0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/mm.h>
0009 #include <linux/slab.h>
0010 #include <linux/sched/autogroup.h>
0011 #include <linux/sched/mm.h>
0012 #include <linux/sched/stat.h>
0013 #include <linux/sched/task.h>
0014 #include <linux/sched/task_stack.h>
0015 #include <linux/sched/cputime.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/module.h>
0018 #include <linux/capability.h>
0019 #include <linux/completion.h>
0020 #include <linux/personality.h>
0021 #include <linux/tty.h>
0022 #include <linux/iocontext.h>
0023 #include <linux/key.h>
0024 #include <linux/cpu.h>
0025 #include <linux/acct.h>
0026 #include <linux/tsacct_kern.h>
0027 #include <linux/file.h>
0028 #include <linux/fdtable.h>
0029 #include <linux/freezer.h>
0030 #include <linux/binfmts.h>
0031 #include <linux/nsproxy.h>
0032 #include <linux/pid_namespace.h>
0033 #include <linux/ptrace.h>
0034 #include <linux/profile.h>
0035 #include <linux/mount.h>
0036 #include <linux/proc_fs.h>
0037 #include <linux/kthread.h>
0038 #include <linux/mempolicy.h>
0039 #include <linux/taskstats_kern.h>
0040 #include <linux/delayacct.h>
0041 #include <linux/cgroup.h>
0042 #include <linux/syscalls.h>
0043 #include <linux/signal.h>
0044 #include <linux/posix-timers.h>
0045 #include <linux/cn_proc.h>
0046 #include <linux/mutex.h>
0047 #include <linux/futex.h>
0048 #include <linux/pipe_fs_i.h>
0049 #include <linux/audit.h> /* for audit_free() */
0050 #include <linux/resource.h>
0051 #include <linux/task_io_accounting_ops.h>
0052 #include <linux/blkdev.h>
0053 #include <linux/task_work.h>
0054 #include <linux/fs_struct.h>
0055 #include <linux/init_task.h>
0056 #include <linux/perf_event.h>
0057 #include <trace/events/sched.h>
0058 #include <linux/hw_breakpoint.h>
0059 #include <linux/oom.h>
0060 #include <linux/writeback.h>
0061 #include <linux/shm.h>
0062 #include <linux/kcov.h>
0063 #include <linux/random.h>
0064 #include <linux/rcuwait.h>
0065 #include <linux/compat.h>
0066 #include <linux/io_uring.h>
0067 #include <linux/kprobes.h>
0068 #include <linux/rethook.h>
0069
0070 #include <linux/uaccess.h>
0071 #include <asm/unistd.h>
0072 #include <asm/mmu_context.h>
0073
0074 static void __unhash_process(struct task_struct *p, bool group_dead)
0075 {
0076 nr_threads--;
0077 detach_pid(p, PIDTYPE_PID);
0078 if (group_dead) {
0079 detach_pid(p, PIDTYPE_TGID);
0080 detach_pid(p, PIDTYPE_PGID);
0081 detach_pid(p, PIDTYPE_SID);
0082
0083 list_del_rcu(&p->tasks);
0084 list_del_init(&p->sibling);
0085 __this_cpu_dec(process_counts);
0086 }
0087 list_del_rcu(&p->thread_group);
0088 list_del_rcu(&p->thread_node);
0089 }
0090
0091
0092
0093
0094 static void __exit_signal(struct task_struct *tsk)
0095 {
0096 struct signal_struct *sig = tsk->signal;
0097 bool group_dead = thread_group_leader(tsk);
0098 struct sighand_struct *sighand;
0099 struct tty_struct *tty;
0100 u64 utime, stime;
0101
0102 sighand = rcu_dereference_check(tsk->sighand,
0103 lockdep_tasklist_lock_is_held());
0104 spin_lock(&sighand->siglock);
0105
0106 #ifdef CONFIG_POSIX_TIMERS
0107 posix_cpu_timers_exit(tsk);
0108 if (group_dead)
0109 posix_cpu_timers_exit_group(tsk);
0110 #endif
0111
0112 if (group_dead) {
0113 tty = sig->tty;
0114 sig->tty = NULL;
0115 } else {
0116
0117
0118
0119
0120 if (sig->notify_count > 0 && !--sig->notify_count)
0121 wake_up_process(sig->group_exec_task);
0122
0123 if (tsk == sig->curr_target)
0124 sig->curr_target = next_thread(tsk);
0125 }
0126
0127 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
0128 sizeof(unsigned long long));
0129
0130
0131
0132
0133
0134
0135
0136 task_cputime(tsk, &utime, &stime);
0137 write_seqlock(&sig->stats_lock);
0138 sig->utime += utime;
0139 sig->stime += stime;
0140 sig->gtime += task_gtime(tsk);
0141 sig->min_flt += tsk->min_flt;
0142 sig->maj_flt += tsk->maj_flt;
0143 sig->nvcsw += tsk->nvcsw;
0144 sig->nivcsw += tsk->nivcsw;
0145 sig->inblock += task_io_get_inblock(tsk);
0146 sig->oublock += task_io_get_oublock(tsk);
0147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
0148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
0149 sig->nr_threads--;
0150 __unhash_process(tsk, group_dead);
0151 write_sequnlock(&sig->stats_lock);
0152
0153
0154
0155
0156
0157 flush_sigqueue(&tsk->pending);
0158 tsk->sighand = NULL;
0159 spin_unlock(&sighand->siglock);
0160
0161 __cleanup_sighand(sighand);
0162 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
0163 if (group_dead) {
0164 flush_sigqueue(&sig->shared_pending);
0165 tty_kref_put(tty);
0166 }
0167 }
0168
0169 static void delayed_put_task_struct(struct rcu_head *rhp)
0170 {
0171 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
0172
0173 kprobe_flush_task(tsk);
0174 rethook_flush_task(tsk);
0175 perf_event_delayed_put(tsk);
0176 trace_sched_process_free(tsk);
0177 put_task_struct(tsk);
0178 }
0179
0180 void put_task_struct_rcu_user(struct task_struct *task)
0181 {
0182 if (refcount_dec_and_test(&task->rcu_users))
0183 call_rcu(&task->rcu, delayed_put_task_struct);
0184 }
0185
0186 void release_task(struct task_struct *p)
0187 {
0188 struct task_struct *leader;
0189 struct pid *thread_pid;
0190 int zap_leader;
0191 repeat:
0192
0193
0194 rcu_read_lock();
0195 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
0196 rcu_read_unlock();
0197
0198 cgroup_release(p);
0199
0200 write_lock_irq(&tasklist_lock);
0201 ptrace_release_task(p);
0202 thread_pid = get_pid(p->thread_pid);
0203 __exit_signal(p);
0204
0205
0206
0207
0208
0209
0210 zap_leader = 0;
0211 leader = p->group_leader;
0212 if (leader != p && thread_group_empty(leader)
0213 && leader->exit_state == EXIT_ZOMBIE) {
0214
0215
0216
0217
0218
0219 zap_leader = do_notify_parent(leader, leader->exit_signal);
0220 if (zap_leader)
0221 leader->exit_state = EXIT_DEAD;
0222 }
0223
0224 write_unlock_irq(&tasklist_lock);
0225 seccomp_filter_release(p);
0226 proc_flush_pid(thread_pid);
0227 put_pid(thread_pid);
0228 release_thread(p);
0229 put_task_struct_rcu_user(p);
0230
0231 p = leader;
0232 if (unlikely(zap_leader))
0233 goto repeat;
0234 }
0235
0236 int rcuwait_wake_up(struct rcuwait *w)
0237 {
0238 int ret = 0;
0239 struct task_struct *task;
0240
0241 rcu_read_lock();
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254 smp_mb();
0255
0256 task = rcu_dereference(w->task);
0257 if (task)
0258 ret = wake_up_process(task);
0259 rcu_read_unlock();
0260
0261 return ret;
0262 }
0263 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273 static int will_become_orphaned_pgrp(struct pid *pgrp,
0274 struct task_struct *ignored_task)
0275 {
0276 struct task_struct *p;
0277
0278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
0279 if ((p == ignored_task) ||
0280 (p->exit_state && thread_group_empty(p)) ||
0281 is_global_init(p->real_parent))
0282 continue;
0283
0284 if (task_pgrp(p->real_parent) != pgrp &&
0285 task_session(p->real_parent) == task_session(p))
0286 return 0;
0287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
0288
0289 return 1;
0290 }
0291
0292 int is_current_pgrp_orphaned(void)
0293 {
0294 int retval;
0295
0296 read_lock(&tasklist_lock);
0297 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
0298 read_unlock(&tasklist_lock);
0299
0300 return retval;
0301 }
0302
0303 static bool has_stopped_jobs(struct pid *pgrp)
0304 {
0305 struct task_struct *p;
0306
0307 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
0308 if (p->signal->flags & SIGNAL_STOP_STOPPED)
0309 return true;
0310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
0311
0312 return false;
0313 }
0314
0315
0316
0317
0318
0319
0320 static void
0321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
0322 {
0323 struct pid *pgrp = task_pgrp(tsk);
0324 struct task_struct *ignored_task = tsk;
0325
0326 if (!parent)
0327
0328
0329
0330 parent = tsk->real_parent;
0331 else
0332
0333
0334
0335 ignored_task = NULL;
0336
0337 if (task_pgrp(parent) != pgrp &&
0338 task_session(parent) == task_session(tsk) &&
0339 will_become_orphaned_pgrp(pgrp, ignored_task) &&
0340 has_stopped_jobs(pgrp)) {
0341 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
0342 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
0343 }
0344 }
0345
0346 static void coredump_task_exit(struct task_struct *tsk)
0347 {
0348 struct core_state *core_state;
0349
0350
0351
0352
0353
0354
0355
0356
0357 spin_lock_irq(&tsk->sighand->siglock);
0358 tsk->flags |= PF_POSTCOREDUMP;
0359 core_state = tsk->signal->core_state;
0360 spin_unlock_irq(&tsk->sighand->siglock);
0361 if (core_state) {
0362 struct core_thread self;
0363
0364 self.task = current;
0365 if (self.task->flags & PF_SIGNALED)
0366 self.next = xchg(&core_state->dumper.next, &self);
0367 else
0368 self.task = NULL;
0369
0370
0371
0372
0373 if (atomic_dec_and_test(&core_state->nr_threads))
0374 complete(&core_state->startup);
0375
0376 for (;;) {
0377 set_current_state(TASK_UNINTERRUPTIBLE);
0378 if (!self.task)
0379 break;
0380 freezable_schedule();
0381 }
0382 __set_current_state(TASK_RUNNING);
0383 }
0384 }
0385
0386 #ifdef CONFIG_MEMCG
0387
0388
0389
0390 void mm_update_next_owner(struct mm_struct *mm)
0391 {
0392 struct task_struct *c, *g, *p = current;
0393
0394 retry:
0395
0396
0397
0398
0399 if (mm->owner != p)
0400 return;
0401
0402
0403
0404
0405
0406 if (atomic_read(&mm->mm_users) <= 1) {
0407 WRITE_ONCE(mm->owner, NULL);
0408 return;
0409 }
0410
0411 read_lock(&tasklist_lock);
0412
0413
0414
0415 list_for_each_entry(c, &p->children, sibling) {
0416 if (c->mm == mm)
0417 goto assign_new_owner;
0418 }
0419
0420
0421
0422
0423 list_for_each_entry(c, &p->real_parent->children, sibling) {
0424 if (c->mm == mm)
0425 goto assign_new_owner;
0426 }
0427
0428
0429
0430
0431 for_each_process(g) {
0432 if (g->flags & PF_KTHREAD)
0433 continue;
0434 for_each_thread(g, c) {
0435 if (c->mm == mm)
0436 goto assign_new_owner;
0437 if (c->mm)
0438 break;
0439 }
0440 }
0441 read_unlock(&tasklist_lock);
0442
0443
0444
0445
0446
0447 WRITE_ONCE(mm->owner, NULL);
0448 return;
0449
0450 assign_new_owner:
0451 BUG_ON(c == p);
0452 get_task_struct(c);
0453
0454
0455
0456
0457 task_lock(c);
0458
0459
0460
0461
0462 read_unlock(&tasklist_lock);
0463 if (c->mm != mm) {
0464 task_unlock(c);
0465 put_task_struct(c);
0466 goto retry;
0467 }
0468 WRITE_ONCE(mm->owner, c);
0469 task_unlock(c);
0470 put_task_struct(c);
0471 }
0472 #endif
0473
0474
0475
0476
0477
0478 static void exit_mm(void)
0479 {
0480 struct mm_struct *mm = current->mm;
0481
0482 exit_mm_release(current, mm);
0483 if (!mm)
0484 return;
0485 sync_mm_rss(mm);
0486 mmap_read_lock(mm);
0487 mmgrab(mm);
0488 BUG_ON(mm != current->active_mm);
0489
0490 task_lock(current);
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501 smp_mb__after_spinlock();
0502 local_irq_disable();
0503 current->mm = NULL;
0504 membarrier_update_current_mm(NULL);
0505 enter_lazy_tlb(mm, current);
0506 local_irq_enable();
0507 task_unlock(current);
0508 mmap_read_unlock(mm);
0509 mm_update_next_owner(mm);
0510 mmput(mm);
0511 if (test_thread_flag(TIF_MEMDIE))
0512 exit_oom_victim();
0513 }
0514
0515 static struct task_struct *find_alive_thread(struct task_struct *p)
0516 {
0517 struct task_struct *t;
0518
0519 for_each_thread(p, t) {
0520 if (!(t->flags & PF_EXITING))
0521 return t;
0522 }
0523 return NULL;
0524 }
0525
0526 static struct task_struct *find_child_reaper(struct task_struct *father,
0527 struct list_head *dead)
0528 __releases(&tasklist_lock)
0529 __acquires(&tasklist_lock)
0530 {
0531 struct pid_namespace *pid_ns = task_active_pid_ns(father);
0532 struct task_struct *reaper = pid_ns->child_reaper;
0533 struct task_struct *p, *n;
0534
0535 if (likely(reaper != father))
0536 return reaper;
0537
0538 reaper = find_alive_thread(father);
0539 if (reaper) {
0540 pid_ns->child_reaper = reaper;
0541 return reaper;
0542 }
0543
0544 write_unlock_irq(&tasklist_lock);
0545
0546 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
0547 list_del_init(&p->ptrace_entry);
0548 release_task(p);
0549 }
0550
0551 zap_pid_ns_processes(pid_ns);
0552 write_lock_irq(&tasklist_lock);
0553
0554 return father;
0555 }
0556
0557
0558
0559
0560
0561
0562
0563
0564 static struct task_struct *find_new_reaper(struct task_struct *father,
0565 struct task_struct *child_reaper)
0566 {
0567 struct task_struct *thread, *reaper;
0568
0569 thread = find_alive_thread(father);
0570 if (thread)
0571 return thread;
0572
0573 if (father->signal->has_child_subreaper) {
0574 unsigned int ns_level = task_pid(father)->level;
0575
0576
0577
0578
0579
0580
0581
0582
0583 for (reaper = father->real_parent;
0584 task_pid(reaper)->level == ns_level;
0585 reaper = reaper->real_parent) {
0586 if (reaper == &init_task)
0587 break;
0588 if (!reaper->signal->is_child_subreaper)
0589 continue;
0590 thread = find_alive_thread(reaper);
0591 if (thread)
0592 return thread;
0593 }
0594 }
0595
0596 return child_reaper;
0597 }
0598
0599
0600
0601
0602 static void reparent_leader(struct task_struct *father, struct task_struct *p,
0603 struct list_head *dead)
0604 {
0605 if (unlikely(p->exit_state == EXIT_DEAD))
0606 return;
0607
0608
0609 p->exit_signal = SIGCHLD;
0610
0611
0612 if (!p->ptrace &&
0613 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
0614 if (do_notify_parent(p, p->exit_signal)) {
0615 p->exit_state = EXIT_DEAD;
0616 list_add(&p->ptrace_entry, dead);
0617 }
0618 }
0619
0620 kill_orphaned_pgrp(p, father);
0621 }
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631 static void forget_original_parent(struct task_struct *father,
0632 struct list_head *dead)
0633 {
0634 struct task_struct *p, *t, *reaper;
0635
0636 if (unlikely(!list_empty(&father->ptraced)))
0637 exit_ptrace(father, dead);
0638
0639
0640 reaper = find_child_reaper(father, dead);
0641 if (list_empty(&father->children))
0642 return;
0643
0644 reaper = find_new_reaper(father, reaper);
0645 list_for_each_entry(p, &father->children, sibling) {
0646 for_each_thread(p, t) {
0647 RCU_INIT_POINTER(t->real_parent, reaper);
0648 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
0649 if (likely(!t->ptrace))
0650 t->parent = t->real_parent;
0651 if (t->pdeath_signal)
0652 group_send_sig_info(t->pdeath_signal,
0653 SEND_SIG_NOINFO, t,
0654 PIDTYPE_TGID);
0655 }
0656
0657
0658
0659
0660 if (!same_thread_group(reaper, father))
0661 reparent_leader(father, p, dead);
0662 }
0663 list_splice_tail_init(&father->children, &reaper->children);
0664 }
0665
0666
0667
0668
0669
0670 static void exit_notify(struct task_struct *tsk, int group_dead)
0671 {
0672 bool autoreap;
0673 struct task_struct *p, *n;
0674 LIST_HEAD(dead);
0675
0676 write_lock_irq(&tasklist_lock);
0677 forget_original_parent(tsk, &dead);
0678
0679 if (group_dead)
0680 kill_orphaned_pgrp(tsk->group_leader, NULL);
0681
0682 tsk->exit_state = EXIT_ZOMBIE;
0683 if (unlikely(tsk->ptrace)) {
0684 int sig = thread_group_leader(tsk) &&
0685 thread_group_empty(tsk) &&
0686 !ptrace_reparented(tsk) ?
0687 tsk->exit_signal : SIGCHLD;
0688 autoreap = do_notify_parent(tsk, sig);
0689 } else if (thread_group_leader(tsk)) {
0690 autoreap = thread_group_empty(tsk) &&
0691 do_notify_parent(tsk, tsk->exit_signal);
0692 } else {
0693 autoreap = true;
0694 }
0695
0696 if (autoreap) {
0697 tsk->exit_state = EXIT_DEAD;
0698 list_add(&tsk->ptrace_entry, &dead);
0699 }
0700
0701
0702 if (unlikely(tsk->signal->notify_count < 0))
0703 wake_up_process(tsk->signal->group_exec_task);
0704 write_unlock_irq(&tasklist_lock);
0705
0706 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
0707 list_del_init(&p->ptrace_entry);
0708 release_task(p);
0709 }
0710 }
0711
0712 #ifdef CONFIG_DEBUG_STACK_USAGE
0713 static void check_stack_usage(void)
0714 {
0715 static DEFINE_SPINLOCK(low_water_lock);
0716 static int lowest_to_date = THREAD_SIZE;
0717 unsigned long free;
0718
0719 free = stack_not_used(current);
0720
0721 if (free >= lowest_to_date)
0722 return;
0723
0724 spin_lock(&low_water_lock);
0725 if (free < lowest_to_date) {
0726 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
0727 current->comm, task_pid_nr(current), free);
0728 lowest_to_date = free;
0729 }
0730 spin_unlock(&low_water_lock);
0731 }
0732 #else
0733 static inline void check_stack_usage(void) {}
0734 #endif
0735
0736 void __noreturn do_exit(long code)
0737 {
0738 struct task_struct *tsk = current;
0739 int group_dead;
0740
0741 WARN_ON(tsk->plug);
0742
0743 kcov_task_exit(tsk);
0744
0745 coredump_task_exit(tsk);
0746 ptrace_event(PTRACE_EVENT_EXIT, code);
0747
0748 validate_creds_for_do_exit(tsk);
0749
0750 io_uring_files_cancel();
0751 exit_signals(tsk);
0752
0753
0754 if (tsk->mm)
0755 sync_mm_rss(tsk->mm);
0756 acct_update_integrals(tsk);
0757 group_dead = atomic_dec_and_test(&tsk->signal->live);
0758 if (group_dead) {
0759
0760
0761
0762
0763 if (unlikely(is_global_init(tsk)))
0764 panic("Attempted to kill init! exitcode=0x%08x\n",
0765 tsk->signal->group_exit_code ?: (int)code);
0766
0767 #ifdef CONFIG_POSIX_TIMERS
0768 hrtimer_cancel(&tsk->signal->real_timer);
0769 exit_itimers(tsk);
0770 #endif
0771 if (tsk->mm)
0772 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
0773 }
0774 acct_collect(code, group_dead);
0775 if (group_dead)
0776 tty_audit_exit();
0777 audit_free(tsk);
0778
0779 tsk->exit_code = code;
0780 taskstats_exit(tsk, group_dead);
0781
0782 exit_mm();
0783
0784 if (group_dead)
0785 acct_process();
0786 trace_sched_process_exit(tsk);
0787
0788 exit_sem(tsk);
0789 exit_shm(tsk);
0790 exit_files(tsk);
0791 exit_fs(tsk);
0792 if (group_dead)
0793 disassociate_ctty(1);
0794 exit_task_namespaces(tsk);
0795 exit_task_work(tsk);
0796 exit_thread(tsk);
0797
0798
0799
0800
0801
0802
0803
0804 perf_event_exit_task(tsk);
0805
0806 sched_autogroup_exit_task(tsk);
0807 cgroup_exit(tsk);
0808
0809
0810
0811
0812 flush_ptrace_hw_breakpoint(tsk);
0813
0814 exit_tasks_rcu_start();
0815 exit_notify(tsk, group_dead);
0816 proc_exit_connector(tsk);
0817 mpol_put_task_policy(tsk);
0818 #ifdef CONFIG_FUTEX
0819 if (unlikely(current->pi_state_cache))
0820 kfree(current->pi_state_cache);
0821 #endif
0822
0823
0824
0825 debug_check_no_locks_held();
0826
0827 if (tsk->io_context)
0828 exit_io_context(tsk);
0829
0830 if (tsk->splice_pipe)
0831 free_pipe_info(tsk->splice_pipe);
0832
0833 if (tsk->task_frag.page)
0834 put_page(tsk->task_frag.page);
0835
0836 validate_creds_for_do_exit(tsk);
0837 exit_task_stack_account(tsk);
0838
0839 check_stack_usage();
0840 preempt_disable();
0841 if (tsk->nr_dirtied)
0842 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
0843 exit_rcu();
0844 exit_tasks_rcu_finish();
0845
0846 lockdep_free_task(tsk);
0847 do_task_dead();
0848 }
0849
0850 void __noreturn make_task_dead(int signr)
0851 {
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861 struct task_struct *tsk = current;
0862
0863 if (unlikely(in_interrupt()))
0864 panic("Aiee, killing interrupt handler!");
0865 if (unlikely(!tsk->pid))
0866 panic("Attempted to kill the idle task!");
0867
0868 if (unlikely(in_atomic())) {
0869 pr_info("note: %s[%d] exited with preempt_count %d\n",
0870 current->comm, task_pid_nr(current),
0871 preempt_count());
0872 preempt_count_set(PREEMPT_ENABLED);
0873 }
0874
0875
0876
0877
0878
0879 if (unlikely(tsk->flags & PF_EXITING)) {
0880 pr_alert("Fixing recursive fault but reboot is needed!\n");
0881 futex_exit_recursive(tsk);
0882 tsk->exit_state = EXIT_DEAD;
0883 refcount_inc(&tsk->rcu_users);
0884 do_task_dead();
0885 }
0886
0887 do_exit(signr);
0888 }
0889
0890 SYSCALL_DEFINE1(exit, int, error_code)
0891 {
0892 do_exit((error_code&0xff)<<8);
0893 }
0894
0895
0896
0897
0898
0899 void __noreturn
0900 do_group_exit(int exit_code)
0901 {
0902 struct signal_struct *sig = current->signal;
0903
0904 if (sig->flags & SIGNAL_GROUP_EXIT)
0905 exit_code = sig->group_exit_code;
0906 else if (sig->group_exec_task)
0907 exit_code = 0;
0908 else if (!thread_group_empty(current)) {
0909 struct sighand_struct *const sighand = current->sighand;
0910
0911 spin_lock_irq(&sighand->siglock);
0912 if (sig->flags & SIGNAL_GROUP_EXIT)
0913
0914 exit_code = sig->group_exit_code;
0915 else if (sig->group_exec_task)
0916 exit_code = 0;
0917 else {
0918 sig->group_exit_code = exit_code;
0919 sig->flags = SIGNAL_GROUP_EXIT;
0920 zap_other_threads(current);
0921 }
0922 spin_unlock_irq(&sighand->siglock);
0923 }
0924
0925 do_exit(exit_code);
0926
0927 }
0928
0929
0930
0931
0932
0933
0934 SYSCALL_DEFINE1(exit_group, int, error_code)
0935 {
0936 do_group_exit((error_code & 0xff) << 8);
0937
0938 return 0;
0939 }
0940
0941 struct waitid_info {
0942 pid_t pid;
0943 uid_t uid;
0944 int status;
0945 int cause;
0946 };
0947
0948 struct wait_opts {
0949 enum pid_type wo_type;
0950 int wo_flags;
0951 struct pid *wo_pid;
0952
0953 struct waitid_info *wo_info;
0954 int wo_stat;
0955 struct rusage *wo_rusage;
0956
0957 wait_queue_entry_t child_wait;
0958 int notask_error;
0959 };
0960
0961 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
0962 {
0963 return wo->wo_type == PIDTYPE_MAX ||
0964 task_pid_type(p, wo->wo_type) == wo->wo_pid;
0965 }
0966
0967 static int
0968 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
0969 {
0970 if (!eligible_pid(wo, p))
0971 return 0;
0972
0973
0974
0975
0976
0977 if (ptrace || (wo->wo_flags & __WALL))
0978 return 1;
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
0989 return 0;
0990
0991 return 1;
0992 }
0993
0994
0995
0996
0997
0998
0999
1000 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1001 {
1002 int state, status;
1003 pid_t pid = task_pid_vnr(p);
1004 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1005 struct waitid_info *infop;
1006
1007 if (!likely(wo->wo_flags & WEXITED))
1008 return 0;
1009
1010 if (unlikely(wo->wo_flags & WNOWAIT)) {
1011 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1012 ? p->signal->group_exit_code : p->exit_code;
1013 get_task_struct(p);
1014 read_unlock(&tasklist_lock);
1015 sched_annotate_sleep();
1016 if (wo->wo_rusage)
1017 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1018 put_task_struct(p);
1019 goto out_info;
1020 }
1021
1022
1023
1024 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1025 EXIT_TRACE : EXIT_DEAD;
1026 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1027 return 0;
1028
1029
1030
1031 read_unlock(&tasklist_lock);
1032 sched_annotate_sleep();
1033
1034
1035
1036
1037 if (state == EXIT_DEAD && thread_group_leader(p)) {
1038 struct signal_struct *sig = p->signal;
1039 struct signal_struct *psig = current->signal;
1040 unsigned long maxrss;
1041 u64 tgutime, tgstime;
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1064 spin_lock_irq(¤t->sighand->siglock);
1065 write_seqlock(&psig->stats_lock);
1066 psig->cutime += tgutime + sig->cutime;
1067 psig->cstime += tgstime + sig->cstime;
1068 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1069 psig->cmin_flt +=
1070 p->min_flt + sig->min_flt + sig->cmin_flt;
1071 psig->cmaj_flt +=
1072 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1073 psig->cnvcsw +=
1074 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1075 psig->cnivcsw +=
1076 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1077 psig->cinblock +=
1078 task_io_get_inblock(p) +
1079 sig->inblock + sig->cinblock;
1080 psig->coublock +=
1081 task_io_get_oublock(p) +
1082 sig->oublock + sig->coublock;
1083 maxrss = max(sig->maxrss, sig->cmaxrss);
1084 if (psig->cmaxrss < maxrss)
1085 psig->cmaxrss = maxrss;
1086 task_io_accounting_add(&psig->ioac, &p->ioac);
1087 task_io_accounting_add(&psig->ioac, &sig->ioac);
1088 write_sequnlock(&psig->stats_lock);
1089 spin_unlock_irq(¤t->sighand->siglock);
1090 }
1091
1092 if (wo->wo_rusage)
1093 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1094 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1095 ? p->signal->group_exit_code : p->exit_code;
1096 wo->wo_stat = status;
1097
1098 if (state == EXIT_TRACE) {
1099 write_lock_irq(&tasklist_lock);
1100
1101 ptrace_unlink(p);
1102
1103
1104 state = EXIT_ZOMBIE;
1105 if (do_notify_parent(p, p->exit_signal))
1106 state = EXIT_DEAD;
1107 p->exit_state = state;
1108 write_unlock_irq(&tasklist_lock);
1109 }
1110 if (state == EXIT_DEAD)
1111 release_task(p);
1112
1113 out_info:
1114 infop = wo->wo_info;
1115 if (infop) {
1116 if ((status & 0x7f) == 0) {
1117 infop->cause = CLD_EXITED;
1118 infop->status = status >> 8;
1119 } else {
1120 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1121 infop->status = status & 0x7f;
1122 }
1123 infop->pid = pid;
1124 infop->uid = uid;
1125 }
1126
1127 return pid;
1128 }
1129
1130 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 {
1132 if (ptrace) {
1133 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1134 return &p->exit_code;
1135 } else {
1136 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1137 return &p->signal->group_exit_code;
1138 }
1139 return NULL;
1140 }
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160 static int wait_task_stopped(struct wait_opts *wo,
1161 int ptrace, struct task_struct *p)
1162 {
1163 struct waitid_info *infop;
1164 int exit_code, *p_code, why;
1165 uid_t uid = 0;
1166 pid_t pid;
1167
1168
1169
1170
1171 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1172 return 0;
1173
1174 if (!task_stopped_code(p, ptrace))
1175 return 0;
1176
1177 exit_code = 0;
1178 spin_lock_irq(&p->sighand->siglock);
1179
1180 p_code = task_stopped_code(p, ptrace);
1181 if (unlikely(!p_code))
1182 goto unlock_sig;
1183
1184 exit_code = *p_code;
1185 if (!exit_code)
1186 goto unlock_sig;
1187
1188 if (!unlikely(wo->wo_flags & WNOWAIT))
1189 *p_code = 0;
1190
1191 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1192 unlock_sig:
1193 spin_unlock_irq(&p->sighand->siglock);
1194 if (!exit_code)
1195 return 0;
1196
1197
1198
1199
1200
1201
1202
1203
1204 get_task_struct(p);
1205 pid = task_pid_vnr(p);
1206 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1207 read_unlock(&tasklist_lock);
1208 sched_annotate_sleep();
1209 if (wo->wo_rusage)
1210 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1211 put_task_struct(p);
1212
1213 if (likely(!(wo->wo_flags & WNOWAIT)))
1214 wo->wo_stat = (exit_code << 8) | 0x7f;
1215
1216 infop = wo->wo_info;
1217 if (infop) {
1218 infop->cause = why;
1219 infop->status = exit_code;
1220 infop->pid = pid;
1221 infop->uid = uid;
1222 }
1223 return pid;
1224 }
1225
1226
1227
1228
1229
1230
1231
1232 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1233 {
1234 struct waitid_info *infop;
1235 pid_t pid;
1236 uid_t uid;
1237
1238 if (!unlikely(wo->wo_flags & WCONTINUED))
1239 return 0;
1240
1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242 return 0;
1243
1244 spin_lock_irq(&p->sighand->siglock);
1245
1246 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1247 spin_unlock_irq(&p->sighand->siglock);
1248 return 0;
1249 }
1250 if (!unlikely(wo->wo_flags & WNOWAIT))
1251 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1252 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253 spin_unlock_irq(&p->sighand->siglock);
1254
1255 pid = task_pid_vnr(p);
1256 get_task_struct(p);
1257 read_unlock(&tasklist_lock);
1258 sched_annotate_sleep();
1259 if (wo->wo_rusage)
1260 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261 put_task_struct(p);
1262
1263 infop = wo->wo_info;
1264 if (!infop) {
1265 wo->wo_stat = 0xffff;
1266 } else {
1267 infop->cause = CLD_CONTINUED;
1268 infop->pid = pid;
1269 infop->uid = uid;
1270 infop->status = SIGCONT;
1271 }
1272 return pid;
1273 }
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1285 struct task_struct *p)
1286 {
1287
1288
1289
1290
1291
1292 int exit_state = READ_ONCE(p->exit_state);
1293 int ret;
1294
1295 if (unlikely(exit_state == EXIT_DEAD))
1296 return 0;
1297
1298 ret = eligible_child(wo, ptrace, p);
1299 if (!ret)
1300 return ret;
1301
1302 if (unlikely(exit_state == EXIT_TRACE)) {
1303
1304
1305
1306
1307 if (likely(!ptrace))
1308 wo->notask_error = 0;
1309 return 0;
1310 }
1311
1312 if (likely(!ptrace) && unlikely(p->ptrace)) {
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324 if (!ptrace_reparented(p))
1325 ptrace = 1;
1326 }
1327
1328
1329 if (exit_state == EXIT_ZOMBIE) {
1330
1331 if (!delay_group_leader(p)) {
1332
1333
1334
1335
1336
1337 if (unlikely(ptrace) || likely(!p->ptrace))
1338 return wait_task_zombie(wo, p);
1339 }
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1362 wo->notask_error = 0;
1363 } else {
1364
1365
1366
1367
1368 wo->notask_error = 0;
1369 }
1370
1371
1372
1373
1374
1375 ret = wait_task_stopped(wo, ptrace, p);
1376 if (ret)
1377 return ret;
1378
1379
1380
1381
1382
1383
1384 return wait_task_continued(wo, p);
1385 }
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1397 {
1398 struct task_struct *p;
1399
1400 list_for_each_entry(p, &tsk->children, sibling) {
1401 int ret = wait_consider_task(wo, 0, p);
1402
1403 if (ret)
1404 return ret;
1405 }
1406
1407 return 0;
1408 }
1409
1410 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1411 {
1412 struct task_struct *p;
1413
1414 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1415 int ret = wait_consider_task(wo, 1, p);
1416
1417 if (ret)
1418 return ret;
1419 }
1420
1421 return 0;
1422 }
1423
1424 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1425 int sync, void *key)
1426 {
1427 struct wait_opts *wo = container_of(wait, struct wait_opts,
1428 child_wait);
1429 struct task_struct *p = key;
1430
1431 if (!eligible_pid(wo, p))
1432 return 0;
1433
1434 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1435 return 0;
1436
1437 return default_wake_function(wait, mode, sync, key);
1438 }
1439
1440 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1441 {
1442 __wake_up_sync_key(&parent->signal->wait_chldexit,
1443 TASK_INTERRUPTIBLE, p);
1444 }
1445
1446 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1447 struct task_struct *target)
1448 {
1449 struct task_struct *parent =
1450 !ptrace ? target->real_parent : target->parent;
1451
1452 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1453 same_thread_group(current, parent));
1454 }
1455
1456
1457
1458
1459
1460 static int do_wait_pid(struct wait_opts *wo)
1461 {
1462 bool ptrace;
1463 struct task_struct *target;
1464 int retval;
1465
1466 ptrace = false;
1467 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1468 if (target && is_effectively_child(wo, ptrace, target)) {
1469 retval = wait_consider_task(wo, ptrace, target);
1470 if (retval)
1471 return retval;
1472 }
1473
1474 ptrace = true;
1475 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1476 if (target && target->ptrace &&
1477 is_effectively_child(wo, ptrace, target)) {
1478 retval = wait_consider_task(wo, ptrace, target);
1479 if (retval)
1480 return retval;
1481 }
1482
1483 return 0;
1484 }
1485
1486 static long do_wait(struct wait_opts *wo)
1487 {
1488 int retval;
1489
1490 trace_sched_process_wait(wo->wo_pid);
1491
1492 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1493 wo->child_wait.private = current;
1494 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1495 repeat:
1496
1497
1498
1499
1500
1501
1502 wo->notask_error = -ECHILD;
1503 if ((wo->wo_type < PIDTYPE_MAX) &&
1504 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1505 goto notask;
1506
1507 set_current_state(TASK_INTERRUPTIBLE);
1508 read_lock(&tasklist_lock);
1509
1510 if (wo->wo_type == PIDTYPE_PID) {
1511 retval = do_wait_pid(wo);
1512 if (retval)
1513 goto end;
1514 } else {
1515 struct task_struct *tsk = current;
1516
1517 do {
1518 retval = do_wait_thread(wo, tsk);
1519 if (retval)
1520 goto end;
1521
1522 retval = ptrace_do_wait(wo, tsk);
1523 if (retval)
1524 goto end;
1525
1526 if (wo->wo_flags & __WNOTHREAD)
1527 break;
1528 } while_each_thread(current, tsk);
1529 }
1530 read_unlock(&tasklist_lock);
1531
1532 notask:
1533 retval = wo->notask_error;
1534 if (!retval && !(wo->wo_flags & WNOHANG)) {
1535 retval = -ERESTARTSYS;
1536 if (!signal_pending(current)) {
1537 schedule();
1538 goto repeat;
1539 }
1540 }
1541 end:
1542 __set_current_state(TASK_RUNNING);
1543 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1544 return retval;
1545 }
1546
1547 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1548 int options, struct rusage *ru)
1549 {
1550 struct wait_opts wo;
1551 struct pid *pid = NULL;
1552 enum pid_type type;
1553 long ret;
1554 unsigned int f_flags = 0;
1555
1556 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1557 __WNOTHREAD|__WCLONE|__WALL))
1558 return -EINVAL;
1559 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1560 return -EINVAL;
1561
1562 switch (which) {
1563 case P_ALL:
1564 type = PIDTYPE_MAX;
1565 break;
1566 case P_PID:
1567 type = PIDTYPE_PID;
1568 if (upid <= 0)
1569 return -EINVAL;
1570
1571 pid = find_get_pid(upid);
1572 break;
1573 case P_PGID:
1574 type = PIDTYPE_PGID;
1575 if (upid < 0)
1576 return -EINVAL;
1577
1578 if (upid)
1579 pid = find_get_pid(upid);
1580 else
1581 pid = get_task_pid(current, PIDTYPE_PGID);
1582 break;
1583 case P_PIDFD:
1584 type = PIDTYPE_PID;
1585 if (upid < 0)
1586 return -EINVAL;
1587
1588 pid = pidfd_get_pid(upid, &f_flags);
1589 if (IS_ERR(pid))
1590 return PTR_ERR(pid);
1591
1592 break;
1593 default:
1594 return -EINVAL;
1595 }
1596
1597 wo.wo_type = type;
1598 wo.wo_pid = pid;
1599 wo.wo_flags = options;
1600 wo.wo_info = infop;
1601 wo.wo_rusage = ru;
1602 if (f_flags & O_NONBLOCK)
1603 wo.wo_flags |= WNOHANG;
1604
1605 ret = do_wait(&wo);
1606 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1607 ret = -EAGAIN;
1608
1609 put_pid(pid);
1610 return ret;
1611 }
1612
1613 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1614 infop, int, options, struct rusage __user *, ru)
1615 {
1616 struct rusage r;
1617 struct waitid_info info = {.status = 0};
1618 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1619 int signo = 0;
1620
1621 if (err > 0) {
1622 signo = SIGCHLD;
1623 err = 0;
1624 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625 return -EFAULT;
1626 }
1627 if (!infop)
1628 return err;
1629
1630 if (!user_write_access_begin(infop, sizeof(*infop)))
1631 return -EFAULT;
1632
1633 unsafe_put_user(signo, &infop->si_signo, Efault);
1634 unsafe_put_user(0, &infop->si_errno, Efault);
1635 unsafe_put_user(info.cause, &infop->si_code, Efault);
1636 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1637 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1638 unsafe_put_user(info.status, &infop->si_status, Efault);
1639 user_write_access_end();
1640 return err;
1641 Efault:
1642 user_write_access_end();
1643 return -EFAULT;
1644 }
1645
1646 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647 struct rusage *ru)
1648 {
1649 struct wait_opts wo;
1650 struct pid *pid = NULL;
1651 enum pid_type type;
1652 long ret;
1653
1654 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655 __WNOTHREAD|__WCLONE|__WALL))
1656 return -EINVAL;
1657
1658
1659 if (upid == INT_MIN)
1660 return -ESRCH;
1661
1662 if (upid == -1)
1663 type = PIDTYPE_MAX;
1664 else if (upid < 0) {
1665 type = PIDTYPE_PGID;
1666 pid = find_get_pid(-upid);
1667 } else if (upid == 0) {
1668 type = PIDTYPE_PGID;
1669 pid = get_task_pid(current, PIDTYPE_PGID);
1670 } else {
1671 type = PIDTYPE_PID;
1672 pid = find_get_pid(upid);
1673 }
1674
1675 wo.wo_type = type;
1676 wo.wo_pid = pid;
1677 wo.wo_flags = options | WEXITED;
1678 wo.wo_info = NULL;
1679 wo.wo_stat = 0;
1680 wo.wo_rusage = ru;
1681 ret = do_wait(&wo);
1682 put_pid(pid);
1683 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1684 ret = -EFAULT;
1685
1686 return ret;
1687 }
1688
1689 int kernel_wait(pid_t pid, int *stat)
1690 {
1691 struct wait_opts wo = {
1692 .wo_type = PIDTYPE_PID,
1693 .wo_pid = find_get_pid(pid),
1694 .wo_flags = WEXITED,
1695 };
1696 int ret;
1697
1698 ret = do_wait(&wo);
1699 if (ret > 0 && wo.wo_stat)
1700 *stat = wo.wo_stat;
1701 put_pid(wo.wo_pid);
1702 return ret;
1703 }
1704
1705 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1706 int, options, struct rusage __user *, ru)
1707 {
1708 struct rusage r;
1709 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1710
1711 if (err > 0) {
1712 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1713 return -EFAULT;
1714 }
1715 return err;
1716 }
1717
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1719
1720
1721
1722
1723
1724 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1725 {
1726 return kernel_wait4(pid, stat_addr, options, NULL);
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_COMPAT
1732 COMPAT_SYSCALL_DEFINE4(wait4,
1733 compat_pid_t, pid,
1734 compat_uint_t __user *, stat_addr,
1735 int, options,
1736 struct compat_rusage __user *, ru)
1737 {
1738 struct rusage r;
1739 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1740 if (err > 0) {
1741 if (ru && put_compat_rusage(&r, ru))
1742 return -EFAULT;
1743 }
1744 return err;
1745 }
1746
1747 COMPAT_SYSCALL_DEFINE5(waitid,
1748 int, which, compat_pid_t, pid,
1749 struct compat_siginfo __user *, infop, int, options,
1750 struct compat_rusage __user *, uru)
1751 {
1752 struct rusage ru;
1753 struct waitid_info info = {.status = 0};
1754 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1755 int signo = 0;
1756 if (err > 0) {
1757 signo = SIGCHLD;
1758 err = 0;
1759 if (uru) {
1760
1761 if (COMPAT_USE_64BIT_TIME)
1762 err = copy_to_user(uru, &ru, sizeof(ru));
1763 else
1764 err = put_compat_rusage(&ru, uru);
1765 if (err)
1766 return -EFAULT;
1767 }
1768 }
1769
1770 if (!infop)
1771 return err;
1772
1773 if (!user_write_access_begin(infop, sizeof(*infop)))
1774 return -EFAULT;
1775
1776 unsafe_put_user(signo, &infop->si_signo, Efault);
1777 unsafe_put_user(0, &infop->si_errno, Efault);
1778 unsafe_put_user(info.cause, &infop->si_code, Efault);
1779 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1780 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1781 unsafe_put_user(info.status, &infop->si_status, Efault);
1782 user_write_access_end();
1783 return err;
1784 Efault:
1785 user_write_access_end();
1786 return -EFAULT;
1787 }
1788 #endif
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799 bool thread_group_exited(struct pid *pid)
1800 {
1801 struct task_struct *task;
1802 bool exited;
1803
1804 rcu_read_lock();
1805 task = pid_task(pid, PIDTYPE_PID);
1806 exited = !task ||
1807 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1808 rcu_read_unlock();
1809
1810 return exited;
1811 }
1812 EXPORT_SYMBOL(thread_group_exited);
1813
1814 __weak void abort(void)
1815 {
1816 BUG();
1817
1818
1819 panic("Oops failed to kill thread");
1820 }
1821 EXPORT_SYMBOL(abort);