN;
2119     if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2120         if (p->real_cred->user != INIT_USER &&
2121             !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2122             goto bad_fork_cleanup_count;
2123     }
2124     current->flags &= ~PF_NPROC_EXCEEDED;
2125 
2126     /*
2127      * If multiple threads are within copy_process(), then this check
2128      * triggers too late. This doesn't hurt, the check is only there
2129      * to stop root fork bombs.
2130      */
2131     retval = -EAGAIN;
2132     if (data_race(nr_threads >= max_threads))
2133         goto bad_fork_cleanup_count;
2134 
2135     delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2136     p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2137     p->flags |= PF_FORKNOEXEC;
2138     INIT_LIST_HEAD(&p->children);
2139     INIT_LIST_HEAD(&p->sibling);
2140     rcu_copy_process(p);
2141     p->vfork_done = NULL;
2142     spin_lock_init(&p->alloc_lock);
2143 
2144     init_sigpending(&p->pending);
2145 
2146     p->utime = p->stime = p->gtime = 0;
2147 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2148     p->utimescaled = p->stimescaled = 0;
2149 #endif
2150     prev_cputime_init(&p->prev_cputime);
2151 
2152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2153     seqcount_init(&p->vtime.seqcount);
2154     p->vtime.starttime = 0;
2155     p->vtime.state = VTIME_INACTIVE;
2156 #endif
2157 
2158 #ifdef CONFIG_IO_URING
2159     p->io_uring = NULL;
2160 #endif
2161 
2162 #if defined(SPLIT_RSS_COUNTING)
2163     memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2164 #endif
2165 
2166     p->default_timer_slack_ns = current->timer_slack_ns;
2167 
2168 #ifdef CONFIG_PSI
2169     p->psi_flags = 0;
2170 #endif
2171 
2172     task_io_accounting_init(&p->ioac);
2173     acct_clear_integrals(p);
2174 
2175     posix_cputimers_init(&p->posix_cputimers);
2176 
2177     p->io_context = NULL;
2178     audit_set_context(p, NULL);
2179     cgroup_fork(p);
2180     if (args->kthread) {
2181         if (!set_kthread_struct(p))
2182             goto bad_fork_cleanup_delayacct;
2183     }
2184 #ifdef CONFIG_NUMA
2185     p->mempolicy = mpol_dup(p->mempolicy);
2186     if (IS_ERR(p->mempolicy)) {
2187         retval = PTR_ERR(p->mempolicy);
2188         p->mempolicy = NULL;
2189         goto bad_fork_cleanup_delayacct;
2190     }
2191 #endif
2192 #ifdef CONFIG_CPUSETS
2193     p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2194     p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2195     seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2196 #endif
2197 #ifdef CONFIG_TRACE_IRQFLAGS
2198     memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2199     p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2200     p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2201     p->softirqs_enabled     = 1;
2202     p->softirq_context      = 0;
2203 #endif
2204 
2205     p->pagefault_disabled = 0;
2206 
2207 #ifdef CONFIG_LOCKDEP
2208     lockdep_init_task(p);
2209 #endif
2210 
2211 #ifdef CONFIG_DEBUG_MUTEXES
2212     p->blocked_on = NULL; /* not blocked yet */
2213 #endif
2214 #ifdef CONFIG_BCACHE
2215     p->sequential_io    = 0;
2216     p->sequential_io_avg    = 0;
2217 #endif
2218 #ifdef CONFIG_BPF_SYSCALL
2219     RCU_INIT_POINTER(p->bpf_storage, NULL);
2220     p->bpf_ctx = NULL;
2221 #endif
2222 
2223     /* Perform scheduler related setup. Assign this task to a CPU. */
2224     retval = sched_fork(clone_flags, p);
2225     if (retval)
2226         goto bad_fork_cleanup_policy;
2227 
2228     retval = perf_event_init_task(p, clone_flags);
2229     if (retval)
2230         goto bad_fork_cleanup_policy;
2231     retval = audit_alloc(p);
2232     if (retval)
2233         goto bad_fork_cleanup_perf;
2234     /* copy all the process information */
2235     shm_init_task(p);
2236     retval = security_task_alloc(p, clone_flags);
2237     if (retval)
2238         goto bad_fork_cleanup_audit;
2239     retval = copy_semundo(clone_flags, p);
2240     if (retval)
2241         goto bad_fork_cleanup_security;
2242     retval = copy_files(clone_flags, p);
2243     if (retval)
2244         goto bad_fork_cleanup_semundo;
2245     retval = copy_fs(clone_flags, p);
2246     if (retval)
2247         goto bad_fork_cleanup_files;
2248     retval = copy_sighand(clone_flags, p);
2249     if (retval)
2250         goto bad_fork_cleanup_fs;
2251     retval = copy_signal(clone_flags, p);
2252     if (retval)
2253         goto bad_fork_cleanup_sighand;
2254     retval = copy_mm(clone_flags, p);
2255     if (retval)
2256         goto bad_fork_cleanup_signal;
2257     retval = copy_namespaces(clone_flags, p);
2258     if (retval)
2259         goto bad_fork_cleanup_mm;
2260     retval = copy_io(clone_flags, p);
2261     if (retval)
2262         goto bad_fork_cleanup_namespaces;
2263     retval = copy_thread(p, args);
2264     if (retval)
2265         goto bad_fork_cleanup_io;
2266 
2267     stackleak_task_init(p);
2268 
2269     if (pid != &init_struct_pid) {
2270         pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2271                 args->set_tid_size);
2272         if (IS_ERR(pid)) {
2273             retval = PTR_ERR(pid);
2274             goto bad_fork_cleanup_thread;
2275         }
2276     }
2277 
2278     /*
2279      * This has to happen after we've potentially unshared the file
2280      * descriptor table (so that the pidfd doesn't leak into the child
2281      * if the fd table isn't shared).
2282      */
2283     if (clone_flags & CLONE_PIDFD) {
2284         retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2285         if (retval < 0)
2286             goto bad_fork_free_pid;
2287 
2288         pidfd = retval;
2289 
2290         pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2291                           O_RDWR | O_CLOEXEC);
2292         if (IS_ERR(pidfile)) {
2293             put_unused_fd(pidfd);
2294             retval = PTR_ERR(pidfile);
2295             goto bad_fork_free_pid;
2296         }
2297         get_pid(pid);   /* held by pidfile now */
2298 
2299         retval = put_user(pidfd, args->pidfd);
2300         if (retval)
2301             goto bad_fork_put_pidfd;
2302     }
2303 
2304 #ifdef CONFIG_BLOCK
2305     p->plug = NULL;
2306 #endif
2307     futex_init_task(p);
2308 
2309     /*
2310      * sigaltstack should be cleared when sharing the same VM
2311      */
2312     if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2313         sas_ss_reset(p);
2314 
2315     /*
2316      * Syscall tracing and stepping should be turned off in the
2317      * child regardless of CLONE_PTRACE.
2318      */
2319     user_disable_single_step(p);
2320     clear_task_syscall_work(p, SYSCALL_TRACE);
2321 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2322     clear_task_syscall_work(p, SYSCALL_EMU);
2323 #endif
2324     clear_tsk_latency_tracing(p);
2325 
2326     /* ok, now we should be set up.. */
2327     p->pid = pid_nr(pid);
2328     if (clone_flags & CLONE_THREAD) {
2329         p->group_leader = current->group_leader;
2330         p->tgid = current->tgid;
2331     } else {
2332         p->group_leader = p;
2333         p->tgid = p->pid;
2334     }
2335 
2336     p->nr_dirtied = 0;
2337     p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2338     p->dirty_paused_when = 0;
2339 
2340     p->pdeath_signal = 0;
2341     INIT_LIST_HEAD(&p->thread_group);
2342     p->task_works = NULL;
2343     clear_posix_cputimers_work(p);
2344 
2345 #ifdef CONFIG_KRETPROBES
2346     p->kretprobe_instances.first = NULL;
2347 #endif
2348 #ifdef CONFIG_RETHOOK
2349     p->rethooks.first = NULL;
2350 #endif
2351 
2352     /*
2353      * Ensure that the cgroup subsystem policies allow the new process to be
2354      * forked. It should be noted that the new process's css_set can be changed
2355      * between here and cgroup_post_fork() if an organisation operation is in
2356      * progress.
2357      */
2358     retval = cgroup_can_fork(p, args);
2359     if (retval)
2360         goto bad_fork_put_pidfd;
2361 
2362     /*
2363      * Now that the cgroups are pinned, re-clone the parent cgroup and put
2364      * the new task on the correct runqueue. All this *before* the task
2365      * becomes visible.
2366      *
2367      * This isn't part of ->can_fork() because while the re-cloning is
2368      * cgroup specific, it unconditionally needs to place the task on a
2369      * runqueue.
2370      */
2371     sched_cgroup_fork(p, args);
2372 
2373     /*
2374      * From this point on we must avoid any synchronous user-space
2375      * communication until we take the tasklist-lock. In particular, we do
2376      * not want user-space to be able to predict the process start-time by
2377      * stalling fork(2) after we recorded the start_time but before it is
2378      * visible to the system.
2379      */
2380 
2381     p->start_time = ktime_get_ns();
2382     p->start_boottime = ktime_get_boottime_ns();
2383 
2384     /*
2385      * Make it visible to the rest of the system, but dont wake it up yet.
2386      * Need tasklist lock for parent etc handling!
2387      */
2388     write_lock_irq(&tasklist_lock);
2389 
2390     /* CLONE_PARENT re-uses the old parent */
2391     if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2392         p->real_parent = current->real_parent;
2393         p->parent_exec_id = current->parent_exec_id;
2394         if (clone_flags & CLONE_THREAD)
2395             p->exit_signal = -1;
2396         else
2397             p->exit_signal = current->group_leader->exit_signal;
2398     } else {
2399         p->real_parent = current;
2400         p->parent_exec_id = current->self_exec_id;
2401         p->exit_signal = args->exit_signal;
2402     }
2403 
2404     klp_copy_process(p);
2405 
2406     sched_core_fork(p);
2407 
2408     spin_lock(&current->sighand->siglock);
2409 
2410     /*
2411      * Copy seccomp details explicitly here, in case they were changed
2412      * before holding sighand lock.
2413      */
2414     copy_seccomp(p);
2415 
2416     rv_task_fork(p);
2417 
2418     rseq_fork(p, clone_flags);
2419 
2420     /* Don't start children in a dying pid namespace */
2421     if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2422         retval = -ENOMEM;
2423         goto bad_fork_cancel_cgroup;
2424     }
2425 
2426     /* Let kill terminate clone/fork in the middle */
2427     if (fatal_signal_pending(current)) {
2428         retval = -EINTR;
2429         goto bad_fork_cancel_cgroup;
2430     }
2431 
2432     init_task_pid_links(p);
2433     if (likely(p->pid)) {
2434         ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2435 
2436         init_task_pid(p, PIDTYPE_PID, pid);
2437         if (thread_group_leader(p)) {
2438             init_task_pid(p, PIDTYPE_TGID, pid);
2439             init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2440             init_task_pid(p, PIDTYPE_SID, task_session(current));
2441 
2442             if (is_child_reaper(pid)) {
2443                 ns_of_pid(pid)->child_reaper = p;
2444                 p->signal->flags |= SIGNAL_UNKILLABLE;
2445             }
2446             p->signal->shared_pending.signal = delayed.signal;
2447             p->signal->tty = tty_kref_get(current->signal->tty);
2448             /*
2449              * Inherit has_child_subreaper flag under the same
2450              * tasklist_lock with adding child to the process tree
2451              * for propagate_has_child_subreaper optimization.
2452              */
2453             p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2454                              p->real_parent->signal->is_child_subreaper;
2455             list_add_tail(&p->sibling, &p->real_parent->children);
2456             list_add_tail_rcu(&p->tasks, &init_task.tasks);
2457             attach_pid(p, PIDTYPE_TGID);
2458             attach_pid(p, PIDTYPE_PGID);
2459             attach_pid(p, PIDTYPE_SID);
2460             __this_cpu_inc(process_counts);
2461         } else {
2462             current->signal->nr_threads++;
2463             atomic_inc(&current->signal->live);
2464             refcount_inc(&current->signal->sigcnt);
2465             task_join_group_stop(p);
2466             list_add_tail_rcu(&p->thread_group,
2467                       &p->group_leader->thread_group);
2468             list_add_tail_rcu(&p->thread_node,
2469                       &p->signal->thread_head);
2470         }
2471         attach_pid(p, PIDTYPE_PID);
2472         nr_threads++;
2473     }
2474     total_forks++;
2475     hlist_del_init(&delayed.node);
2476     spin_unlock(&current->sighand->siglock);
2477     syscall_tracepoint_update(p);
2478     write_unlock_irq(&tasklist_lock);
2479 
2480     if (pidfile)
2481         fd_install(pidfd, pidfile);
2482 
2483     proc_fork_connector(p);
2484     sched_post_fork(p);
2485     cgroup_post_fork(p, args);
2486     perf_event_fork(p);
2487 
2488     trace_task_newtask(p, clone_flags);
2489     uprobe_copy_process(p, clone_flags);
2490 
2491     copy_oom_score_adj(clone_flags, p);
2492 
2493     return p;
2494 
2495 bad_fork_cancel_cgroup:
2496     sched_core_free(p);
2497     spin_unlock(&current->sighand->siglock);
2498     write_unlock_irq(&tasklist_lock);
2499     cgroup_cancel_fork(p, args);
2500 bad_fork_put_pidfd:
2501     if (clone_flags & CLONE_PIDFD) {
2502         fput(pidfile);
2503         put_unused_fd(pidfd);
2504     }
2505 bad_fork_free_pid:
2506     if (pid != &init_struct_pid)
2507         free_pid(pid);
2508 bad_fork_cleanup_thread:
2509     exit_thread(p);
2510 bad_fork_cleanup_io:
2511     if (p->io_context)
2512         exit_io_context(p);
2513 bad_fork_cleanup_namespaces:
2514     exit_task_namespaces(p);
2515 bad_fork_cleanup_mm:
2516     if (p->mm) {
2517         mm_clear_owner(p->mm, p);
2518         mmput(p->mm);
2519     }
2520 bad_fork_cleanup_signal:
2521     if (!(clone_flags & CLONE_THREAD))
2522         free_signal_struct(p->signal);
2523 bad_fork_cleanup_sighand:
2524     __cleanup_sighand(p->sighand);
2525 bad_fork_cleanup_fs:
2526     exit_fs(p); /* blocking */
2527 bad_fork_cleanup_files:
2528     exit_files(p); /* blocking */
2529 bad_fork_cleanup_semundo:
2530     exit_sem(p);
2531 bad_fork_cleanup_security:
2532     security_task_free(p);
2533 bad_fork_cleanup_audit:
2534     audit_free(p);
2535 bad_fork_cleanup_perf:
2536     perf_event_free_task(p);
2537 bad_fork_cleanup_policy:
2538     lockdep_free_task(p);
2539 #ifdef CONFIG_NUMA
2540     mpol_put(p->mempolicy);
2541 #endif
2542 bad_fork_cleanup_delayacct:
2543     delayacct_tsk_free(p);
2544 bad_fork_cleanup_count:
2545     dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2546     exit_creds(p);
2547 bad_fork_free:
2548     WRITE_ONCE(p->__state, TASK_DEAD);
2549     exit_task_stack_account(p);
2550     put_task_stack(p);
2551     delayed_free_task(p);
2552 fork_out:
2553     spin_lock_irq(&current->sighand->siglock);
2554     hlist_del_init(&delayed.node);
2555     spin_unlock_irq(&current->sighand->siglock);
2556     return ERR_PTR(retval);
2557 }
2558 
2559 static inline void init_idle_pids(struct task_struct *idle)
2560 {
2561     enum pid_type type;
2562 
2563     for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2564         INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2565         init_task_pid(idle, type, &init_struct_pid);
2566     }
2567 }
2568 
2569 static int idle_dummy(void *dummy)
2570 {
2571     /* This function is never called */
2572     return 0;
2573 }
2574 
2575 struct task_struct * __init fork_idle(int cpu)
2576 {
2577     struct task_struct *task;
2578     struct kernel_clone_args args = {
2579         .flags      = CLONE_VM,
2580         .fn     = &idle_dummy,
2581         .fn_arg     = NULL,
2582         .kthread    = 1,
2583         .idle       = 1,
2584     };
2585 
2586     task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2587     if (!IS_ERR(task)) {
2588         init_idle_pids(task);
2589         init_idle(task, cpu);
2590     }
2591 
2592     return task;
2593 }
2594 
2595 struct mm_struct *copy_init_mm(void)
2596 {
2597     return dup_mm(NULL, &init_mm);
2598 }
2599 
2600 /*
2601  * This is like kernel_clone(), but shaved down and tailored to just
2602  * creating io_uring workers. It returns a created task, or an error pointer.
2603  * The returned task is inactive, and the caller must fire it up through
2604  * wake_up_new_task(p). All signals are blocked in the created task.
2605  */
2606 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2607 {
2608     unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2609                 CLONE_IO;
2610     struct kernel_clone_args args = {
2611         .flags      = ((lower_32_bits(flags) | CLONE_VM |
2612                     CLONE_UNTRACED) & ~CSIGNAL),
2613         .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2614         .fn     = fn,
2615         .fn_arg     = arg,
2616         .io_thread  = 1,
2617     };
2618 
2619     return copy_process(NULL, 0, node, &args);
2620 }
2621 
2622 /*
2623  *  Ok, this is the main fork-routine.
2624  *
2625  * It copies the process, and if successful kick-starts
2626  * it and waits for it to finish using the VM if required.
2627  *
2628  * args->exit_signal is expected to be checked for sanity by the caller.
2629  */
2630 pid_t kernel_clone(struct kernel_clone_args *args)
2631 {
2632     u64 clone_flags = args->flags;
2633     struct completion vfork;
2634     struct pid *pid;
2635     struct task_struct *p;
2636     int trace = 0;
2637     pid_t nr;
2638 
2639     /*
2640      * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2641      * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2642      * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2643      * field in struct clone_args and it still doesn't make sense to have
2644      * them both point at the same memory location. Performing this check
2645      * here has the advantage that we don't need to have a separate helper
2646      * to check for legacy clone().
2647      */
2648     if ((args->flags & CLONE_PIDFD) &&
2649         (args->flags & CLONE_PARENT_SETTID) &&
2650         (args->pidfd == args->parent_tid))
2651         return -EINVAL;
2652 
2653     /*
2654      * Determine whether and which event to report to ptracer.  When
2655      * called from kernel_thread or CLONE_UNTRACED is explicitly
2656      * requested, no event is reported; otherwise, report if the event
2657      * for the type of forking is enabled.
2658      */
2659     if (!(clone_flags & CLONE_UNTRACED)) {
2660         if (clone_flags & CLONE_VFORK)
2661             trace = PTRACE_EVENT_VFORK;
2662         else if (args->exit_signal != SIGCHLD)
2663             trace = PTRACE_EVENT_CLONE;
2664         else
2665             trace = PTRACE_EVENT_FORK;
2666 
2667         if (likely(!ptrace_event_enabled(current, trace)))
2668             trace = 0;
2669     }
2670 
2671     p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2672     add_latent_entropy();
2673 
2674     if (IS_ERR(p))
2675         return PTR_ERR(p);
2676 
2677     /*
2678      * Do this prior waking up the new thread - the thread pointer
2679      * might get invalid after that point, if the thread exits quickly.
2680      */
2681     trace_sched_process_fork(current, p);
2682 
2683     pid = get_task_pid(p, PIDTYPE_PID);
2684     nr = pid_vnr(pid);
2685 
2686     if (clone_flags & CLONE_PARENT_SETTID)
2687         put_user(nr, args->parent_tid);
2688 
2689     if (clone_flags & CLONE_VFORK) {
2690         p->vfork_done = &vfork;
2691         init_completion(&vfork);
2692         get_task_struct(p);
2693     }
2694 
2695     wake_up_new_task(p);
2696 
2697     /* forking complete and child started to run, tell ptracer */
2698     if (unlikely(trace))
2699         ptrace_event_pid(trace, pid);
2700 
2701     if (clone_flags & CLONE_VFORK) {
2702         if (!wait_for_vfork_done(p, &vfork))
2703             ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2704     }
2705 
2706     put_pid(pid);
2707     return nr;
2708 }
2709 
2710 /*
2711  * Create a kernel thread.
2712  */
2713 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2714 {
2715     struct kernel_clone_args args = {
2716         .flags      = ((lower_32_bits(flags) | CLONE_VM |
2717                     CLONE_UNTRACED) & ~CSIGNAL),
2718         .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2719         .fn     = fn,
2720         .fn_arg     = arg,
2721         .kthread    = 1,
2722     };
2723 
2724     return kernel_clone(&args);
2725 }
2726 
2727 /*
2728  * Create a user mode thread.
2729  */
2730 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2731 {
2732     struct kernel_clone_args args = {
2733         .flags      = ((lower_32_bits(flags) | CLONE_VM |
2734                     CLONE_UNTRACED) & ~CSIGNAL),
2735         .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2736         .fn     = fn,
2737         .fn_arg     = arg,
2738     };
2739 
2740     return kernel_clone(&args);
2741 }
2742 
2743 #ifdef __ARCH_WANT_SYS_FORK
2744 SYSCALL_DEFINE0(fork)
2745 {
2746 #ifdef CONFIG_MMU
2747     struct kernel_clone_args args = {
2748         .exit_signal = SIGCHLD,
2749     };
2750 
2751     return kernel_clone(&args);
2752 #else
2753     /* can not support in nommu mode */
2754     return -EINVAL;
2755 #endif
2756 }
2757 #endif
2758 
2759 #ifdef __ARCH_WANT_SYS_VFORK
2760 SYSCALL_DEFINE0(vfork)
2761 {
2762     struct kernel_clone_args args = {
2763         .flags      = CLONE_VFORK | CLONE_VM,
2764         .exit_signal    = SIGCHLD,
2765     };
2766 
2767     return kernel_clone(&args);
2768 }
2769 #endif
2770 
2771 #ifdef __ARCH_WANT_SYS_CLONE
2772 #ifdef CONFIG_CLONE_BACKWARDS
2773 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2774          int __user *, parent_tidptr,
2775          unsigned long, tls,
2776          int __user *, child_tidptr)
2777 #elif defined(CONFIG_CLONE_BACKWARDS2)
2778 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2779          int __user *, parent_tidptr,
2780          int __user *, child_tidptr,
2781          unsigned long, tls)
2782 #elif defined(CONFIG_CLONE_BACKWARDS3)
2783 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2784         int, stack_size,
2785         int __user *, parent_tidptr,
2786         int __user *, child_tidptr,
2787         unsigned long, tls)
2788 #else
2789 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2790          int __user *, parent_tidptr,
2791          int __user *, child_tidptr,
2792          unsigned long, tls)
2793 #endif
2794 {
2795     struct kernel_clone_args args = {
2796         .flags      = (lower_32_bits(clone_flags) & ~CSIGNAL),
2797         .pidfd      = parent_tidptr,
2798         .child_tid  = child_tidptr,
2799         .parent_tid = parent_tidptr,
2800         .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2801         .stack      = newsp,
2802         .tls        = tls,
2803     };
2804 
2805     return kernel_clone(&args);
2806 }
2807 #endif
2808 
2809 #ifdef __ARCH_WANT_SYS_CLONE3
2810 
2811 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2812                           struct clone_args __user *uargs,
2813                           size_t usize)
2814 {
2815     int err;
2816     struct clone_args args;
2817     pid_t *kset_tid = kargs->set_tid;
2818 
2819     BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2820              CLONE_ARGS_SIZE_VER0);
2821     BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2822              CLONE_ARGS_SIZE_VER1);
2823     BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2824              CLONE_ARGS_SIZE_VER2);
2825     BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2826 
2827     if (unlikely(usize > PAGE_SIZE))
2828         return -E2BIG;
2829     if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2830         return -EINVAL;
2831 
2832     err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2833     if (err)
2834         return err;
2835 
2836     if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2837         return -EINVAL;
2838 
2839     if (unlikely(!args.set_tid && args.set_tid_size > 0))
2840         return -EINVAL;
2841 
2842     if (unlikely(args.set_tid && args.set_tid_size == 0))
2843         return -EINVAL;
2844 
2845     /*
2846      * Verify that higher 32bits of exit_signal are unset and that
2847      * it is a valid signal
2848      */
2849     if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2850              !valid_signal(args.exit_signal)))
2851         return -EINVAL;
2852 
2853     if ((args.flags & CLONE_INTO_CGROUP) &&
2854         (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2855         return -EINVAL;
2856 
2857     *kargs = (struct kernel_clone_args){
2858         .flags      = args.flags,
2859         .pidfd      = u64_to_user_ptr(args.pidfd),
2860         .child_tid  = u64_to_user_ptr(args.child_tid),
2861         .parent_tid = u64_to_user_ptr(args.parent_tid),
2862         .exit_signal    = args.exit_signal,
2863         .stack      = args.stack,
2864         .stack_size = args.stack_size,
2865         .tls        = args.tls,
2866         .set_tid_size   = args.set_tid_size,
2867         .cgroup     = args.cgroup,
2868     };
2869 
2870     if (args.set_tid &&
2871         copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2872             (kargs->set_tid_size * sizeof(pid_t))))
2873         return -EFAULT;
2874 
2875     kargs->set_tid = kset_tid;
2876 
2877     return 0;
2878 }
2879 
2880 /**
2881  * clone3_stack_valid - check and prepare stack
2882  * @kargs: kernel clone args
2883  *
2884  * Verify that the stack arguments userspace gave us are sane.
2885  * In addition, set the stack direction for userspace since it's easy for us to
2886  * determine.
2887  */
2888 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2889 {
2890     if (kargs->stack == 0) {
2891         if (kargs->stack_size > 0)
2892             return false;
2893     } else {
2894         if (kargs->stack_size == 0)
2895             return false;
2896 
2897         if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2898             return false;
2899 
2900 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2901         kargs->stack += kargs->stack_size;
2902 #endif
2903     }
2904 
2905     return true;
2906 }
2907 
2908 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2909 {
2910     /* Verify that no unknown flags are passed along. */
2911     if (kargs->flags &
2912         ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2913         return false;
2914 
2915     /*
2916      * - make the CLONE_DETACHED bit reusable for clone3
2917      * - make the CSIGNAL bits reusable for clone3
2918      */
2919     if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2920         return false;
2921 
2922     if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2923         (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2924         return false;
2925 
2926     if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2927         kargs->exit_signal)
2928         return false;
2929 
2930     if (!clone3_stack_valid(kargs))
2931         return false;
2932 
2933     return true;
2934 }
2935 
2936 /**
2937  * clone3 - create a new process with specific properties
2938  * @uargs: argument structure
2939  * @size:  size of @uargs
2940  *
2941  * clone3() is the extensible successor to clone()/clone2().
2942  * It takes a struct as argument that is versioned by its size.
2943  *
2944  * Return: On success, a positive PID for the child process.
2945  *         On error, a negative errno number.
2946  */
2947 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2948 {
2949     int err;
2950 
2951     struct kernel_clone_args kargs;
2952     pid_t set_tid[MAX_PID_NS_LEVEL];
2953 
2954     kargs.set_tid = set_tid;
2955 
2956     err = copy_clone_args_from_user(&kargs, uargs, size);
2957     if (err)
2958         return err;
2959 
2960     if (!clone3_args_valid(&kargs))
2961         return -EINVAL;
2962 
2963     return kernel_clone(&kargs);
2964 }
2965 #endif
2966 
2967 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2968 {
2969     struct task_struct *leader, *parent, *child;
2970     int res;
2971 
2972     read_lock(&tasklist_lock);
2973     leader = top = top->group_leader;
2974 down:
2975     for_each_thread(leader, parent) {
2976         list_for_each_entry(child, &parent->children, sibling) {
2977             res = visitor(child, data);
2978             if (res) {
2979                 if (res < 0)
2980                     goto out;
2981                 leader = child;
2982                 goto down;
2983             }
2984 up:
2985             ;
2986         }
2987     }
2988 
2989     if (leader != top) {
2990         child = leader;
2991         parent = child->real_parent;
2992         leader = parent->group_leader;
2993         goto up;
2994     }
2995 out:
2996     read_unlock(&tasklist_lock);
2997 }
2998 
2999 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3000 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3001 #endif
3002 
3003 static void sighand_ctor(void *data)
3004 {
3005     struct sighand_struct *sighand = data;
3006 
3007     spin_lock_init(&sighand->siglock);
3008     init_waitqueue_head(&sighand->signalfd_wqh);
3009 }
3010 
3011 void __init proc_caches_init(void)
3012 {
3013     unsigned int mm_size;
3014 
3015     sighand_cachep = kmem_cache_create("sighand_cache",
3016             sizeof(struct sighand_struct), 0,
3017             SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3018             SLAB_ACCOUNT, sighand_ctor);
3019     signal_cachep = kmem_cache_create("signal_cache",
3020             sizeof(struct signal_struct), 0,
3021             SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3022             NULL);
3023     files_cachep = kmem_cache_create("files_cache",
3024             sizeof(struct files_struct), 0,
3025             SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3026             NULL);
3027     fs_cachep = kmem_cache_create("fs_cache",
3028             sizeof(struct fs_struct), 0,
3029             SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3030             NULL);
3031 
3032     /*
3033      * The mm_cpumask is located at the end of mm_struct, and is
3034      * dynamically sized based on the maximum CPU number this system
3035      * can have, taking hotplug into account (nr_cpu_ids).
3036      */
3037     mm_size = sizeof(struct mm_struct) + cpumask_size();
3038 
3039     mm_cachep = kmem_cache_create_usercopy("mm_struct",
3040             mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3041             SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3042             offsetof(struct mm_struct, saved_auxv),
3043             sizeof_field(struct mm_struct, saved_auxv),
3044             NULL);
3045     vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3046     mmap_init();
3047     nsproxy_cache_init();
3048 }
3049 
3050 /*
3051  * Check constraints on flags passed to the unshare system call.
3052  */
3053 static int check_unshare_flags(unsigned long unshare_flags)
3054 {
3055     if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3056                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3057                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3058                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3059                 CLONE_NEWTIME))
3060         return -EINVAL;
3061     /*
3062      * Not implemented, but pretend it works if there is nothing
3063      * to unshare.  Note that unsharing the address space or the
3064      * signal handlers also need to unshare the signal queues (aka
3065      * CLONE_THREAD).
3066      */
3067     if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3068         if (!thread_group_empty(current))
3069             return -EINVAL;
3070     }
3071     if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3072         if (refcount_read(&current->sighand->count) > 1)
3073             return -EINVAL;
3074     }
3075     if (unshare_flags & CLONE_VM) {
3076         if (!current_is_single_threaded())
3077             return -EINVAL;
3078     }
3079 
3080     return 0;
3081 }
3082 
3083 /*
3084  * Unshare the filesystem structure if it is being shared
3085  */
3086 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3087 {
3088     struct fs_struct *fs = current->fs;
3089 
3090     if (!(unshare_flags & CLONE_FS) || !fs)
3091         return 0;
3092 
3093     /* don't need lock here; in the worst case we'll do useless copy */
3094     if (fs->users == 1)
3095         return 0;
3096 
3097     *new_fsp = copy_fs_struct(fs);
3098     if (!*new_fsp)
3099         return -ENOMEM;
3100 
3101     return 0;
3102 }
3103 
3104 /*
3105  * Unshare file descriptor table if it is being shared
3106  */
3107 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3108            struct files_struct **new_fdp)
3109 {
3110     struct files_struct *fd = current->files;
3111     int error = 0;
3112 
3113     if ((unshare_flags & CLONE_FILES) &&
3114         (fd && atomic_read(&fd->count) > 1)) {
3115         *new_fdp = dup_fd(fd, max_fds, &error);
3116         if (!*new_fdp)
3117             return error;
3118     }
3119 
3120     return 0;
3121 }
3122 
3123 /*
3124  * unshare allows a process to 'unshare' part of the process
3125  * context which was originally shared using clone.  copy_*
3126  * functions used by kernel_clone() cannot be used here directly
3127  * because they modify an inactive task_struct that is being
3128  * constructed. Here we are modifying the current, active,
3129  * task_struct.
3130  */
3131 int ksys_unshare(unsigned long unshare_flags)
3132 {
3133     struct fs_struct *fs, *new_fs = NULL;
3134     struct files_struct *new_fd = NULL;
3135     struct cred *new_cred = NULL;
3136     struct nsproxy *new_nsproxy = NULL;
3137     int do_sysvsem = 0;
3138     int err;
3139 
3140     /*
3141      * If unsharing a user namespace must also unshare the thread group
3142      * and unshare the filesystem root and working directories.
3143      */
3144     if (unshare_flags & CLONE_NEWUSER)
3145         unshare_flags |= CLONE_THREAD | CLONE_FS;
3146     /*
3147      * If unsharing vm, must also unshare signal handlers.
3148      */
3149     if (unshare_flags & CLONE_VM)
3150         unshare_flags |= CLONE_SIGHAND;
3151     /*
3152      * If unsharing a signal handlers, must also unshare the signal queues.
3153      */
3154     if (unshare_flags & CLONE_SIGHAND)
3155         unshare_flags |= CLONE_THREAD;
3156     /*
3157      * If unsharing namespace, must also unshare filesystem information.
3158      */
3159     if (unshare_flags & CLONE_NEWNS)
3160         unshare_flags |= CLONE_FS;
3161 
3162     err = check_unshare_flags(unshare_flags);
3163     if (err)
3164         goto bad_unshare_out;
3165     /*
3166      * CLONE_NEWIPC must also detach from the undolist: after switching
3167      * to a new ipc namespace, the semaphore arrays from the old
3168      * namespace are unreachable.
3169      */
3170     if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3171         do_sysvsem = 1;
3172     err = unshare_fs(unshare_flags, &new_fs);
3173     if (err)
3174         goto bad_unshare_out;
3175     err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3176     if (err)
3177         goto bad_unshare_cleanup_fs;
3178     err = unshare_userns(unshare_flags, &new_cred);
3179     if (err)
3180         goto bad_unshare_cleanup_fd;
3181     err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3182                      new_cred, new_fs);
3183     if (err)
3184         goto bad_unshare_cleanup_cred;
3185 
3186     if (new_cred) {
3187         err = set_cred_ucounts(new_cred);
3188         if (err)
3189             goto bad_unshare_cleanup_cred;
3190     }
3191 
3192     if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3193         if (do_sysvsem) {
3194             /*
3195              * CLONE_SYSVSEM is equivalent to sys_exit().
3196              */
3197             exit_sem(current);
3198         }
3199         if (unshare_flags & CLONE_NEWIPC) {
3200             /* Orphan segments in old ns (see sem above). */
3201             exit_shm(current);
3202             shm_init_task(current);
3203         }
3204 
3205         if (new_nsproxy)
3206             switch_task_namespaces(current, new_nsproxy);
3207 
3208         task_lock(current);
3209 
3210         if (new_fs) {
3211             fs = current->fs;
3212             spin_lock(&fs->lock);
3213             current->fs = new_fs;
3214             if (--fs->users)
3215                 new_fs = NULL;
3216             else
3217                 new_fs = fs;
3218             spin_unlock(&fs->lock);
3219         }
3220 
3221         if (new_fd)
3222             swap(current->files, new_fd);
3223 
3224         task_unlock(current);
3225 
3226         if (new_cred) {
3227             /* Install the new user namespace */
3228             commit_creds(new_cred);
3229             new_cred = NULL;
3230         }
3231     }
3232 
3233     perf_event_namespaces(current);
3234 
3235 bad_unshare_cleanup_cred:
3236     if (new_cred)
3237         put_cred(new_cred);
3238 bad_unshare_cleanup_fd:
3239     if (new_fd)
3240         put_files_struct(new_fd);
3241 
3242 bad_unshare_cleanup_fs:
3243     if (new_fs)
3244         free_fs_struct(new_fs);
3245 
3246 bad_unshare_out:
3247     return err;
3248 }
3249 
3250 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3251 {
3252     return ksys_unshare(unshare_flags);
3253 }
3254 
3255 /*
3256  *  Helper to unshare the files of the current task.
3257  *  We don't want to expose copy_files internals to
3258  *  the exec layer of the kernel.
3259  */
3260 
3261 int unshare_files(void)
3262 {
3263     struct task_struct *task = current;
3264     struct files_struct *old, *copy = NULL;
3265     int error;
3266 
3267     error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3268     if (error || !copy)
3269         return error;
3270 
3271     old = task->files;
3272     task_lock(task);
3273     task->files = copy;
3274     task_unlock(task);
3275     put_files_struct(old);
3276     return 0;
3277 }
3278 
3279 int sysctl_max_threads(struct ctl_table *table, int write,
3280                void *buffer, size_t *lenp, loff_t *ppos)
3281 {
3282     struct ctl_table t;
3283     int ret;
3284     int threads = max_threads;
3285     int min = 1;
3286     int max = MAX_THREADS;
3287 
3288     t = *table;
3289     t.data = &threads;
3290     t.extra1 = &min;
3291     t.extra2 = &max;
3292 
3293     ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3294     if (ret || !write)
3295         return ret;
3296 
3297     max_threads = threads;
3298 
3299     return 0;
3300 }