Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/kernel/exit.c
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  */
0007 
0008 #include <linux/mm.h>
0009 #include <linux/slab.h>
0010 #include <linux/sched/autogroup.h>
0011 #include <linux/sched/mm.h>
0012 #include <linux/sched/stat.h>
0013 #include <linux/sched/task.h>
0014 #include <linux/sched/task_stack.h>
0015 #include <linux/sched/cputime.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/module.h>
0018 #include <linux/capability.h>
0019 #include <linux/completion.h>
0020 #include <linux/personality.h>
0021 #include <linux/tty.h>
0022 #include <linux/iocontext.h>
0023 #include <linux/key.h>
0024 #include <linux/cpu.h>
0025 #include <linux/acct.h>
0026 #include <linux/tsacct_kern.h>
0027 #include <linux/file.h>
0028 #include <linux/fdtable.h>
0029 #include <linux/freezer.h>
0030 #include <linux/binfmts.h>
0031 #include <linux/nsproxy.h>
0032 #include <linux/pid_namespace.h>
0033 #include <linux/ptrace.h>
0034 #include <linux/profile.h>
0035 #include <linux/mount.h>
0036 #include <linux/proc_fs.h>
0037 #include <linux/kthread.h>
0038 #include <linux/mempolicy.h>
0039 #include <linux/taskstats_kern.h>
0040 #include <linux/delayacct.h>
0041 #include <linux/cgroup.h>
0042 #include <linux/syscalls.h>
0043 #include <linux/signal.h>
0044 #include <linux/posix-timers.h>
0045 #include <linux/cn_proc.h>
0046 #include <linux/mutex.h>
0047 #include <linux/futex.h>
0048 #include <linux/pipe_fs_i.h>
0049 #include <linux/audit.h> /* for audit_free() */
0050 #include <linux/resource.h>
0051 #include <linux/task_io_accounting_ops.h>
0052 #include <linux/blkdev.h>
0053 #include <linux/task_work.h>
0054 #include <linux/fs_struct.h>
0055 #include <linux/init_task.h>
0056 #include <linux/perf_event.h>
0057 #include <trace/events/sched.h>
0058 #include <linux/hw_breakpoint.h>
0059 #include <linux/oom.h>
0060 #include <linux/writeback.h>
0061 #include <linux/shm.h>
0062 #include <linux/kcov.h>
0063 #include <linux/random.h>
0064 #include <linux/rcuwait.h>
0065 #include <linux/compat.h>
0066 #include <linux/io_uring.h>
0067 #include <linux/kprobes.h>
0068 #include <linux/rethook.h>
0069 
0070 #include <linux/uaccess.h>
0071 #include <asm/unistd.h>
0072 #include <asm/mmu_context.h>
0073 
0074 static void __unhash_process(struct task_struct *p, bool group_dead)
0075 {
0076     nr_threads--;
0077     detach_pid(p, PIDTYPE_PID);
0078     if (group_dead) {
0079         detach_pid(p, PIDTYPE_TGID);
0080         detach_pid(p, PIDTYPE_PGID);
0081         detach_pid(p, PIDTYPE_SID);
0082 
0083         list_del_rcu(&p->tasks);
0084         list_del_init(&p->sibling);
0085         __this_cpu_dec(process_counts);
0086     }
0087     list_del_rcu(&p->thread_group);
0088     list_del_rcu(&p->thread_node);
0089 }
0090 
0091 /*
0092  * This function expects the tasklist_lock write-locked.
0093  */
0094 static void __exit_signal(struct task_struct *tsk)
0095 {
0096     struct signal_struct *sig = tsk->signal;
0097     bool group_dead = thread_group_leader(tsk);
0098     struct sighand_struct *sighand;
0099     struct tty_struct *tty;
0100     u64 utime, stime;
0101 
0102     sighand = rcu_dereference_check(tsk->sighand,
0103                     lockdep_tasklist_lock_is_held());
0104     spin_lock(&sighand->siglock);
0105 
0106 #ifdef CONFIG_POSIX_TIMERS
0107     posix_cpu_timers_exit(tsk);
0108     if (group_dead)
0109         posix_cpu_timers_exit_group(tsk);
0110 #endif
0111 
0112     if (group_dead) {
0113         tty = sig->tty;
0114         sig->tty = NULL;
0115     } else {
0116         /*
0117          * If there is any task waiting for the group exit
0118          * then notify it:
0119          */
0120         if (sig->notify_count > 0 && !--sig->notify_count)
0121             wake_up_process(sig->group_exec_task);
0122 
0123         if (tsk == sig->curr_target)
0124             sig->curr_target = next_thread(tsk);
0125     }
0126 
0127     add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
0128                   sizeof(unsigned long long));
0129 
0130     /*
0131      * Accumulate here the counters for all threads as they die. We could
0132      * skip the group leader because it is the last user of signal_struct,
0133      * but we want to avoid the race with thread_group_cputime() which can
0134      * see the empty ->thread_head list.
0135      */
0136     task_cputime(tsk, &utime, &stime);
0137     write_seqlock(&sig->stats_lock);
0138     sig->utime += utime;
0139     sig->stime += stime;
0140     sig->gtime += task_gtime(tsk);
0141     sig->min_flt += tsk->min_flt;
0142     sig->maj_flt += tsk->maj_flt;
0143     sig->nvcsw += tsk->nvcsw;
0144     sig->nivcsw += tsk->nivcsw;
0145     sig->inblock += task_io_get_inblock(tsk);
0146     sig->oublock += task_io_get_oublock(tsk);
0147     task_io_accounting_add(&sig->ioac, &tsk->ioac);
0148     sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
0149     sig->nr_threads--;
0150     __unhash_process(tsk, group_dead);
0151     write_sequnlock(&sig->stats_lock);
0152 
0153     /*
0154      * Do this under ->siglock, we can race with another thread
0155      * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
0156      */
0157     flush_sigqueue(&tsk->pending);
0158     tsk->sighand = NULL;
0159     spin_unlock(&sighand->siglock);
0160 
0161     __cleanup_sighand(sighand);
0162     clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
0163     if (group_dead) {
0164         flush_sigqueue(&sig->shared_pending);
0165         tty_kref_put(tty);
0166     }
0167 }
0168 
0169 static void delayed_put_task_struct(struct rcu_head *rhp)
0170 {
0171     struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
0172 
0173     kprobe_flush_task(tsk);
0174     rethook_flush_task(tsk);
0175     perf_event_delayed_put(tsk);
0176     trace_sched_process_free(tsk);
0177     put_task_struct(tsk);
0178 }
0179 
0180 void put_task_struct_rcu_user(struct task_struct *task)
0181 {
0182     if (refcount_dec_and_test(&task->rcu_users))
0183         call_rcu(&task->rcu, delayed_put_task_struct);
0184 }
0185 
0186 void release_task(struct task_struct *p)
0187 {
0188     struct task_struct *leader;
0189     struct pid *thread_pid;
0190     int zap_leader;
0191 repeat:
0192     /* don't need to get the RCU readlock here - the process is dead and
0193      * can't be modifying its own credentials. But shut RCU-lockdep up */
0194     rcu_read_lock();
0195     dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
0196     rcu_read_unlock();
0197 
0198     cgroup_release(p);
0199 
0200     write_lock_irq(&tasklist_lock);
0201     ptrace_release_task(p);
0202     thread_pid = get_pid(p->thread_pid);
0203     __exit_signal(p);
0204 
0205     /*
0206      * If we are the last non-leader member of the thread
0207      * group, and the leader is zombie, then notify the
0208      * group leader's parent process. (if it wants notification.)
0209      */
0210     zap_leader = 0;
0211     leader = p->group_leader;
0212     if (leader != p && thread_group_empty(leader)
0213             && leader->exit_state == EXIT_ZOMBIE) {
0214         /*
0215          * If we were the last child thread and the leader has
0216          * exited already, and the leader's parent ignores SIGCHLD,
0217          * then we are the one who should release the leader.
0218          */
0219         zap_leader = do_notify_parent(leader, leader->exit_signal);
0220         if (zap_leader)
0221             leader->exit_state = EXIT_DEAD;
0222     }
0223 
0224     write_unlock_irq(&tasklist_lock);
0225     seccomp_filter_release(p);
0226     proc_flush_pid(thread_pid);
0227     put_pid(thread_pid);
0228     release_thread(p);
0229     put_task_struct_rcu_user(p);
0230 
0231     p = leader;
0232     if (unlikely(zap_leader))
0233         goto repeat;
0234 }
0235 
0236 int rcuwait_wake_up(struct rcuwait *w)
0237 {
0238     int ret = 0;
0239     struct task_struct *task;
0240 
0241     rcu_read_lock();
0242 
0243     /*
0244      * Order condition vs @task, such that everything prior to the load
0245      * of @task is visible. This is the condition as to why the user called
0246      * rcuwait_wake() in the first place. Pairs with set_current_state()
0247      * barrier (A) in rcuwait_wait_event().
0248      *
0249      *    WAIT                WAKE
0250      *    [S] tsk = current   [S] cond = true
0251      *        MB (A)          MB (B)
0252      *    [L] cond        [L] tsk
0253      */
0254     smp_mb(); /* (B) */
0255 
0256     task = rcu_dereference(w->task);
0257     if (task)
0258         ret = wake_up_process(task);
0259     rcu_read_unlock();
0260 
0261     return ret;
0262 }
0263 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
0264 
0265 /*
0266  * Determine if a process group is "orphaned", according to the POSIX
0267  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
0268  * by terminal-generated stop signals.  Newly orphaned process groups are
0269  * to receive a SIGHUP and a SIGCONT.
0270  *
0271  * "I ask you, have you ever known what it is to be an orphan?"
0272  */
0273 static int will_become_orphaned_pgrp(struct pid *pgrp,
0274                     struct task_struct *ignored_task)
0275 {
0276     struct task_struct *p;
0277 
0278     do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
0279         if ((p == ignored_task) ||
0280             (p->exit_state && thread_group_empty(p)) ||
0281             is_global_init(p->real_parent))
0282             continue;
0283 
0284         if (task_pgrp(p->real_parent) != pgrp &&
0285             task_session(p->real_parent) == task_session(p))
0286             return 0;
0287     } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
0288 
0289     return 1;
0290 }
0291 
0292 int is_current_pgrp_orphaned(void)
0293 {
0294     int retval;
0295 
0296     read_lock(&tasklist_lock);
0297     retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
0298     read_unlock(&tasklist_lock);
0299 
0300     return retval;
0301 }
0302 
0303 static bool has_stopped_jobs(struct pid *pgrp)
0304 {
0305     struct task_struct *p;
0306 
0307     do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
0308         if (p->signal->flags & SIGNAL_STOP_STOPPED)
0309             return true;
0310     } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
0311 
0312     return false;
0313 }
0314 
0315 /*
0316  * Check to see if any process groups have become orphaned as
0317  * a result of our exiting, and if they have any stopped jobs,
0318  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
0319  */
0320 static void
0321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
0322 {
0323     struct pid *pgrp = task_pgrp(tsk);
0324     struct task_struct *ignored_task = tsk;
0325 
0326     if (!parent)
0327         /* exit: our father is in a different pgrp than
0328          * we are and we were the only connection outside.
0329          */
0330         parent = tsk->real_parent;
0331     else
0332         /* reparent: our child is in a different pgrp than
0333          * we are, and it was the only connection outside.
0334          */
0335         ignored_task = NULL;
0336 
0337     if (task_pgrp(parent) != pgrp &&
0338         task_session(parent) == task_session(tsk) &&
0339         will_become_orphaned_pgrp(pgrp, ignored_task) &&
0340         has_stopped_jobs(pgrp)) {
0341         __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
0342         __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
0343     }
0344 }
0345 
0346 static void coredump_task_exit(struct task_struct *tsk)
0347 {
0348     struct core_state *core_state;
0349 
0350     /*
0351      * Serialize with any possible pending coredump.
0352      * We must hold siglock around checking core_state
0353      * and setting PF_POSTCOREDUMP.  The core-inducing thread
0354      * will increment ->nr_threads for each thread in the
0355      * group without PF_POSTCOREDUMP set.
0356      */
0357     spin_lock_irq(&tsk->sighand->siglock);
0358     tsk->flags |= PF_POSTCOREDUMP;
0359     core_state = tsk->signal->core_state;
0360     spin_unlock_irq(&tsk->sighand->siglock);
0361     if (core_state) {
0362         struct core_thread self;
0363 
0364         self.task = current;
0365         if (self.task->flags & PF_SIGNALED)
0366             self.next = xchg(&core_state->dumper.next, &self);
0367         else
0368             self.task = NULL;
0369         /*
0370          * Implies mb(), the result of xchg() must be visible
0371          * to core_state->dumper.
0372          */
0373         if (atomic_dec_and_test(&core_state->nr_threads))
0374             complete(&core_state->startup);
0375 
0376         for (;;) {
0377             set_current_state(TASK_UNINTERRUPTIBLE);
0378             if (!self.task) /* see coredump_finish() */
0379                 break;
0380             freezable_schedule();
0381         }
0382         __set_current_state(TASK_RUNNING);
0383     }
0384 }
0385 
0386 #ifdef CONFIG_MEMCG
0387 /*
0388  * A task is exiting.   If it owned this mm, find a new owner for the mm.
0389  */
0390 void mm_update_next_owner(struct mm_struct *mm)
0391 {
0392     struct task_struct *c, *g, *p = current;
0393 
0394 retry:
0395     /*
0396      * If the exiting or execing task is not the owner, it's
0397      * someone else's problem.
0398      */
0399     if (mm->owner != p)
0400         return;
0401     /*
0402      * The current owner is exiting/execing and there are no other
0403      * candidates.  Do not leave the mm pointing to a possibly
0404      * freed task structure.
0405      */
0406     if (atomic_read(&mm->mm_users) <= 1) {
0407         WRITE_ONCE(mm->owner, NULL);
0408         return;
0409     }
0410 
0411     read_lock(&tasklist_lock);
0412     /*
0413      * Search in the children
0414      */
0415     list_for_each_entry(c, &p->children, sibling) {
0416         if (c->mm == mm)
0417             goto assign_new_owner;
0418     }
0419 
0420     /*
0421      * Search in the siblings
0422      */
0423     list_for_each_entry(c, &p->real_parent->children, sibling) {
0424         if (c->mm == mm)
0425             goto assign_new_owner;
0426     }
0427 
0428     /*
0429      * Search through everything else, we should not get here often.
0430      */
0431     for_each_process(g) {
0432         if (g->flags & PF_KTHREAD)
0433             continue;
0434         for_each_thread(g, c) {
0435             if (c->mm == mm)
0436                 goto assign_new_owner;
0437             if (c->mm)
0438                 break;
0439         }
0440     }
0441     read_unlock(&tasklist_lock);
0442     /*
0443      * We found no owner yet mm_users > 1: this implies that we are
0444      * most likely racing with swapoff (try_to_unuse()) or /proc or
0445      * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
0446      */
0447     WRITE_ONCE(mm->owner, NULL);
0448     return;
0449 
0450 assign_new_owner:
0451     BUG_ON(c == p);
0452     get_task_struct(c);
0453     /*
0454      * The task_lock protects c->mm from changing.
0455      * We always want mm->owner->mm == mm
0456      */
0457     task_lock(c);
0458     /*
0459      * Delay read_unlock() till we have the task_lock()
0460      * to ensure that c does not slip away underneath us
0461      */
0462     read_unlock(&tasklist_lock);
0463     if (c->mm != mm) {
0464         task_unlock(c);
0465         put_task_struct(c);
0466         goto retry;
0467     }
0468     WRITE_ONCE(mm->owner, c);
0469     task_unlock(c);
0470     put_task_struct(c);
0471 }
0472 #endif /* CONFIG_MEMCG */
0473 
0474 /*
0475  * Turn us into a lazy TLB process if we
0476  * aren't already..
0477  */
0478 static void exit_mm(void)
0479 {
0480     struct mm_struct *mm = current->mm;
0481 
0482     exit_mm_release(current, mm);
0483     if (!mm)
0484         return;
0485     sync_mm_rss(mm);
0486     mmap_read_lock(mm);
0487     mmgrab(mm);
0488     BUG_ON(mm != current->active_mm);
0489     /* more a memory barrier than a real lock */
0490     task_lock(current);
0491     /*
0492      * When a thread stops operating on an address space, the loop
0493      * in membarrier_private_expedited() may not observe that
0494      * tsk->mm, and the loop in membarrier_global_expedited() may
0495      * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
0496      * rq->membarrier_state, so those would not issue an IPI.
0497      * Membarrier requires a memory barrier after accessing
0498      * user-space memory, before clearing tsk->mm or the
0499      * rq->membarrier_state.
0500      */
0501     smp_mb__after_spinlock();
0502     local_irq_disable();
0503     current->mm = NULL;
0504     membarrier_update_current_mm(NULL);
0505     enter_lazy_tlb(mm, current);
0506     local_irq_enable();
0507     task_unlock(current);
0508     mmap_read_unlock(mm);
0509     mm_update_next_owner(mm);
0510     mmput(mm);
0511     if (test_thread_flag(TIF_MEMDIE))
0512         exit_oom_victim();
0513 }
0514 
0515 static struct task_struct *find_alive_thread(struct task_struct *p)
0516 {
0517     struct task_struct *t;
0518 
0519     for_each_thread(p, t) {
0520         if (!(t->flags & PF_EXITING))
0521             return t;
0522     }
0523     return NULL;
0524 }
0525 
0526 static struct task_struct *find_child_reaper(struct task_struct *father,
0527                         struct list_head *dead)
0528     __releases(&tasklist_lock)
0529     __acquires(&tasklist_lock)
0530 {
0531     struct pid_namespace *pid_ns = task_active_pid_ns(father);
0532     struct task_struct *reaper = pid_ns->child_reaper;
0533     struct task_struct *p, *n;
0534 
0535     if (likely(reaper != father))
0536         return reaper;
0537 
0538     reaper = find_alive_thread(father);
0539     if (reaper) {
0540         pid_ns->child_reaper = reaper;
0541         return reaper;
0542     }
0543 
0544     write_unlock_irq(&tasklist_lock);
0545 
0546     list_for_each_entry_safe(p, n, dead, ptrace_entry) {
0547         list_del_init(&p->ptrace_entry);
0548         release_task(p);
0549     }
0550 
0551     zap_pid_ns_processes(pid_ns);
0552     write_lock_irq(&tasklist_lock);
0553 
0554     return father;
0555 }
0556 
0557 /*
0558  * When we die, we re-parent all our children, and try to:
0559  * 1. give them to another thread in our thread group, if such a member exists
0560  * 2. give it to the first ancestor process which prctl'd itself as a
0561  *    child_subreaper for its children (like a service manager)
0562  * 3. give it to the init process (PID 1) in our pid namespace
0563  */
0564 static struct task_struct *find_new_reaper(struct task_struct *father,
0565                        struct task_struct *child_reaper)
0566 {
0567     struct task_struct *thread, *reaper;
0568 
0569     thread = find_alive_thread(father);
0570     if (thread)
0571         return thread;
0572 
0573     if (father->signal->has_child_subreaper) {
0574         unsigned int ns_level = task_pid(father)->level;
0575         /*
0576          * Find the first ->is_child_subreaper ancestor in our pid_ns.
0577          * We can't check reaper != child_reaper to ensure we do not
0578          * cross the namespaces, the exiting parent could be injected
0579          * by setns() + fork().
0580          * We check pid->level, this is slightly more efficient than
0581          * task_active_pid_ns(reaper) != task_active_pid_ns(father).
0582          */
0583         for (reaper = father->real_parent;
0584              task_pid(reaper)->level == ns_level;
0585              reaper = reaper->real_parent) {
0586             if (reaper == &init_task)
0587                 break;
0588             if (!reaper->signal->is_child_subreaper)
0589                 continue;
0590             thread = find_alive_thread(reaper);
0591             if (thread)
0592                 return thread;
0593         }
0594     }
0595 
0596     return child_reaper;
0597 }
0598 
0599 /*
0600 * Any that need to be release_task'd are put on the @dead list.
0601  */
0602 static void reparent_leader(struct task_struct *father, struct task_struct *p,
0603                 struct list_head *dead)
0604 {
0605     if (unlikely(p->exit_state == EXIT_DEAD))
0606         return;
0607 
0608     /* We don't want people slaying init. */
0609     p->exit_signal = SIGCHLD;
0610 
0611     /* If it has exited notify the new parent about this child's death. */
0612     if (!p->ptrace &&
0613         p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
0614         if (do_notify_parent(p, p->exit_signal)) {
0615             p->exit_state = EXIT_DEAD;
0616             list_add(&p->ptrace_entry, dead);
0617         }
0618     }
0619 
0620     kill_orphaned_pgrp(p, father);
0621 }
0622 
0623 /*
0624  * This does two things:
0625  *
0626  * A.  Make init inherit all the child processes
0627  * B.  Check to see if any process groups have become orphaned
0628  *  as a result of our exiting, and if they have any stopped
0629  *  jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
0630  */
0631 static void forget_original_parent(struct task_struct *father,
0632                     struct list_head *dead)
0633 {
0634     struct task_struct *p, *t, *reaper;
0635 
0636     if (unlikely(!list_empty(&father->ptraced)))
0637         exit_ptrace(father, dead);
0638 
0639     /* Can drop and reacquire tasklist_lock */
0640     reaper = find_child_reaper(father, dead);
0641     if (list_empty(&father->children))
0642         return;
0643 
0644     reaper = find_new_reaper(father, reaper);
0645     list_for_each_entry(p, &father->children, sibling) {
0646         for_each_thread(p, t) {
0647             RCU_INIT_POINTER(t->real_parent, reaper);
0648             BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
0649             if (likely(!t->ptrace))
0650                 t->parent = t->real_parent;
0651             if (t->pdeath_signal)
0652                 group_send_sig_info(t->pdeath_signal,
0653                             SEND_SIG_NOINFO, t,
0654                             PIDTYPE_TGID);
0655         }
0656         /*
0657          * If this is a threaded reparent there is no need to
0658          * notify anyone anything has happened.
0659          */
0660         if (!same_thread_group(reaper, father))
0661             reparent_leader(father, p, dead);
0662     }
0663     list_splice_tail_init(&father->children, &reaper->children);
0664 }
0665 
0666 /*
0667  * Send signals to all our closest relatives so that they know
0668  * to properly mourn us..
0669  */
0670 static void exit_notify(struct task_struct *tsk, int group_dead)
0671 {
0672     bool autoreap;
0673     struct task_struct *p, *n;
0674     LIST_HEAD(dead);
0675 
0676     write_lock_irq(&tasklist_lock);
0677     forget_original_parent(tsk, &dead);
0678 
0679     if (group_dead)
0680         kill_orphaned_pgrp(tsk->group_leader, NULL);
0681 
0682     tsk->exit_state = EXIT_ZOMBIE;
0683     if (unlikely(tsk->ptrace)) {
0684         int sig = thread_group_leader(tsk) &&
0685                 thread_group_empty(tsk) &&
0686                 !ptrace_reparented(tsk) ?
0687             tsk->exit_signal : SIGCHLD;
0688         autoreap = do_notify_parent(tsk, sig);
0689     } else if (thread_group_leader(tsk)) {
0690         autoreap = thread_group_empty(tsk) &&
0691             do_notify_parent(tsk, tsk->exit_signal);
0692     } else {
0693         autoreap = true;
0694     }
0695 
0696     if (autoreap) {
0697         tsk->exit_state = EXIT_DEAD;
0698         list_add(&tsk->ptrace_entry, &dead);
0699     }
0700 
0701     /* mt-exec, de_thread() is waiting for group leader */
0702     if (unlikely(tsk->signal->notify_count < 0))
0703         wake_up_process(tsk->signal->group_exec_task);
0704     write_unlock_irq(&tasklist_lock);
0705 
0706     list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
0707         list_del_init(&p->ptrace_entry);
0708         release_task(p);
0709     }
0710 }
0711 
0712 #ifdef CONFIG_DEBUG_STACK_USAGE
0713 static void check_stack_usage(void)
0714 {
0715     static DEFINE_SPINLOCK(low_water_lock);
0716     static int lowest_to_date = THREAD_SIZE;
0717     unsigned long free;
0718 
0719     free = stack_not_used(current);
0720 
0721     if (free >= lowest_to_date)
0722         return;
0723 
0724     spin_lock(&low_water_lock);
0725     if (free < lowest_to_date) {
0726         pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
0727             current->comm, task_pid_nr(current), free);
0728         lowest_to_date = free;
0729     }
0730     spin_unlock(&low_water_lock);
0731 }
0732 #else
0733 static inline void check_stack_usage(void) {}
0734 #endif
0735 
0736 void __noreturn do_exit(long code)
0737 {
0738     struct task_struct *tsk = current;
0739     int group_dead;
0740 
0741     WARN_ON(tsk->plug);
0742 
0743     kcov_task_exit(tsk);
0744 
0745     coredump_task_exit(tsk);
0746     ptrace_event(PTRACE_EVENT_EXIT, code);
0747 
0748     validate_creds_for_do_exit(tsk);
0749 
0750     io_uring_files_cancel();
0751     exit_signals(tsk);  /* sets PF_EXITING */
0752 
0753     /* sync mm's RSS info before statistics gathering */
0754     if (tsk->mm)
0755         sync_mm_rss(tsk->mm);
0756     acct_update_integrals(tsk);
0757     group_dead = atomic_dec_and_test(&tsk->signal->live);
0758     if (group_dead) {
0759         /*
0760          * If the last thread of global init has exited, panic
0761          * immediately to get a useable coredump.
0762          */
0763         if (unlikely(is_global_init(tsk)))
0764             panic("Attempted to kill init! exitcode=0x%08x\n",
0765                 tsk->signal->group_exit_code ?: (int)code);
0766 
0767 #ifdef CONFIG_POSIX_TIMERS
0768         hrtimer_cancel(&tsk->signal->real_timer);
0769         exit_itimers(tsk);
0770 #endif
0771         if (tsk->mm)
0772             setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
0773     }
0774     acct_collect(code, group_dead);
0775     if (group_dead)
0776         tty_audit_exit();
0777     audit_free(tsk);
0778 
0779     tsk->exit_code = code;
0780     taskstats_exit(tsk, group_dead);
0781 
0782     exit_mm();
0783 
0784     if (group_dead)
0785         acct_process();
0786     trace_sched_process_exit(tsk);
0787 
0788     exit_sem(tsk);
0789     exit_shm(tsk);
0790     exit_files(tsk);
0791     exit_fs(tsk);
0792     if (group_dead)
0793         disassociate_ctty(1);
0794     exit_task_namespaces(tsk);
0795     exit_task_work(tsk);
0796     exit_thread(tsk);
0797 
0798     /*
0799      * Flush inherited counters to the parent - before the parent
0800      * gets woken up by child-exit notifications.
0801      *
0802      * because of cgroup mode, must be called before cgroup_exit()
0803      */
0804     perf_event_exit_task(tsk);
0805 
0806     sched_autogroup_exit_task(tsk);
0807     cgroup_exit(tsk);
0808 
0809     /*
0810      * FIXME: do that only when needed, using sched_exit tracepoint
0811      */
0812     flush_ptrace_hw_breakpoint(tsk);
0813 
0814     exit_tasks_rcu_start();
0815     exit_notify(tsk, group_dead);
0816     proc_exit_connector(tsk);
0817     mpol_put_task_policy(tsk);
0818 #ifdef CONFIG_FUTEX
0819     if (unlikely(current->pi_state_cache))
0820         kfree(current->pi_state_cache);
0821 #endif
0822     /*
0823      * Make sure we are holding no locks:
0824      */
0825     debug_check_no_locks_held();
0826 
0827     if (tsk->io_context)
0828         exit_io_context(tsk);
0829 
0830     if (tsk->splice_pipe)
0831         free_pipe_info(tsk->splice_pipe);
0832 
0833     if (tsk->task_frag.page)
0834         put_page(tsk->task_frag.page);
0835 
0836     validate_creds_for_do_exit(tsk);
0837     exit_task_stack_account(tsk);
0838 
0839     check_stack_usage();
0840     preempt_disable();
0841     if (tsk->nr_dirtied)
0842         __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
0843     exit_rcu();
0844     exit_tasks_rcu_finish();
0845 
0846     lockdep_free_task(tsk);
0847     do_task_dead();
0848 }
0849 
0850 void __noreturn make_task_dead(int signr)
0851 {
0852     /*
0853      * Take the task off the cpu after something catastrophic has
0854      * happened.
0855      *
0856      * We can get here from a kernel oops, sometimes with preemption off.
0857      * Start by checking for critical errors.
0858      * Then fix up important state like USER_DS and preemption.
0859      * Then do everything else.
0860      */
0861     struct task_struct *tsk = current;
0862 
0863     if (unlikely(in_interrupt()))
0864         panic("Aiee, killing interrupt handler!");
0865     if (unlikely(!tsk->pid))
0866         panic("Attempted to kill the idle task!");
0867 
0868     if (unlikely(in_atomic())) {
0869         pr_info("note: %s[%d] exited with preempt_count %d\n",
0870             current->comm, task_pid_nr(current),
0871             preempt_count());
0872         preempt_count_set(PREEMPT_ENABLED);
0873     }
0874 
0875     /*
0876      * We're taking recursive faults here in make_task_dead. Safest is to just
0877      * leave this task alone and wait for reboot.
0878      */
0879     if (unlikely(tsk->flags & PF_EXITING)) {
0880         pr_alert("Fixing recursive fault but reboot is needed!\n");
0881         futex_exit_recursive(tsk);
0882         tsk->exit_state = EXIT_DEAD;
0883         refcount_inc(&tsk->rcu_users);
0884         do_task_dead();
0885     }
0886 
0887     do_exit(signr);
0888 }
0889 
0890 SYSCALL_DEFINE1(exit, int, error_code)
0891 {
0892     do_exit((error_code&0xff)<<8);
0893 }
0894 
0895 /*
0896  * Take down every thread in the group.  This is called by fatal signals
0897  * as well as by sys_exit_group (below).
0898  */
0899 void __noreturn
0900 do_group_exit(int exit_code)
0901 {
0902     struct signal_struct *sig = current->signal;
0903 
0904     if (sig->flags & SIGNAL_GROUP_EXIT)
0905         exit_code = sig->group_exit_code;
0906     else if (sig->group_exec_task)
0907         exit_code = 0;
0908     else if (!thread_group_empty(current)) {
0909         struct sighand_struct *const sighand = current->sighand;
0910 
0911         spin_lock_irq(&sighand->siglock);
0912         if (sig->flags & SIGNAL_GROUP_EXIT)
0913             /* Another thread got here before we took the lock.  */
0914             exit_code = sig->group_exit_code;
0915         else if (sig->group_exec_task)
0916             exit_code = 0;
0917         else {
0918             sig->group_exit_code = exit_code;
0919             sig->flags = SIGNAL_GROUP_EXIT;
0920             zap_other_threads(current);
0921         }
0922         spin_unlock_irq(&sighand->siglock);
0923     }
0924 
0925     do_exit(exit_code);
0926     /* NOTREACHED */
0927 }
0928 
0929 /*
0930  * this kills every thread in the thread group. Note that any externally
0931  * wait4()-ing process will get the correct exit code - even if this
0932  * thread is not the thread group leader.
0933  */
0934 SYSCALL_DEFINE1(exit_group, int, error_code)
0935 {
0936     do_group_exit((error_code & 0xff) << 8);
0937     /* NOTREACHED */
0938     return 0;
0939 }
0940 
0941 struct waitid_info {
0942     pid_t pid;
0943     uid_t uid;
0944     int status;
0945     int cause;
0946 };
0947 
0948 struct wait_opts {
0949     enum pid_type       wo_type;
0950     int         wo_flags;
0951     struct pid      *wo_pid;
0952 
0953     struct waitid_info  *wo_info;
0954     int         wo_stat;
0955     struct rusage       *wo_rusage;
0956 
0957     wait_queue_entry_t      child_wait;
0958     int         notask_error;
0959 };
0960 
0961 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
0962 {
0963     return  wo->wo_type == PIDTYPE_MAX ||
0964         task_pid_type(p, wo->wo_type) == wo->wo_pid;
0965 }
0966 
0967 static int
0968 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
0969 {
0970     if (!eligible_pid(wo, p))
0971         return 0;
0972 
0973     /*
0974      * Wait for all children (clone and not) if __WALL is set or
0975      * if it is traced by us.
0976      */
0977     if (ptrace || (wo->wo_flags & __WALL))
0978         return 1;
0979 
0980     /*
0981      * Otherwise, wait for clone children *only* if __WCLONE is set;
0982      * otherwise, wait for non-clone children *only*.
0983      *
0984      * Note: a "clone" child here is one that reports to its parent
0985      * using a signal other than SIGCHLD, or a non-leader thread which
0986      * we can only see if it is traced by us.
0987      */
0988     if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
0989         return 0;
0990 
0991     return 1;
0992 }
0993 
0994 /*
0995  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
0996  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
0997  * the lock and this task is uninteresting.  If we return nonzero, we have
0998  * released the lock and the system call should return.
0999  */
1000 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1001 {
1002     int state, status;
1003     pid_t pid = task_pid_vnr(p);
1004     uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1005     struct waitid_info *infop;
1006 
1007     if (!likely(wo->wo_flags & WEXITED))
1008         return 0;
1009 
1010     if (unlikely(wo->wo_flags & WNOWAIT)) {
1011         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1012             ? p->signal->group_exit_code : p->exit_code;
1013         get_task_struct(p);
1014         read_unlock(&tasklist_lock);
1015         sched_annotate_sleep();
1016         if (wo->wo_rusage)
1017             getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1018         put_task_struct(p);
1019         goto out_info;
1020     }
1021     /*
1022      * Move the task's state to DEAD/TRACE, only one thread can do this.
1023      */
1024     state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1025         EXIT_TRACE : EXIT_DEAD;
1026     if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1027         return 0;
1028     /*
1029      * We own this thread, nobody else can reap it.
1030      */
1031     read_unlock(&tasklist_lock);
1032     sched_annotate_sleep();
1033 
1034     /*
1035      * Check thread_group_leader() to exclude the traced sub-threads.
1036      */
1037     if (state == EXIT_DEAD && thread_group_leader(p)) {
1038         struct signal_struct *sig = p->signal;
1039         struct signal_struct *psig = current->signal;
1040         unsigned long maxrss;
1041         u64 tgutime, tgstime;
1042 
1043         /*
1044          * The resource counters for the group leader are in its
1045          * own task_struct.  Those for dead threads in the group
1046          * are in its signal_struct, as are those for the child
1047          * processes it has previously reaped.  All these
1048          * accumulate in the parent's signal_struct c* fields.
1049          *
1050          * We don't bother to take a lock here to protect these
1051          * p->signal fields because the whole thread group is dead
1052          * and nobody can change them.
1053          *
1054          * psig->stats_lock also protects us from our sub-threads
1055          * which can reap other children at the same time. Until
1056          * we change k_getrusage()-like users to rely on this lock
1057          * we have to take ->siglock as well.
1058          *
1059          * We use thread_group_cputime_adjusted() to get times for
1060          * the thread group, which consolidates times for all threads
1061          * in the group including the group leader.
1062          */
1063         thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1064         spin_lock_irq(&current->sighand->siglock);
1065         write_seqlock(&psig->stats_lock);
1066         psig->cutime += tgutime + sig->cutime;
1067         psig->cstime += tgstime + sig->cstime;
1068         psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1069         psig->cmin_flt +=
1070             p->min_flt + sig->min_flt + sig->cmin_flt;
1071         psig->cmaj_flt +=
1072             p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1073         psig->cnvcsw +=
1074             p->nvcsw + sig->nvcsw + sig->cnvcsw;
1075         psig->cnivcsw +=
1076             p->nivcsw + sig->nivcsw + sig->cnivcsw;
1077         psig->cinblock +=
1078             task_io_get_inblock(p) +
1079             sig->inblock + sig->cinblock;
1080         psig->coublock +=
1081             task_io_get_oublock(p) +
1082             sig->oublock + sig->coublock;
1083         maxrss = max(sig->maxrss, sig->cmaxrss);
1084         if (psig->cmaxrss < maxrss)
1085             psig->cmaxrss = maxrss;
1086         task_io_accounting_add(&psig->ioac, &p->ioac);
1087         task_io_accounting_add(&psig->ioac, &sig->ioac);
1088         write_sequnlock(&psig->stats_lock);
1089         spin_unlock_irq(&current->sighand->siglock);
1090     }
1091 
1092     if (wo->wo_rusage)
1093         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1094     status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1095         ? p->signal->group_exit_code : p->exit_code;
1096     wo->wo_stat = status;
1097 
1098     if (state == EXIT_TRACE) {
1099         write_lock_irq(&tasklist_lock);
1100         /* We dropped tasklist, ptracer could die and untrace */
1101         ptrace_unlink(p);
1102 
1103         /* If parent wants a zombie, don't release it now */
1104         state = EXIT_ZOMBIE;
1105         if (do_notify_parent(p, p->exit_signal))
1106             state = EXIT_DEAD;
1107         p->exit_state = state;
1108         write_unlock_irq(&tasklist_lock);
1109     }
1110     if (state == EXIT_DEAD)
1111         release_task(p);
1112 
1113 out_info:
1114     infop = wo->wo_info;
1115     if (infop) {
1116         if ((status & 0x7f) == 0) {
1117             infop->cause = CLD_EXITED;
1118             infop->status = status >> 8;
1119         } else {
1120             infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1121             infop->status = status & 0x7f;
1122         }
1123         infop->pid = pid;
1124         infop->uid = uid;
1125     }
1126 
1127     return pid;
1128 }
1129 
1130 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 {
1132     if (ptrace) {
1133         if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1134             return &p->exit_code;
1135     } else {
1136         if (p->signal->flags & SIGNAL_STOP_STOPPED)
1137             return &p->signal->group_exit_code;
1138     }
1139     return NULL;
1140 }
1141 
1142 /**
1143  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1144  * @wo: wait options
1145  * @ptrace: is the wait for ptrace
1146  * @p: task to wait for
1147  *
1148  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1149  *
1150  * CONTEXT:
1151  * read_lock(&tasklist_lock), which is released if return value is
1152  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1153  *
1154  * RETURNS:
1155  * 0 if wait condition didn't exist and search for other wait conditions
1156  * should continue.  Non-zero return, -errno on failure and @p's pid on
1157  * success, implies that tasklist_lock is released and wait condition
1158  * search should terminate.
1159  */
1160 static int wait_task_stopped(struct wait_opts *wo,
1161                 int ptrace, struct task_struct *p)
1162 {
1163     struct waitid_info *infop;
1164     int exit_code, *p_code, why;
1165     uid_t uid = 0; /* unneeded, required by compiler */
1166     pid_t pid;
1167 
1168     /*
1169      * Traditionally we see ptrace'd stopped tasks regardless of options.
1170      */
1171     if (!ptrace && !(wo->wo_flags & WUNTRACED))
1172         return 0;
1173 
1174     if (!task_stopped_code(p, ptrace))
1175         return 0;
1176 
1177     exit_code = 0;
1178     spin_lock_irq(&p->sighand->siglock);
1179 
1180     p_code = task_stopped_code(p, ptrace);
1181     if (unlikely(!p_code))
1182         goto unlock_sig;
1183 
1184     exit_code = *p_code;
1185     if (!exit_code)
1186         goto unlock_sig;
1187 
1188     if (!unlikely(wo->wo_flags & WNOWAIT))
1189         *p_code = 0;
1190 
1191     uid = from_kuid_munged(current_user_ns(), task_uid(p));
1192 unlock_sig:
1193     spin_unlock_irq(&p->sighand->siglock);
1194     if (!exit_code)
1195         return 0;
1196 
1197     /*
1198      * Now we are pretty sure this task is interesting.
1199      * Make sure it doesn't get reaped out from under us while we
1200      * give up the lock and then examine it below.  We don't want to
1201      * keep holding onto the tasklist_lock while we call getrusage and
1202      * possibly take page faults for user memory.
1203      */
1204     get_task_struct(p);
1205     pid = task_pid_vnr(p);
1206     why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1207     read_unlock(&tasklist_lock);
1208     sched_annotate_sleep();
1209     if (wo->wo_rusage)
1210         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1211     put_task_struct(p);
1212 
1213     if (likely(!(wo->wo_flags & WNOWAIT)))
1214         wo->wo_stat = (exit_code << 8) | 0x7f;
1215 
1216     infop = wo->wo_info;
1217     if (infop) {
1218         infop->cause = why;
1219         infop->status = exit_code;
1220         infop->pid = pid;
1221         infop->uid = uid;
1222     }
1223     return pid;
1224 }
1225 
1226 /*
1227  * Handle do_wait work for one task in a live, non-stopped state.
1228  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1229  * the lock and this task is uninteresting.  If we return nonzero, we have
1230  * released the lock and the system call should return.
1231  */
1232 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1233 {
1234     struct waitid_info *infop;
1235     pid_t pid;
1236     uid_t uid;
1237 
1238     if (!unlikely(wo->wo_flags & WCONTINUED))
1239         return 0;
1240 
1241     if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242         return 0;
1243 
1244     spin_lock_irq(&p->sighand->siglock);
1245     /* Re-check with the lock held.  */
1246     if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1247         spin_unlock_irq(&p->sighand->siglock);
1248         return 0;
1249     }
1250     if (!unlikely(wo->wo_flags & WNOWAIT))
1251         p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1252     uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253     spin_unlock_irq(&p->sighand->siglock);
1254 
1255     pid = task_pid_vnr(p);
1256     get_task_struct(p);
1257     read_unlock(&tasklist_lock);
1258     sched_annotate_sleep();
1259     if (wo->wo_rusage)
1260         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261     put_task_struct(p);
1262 
1263     infop = wo->wo_info;
1264     if (!infop) {
1265         wo->wo_stat = 0xffff;
1266     } else {
1267         infop->cause = CLD_CONTINUED;
1268         infop->pid = pid;
1269         infop->uid = uid;
1270         infop->status = SIGCONT;
1271     }
1272     return pid;
1273 }
1274 
1275 /*
1276  * Consider @p for a wait by @parent.
1277  *
1278  * -ECHILD should be in ->notask_error before the first call.
1279  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1280  * Returns zero if the search for a child should continue;
1281  * then ->notask_error is 0 if @p is an eligible child,
1282  * or still -ECHILD.
1283  */
1284 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1285                 struct task_struct *p)
1286 {
1287     /*
1288      * We can race with wait_task_zombie() from another thread.
1289      * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1290      * can't confuse the checks below.
1291      */
1292     int exit_state = READ_ONCE(p->exit_state);
1293     int ret;
1294 
1295     if (unlikely(exit_state == EXIT_DEAD))
1296         return 0;
1297 
1298     ret = eligible_child(wo, ptrace, p);
1299     if (!ret)
1300         return ret;
1301 
1302     if (unlikely(exit_state == EXIT_TRACE)) {
1303         /*
1304          * ptrace == 0 means we are the natural parent. In this case
1305          * we should clear notask_error, debugger will notify us.
1306          */
1307         if (likely(!ptrace))
1308             wo->notask_error = 0;
1309         return 0;
1310     }
1311 
1312     if (likely(!ptrace) && unlikely(p->ptrace)) {
1313         /*
1314          * If it is traced by its real parent's group, just pretend
1315          * the caller is ptrace_do_wait() and reap this child if it
1316          * is zombie.
1317          *
1318          * This also hides group stop state from real parent; otherwise
1319          * a single stop can be reported twice as group and ptrace stop.
1320          * If a ptracer wants to distinguish these two events for its
1321          * own children it should create a separate process which takes
1322          * the role of real parent.
1323          */
1324         if (!ptrace_reparented(p))
1325             ptrace = 1;
1326     }
1327 
1328     /* slay zombie? */
1329     if (exit_state == EXIT_ZOMBIE) {
1330         /* we don't reap group leaders with subthreads */
1331         if (!delay_group_leader(p)) {
1332             /*
1333              * A zombie ptracee is only visible to its ptracer.
1334              * Notification and reaping will be cascaded to the
1335              * real parent when the ptracer detaches.
1336              */
1337             if (unlikely(ptrace) || likely(!p->ptrace))
1338                 return wait_task_zombie(wo, p);
1339         }
1340 
1341         /*
1342          * Allow access to stopped/continued state via zombie by
1343          * falling through.  Clearing of notask_error is complex.
1344          *
1345          * When !@ptrace:
1346          *
1347          * If WEXITED is set, notask_error should naturally be
1348          * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1349          * so, if there are live subthreads, there are events to
1350          * wait for.  If all subthreads are dead, it's still safe
1351          * to clear - this function will be called again in finite
1352          * amount time once all the subthreads are released and
1353          * will then return without clearing.
1354          *
1355          * When @ptrace:
1356          *
1357          * Stopped state is per-task and thus can't change once the
1358          * target task dies.  Only continued and exited can happen.
1359          * Clear notask_error if WCONTINUED | WEXITED.
1360          */
1361         if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1362             wo->notask_error = 0;
1363     } else {
1364         /*
1365          * @p is alive and it's gonna stop, continue or exit, so
1366          * there always is something to wait for.
1367          */
1368         wo->notask_error = 0;
1369     }
1370 
1371     /*
1372      * Wait for stopped.  Depending on @ptrace, different stopped state
1373      * is used and the two don't interact with each other.
1374      */
1375     ret = wait_task_stopped(wo, ptrace, p);
1376     if (ret)
1377         return ret;
1378 
1379     /*
1380      * Wait for continued.  There's only one continued state and the
1381      * ptracer can consume it which can confuse the real parent.  Don't
1382      * use WCONTINUED from ptracer.  You don't need or want it.
1383      */
1384     return wait_task_continued(wo, p);
1385 }
1386 
1387 /*
1388  * Do the work of do_wait() for one thread in the group, @tsk.
1389  *
1390  * -ECHILD should be in ->notask_error before the first call.
1391  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1392  * Returns zero if the search for a child should continue; then
1393  * ->notask_error is 0 if there were any eligible children,
1394  * or still -ECHILD.
1395  */
1396 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1397 {
1398     struct task_struct *p;
1399 
1400     list_for_each_entry(p, &tsk->children, sibling) {
1401         int ret = wait_consider_task(wo, 0, p);
1402 
1403         if (ret)
1404             return ret;
1405     }
1406 
1407     return 0;
1408 }
1409 
1410 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1411 {
1412     struct task_struct *p;
1413 
1414     list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1415         int ret = wait_consider_task(wo, 1, p);
1416 
1417         if (ret)
1418             return ret;
1419     }
1420 
1421     return 0;
1422 }
1423 
1424 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1425                 int sync, void *key)
1426 {
1427     struct wait_opts *wo = container_of(wait, struct wait_opts,
1428                         child_wait);
1429     struct task_struct *p = key;
1430 
1431     if (!eligible_pid(wo, p))
1432         return 0;
1433 
1434     if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1435         return 0;
1436 
1437     return default_wake_function(wait, mode, sync, key);
1438 }
1439 
1440 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1441 {
1442     __wake_up_sync_key(&parent->signal->wait_chldexit,
1443                TASK_INTERRUPTIBLE, p);
1444 }
1445 
1446 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1447                  struct task_struct *target)
1448 {
1449     struct task_struct *parent =
1450         !ptrace ? target->real_parent : target->parent;
1451 
1452     return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1453                      same_thread_group(current, parent));
1454 }
1455 
1456 /*
1457  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1458  * and tracee lists to find the target task.
1459  */
1460 static int do_wait_pid(struct wait_opts *wo)
1461 {
1462     bool ptrace;
1463     struct task_struct *target;
1464     int retval;
1465 
1466     ptrace = false;
1467     target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1468     if (target && is_effectively_child(wo, ptrace, target)) {
1469         retval = wait_consider_task(wo, ptrace, target);
1470         if (retval)
1471             return retval;
1472     }
1473 
1474     ptrace = true;
1475     target = pid_task(wo->wo_pid, PIDTYPE_PID);
1476     if (target && target->ptrace &&
1477         is_effectively_child(wo, ptrace, target)) {
1478         retval = wait_consider_task(wo, ptrace, target);
1479         if (retval)
1480             return retval;
1481     }
1482 
1483     return 0;
1484 }
1485 
1486 static long do_wait(struct wait_opts *wo)
1487 {
1488     int retval;
1489 
1490     trace_sched_process_wait(wo->wo_pid);
1491 
1492     init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1493     wo->child_wait.private = current;
1494     add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1495 repeat:
1496     /*
1497      * If there is nothing that can match our criteria, just get out.
1498      * We will clear ->notask_error to zero if we see any child that
1499      * might later match our criteria, even if we are not able to reap
1500      * it yet.
1501      */
1502     wo->notask_error = -ECHILD;
1503     if ((wo->wo_type < PIDTYPE_MAX) &&
1504        (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1505         goto notask;
1506 
1507     set_current_state(TASK_INTERRUPTIBLE);
1508     read_lock(&tasklist_lock);
1509 
1510     if (wo->wo_type == PIDTYPE_PID) {
1511         retval = do_wait_pid(wo);
1512         if (retval)
1513             goto end;
1514     } else {
1515         struct task_struct *tsk = current;
1516 
1517         do {
1518             retval = do_wait_thread(wo, tsk);
1519             if (retval)
1520                 goto end;
1521 
1522             retval = ptrace_do_wait(wo, tsk);
1523             if (retval)
1524                 goto end;
1525 
1526             if (wo->wo_flags & __WNOTHREAD)
1527                 break;
1528         } while_each_thread(current, tsk);
1529     }
1530     read_unlock(&tasklist_lock);
1531 
1532 notask:
1533     retval = wo->notask_error;
1534     if (!retval && !(wo->wo_flags & WNOHANG)) {
1535         retval = -ERESTARTSYS;
1536         if (!signal_pending(current)) {
1537             schedule();
1538             goto repeat;
1539         }
1540     }
1541 end:
1542     __set_current_state(TASK_RUNNING);
1543     remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1544     return retval;
1545 }
1546 
1547 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1548               int options, struct rusage *ru)
1549 {
1550     struct wait_opts wo;
1551     struct pid *pid = NULL;
1552     enum pid_type type;
1553     long ret;
1554     unsigned int f_flags = 0;
1555 
1556     if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1557             __WNOTHREAD|__WCLONE|__WALL))
1558         return -EINVAL;
1559     if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1560         return -EINVAL;
1561 
1562     switch (which) {
1563     case P_ALL:
1564         type = PIDTYPE_MAX;
1565         break;
1566     case P_PID:
1567         type = PIDTYPE_PID;
1568         if (upid <= 0)
1569             return -EINVAL;
1570 
1571         pid = find_get_pid(upid);
1572         break;
1573     case P_PGID:
1574         type = PIDTYPE_PGID;
1575         if (upid < 0)
1576             return -EINVAL;
1577 
1578         if (upid)
1579             pid = find_get_pid(upid);
1580         else
1581             pid = get_task_pid(current, PIDTYPE_PGID);
1582         break;
1583     case P_PIDFD:
1584         type = PIDTYPE_PID;
1585         if (upid < 0)
1586             return -EINVAL;
1587 
1588         pid = pidfd_get_pid(upid, &f_flags);
1589         if (IS_ERR(pid))
1590             return PTR_ERR(pid);
1591 
1592         break;
1593     default:
1594         return -EINVAL;
1595     }
1596 
1597     wo.wo_type  = type;
1598     wo.wo_pid   = pid;
1599     wo.wo_flags = options;
1600     wo.wo_info  = infop;
1601     wo.wo_rusage    = ru;
1602     if (f_flags & O_NONBLOCK)
1603         wo.wo_flags |= WNOHANG;
1604 
1605     ret = do_wait(&wo);
1606     if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1607         ret = -EAGAIN;
1608 
1609     put_pid(pid);
1610     return ret;
1611 }
1612 
1613 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1614         infop, int, options, struct rusage __user *, ru)
1615 {
1616     struct rusage r;
1617     struct waitid_info info = {.status = 0};
1618     long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1619     int signo = 0;
1620 
1621     if (err > 0) {
1622         signo = SIGCHLD;
1623         err = 0;
1624         if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625             return -EFAULT;
1626     }
1627     if (!infop)
1628         return err;
1629 
1630     if (!user_write_access_begin(infop, sizeof(*infop)))
1631         return -EFAULT;
1632 
1633     unsafe_put_user(signo, &infop->si_signo, Efault);
1634     unsafe_put_user(0, &infop->si_errno, Efault);
1635     unsafe_put_user(info.cause, &infop->si_code, Efault);
1636     unsafe_put_user(info.pid, &infop->si_pid, Efault);
1637     unsafe_put_user(info.uid, &infop->si_uid, Efault);
1638     unsafe_put_user(info.status, &infop->si_status, Efault);
1639     user_write_access_end();
1640     return err;
1641 Efault:
1642     user_write_access_end();
1643     return -EFAULT;
1644 }
1645 
1646 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647           struct rusage *ru)
1648 {
1649     struct wait_opts wo;
1650     struct pid *pid = NULL;
1651     enum pid_type type;
1652     long ret;
1653 
1654     if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655             __WNOTHREAD|__WCLONE|__WALL))
1656         return -EINVAL;
1657 
1658     /* -INT_MIN is not defined */
1659     if (upid == INT_MIN)
1660         return -ESRCH;
1661 
1662     if (upid == -1)
1663         type = PIDTYPE_MAX;
1664     else if (upid < 0) {
1665         type = PIDTYPE_PGID;
1666         pid = find_get_pid(-upid);
1667     } else if (upid == 0) {
1668         type = PIDTYPE_PGID;
1669         pid = get_task_pid(current, PIDTYPE_PGID);
1670     } else /* upid > 0 */ {
1671         type = PIDTYPE_PID;
1672         pid = find_get_pid(upid);
1673     }
1674 
1675     wo.wo_type  = type;
1676     wo.wo_pid   = pid;
1677     wo.wo_flags = options | WEXITED;
1678     wo.wo_info  = NULL;
1679     wo.wo_stat  = 0;
1680     wo.wo_rusage    = ru;
1681     ret = do_wait(&wo);
1682     put_pid(pid);
1683     if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1684         ret = -EFAULT;
1685 
1686     return ret;
1687 }
1688 
1689 int kernel_wait(pid_t pid, int *stat)
1690 {
1691     struct wait_opts wo = {
1692         .wo_type    = PIDTYPE_PID,
1693         .wo_pid     = find_get_pid(pid),
1694         .wo_flags   = WEXITED,
1695     };
1696     int ret;
1697 
1698     ret = do_wait(&wo);
1699     if (ret > 0 && wo.wo_stat)
1700         *stat = wo.wo_stat;
1701     put_pid(wo.wo_pid);
1702     return ret;
1703 }
1704 
1705 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1706         int, options, struct rusage __user *, ru)
1707 {
1708     struct rusage r;
1709     long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1710 
1711     if (err > 0) {
1712         if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1713             return -EFAULT;
1714     }
1715     return err;
1716 }
1717 
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1719 
1720 /*
1721  * sys_waitpid() remains for compatibility. waitpid() should be
1722  * implemented by calling sys_wait4() from libc.a.
1723  */
1724 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1725 {
1726     return kernel_wait4(pid, stat_addr, options, NULL);
1727 }
1728 
1729 #endif
1730 
1731 #ifdef CONFIG_COMPAT
1732 COMPAT_SYSCALL_DEFINE4(wait4,
1733     compat_pid_t, pid,
1734     compat_uint_t __user *, stat_addr,
1735     int, options,
1736     struct compat_rusage __user *, ru)
1737 {
1738     struct rusage r;
1739     long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1740     if (err > 0) {
1741         if (ru && put_compat_rusage(&r, ru))
1742             return -EFAULT;
1743     }
1744     return err;
1745 }
1746 
1747 COMPAT_SYSCALL_DEFINE5(waitid,
1748         int, which, compat_pid_t, pid,
1749         struct compat_siginfo __user *, infop, int, options,
1750         struct compat_rusage __user *, uru)
1751 {
1752     struct rusage ru;
1753     struct waitid_info info = {.status = 0};
1754     long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1755     int signo = 0;
1756     if (err > 0) {
1757         signo = SIGCHLD;
1758         err = 0;
1759         if (uru) {
1760             /* kernel_waitid() overwrites everything in ru */
1761             if (COMPAT_USE_64BIT_TIME)
1762                 err = copy_to_user(uru, &ru, sizeof(ru));
1763             else
1764                 err = put_compat_rusage(&ru, uru);
1765             if (err)
1766                 return -EFAULT;
1767         }
1768     }
1769 
1770     if (!infop)
1771         return err;
1772 
1773     if (!user_write_access_begin(infop, sizeof(*infop)))
1774         return -EFAULT;
1775 
1776     unsafe_put_user(signo, &infop->si_signo, Efault);
1777     unsafe_put_user(0, &infop->si_errno, Efault);
1778     unsafe_put_user(info.cause, &infop->si_code, Efault);
1779     unsafe_put_user(info.pid, &infop->si_pid, Efault);
1780     unsafe_put_user(info.uid, &infop->si_uid, Efault);
1781     unsafe_put_user(info.status, &infop->si_status, Efault);
1782     user_write_access_end();
1783     return err;
1784 Efault:
1785     user_write_access_end();
1786     return -EFAULT;
1787 }
1788 #endif
1789 
1790 /**
1791  * thread_group_exited - check that a thread group has exited
1792  * @pid: tgid of thread group to be checked.
1793  *
1794  * Test if the thread group represented by tgid has exited (all
1795  * threads are zombies, dead or completely gone).
1796  *
1797  * Return: true if the thread group has exited. false otherwise.
1798  */
1799 bool thread_group_exited(struct pid *pid)
1800 {
1801     struct task_struct *task;
1802     bool exited;
1803 
1804     rcu_read_lock();
1805     task = pid_task(pid, PIDTYPE_PID);
1806     exited = !task ||
1807         (READ_ONCE(task->exit_state) && thread_group_empty(task));
1808     rcu_read_unlock();
1809 
1810     return exited;
1811 }
1812 EXPORT_SYMBOL(thread_group_exited);
1813 
1814 __weak void abort(void)
1815 {
1816     BUG();
1817 
1818     /* if that doesn't kill us, halt */
1819     panic("Oops failed to kill thread");
1820 }
1821 EXPORT_SYMBOL(abort);