Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Performance events core code:
0004  *
0005  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
0006  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
0007  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
0008  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0009  */
0010 
0011 #include <linux/fs.h>
0012 #include <linux/mm.h>
0013 #include <linux/cpu.h>
0014 #include <linux/smp.h>
0015 #include <linux/idr.h>
0016 #include <linux/file.h>
0017 #include <linux/poll.h>
0018 #include <linux/slab.h>
0019 #include <linux/hash.h>
0020 #include <linux/tick.h>
0021 #include <linux/sysfs.h>
0022 #include <linux/dcache.h>
0023 #include <linux/percpu.h>
0024 #include <linux/ptrace.h>
0025 #include <linux/reboot.h>
0026 #include <linux/vmstat.h>
0027 #include <linux/device.h>
0028 #include <linux/export.h>
0029 #include <linux/vmalloc.h>
0030 #include <linux/hardirq.h>
0031 #include <linux/hugetlb.h>
0032 #include <linux/rculist.h>
0033 #include <linux/uaccess.h>
0034 #include <linux/syscalls.h>
0035 #include <linux/anon_inodes.h>
0036 #include <linux/kernel_stat.h>
0037 #include <linux/cgroup.h>
0038 #include <linux/perf_event.h>
0039 #include <linux/trace_events.h>
0040 #include <linux/hw_breakpoint.h>
0041 #include <linux/mm_types.h>
0042 #include <linux/module.h>
0043 #include <linux/mman.h>
0044 #include <linux/compat.h>
0045 #include <linux/bpf.h>
0046 #include <linux/filter.h>
0047 #include <linux/namei.h>
0048 #include <linux/parser.h>
0049 #include <linux/sched/clock.h>
0050 #include <linux/sched/mm.h>
0051 #include <linux/proc_ns.h>
0052 #include <linux/mount.h>
0053 #include <linux/min_heap.h>
0054 #include <linux/highmem.h>
0055 #include <linux/pgtable.h>
0056 #include <linux/buildid.h>
0057 
0058 #include "internal.h"
0059 
0060 #include <asm/irq_regs.h>
0061 
0062 typedef int (*remote_function_f)(void *);
0063 
0064 struct remote_function_call {
0065     struct task_struct  *p;
0066     remote_function_f   func;
0067     void            *info;
0068     int         ret;
0069 };
0070 
0071 static void remote_function(void *data)
0072 {
0073     struct remote_function_call *tfc = data;
0074     struct task_struct *p = tfc->p;
0075 
0076     if (p) {
0077         /* -EAGAIN */
0078         if (task_cpu(p) != smp_processor_id())
0079             return;
0080 
0081         /*
0082          * Now that we're on right CPU with IRQs disabled, we can test
0083          * if we hit the right task without races.
0084          */
0085 
0086         tfc->ret = -ESRCH; /* No such (running) process */
0087         if (p != current)
0088             return;
0089     }
0090 
0091     tfc->ret = tfc->func(tfc->info);
0092 }
0093 
0094 /**
0095  * task_function_call - call a function on the cpu on which a task runs
0096  * @p:      the task to evaluate
0097  * @func:   the function to be called
0098  * @info:   the function call argument
0099  *
0100  * Calls the function @func when the task is currently running. This might
0101  * be on the current CPU, which just calls the function directly.  This will
0102  * retry due to any failures in smp_call_function_single(), such as if the
0103  * task_cpu() goes offline concurrently.
0104  *
0105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
0106  */
0107 static int
0108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
0109 {
0110     struct remote_function_call data = {
0111         .p  = p,
0112         .func   = func,
0113         .info   = info,
0114         .ret    = -EAGAIN,
0115     };
0116     int ret;
0117 
0118     for (;;) {
0119         ret = smp_call_function_single(task_cpu(p), remote_function,
0120                            &data, 1);
0121         if (!ret)
0122             ret = data.ret;
0123 
0124         if (ret != -EAGAIN)
0125             break;
0126 
0127         cond_resched();
0128     }
0129 
0130     return ret;
0131 }
0132 
0133 /**
0134  * cpu_function_call - call a function on the cpu
0135  * @cpu:    target cpu to queue this function
0136  * @func:   the function to be called
0137  * @info:   the function call argument
0138  *
0139  * Calls the function @func on the remote cpu.
0140  *
0141  * returns: @func return value or -ENXIO when the cpu is offline
0142  */
0143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
0144 {
0145     struct remote_function_call data = {
0146         .p  = NULL,
0147         .func   = func,
0148         .info   = info,
0149         .ret    = -ENXIO, /* No such CPU */
0150     };
0151 
0152     smp_call_function_single(cpu, remote_function, &data, 1);
0153 
0154     return data.ret;
0155 }
0156 
0157 static inline struct perf_cpu_context *
0158 __get_cpu_context(struct perf_event_context *ctx)
0159 {
0160     return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
0161 }
0162 
0163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
0164               struct perf_event_context *ctx)
0165 {
0166     raw_spin_lock(&cpuctx->ctx.lock);
0167     if (ctx)
0168         raw_spin_lock(&ctx->lock);
0169 }
0170 
0171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
0172                 struct perf_event_context *ctx)
0173 {
0174     if (ctx)
0175         raw_spin_unlock(&ctx->lock);
0176     raw_spin_unlock(&cpuctx->ctx.lock);
0177 }
0178 
0179 #define TASK_TOMBSTONE ((void *)-1L)
0180 
0181 static bool is_kernel_event(struct perf_event *event)
0182 {
0183     return READ_ONCE(event->owner) == TASK_TOMBSTONE;
0184 }
0185 
0186 /*
0187  * On task ctx scheduling...
0188  *
0189  * When !ctx->nr_events a task context will not be scheduled. This means
0190  * we can disable the scheduler hooks (for performance) without leaving
0191  * pending task ctx state.
0192  *
0193  * This however results in two special cases:
0194  *
0195  *  - removing the last event from a task ctx; this is relatively straight
0196  *    forward and is done in __perf_remove_from_context.
0197  *
0198  *  - adding the first event to a task ctx; this is tricky because we cannot
0199  *    rely on ctx->is_active and therefore cannot use event_function_call().
0200  *    See perf_install_in_context().
0201  *
0202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
0203  */
0204 
0205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
0206             struct perf_event_context *, void *);
0207 
0208 struct event_function_struct {
0209     struct perf_event *event;
0210     event_f func;
0211     void *data;
0212 };
0213 
0214 static int event_function(void *info)
0215 {
0216     struct event_function_struct *efs = info;
0217     struct perf_event *event = efs->event;
0218     struct perf_event_context *ctx = event->ctx;
0219     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0220     struct perf_event_context *task_ctx = cpuctx->task_ctx;
0221     int ret = 0;
0222 
0223     lockdep_assert_irqs_disabled();
0224 
0225     perf_ctx_lock(cpuctx, task_ctx);
0226     /*
0227      * Since we do the IPI call without holding ctx->lock things can have
0228      * changed, double check we hit the task we set out to hit.
0229      */
0230     if (ctx->task) {
0231         if (ctx->task != current) {
0232             ret = -ESRCH;
0233             goto unlock;
0234         }
0235 
0236         /*
0237          * We only use event_function_call() on established contexts,
0238          * and event_function() is only ever called when active (or
0239          * rather, we'll have bailed in task_function_call() or the
0240          * above ctx->task != current test), therefore we must have
0241          * ctx->is_active here.
0242          */
0243         WARN_ON_ONCE(!ctx->is_active);
0244         /*
0245          * And since we have ctx->is_active, cpuctx->task_ctx must
0246          * match.
0247          */
0248         WARN_ON_ONCE(task_ctx != ctx);
0249     } else {
0250         WARN_ON_ONCE(&cpuctx->ctx != ctx);
0251     }
0252 
0253     efs->func(event, cpuctx, ctx, efs->data);
0254 unlock:
0255     perf_ctx_unlock(cpuctx, task_ctx);
0256 
0257     return ret;
0258 }
0259 
0260 static void event_function_call(struct perf_event *event, event_f func, void *data)
0261 {
0262     struct perf_event_context *ctx = event->ctx;
0263     struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
0264     struct event_function_struct efs = {
0265         .event = event,
0266         .func = func,
0267         .data = data,
0268     };
0269 
0270     if (!event->parent) {
0271         /*
0272          * If this is a !child event, we must hold ctx::mutex to
0273          * stabilize the event->ctx relation. See
0274          * perf_event_ctx_lock().
0275          */
0276         lockdep_assert_held(&ctx->mutex);
0277     }
0278 
0279     if (!task) {
0280         cpu_function_call(event->cpu, event_function, &efs);
0281         return;
0282     }
0283 
0284     if (task == TASK_TOMBSTONE)
0285         return;
0286 
0287 again:
0288     if (!task_function_call(task, event_function, &efs))
0289         return;
0290 
0291     raw_spin_lock_irq(&ctx->lock);
0292     /*
0293      * Reload the task pointer, it might have been changed by
0294      * a concurrent perf_event_context_sched_out().
0295      */
0296     task = ctx->task;
0297     if (task == TASK_TOMBSTONE) {
0298         raw_spin_unlock_irq(&ctx->lock);
0299         return;
0300     }
0301     if (ctx->is_active) {
0302         raw_spin_unlock_irq(&ctx->lock);
0303         goto again;
0304     }
0305     func(event, NULL, ctx, data);
0306     raw_spin_unlock_irq(&ctx->lock);
0307 }
0308 
0309 /*
0310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
0311  * are already disabled and we're on the right CPU.
0312  */
0313 static void event_function_local(struct perf_event *event, event_f func, void *data)
0314 {
0315     struct perf_event_context *ctx = event->ctx;
0316     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0317     struct task_struct *task = READ_ONCE(ctx->task);
0318     struct perf_event_context *task_ctx = NULL;
0319 
0320     lockdep_assert_irqs_disabled();
0321 
0322     if (task) {
0323         if (task == TASK_TOMBSTONE)
0324             return;
0325 
0326         task_ctx = ctx;
0327     }
0328 
0329     perf_ctx_lock(cpuctx, task_ctx);
0330 
0331     task = ctx->task;
0332     if (task == TASK_TOMBSTONE)
0333         goto unlock;
0334 
0335     if (task) {
0336         /*
0337          * We must be either inactive or active and the right task,
0338          * otherwise we're screwed, since we cannot IPI to somewhere
0339          * else.
0340          */
0341         if (ctx->is_active) {
0342             if (WARN_ON_ONCE(task != current))
0343                 goto unlock;
0344 
0345             if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
0346                 goto unlock;
0347         }
0348     } else {
0349         WARN_ON_ONCE(&cpuctx->ctx != ctx);
0350     }
0351 
0352     func(event, cpuctx, ctx, data);
0353 unlock:
0354     perf_ctx_unlock(cpuctx, task_ctx);
0355 }
0356 
0357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
0358                PERF_FLAG_FD_OUTPUT  |\
0359                PERF_FLAG_PID_CGROUP |\
0360                PERF_FLAG_FD_CLOEXEC)
0361 
0362 /*
0363  * branch priv levels that need permission checks
0364  */
0365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
0366     (PERF_SAMPLE_BRANCH_KERNEL |\
0367      PERF_SAMPLE_BRANCH_HV)
0368 
0369 enum event_type_t {
0370     EVENT_FLEXIBLE = 0x1,
0371     EVENT_PINNED = 0x2,
0372     EVENT_TIME = 0x4,
0373     /* see ctx_resched() for details */
0374     EVENT_CPU = 0x8,
0375     EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
0376 };
0377 
0378 /*
0379  * perf_sched_events : >0 events exist
0380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
0381  */
0382 
0383 static void perf_sched_delayed(struct work_struct *work);
0384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
0385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
0386 static DEFINE_MUTEX(perf_sched_mutex);
0387 static atomic_t perf_sched_count;
0388 
0389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
0390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
0391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
0392 
0393 static atomic_t nr_mmap_events __read_mostly;
0394 static atomic_t nr_comm_events __read_mostly;
0395 static atomic_t nr_namespaces_events __read_mostly;
0396 static atomic_t nr_task_events __read_mostly;
0397 static atomic_t nr_freq_events __read_mostly;
0398 static atomic_t nr_switch_events __read_mostly;
0399 static atomic_t nr_ksymbol_events __read_mostly;
0400 static atomic_t nr_bpf_events __read_mostly;
0401 static atomic_t nr_cgroup_events __read_mostly;
0402 static atomic_t nr_text_poke_events __read_mostly;
0403 static atomic_t nr_build_id_events __read_mostly;
0404 
0405 static LIST_HEAD(pmus);
0406 static DEFINE_MUTEX(pmus_lock);
0407 static struct srcu_struct pmus_srcu;
0408 static cpumask_var_t perf_online_mask;
0409 static struct kmem_cache *perf_event_cache;
0410 
0411 /*
0412  * perf event paranoia level:
0413  *  -1 - not paranoid at all
0414  *   0 - disallow raw tracepoint access for unpriv
0415  *   1 - disallow cpu events for unpriv
0416  *   2 - disallow kernel profiling for unpriv
0417  */
0418 int sysctl_perf_event_paranoid __read_mostly = 2;
0419 
0420 /* Minimum for 512 kiB + 1 user control page */
0421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
0422 
0423 /*
0424  * max perf event sample rate
0425  */
0426 #define DEFAULT_MAX_SAMPLE_RATE     100000
0427 #define DEFAULT_SAMPLE_PERIOD_NS    (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
0428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
0429 
0430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
0431 
0432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
0433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
0434 
0435 static int perf_sample_allowed_ns __read_mostly =
0436     DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
0437 
0438 static void update_perf_cpu_limits(void)
0439 {
0440     u64 tmp = perf_sample_period_ns;
0441 
0442     tmp *= sysctl_perf_cpu_time_max_percent;
0443     tmp = div_u64(tmp, 100);
0444     if (!tmp)
0445         tmp = 1;
0446 
0447     WRITE_ONCE(perf_sample_allowed_ns, tmp);
0448 }
0449 
0450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
0451 
0452 int perf_proc_update_handler(struct ctl_table *table, int write,
0453         void *buffer, size_t *lenp, loff_t *ppos)
0454 {
0455     int ret;
0456     int perf_cpu = sysctl_perf_cpu_time_max_percent;
0457     /*
0458      * If throttling is disabled don't allow the write:
0459      */
0460     if (write && (perf_cpu == 100 || perf_cpu == 0))
0461         return -EINVAL;
0462 
0463     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0464     if (ret || !write)
0465         return ret;
0466 
0467     max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
0468     perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
0469     update_perf_cpu_limits();
0470 
0471     return 0;
0472 }
0473 
0474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
0475 
0476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
0477         void *buffer, size_t *lenp, loff_t *ppos)
0478 {
0479     int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0480 
0481     if (ret || !write)
0482         return ret;
0483 
0484     if (sysctl_perf_cpu_time_max_percent == 100 ||
0485         sysctl_perf_cpu_time_max_percent == 0) {
0486         printk(KERN_WARNING
0487                "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
0488         WRITE_ONCE(perf_sample_allowed_ns, 0);
0489     } else {
0490         update_perf_cpu_limits();
0491     }
0492 
0493     return 0;
0494 }
0495 
0496 /*
0497  * perf samples are done in some very critical code paths (NMIs).
0498  * If they take too much CPU time, the system can lock up and not
0499  * get any real work done.  This will drop the sample rate when
0500  * we detect that events are taking too long.
0501  */
0502 #define NR_ACCUMULATED_SAMPLES 128
0503 static DEFINE_PER_CPU(u64, running_sample_length);
0504 
0505 static u64 __report_avg;
0506 static u64 __report_allowed;
0507 
0508 static void perf_duration_warn(struct irq_work *w)
0509 {
0510     printk_ratelimited(KERN_INFO
0511         "perf: interrupt took too long (%lld > %lld), lowering "
0512         "kernel.perf_event_max_sample_rate to %d\n",
0513         __report_avg, __report_allowed,
0514         sysctl_perf_event_sample_rate);
0515 }
0516 
0517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
0518 
0519 void perf_sample_event_took(u64 sample_len_ns)
0520 {
0521     u64 max_len = READ_ONCE(perf_sample_allowed_ns);
0522     u64 running_len;
0523     u64 avg_len;
0524     u32 max;
0525 
0526     if (max_len == 0)
0527         return;
0528 
0529     /* Decay the counter by 1 average sample. */
0530     running_len = __this_cpu_read(running_sample_length);
0531     running_len -= running_len/NR_ACCUMULATED_SAMPLES;
0532     running_len += sample_len_ns;
0533     __this_cpu_write(running_sample_length, running_len);
0534 
0535     /*
0536      * Note: this will be biased artifically low until we have
0537      * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
0538      * from having to maintain a count.
0539      */
0540     avg_len = running_len/NR_ACCUMULATED_SAMPLES;
0541     if (avg_len <= max_len)
0542         return;
0543 
0544     __report_avg = avg_len;
0545     __report_allowed = max_len;
0546 
0547     /*
0548      * Compute a throttle threshold 25% below the current duration.
0549      */
0550     avg_len += avg_len / 4;
0551     max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
0552     if (avg_len < max)
0553         max /= (u32)avg_len;
0554     else
0555         max = 1;
0556 
0557     WRITE_ONCE(perf_sample_allowed_ns, avg_len);
0558     WRITE_ONCE(max_samples_per_tick, max);
0559 
0560     sysctl_perf_event_sample_rate = max * HZ;
0561     perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
0562 
0563     if (!irq_work_queue(&perf_duration_work)) {
0564         early_printk("perf: interrupt took too long (%lld > %lld), lowering "
0565                  "kernel.perf_event_max_sample_rate to %d\n",
0566                  __report_avg, __report_allowed,
0567                  sysctl_perf_event_sample_rate);
0568     }
0569 }
0570 
0571 static atomic64_t perf_event_id;
0572 
0573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
0574                   enum event_type_t event_type);
0575 
0576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
0577                  enum event_type_t event_type);
0578 
0579 static void update_context_time(struct perf_event_context *ctx);
0580 static u64 perf_event_time(struct perf_event *event);
0581 
0582 void __weak perf_event_print_debug(void)    { }
0583 
0584 static inline u64 perf_clock(void)
0585 {
0586     return local_clock();
0587 }
0588 
0589 static inline u64 perf_event_clock(struct perf_event *event)
0590 {
0591     return event->clock();
0592 }
0593 
0594 /*
0595  * State based event timekeeping...
0596  *
0597  * The basic idea is to use event->state to determine which (if any) time
0598  * fields to increment with the current delta. This means we only need to
0599  * update timestamps when we change state or when they are explicitly requested
0600  * (read).
0601  *
0602  * Event groups make things a little more complicated, but not terribly so. The
0603  * rules for a group are that if the group leader is OFF the entire group is
0604  * OFF, irrespecive of what the group member states are. This results in
0605  * __perf_effective_state().
0606  *
0607  * A futher ramification is that when a group leader flips between OFF and
0608  * !OFF, we need to update all group member times.
0609  *
0610  *
0611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
0612  * need to make sure the relevant context time is updated before we try and
0613  * update our timestamps.
0614  */
0615 
0616 static __always_inline enum perf_event_state
0617 __perf_effective_state(struct perf_event *event)
0618 {
0619     struct perf_event *leader = event->group_leader;
0620 
0621     if (leader->state <= PERF_EVENT_STATE_OFF)
0622         return leader->state;
0623 
0624     return event->state;
0625 }
0626 
0627 static __always_inline void
0628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
0629 {
0630     enum perf_event_state state = __perf_effective_state(event);
0631     u64 delta = now - event->tstamp;
0632 
0633     *enabled = event->total_time_enabled;
0634     if (state >= PERF_EVENT_STATE_INACTIVE)
0635         *enabled += delta;
0636 
0637     *running = event->total_time_running;
0638     if (state >= PERF_EVENT_STATE_ACTIVE)
0639         *running += delta;
0640 }
0641 
0642 static void perf_event_update_time(struct perf_event *event)
0643 {
0644     u64 now = perf_event_time(event);
0645 
0646     __perf_update_times(event, now, &event->total_time_enabled,
0647                     &event->total_time_running);
0648     event->tstamp = now;
0649 }
0650 
0651 static void perf_event_update_sibling_time(struct perf_event *leader)
0652 {
0653     struct perf_event *sibling;
0654 
0655     for_each_sibling_event(sibling, leader)
0656         perf_event_update_time(sibling);
0657 }
0658 
0659 static void
0660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
0661 {
0662     if (event->state == state)
0663         return;
0664 
0665     perf_event_update_time(event);
0666     /*
0667      * If a group leader gets enabled/disabled all its siblings
0668      * are affected too.
0669      */
0670     if ((event->state < 0) ^ (state < 0))
0671         perf_event_update_sibling_time(event);
0672 
0673     WRITE_ONCE(event->state, state);
0674 }
0675 
0676 /*
0677  * UP store-release, load-acquire
0678  */
0679 
0680 #define __store_release(ptr, val)                   \
0681 do {                                    \
0682     barrier();                          \
0683     WRITE_ONCE(*(ptr), (val));                  \
0684 } while (0)
0685 
0686 #define __load_acquire(ptr)                     \
0687 ({                                  \
0688     __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));    \
0689     barrier();                          \
0690     ___p;                               \
0691 })
0692 
0693 #ifdef CONFIG_CGROUP_PERF
0694 
0695 static inline bool
0696 perf_cgroup_match(struct perf_event *event)
0697 {
0698     struct perf_event_context *ctx = event->ctx;
0699     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0700 
0701     /* @event doesn't care about cgroup */
0702     if (!event->cgrp)
0703         return true;
0704 
0705     /* wants specific cgroup scope but @cpuctx isn't associated with any */
0706     if (!cpuctx->cgrp)
0707         return false;
0708 
0709     /*
0710      * Cgroup scoping is recursive.  An event enabled for a cgroup is
0711      * also enabled for all its descendant cgroups.  If @cpuctx's
0712      * cgroup is a descendant of @event's (the test covers identity
0713      * case), it's a match.
0714      */
0715     return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
0716                     event->cgrp->css.cgroup);
0717 }
0718 
0719 static inline void perf_detach_cgroup(struct perf_event *event)
0720 {
0721     css_put(&event->cgrp->css);
0722     event->cgrp = NULL;
0723 }
0724 
0725 static inline int is_cgroup_event(struct perf_event *event)
0726 {
0727     return event->cgrp != NULL;
0728 }
0729 
0730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
0731 {
0732     struct perf_cgroup_info *t;
0733 
0734     t = per_cpu_ptr(event->cgrp->info, event->cpu);
0735     return t->time;
0736 }
0737 
0738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
0739 {
0740     struct perf_cgroup_info *t;
0741 
0742     t = per_cpu_ptr(event->cgrp->info, event->cpu);
0743     if (!__load_acquire(&t->active))
0744         return t->time;
0745     now += READ_ONCE(t->timeoffset);
0746     return now;
0747 }
0748 
0749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
0750 {
0751     if (adv)
0752         info->time += now - info->timestamp;
0753     info->timestamp = now;
0754     /*
0755      * see update_context_time()
0756      */
0757     WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
0758 }
0759 
0760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
0761 {
0762     struct perf_cgroup *cgrp = cpuctx->cgrp;
0763     struct cgroup_subsys_state *css;
0764     struct perf_cgroup_info *info;
0765 
0766     if (cgrp) {
0767         u64 now = perf_clock();
0768 
0769         for (css = &cgrp->css; css; css = css->parent) {
0770             cgrp = container_of(css, struct perf_cgroup, css);
0771             info = this_cpu_ptr(cgrp->info);
0772 
0773             __update_cgrp_time(info, now, true);
0774             if (final)
0775                 __store_release(&info->active, 0);
0776         }
0777     }
0778 }
0779 
0780 static inline void update_cgrp_time_from_event(struct perf_event *event)
0781 {
0782     struct perf_cgroup_info *info;
0783 
0784     /*
0785      * ensure we access cgroup data only when needed and
0786      * when we know the cgroup is pinned (css_get)
0787      */
0788     if (!is_cgroup_event(event))
0789         return;
0790 
0791     info = this_cpu_ptr(event->cgrp->info);
0792     /*
0793      * Do not update time when cgroup is not active
0794      */
0795     if (info->active)
0796         __update_cgrp_time(info, perf_clock(), true);
0797 }
0798 
0799 static inline void
0800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
0801 {
0802     struct perf_event_context *ctx = &cpuctx->ctx;
0803     struct perf_cgroup *cgrp = cpuctx->cgrp;
0804     struct perf_cgroup_info *info;
0805     struct cgroup_subsys_state *css;
0806 
0807     /*
0808      * ctx->lock held by caller
0809      * ensure we do not access cgroup data
0810      * unless we have the cgroup pinned (css_get)
0811      */
0812     if (!cgrp)
0813         return;
0814 
0815     WARN_ON_ONCE(!ctx->nr_cgroups);
0816 
0817     for (css = &cgrp->css; css; css = css->parent) {
0818         cgrp = container_of(css, struct perf_cgroup, css);
0819         info = this_cpu_ptr(cgrp->info);
0820         __update_cgrp_time(info, ctx->timestamp, false);
0821         __store_release(&info->active, 1);
0822     }
0823 }
0824 
0825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
0826 
0827 /*
0828  * reschedule events based on the cgroup constraint of task.
0829  */
0830 static void perf_cgroup_switch(struct task_struct *task)
0831 {
0832     struct perf_cgroup *cgrp;
0833     struct perf_cpu_context *cpuctx, *tmp;
0834     struct list_head *list;
0835     unsigned long flags;
0836 
0837     /*
0838      * Disable interrupts and preemption to avoid this CPU's
0839      * cgrp_cpuctx_entry to change under us.
0840      */
0841     local_irq_save(flags);
0842 
0843     cgrp = perf_cgroup_from_task(task, NULL);
0844 
0845     list = this_cpu_ptr(&cgrp_cpuctx_list);
0846     list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
0847         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
0848         if (READ_ONCE(cpuctx->cgrp) == cgrp)
0849             continue;
0850 
0851         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
0852         perf_pmu_disable(cpuctx->ctx.pmu);
0853 
0854         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0855         /*
0856          * must not be done before ctxswout due
0857          * to update_cgrp_time_from_cpuctx() in
0858          * ctx_sched_out()
0859          */
0860         cpuctx->cgrp = cgrp;
0861         /*
0862          * set cgrp before ctxsw in to allow
0863          * perf_cgroup_set_timestamp() in ctx_sched_in()
0864          * to not have to pass task around
0865          */
0866         cpu_ctx_sched_in(cpuctx, EVENT_ALL);
0867 
0868         perf_pmu_enable(cpuctx->ctx.pmu);
0869         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
0870     }
0871 
0872     local_irq_restore(flags);
0873 }
0874 
0875 static int perf_cgroup_ensure_storage(struct perf_event *event,
0876                 struct cgroup_subsys_state *css)
0877 {
0878     struct perf_cpu_context *cpuctx;
0879     struct perf_event **storage;
0880     int cpu, heap_size, ret = 0;
0881 
0882     /*
0883      * Allow storage to have sufficent space for an iterator for each
0884      * possibly nested cgroup plus an iterator for events with no cgroup.
0885      */
0886     for (heap_size = 1; css; css = css->parent)
0887         heap_size++;
0888 
0889     for_each_possible_cpu(cpu) {
0890         cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
0891         if (heap_size <= cpuctx->heap_size)
0892             continue;
0893 
0894         storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
0895                        GFP_KERNEL, cpu_to_node(cpu));
0896         if (!storage) {
0897             ret = -ENOMEM;
0898             break;
0899         }
0900 
0901         raw_spin_lock_irq(&cpuctx->ctx.lock);
0902         if (cpuctx->heap_size < heap_size) {
0903             swap(cpuctx->heap, storage);
0904             if (storage == cpuctx->heap_default)
0905                 storage = NULL;
0906             cpuctx->heap_size = heap_size;
0907         }
0908         raw_spin_unlock_irq(&cpuctx->ctx.lock);
0909 
0910         kfree(storage);
0911     }
0912 
0913     return ret;
0914 }
0915 
0916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
0917                       struct perf_event_attr *attr,
0918                       struct perf_event *group_leader)
0919 {
0920     struct perf_cgroup *cgrp;
0921     struct cgroup_subsys_state *css;
0922     struct fd f = fdget(fd);
0923     int ret = 0;
0924 
0925     if (!f.file)
0926         return -EBADF;
0927 
0928     css = css_tryget_online_from_dir(f.file->f_path.dentry,
0929                      &perf_event_cgrp_subsys);
0930     if (IS_ERR(css)) {
0931         ret = PTR_ERR(css);
0932         goto out;
0933     }
0934 
0935     ret = perf_cgroup_ensure_storage(event, css);
0936     if (ret)
0937         goto out;
0938 
0939     cgrp = container_of(css, struct perf_cgroup, css);
0940     event->cgrp = cgrp;
0941 
0942     /*
0943      * all events in a group must monitor
0944      * the same cgroup because a task belongs
0945      * to only one perf cgroup at a time
0946      */
0947     if (group_leader && group_leader->cgrp != cgrp) {
0948         perf_detach_cgroup(event);
0949         ret = -EINVAL;
0950     }
0951 out:
0952     fdput(f);
0953     return ret;
0954 }
0955 
0956 static inline void
0957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
0958 {
0959     struct perf_cpu_context *cpuctx;
0960 
0961     if (!is_cgroup_event(event))
0962         return;
0963 
0964     /*
0965      * Because cgroup events are always per-cpu events,
0966      * @ctx == &cpuctx->ctx.
0967      */
0968     cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
0969 
0970     if (ctx->nr_cgroups++)
0971         return;
0972 
0973     cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
0974     list_add(&cpuctx->cgrp_cpuctx_entry,
0975             per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
0976 }
0977 
0978 static inline void
0979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
0980 {
0981     struct perf_cpu_context *cpuctx;
0982 
0983     if (!is_cgroup_event(event))
0984         return;
0985 
0986     /*
0987      * Because cgroup events are always per-cpu events,
0988      * @ctx == &cpuctx->ctx.
0989      */
0990     cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
0991 
0992     if (--ctx->nr_cgroups)
0993         return;
0994 
0995     cpuctx->cgrp = NULL;
0996     list_del(&cpuctx->cgrp_cpuctx_entry);
0997 }
0998 
0999 #else /* !CONFIG_CGROUP_PERF */
1000 
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004     return true;
1005 }
1006 
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009 
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012     return 0;
1013 }
1014 
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018 
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020                         bool final)
1021 {
1022 }
1023 
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025                       struct perf_event_attr *attr,
1026                       struct perf_event *group_leader)
1027 {
1028     return -EINVAL;
1029 }
1030 
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035 
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038     return 0;
1039 }
1040 
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043     return 0;
1044 }
1045 
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050 
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055 
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060 
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071     struct perf_cpu_context *cpuctx;
1072     bool rotations;
1073 
1074     lockdep_assert_irqs_disabled();
1075 
1076     cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077     rotations = perf_rotate_context(cpuctx);
1078 
1079     raw_spin_lock(&cpuctx->hrtimer_lock);
1080     if (rotations)
1081         hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082     else
1083         cpuctx->hrtimer_active = 0;
1084     raw_spin_unlock(&cpuctx->hrtimer_lock);
1085 
1086     return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088 
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091     struct hrtimer *timer = &cpuctx->hrtimer;
1092     struct pmu *pmu = cpuctx->ctx.pmu;
1093     u64 interval;
1094 
1095     /* no multiplexing needed for SW PMU */
1096     if (pmu->task_ctx_nr == perf_sw_context)
1097         return;
1098 
1099     /*
1100      * check default is sane, if not set then force to
1101      * default interval (1/tick)
1102      */
1103     interval = pmu->hrtimer_interval_ms;
1104     if (interval < 1)
1105         interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106 
1107     cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108 
1109     raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110     hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111     timer->function = perf_mux_hrtimer_handler;
1112 }
1113 
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116     struct hrtimer *timer = &cpuctx->hrtimer;
1117     struct pmu *pmu = cpuctx->ctx.pmu;
1118     unsigned long flags;
1119 
1120     /* not for SW PMU */
1121     if (pmu->task_ctx_nr == perf_sw_context)
1122         return 0;
1123 
1124     raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125     if (!cpuctx->hrtimer_active) {
1126         cpuctx->hrtimer_active = 1;
1127         hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129     }
1130     raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131 
1132     return 0;
1133 }
1134 
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137     int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138     if (!(*count)++)
1139         pmu->pmu_disable(pmu);
1140 }
1141 
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144     int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145     if (!--(*count))
1146         pmu->pmu_enable(pmu);
1147 }
1148 
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150 
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159     struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160 
1161     lockdep_assert_irqs_disabled();
1162 
1163     WARN_ON(!list_empty(&ctx->active_ctx_list));
1164 
1165     list_add(&ctx->active_ctx_list, head);
1166 }
1167 
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170     lockdep_assert_irqs_disabled();
1171 
1172     WARN_ON(list_empty(&ctx->active_ctx_list));
1173 
1174     list_del_init(&ctx->active_ctx_list);
1175 }
1176 
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179     refcount_inc(&ctx->refcount);
1180 }
1181 
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184     if (pmu->task_ctx_cache)
1185         return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186 
1187     return NULL;
1188 }
1189 
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192     if (pmu->task_ctx_cache && task_ctx_data)
1193         kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195 
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198     struct perf_event_context *ctx;
1199 
1200     ctx = container_of(head, struct perf_event_context, rcu_head);
1201     free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202     kfree(ctx);
1203 }
1204 
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207     if (refcount_dec_and_test(&ctx->refcount)) {
1208         if (ctx->parent_ctx)
1209             put_ctx(ctx->parent_ctx);
1210         if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211             put_task_struct(ctx->task);
1212         call_rcu(&ctx->rcu_head, free_ctx);
1213     }
1214 }
1215 
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()    [ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()           [ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()     [ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event() [ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *  task_struct::perf_event_mutex
1271  *    perf_event_context::mutex
1272  *      perf_event::child_mutex;
1273  *        perf_event_context::lock
1274  *      perf_event::mmap_mutex
1275  *      mmap_lock
1276  *        perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *    cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285     struct perf_event_context *ctx;
1286 
1287 again:
1288     rcu_read_lock();
1289     ctx = READ_ONCE(event->ctx);
1290     if (!refcount_inc_not_zero(&ctx->refcount)) {
1291         rcu_read_unlock();
1292         goto again;
1293     }
1294     rcu_read_unlock();
1295 
1296     mutex_lock_nested(&ctx->mutex, nesting);
1297     if (event->ctx != ctx) {
1298         mutex_unlock(&ctx->mutex);
1299         put_ctx(ctx);
1300         goto again;
1301     }
1302 
1303     return ctx;
1304 }
1305 
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309     return perf_event_ctx_lock_nested(event, 0);
1310 }
1311 
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313                   struct perf_event_context *ctx)
1314 {
1315     mutex_unlock(&ctx->mutex);
1316     put_ctx(ctx);
1317 }
1318 
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327     struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328 
1329     lockdep_assert_held(&ctx->lock);
1330 
1331     if (parent_ctx)
1332         ctx->parent_ctx = NULL;
1333     ctx->generation++;
1334 
1335     return parent_ctx;
1336 }
1337 
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339                 enum pid_type type)
1340 {
1341     u32 nr;
1342     /*
1343      * only top level events have the pid namespace they were created in
1344      */
1345     if (event->parent)
1346         event = event->parent;
1347 
1348     nr = __task_pid_nr_ns(p, type, event->ns);
1349     /* avoid -1 if it is idle thread or runs in another ns */
1350     if (!nr && !pid_alive(p))
1351         nr = -1;
1352     return nr;
1353 }
1354 
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357     return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359 
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362     return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364 
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371     u64 id = event->id;
1372 
1373     if (event->parent)
1374         id = event->parent->id;
1375 
1376     return id;
1377 }
1378 
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388     struct perf_event_context *ctx;
1389 
1390 retry:
1391     /*
1392      * One of the few rules of preemptible RCU is that one cannot do
1393      * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394      * part of the read side critical section was irqs-enabled -- see
1395      * rcu_read_unlock_special().
1396      *
1397      * Since ctx->lock nests under rq->lock we must ensure the entire read
1398      * side critical section has interrupts disabled.
1399      */
1400     local_irq_save(*flags);
1401     rcu_read_lock();
1402     ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403     if (ctx) {
1404         /*
1405          * If this context is a clone of another, it might
1406          * get swapped for another underneath us by
1407          * perf_event_task_sched_out, though the
1408          * rcu_read_lock() protects us from any context
1409          * getting freed.  Lock the context and check if it
1410          * got swapped before we could get the lock, and retry
1411          * if so.  If we locked the right context, then it
1412          * can't get swapped on us any more.
1413          */
1414         raw_spin_lock(&ctx->lock);
1415         if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416             raw_spin_unlock(&ctx->lock);
1417             rcu_read_unlock();
1418             local_irq_restore(*flags);
1419             goto retry;
1420         }
1421 
1422         if (ctx->task == TASK_TOMBSTONE ||
1423             !refcount_inc_not_zero(&ctx->refcount)) {
1424             raw_spin_unlock(&ctx->lock);
1425             ctx = NULL;
1426         } else {
1427             WARN_ON_ONCE(ctx->task != task);
1428         }
1429     }
1430     rcu_read_unlock();
1431     if (!ctx)
1432         local_irq_restore(*flags);
1433     return ctx;
1434 }
1435 
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444     struct perf_event_context *ctx;
1445     unsigned long flags;
1446 
1447     ctx = perf_lock_task_context(task, ctxn, &flags);
1448     if (ctx) {
1449         ++ctx->pin_count;
1450         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451     }
1452     return ctx;
1453 }
1454 
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457     unsigned long flags;
1458 
1459     raw_spin_lock_irqsave(&ctx->lock, flags);
1460     --ctx->pin_count;
1461     raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463 
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469     u64 now = perf_clock();
1470 
1471     if (adv)
1472         ctx->time += now - ctx->timestamp;
1473     ctx->timestamp = now;
1474 
1475     /*
1476      * The above: time' = time + (now - timestamp), can be re-arranged
1477      * into: time` = now + (time - timestamp), which gives a single value
1478      * offset to compute future time without locks on.
1479      *
1480      * See perf_event_time_now(), which can be used from NMI context where
1481      * it's (obviously) not possible to acquire ctx->lock in order to read
1482      * both the above values in a consistent manner.
1483      */
1484     WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486 
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489     __update_context_time(ctx, true);
1490 }
1491 
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494     struct perf_event_context *ctx = event->ctx;
1495 
1496     if (unlikely(!ctx))
1497         return 0;
1498 
1499     if (is_cgroup_event(event))
1500         return perf_cgroup_event_time(event);
1501 
1502     return ctx->time;
1503 }
1504 
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507     struct perf_event_context *ctx = event->ctx;
1508 
1509     if (unlikely(!ctx))
1510         return 0;
1511 
1512     if (is_cgroup_event(event))
1513         return perf_cgroup_event_time_now(event, now);
1514 
1515     if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516         return ctx->time;
1517 
1518     now += READ_ONCE(ctx->timeoffset);
1519     return now;
1520 }
1521 
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524     struct perf_event_context *ctx = event->ctx;
1525     enum event_type_t event_type;
1526 
1527     lockdep_assert_held(&ctx->lock);
1528 
1529     /*
1530      * It's 'group type', really, because if our group leader is
1531      * pinned, so are we.
1532      */
1533     if (event->group_leader != event)
1534         event = event->group_leader;
1535 
1536     event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537     if (!ctx->task)
1538         event_type |= EVENT_CPU;
1539 
1540     return event_type;
1541 }
1542 
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548     RB_CLEAR_NODE(&event->group_node);
1549     event->group_index = 0;
1550 }
1551 
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559     if (event->attr.pinned)
1560         return &ctx->pinned_groups;
1561     else
1562         return &ctx->flexible_groups;
1563 }
1564 
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570     groups->tree = RB_ROOT;
1571     groups->index = 0;
1572 }
1573 
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576     struct cgroup *cgroup = NULL;
1577 
1578 #ifdef CONFIG_CGROUP_PERF
1579     if (event->cgrp)
1580         cgroup = event->cgrp->css.cgroup;
1581 #endif
1582 
1583     return cgroup;
1584 }
1585 
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594               const u64 left_group_index, const struct perf_event *right)
1595 {
1596     if (left_cpu < right->cpu)
1597         return -1;
1598     if (left_cpu > right->cpu)
1599         return 1;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602     {
1603         const struct cgroup *right_cgroup = event_cgroup(right);
1604 
1605         if (left_cgroup != right_cgroup) {
1606             if (!left_cgroup) {
1607                 /*
1608                  * Left has no cgroup but right does, no
1609                  * cgroups come first.
1610                  */
1611                 return -1;
1612             }
1613             if (!right_cgroup) {
1614                 /*
1615                  * Right has no cgroup but left does, no
1616                  * cgroups come first.
1617                  */
1618                 return 1;
1619             }
1620             /* Two dissimilar cgroups, order by id. */
1621             if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622                 return -1;
1623 
1624             return 1;
1625         }
1626     }
1627 #endif
1628 
1629     if (left_group_index < right->group_index)
1630         return -1;
1631     if (left_group_index > right->group_index)
1632         return 1;
1633 
1634     return 0;
1635 }
1636 
1637 #define __node_2_pe(node) \
1638     rb_entry((node), struct perf_event, group_node)
1639 
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642     struct perf_event *e = __node_2_pe(a);
1643     return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644                      __node_2_pe(b)) < 0;
1645 }
1646 
1647 struct __group_key {
1648     int cpu;
1649     struct cgroup *cgroup;
1650 };
1651 
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654     const struct __group_key *a = key;
1655     const struct perf_event *b = __node_2_pe(node);
1656 
1657     /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658     return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660 
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668              struct perf_event *event)
1669 {
1670     event->group_index = ++groups->index;
1671 
1672     rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674 
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681     struct perf_event_groups *groups;
1682 
1683     groups = get_event_groups(event, ctx);
1684     perf_event_groups_insert(groups, event);
1685 }
1686 
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692              struct perf_event *event)
1693 {
1694     WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695              RB_EMPTY_ROOT(&groups->tree));
1696 
1697     rb_erase(&event->group_node, &groups->tree);
1698     init_event_group(event);
1699 }
1700 
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707     struct perf_event_groups *groups;
1708 
1709     groups = get_event_groups(event, ctx);
1710     perf_event_groups_delete(groups, event);
1711 }
1712 
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718             struct cgroup *cgrp)
1719 {
1720     struct __group_key key = {
1721         .cpu = cpu,
1722         .cgroup = cgrp,
1723     };
1724     struct rb_node *node;
1725 
1726     node = rb_find_first(&key, &groups->tree, __group_cmp);
1727     if (node)
1728         return __node_2_pe(node);
1729 
1730     return NULL;
1731 }
1732 
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739     struct __group_key key = {
1740         .cpu = event->cpu,
1741         .cgroup = event_cgroup(event),
1742     };
1743     struct rb_node *next;
1744 
1745     next = rb_next_match(&key, &event->group_node, __group_cmp);
1746     if (next)
1747         return __node_2_pe(next);
1748 
1749     return NULL;
1750 }
1751 
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)           \
1756     for (event = rb_entry_safe(rb_first(&((groups)->tree)),     \
1757                 typeof(*event), group_node); event; \
1758         event = rb_entry_safe(rb_next(&event->group_node),  \
1759                 typeof(*event), group_node))
1760 
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768     lockdep_assert_held(&ctx->lock);
1769 
1770     WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771     event->attach_state |= PERF_ATTACH_CONTEXT;
1772 
1773     event->tstamp = perf_event_time(event);
1774 
1775     /*
1776      * If we're a stand alone event or group leader, we go to the context
1777      * list, group events are kept attached to the group so that
1778      * perf_group_detach can, at all times, locate all siblings.
1779      */
1780     if (event->group_leader == event) {
1781         event->group_caps = event->event_caps;
1782         add_event_to_groups(event, ctx);
1783     }
1784 
1785     list_add_rcu(&event->event_entry, &ctx->event_list);
1786     ctx->nr_events++;
1787     if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788         ctx->nr_user++;
1789     if (event->attr.inherit_stat)
1790         ctx->nr_stat++;
1791 
1792     if (event->state > PERF_EVENT_STATE_OFF)
1793         perf_cgroup_event_enable(event, ctx);
1794 
1795     ctx->generation++;
1796 }
1797 
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803     event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804                           PERF_EVENT_STATE_INACTIVE;
1805 }
1806 
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809     int entry = sizeof(u64); /* value */
1810     int size = 0;
1811     int nr = 1;
1812 
1813     if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814         size += sizeof(u64);
1815 
1816     if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817         size += sizeof(u64);
1818 
1819     if (event->attr.read_format & PERF_FORMAT_ID)
1820         entry += sizeof(u64);
1821 
1822     if (event->attr.read_format & PERF_FORMAT_LOST)
1823         entry += sizeof(u64);
1824 
1825     if (event->attr.read_format & PERF_FORMAT_GROUP) {
1826         nr += nr_siblings;
1827         size += sizeof(u64);
1828     }
1829 
1830     size += entry * nr;
1831     event->read_size = size;
1832 }
1833 
1834 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1835 {
1836     struct perf_sample_data *data;
1837     u16 size = 0;
1838 
1839     if (sample_type & PERF_SAMPLE_IP)
1840         size += sizeof(data->ip);
1841 
1842     if (sample_type & PERF_SAMPLE_ADDR)
1843         size += sizeof(data->addr);
1844 
1845     if (sample_type & PERF_SAMPLE_PERIOD)
1846         size += sizeof(data->period);
1847 
1848     if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1849         size += sizeof(data->weight.full);
1850 
1851     if (sample_type & PERF_SAMPLE_READ)
1852         size += event->read_size;
1853 
1854     if (sample_type & PERF_SAMPLE_DATA_SRC)
1855         size += sizeof(data->data_src.val);
1856 
1857     if (sample_type & PERF_SAMPLE_TRANSACTION)
1858         size += sizeof(data->txn);
1859 
1860     if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1861         size += sizeof(data->phys_addr);
1862 
1863     if (sample_type & PERF_SAMPLE_CGROUP)
1864         size += sizeof(data->cgroup);
1865 
1866     if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1867         size += sizeof(data->data_page_size);
1868 
1869     if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1870         size += sizeof(data->code_page_size);
1871 
1872     event->header_size = size;
1873 }
1874 
1875 /*
1876  * Called at perf_event creation and when events are attached/detached from a
1877  * group.
1878  */
1879 static void perf_event__header_size(struct perf_event *event)
1880 {
1881     __perf_event_read_size(event,
1882                    event->group_leader->nr_siblings);
1883     __perf_event_header_size(event, event->attr.sample_type);
1884 }
1885 
1886 static void perf_event__id_header_size(struct perf_event *event)
1887 {
1888     struct perf_sample_data *data;
1889     u64 sample_type = event->attr.sample_type;
1890     u16 size = 0;
1891 
1892     if (sample_type & PERF_SAMPLE_TID)
1893         size += sizeof(data->tid_entry);
1894 
1895     if (sample_type & PERF_SAMPLE_TIME)
1896         size += sizeof(data->time);
1897 
1898     if (sample_type & PERF_SAMPLE_IDENTIFIER)
1899         size += sizeof(data->id);
1900 
1901     if (sample_type & PERF_SAMPLE_ID)
1902         size += sizeof(data->id);
1903 
1904     if (sample_type & PERF_SAMPLE_STREAM_ID)
1905         size += sizeof(data->stream_id);
1906 
1907     if (sample_type & PERF_SAMPLE_CPU)
1908         size += sizeof(data->cpu_entry);
1909 
1910     event->id_header_size = size;
1911 }
1912 
1913 static bool perf_event_validate_size(struct perf_event *event)
1914 {
1915     /*
1916      * The values computed here will be over-written when we actually
1917      * attach the event.
1918      */
1919     __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1920     __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1921     perf_event__id_header_size(event);
1922 
1923     /*
1924      * Sum the lot; should not exceed the 64k limit we have on records.
1925      * Conservative limit to allow for callchains and other variable fields.
1926      */
1927     if (event->read_size + event->header_size +
1928         event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1929         return false;
1930 
1931     return true;
1932 }
1933 
1934 static void perf_group_attach(struct perf_event *event)
1935 {
1936     struct perf_event *group_leader = event->group_leader, *pos;
1937 
1938     lockdep_assert_held(&event->ctx->lock);
1939 
1940     /*
1941      * We can have double attach due to group movement in perf_event_open.
1942      */
1943     if (event->attach_state & PERF_ATTACH_GROUP)
1944         return;
1945 
1946     event->attach_state |= PERF_ATTACH_GROUP;
1947 
1948     if (group_leader == event)
1949         return;
1950 
1951     WARN_ON_ONCE(group_leader->ctx != event->ctx);
1952 
1953     group_leader->group_caps &= event->event_caps;
1954 
1955     list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1956     group_leader->nr_siblings++;
1957 
1958     perf_event__header_size(group_leader);
1959 
1960     for_each_sibling_event(pos, group_leader)
1961         perf_event__header_size(pos);
1962 }
1963 
1964 /*
1965  * Remove an event from the lists for its context.
1966  * Must be called with ctx->mutex and ctx->lock held.
1967  */
1968 static void
1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1970 {
1971     WARN_ON_ONCE(event->ctx != ctx);
1972     lockdep_assert_held(&ctx->lock);
1973 
1974     /*
1975      * We can have double detach due to exit/hot-unplug + close.
1976      */
1977     if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1978         return;
1979 
1980     event->attach_state &= ~PERF_ATTACH_CONTEXT;
1981 
1982     ctx->nr_events--;
1983     if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1984         ctx->nr_user--;
1985     if (event->attr.inherit_stat)
1986         ctx->nr_stat--;
1987 
1988     list_del_rcu(&event->event_entry);
1989 
1990     if (event->group_leader == event)
1991         del_event_from_groups(event, ctx);
1992 
1993     /*
1994      * If event was in error state, then keep it
1995      * that way, otherwise bogus counts will be
1996      * returned on read(). The only way to get out
1997      * of error state is by explicit re-enabling
1998      * of the event
1999      */
2000     if (event->state > PERF_EVENT_STATE_OFF) {
2001         perf_cgroup_event_disable(event, ctx);
2002         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2003     }
2004 
2005     ctx->generation++;
2006 }
2007 
2008 static int
2009 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2010 {
2011     if (!has_aux(aux_event))
2012         return 0;
2013 
2014     if (!event->pmu->aux_output_match)
2015         return 0;
2016 
2017     return event->pmu->aux_output_match(aux_event);
2018 }
2019 
2020 static void put_event(struct perf_event *event);
2021 static void event_sched_out(struct perf_event *event,
2022                 struct perf_cpu_context *cpuctx,
2023                 struct perf_event_context *ctx);
2024 
2025 static void perf_put_aux_event(struct perf_event *event)
2026 {
2027     struct perf_event_context *ctx = event->ctx;
2028     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2029     struct perf_event *iter;
2030 
2031     /*
2032      * If event uses aux_event tear down the link
2033      */
2034     if (event->aux_event) {
2035         iter = event->aux_event;
2036         event->aux_event = NULL;
2037         put_event(iter);
2038         return;
2039     }
2040 
2041     /*
2042      * If the event is an aux_event, tear down all links to
2043      * it from other events.
2044      */
2045     for_each_sibling_event(iter, event->group_leader) {
2046         if (iter->aux_event != event)
2047             continue;
2048 
2049         iter->aux_event = NULL;
2050         put_event(event);
2051 
2052         /*
2053          * If it's ACTIVE, schedule it out and put it into ERROR
2054          * state so that we don't try to schedule it again. Note
2055          * that perf_event_enable() will clear the ERROR status.
2056          */
2057         event_sched_out(iter, cpuctx, ctx);
2058         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2059     }
2060 }
2061 
2062 static bool perf_need_aux_event(struct perf_event *event)
2063 {
2064     return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2065 }
2066 
2067 static int perf_get_aux_event(struct perf_event *event,
2068                   struct perf_event *group_leader)
2069 {
2070     /*
2071      * Our group leader must be an aux event if we want to be
2072      * an aux_output. This way, the aux event will precede its
2073      * aux_output events in the group, and therefore will always
2074      * schedule first.
2075      */
2076     if (!group_leader)
2077         return 0;
2078 
2079     /*
2080      * aux_output and aux_sample_size are mutually exclusive.
2081      */
2082     if (event->attr.aux_output && event->attr.aux_sample_size)
2083         return 0;
2084 
2085     if (event->attr.aux_output &&
2086         !perf_aux_output_match(event, group_leader))
2087         return 0;
2088 
2089     if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2090         return 0;
2091 
2092     if (!atomic_long_inc_not_zero(&group_leader->refcount))
2093         return 0;
2094 
2095     /*
2096      * Link aux_outputs to their aux event; this is undone in
2097      * perf_group_detach() by perf_put_aux_event(). When the
2098      * group in torn down, the aux_output events loose their
2099      * link to the aux_event and can't schedule any more.
2100      */
2101     event->aux_event = group_leader;
2102 
2103     return 1;
2104 }
2105 
2106 static inline struct list_head *get_event_list(struct perf_event *event)
2107 {
2108     struct perf_event_context *ctx = event->ctx;
2109     return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2110 }
2111 
2112 /*
2113  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2114  * cannot exist on their own, schedule them out and move them into the ERROR
2115  * state. Also see _perf_event_enable(), it will not be able to recover
2116  * this ERROR state.
2117  */
2118 static inline void perf_remove_sibling_event(struct perf_event *event)
2119 {
2120     struct perf_event_context *ctx = event->ctx;
2121     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2122 
2123     event_sched_out(event, cpuctx, ctx);
2124     perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2125 }
2126 
2127 static void perf_group_detach(struct perf_event *event)
2128 {
2129     struct perf_event *leader = event->group_leader;
2130     struct perf_event *sibling, *tmp;
2131     struct perf_event_context *ctx = event->ctx;
2132 
2133     lockdep_assert_held(&ctx->lock);
2134 
2135     /*
2136      * We can have double detach due to exit/hot-unplug + close.
2137      */
2138     if (!(event->attach_state & PERF_ATTACH_GROUP))
2139         return;
2140 
2141     event->attach_state &= ~PERF_ATTACH_GROUP;
2142 
2143     perf_put_aux_event(event);
2144 
2145     /*
2146      * If this is a sibling, remove it from its group.
2147      */
2148     if (leader != event) {
2149         list_del_init(&event->sibling_list);
2150         event->group_leader->nr_siblings--;
2151         goto out;
2152     }
2153 
2154     /*
2155      * If this was a group event with sibling events then
2156      * upgrade the siblings to singleton events by adding them
2157      * to whatever list we are on.
2158      */
2159     list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2160 
2161         if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2162             perf_remove_sibling_event(sibling);
2163 
2164         sibling->group_leader = sibling;
2165         list_del_init(&sibling->sibling_list);
2166 
2167         /* Inherit group flags from the previous leader */
2168         sibling->group_caps = event->group_caps;
2169 
2170         if (!RB_EMPTY_NODE(&event->group_node)) {
2171             add_event_to_groups(sibling, event->ctx);
2172 
2173             if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2174                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2175         }
2176 
2177         WARN_ON_ONCE(sibling->ctx != event->ctx);
2178     }
2179 
2180 out:
2181     for_each_sibling_event(tmp, leader)
2182         perf_event__header_size(tmp);
2183 
2184     perf_event__header_size(leader);
2185 }
2186 
2187 static void sync_child_event(struct perf_event *child_event);
2188 
2189 static void perf_child_detach(struct perf_event *event)
2190 {
2191     struct perf_event *parent_event = event->parent;
2192 
2193     if (!(event->attach_state & PERF_ATTACH_CHILD))
2194         return;
2195 
2196     event->attach_state &= ~PERF_ATTACH_CHILD;
2197 
2198     if (WARN_ON_ONCE(!parent_event))
2199         return;
2200 
2201     lockdep_assert_held(&parent_event->child_mutex);
2202 
2203     sync_child_event(event);
2204     list_del_init(&event->child_list);
2205 }
2206 
2207 static bool is_orphaned_event(struct perf_event *event)
2208 {
2209     return event->state == PERF_EVENT_STATE_DEAD;
2210 }
2211 
2212 static inline int __pmu_filter_match(struct perf_event *event)
2213 {
2214     struct pmu *pmu = event->pmu;
2215     return pmu->filter_match ? pmu->filter_match(event) : 1;
2216 }
2217 
2218 /*
2219  * Check whether we should attempt to schedule an event group based on
2220  * PMU-specific filtering. An event group can consist of HW and SW events,
2221  * potentially with a SW leader, so we must check all the filters, to
2222  * determine whether a group is schedulable:
2223  */
2224 static inline int pmu_filter_match(struct perf_event *event)
2225 {
2226     struct perf_event *sibling;
2227 
2228     if (!__pmu_filter_match(event))
2229         return 0;
2230 
2231     for_each_sibling_event(sibling, event) {
2232         if (!__pmu_filter_match(sibling))
2233             return 0;
2234     }
2235 
2236     return 1;
2237 }
2238 
2239 static inline int
2240 event_filter_match(struct perf_event *event)
2241 {
2242     return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2243            perf_cgroup_match(event) && pmu_filter_match(event);
2244 }
2245 
2246 static void
2247 event_sched_out(struct perf_event *event,
2248           struct perf_cpu_context *cpuctx,
2249           struct perf_event_context *ctx)
2250 {
2251     enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2252 
2253     WARN_ON_ONCE(event->ctx != ctx);
2254     lockdep_assert_held(&ctx->lock);
2255 
2256     if (event->state != PERF_EVENT_STATE_ACTIVE)
2257         return;
2258 
2259     /*
2260      * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2261      * we can schedule events _OUT_ individually through things like
2262      * __perf_remove_from_context().
2263      */
2264     list_del_init(&event->active_list);
2265 
2266     perf_pmu_disable(event->pmu);
2267 
2268     event->pmu->del(event, 0);
2269     event->oncpu = -1;
2270 
2271     if (READ_ONCE(event->pending_disable) >= 0) {
2272         WRITE_ONCE(event->pending_disable, -1);
2273         perf_cgroup_event_disable(event, ctx);
2274         state = PERF_EVENT_STATE_OFF;
2275     }
2276     perf_event_set_state(event, state);
2277 
2278     if (!is_software_event(event))
2279         cpuctx->active_oncpu--;
2280     if (!--ctx->nr_active)
2281         perf_event_ctx_deactivate(ctx);
2282     if (event->attr.freq && event->attr.sample_freq)
2283         ctx->nr_freq--;
2284     if (event->attr.exclusive || !cpuctx->active_oncpu)
2285         cpuctx->exclusive = 0;
2286 
2287     perf_pmu_enable(event->pmu);
2288 }
2289 
2290 static void
2291 group_sched_out(struct perf_event *group_event,
2292         struct perf_cpu_context *cpuctx,
2293         struct perf_event_context *ctx)
2294 {
2295     struct perf_event *event;
2296 
2297     if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2298         return;
2299 
2300     perf_pmu_disable(ctx->pmu);
2301 
2302     event_sched_out(group_event, cpuctx, ctx);
2303 
2304     /*
2305      * Schedule out siblings (if any):
2306      */
2307     for_each_sibling_event(event, group_event)
2308         event_sched_out(event, cpuctx, ctx);
2309 
2310     perf_pmu_enable(ctx->pmu);
2311 }
2312 
2313 #define DETACH_GROUP    0x01UL
2314 #define DETACH_CHILD    0x02UL
2315 
2316 /*
2317  * Cross CPU call to remove a performance event
2318  *
2319  * We disable the event on the hardware level first. After that we
2320  * remove it from the context list.
2321  */
2322 static void
2323 __perf_remove_from_context(struct perf_event *event,
2324                struct perf_cpu_context *cpuctx,
2325                struct perf_event_context *ctx,
2326                void *info)
2327 {
2328     unsigned long flags = (unsigned long)info;
2329 
2330     if (ctx->is_active & EVENT_TIME) {
2331         update_context_time(ctx);
2332         update_cgrp_time_from_cpuctx(cpuctx, false);
2333     }
2334 
2335     event_sched_out(event, cpuctx, ctx);
2336     if (flags & DETACH_GROUP)
2337         perf_group_detach(event);
2338     if (flags & DETACH_CHILD)
2339         perf_child_detach(event);
2340     list_del_event(event, ctx);
2341 
2342     if (!ctx->nr_events && ctx->is_active) {
2343         if (ctx == &cpuctx->ctx)
2344             update_cgrp_time_from_cpuctx(cpuctx, true);
2345 
2346         ctx->is_active = 0;
2347         ctx->rotate_necessary = 0;
2348         if (ctx->task) {
2349             WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2350             cpuctx->task_ctx = NULL;
2351         }
2352     }
2353 }
2354 
2355 /*
2356  * Remove the event from a task's (or a CPU's) list of events.
2357  *
2358  * If event->ctx is a cloned context, callers must make sure that
2359  * every task struct that event->ctx->task could possibly point to
2360  * remains valid.  This is OK when called from perf_release since
2361  * that only calls us on the top-level context, which can't be a clone.
2362  * When called from perf_event_exit_task, it's OK because the
2363  * context has been detached from its task.
2364  */
2365 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2366 {
2367     struct perf_event_context *ctx = event->ctx;
2368 
2369     lockdep_assert_held(&ctx->mutex);
2370 
2371     /*
2372      * Because of perf_event_exit_task(), perf_remove_from_context() ought
2373      * to work in the face of TASK_TOMBSTONE, unlike every other
2374      * event_function_call() user.
2375      */
2376     raw_spin_lock_irq(&ctx->lock);
2377     /*
2378      * Cgroup events are per-cpu events, and must IPI because of
2379      * cgrp_cpuctx_list.
2380      */
2381     if (!ctx->is_active && !is_cgroup_event(event)) {
2382         __perf_remove_from_context(event, __get_cpu_context(ctx),
2383                        ctx, (void *)flags);
2384         raw_spin_unlock_irq(&ctx->lock);
2385         return;
2386     }
2387     raw_spin_unlock_irq(&ctx->lock);
2388 
2389     event_function_call(event, __perf_remove_from_context, (void *)flags);
2390 }
2391 
2392 /*
2393  * Cross CPU call to disable a performance event
2394  */
2395 static void __perf_event_disable(struct perf_event *event,
2396                  struct perf_cpu_context *cpuctx,
2397                  struct perf_event_context *ctx,
2398                  void *info)
2399 {
2400     if (event->state < PERF_EVENT_STATE_INACTIVE)
2401         return;
2402 
2403     if (ctx->is_active & EVENT_TIME) {
2404         update_context_time(ctx);
2405         update_cgrp_time_from_event(event);
2406     }
2407 
2408     if (event == event->group_leader)
2409         group_sched_out(event, cpuctx, ctx);
2410     else
2411         event_sched_out(event, cpuctx, ctx);
2412 
2413     perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2414     perf_cgroup_event_disable(event, ctx);
2415 }
2416 
2417 /*
2418  * Disable an event.
2419  *
2420  * If event->ctx is a cloned context, callers must make sure that
2421  * every task struct that event->ctx->task could possibly point to
2422  * remains valid.  This condition is satisfied when called through
2423  * perf_event_for_each_child or perf_event_for_each because they
2424  * hold the top-level event's child_mutex, so any descendant that
2425  * goes to exit will block in perf_event_exit_event().
2426  *
2427  * When called from perf_pending_event it's OK because event->ctx
2428  * is the current context on this CPU and preemption is disabled,
2429  * hence we can't get into perf_event_task_sched_out for this context.
2430  */
2431 static void _perf_event_disable(struct perf_event *event)
2432 {
2433     struct perf_event_context *ctx = event->ctx;
2434 
2435     raw_spin_lock_irq(&ctx->lock);
2436     if (event->state <= PERF_EVENT_STATE_OFF) {
2437         raw_spin_unlock_irq(&ctx->lock);
2438         return;
2439     }
2440     raw_spin_unlock_irq(&ctx->lock);
2441 
2442     event_function_call(event, __perf_event_disable, NULL);
2443 }
2444 
2445 void perf_event_disable_local(struct perf_event *event)
2446 {
2447     event_function_local(event, __perf_event_disable, NULL);
2448 }
2449 
2450 /*
2451  * Strictly speaking kernel users cannot create groups and therefore this
2452  * interface does not need the perf_event_ctx_lock() magic.
2453  */
2454 void perf_event_disable(struct perf_event *event)
2455 {
2456     struct perf_event_context *ctx;
2457 
2458     ctx = perf_event_ctx_lock(event);
2459     _perf_event_disable(event);
2460     perf_event_ctx_unlock(event, ctx);
2461 }
2462 EXPORT_SYMBOL_GPL(perf_event_disable);
2463 
2464 void perf_event_disable_inatomic(struct perf_event *event)
2465 {
2466     WRITE_ONCE(event->pending_disable, smp_processor_id());
2467     /* can fail, see perf_pending_event_disable() */
2468     irq_work_queue(&event->pending);
2469 }
2470 
2471 #define MAX_INTERRUPTS (~0ULL)
2472 
2473 static void perf_log_throttle(struct perf_event *event, int enable);
2474 static void perf_log_itrace_start(struct perf_event *event);
2475 
2476 static int
2477 event_sched_in(struct perf_event *event,
2478          struct perf_cpu_context *cpuctx,
2479          struct perf_event_context *ctx)
2480 {
2481     int ret = 0;
2482 
2483     WARN_ON_ONCE(event->ctx != ctx);
2484 
2485     lockdep_assert_held(&ctx->lock);
2486 
2487     if (event->state <= PERF_EVENT_STATE_OFF)
2488         return 0;
2489 
2490     WRITE_ONCE(event->oncpu, smp_processor_id());
2491     /*
2492      * Order event::oncpu write to happen before the ACTIVE state is
2493      * visible. This allows perf_event_{stop,read}() to observe the correct
2494      * ->oncpu if it sees ACTIVE.
2495      */
2496     smp_wmb();
2497     perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2498 
2499     /*
2500      * Unthrottle events, since we scheduled we might have missed several
2501      * ticks already, also for a heavily scheduling task there is little
2502      * guarantee it'll get a tick in a timely manner.
2503      */
2504     if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2505         perf_log_throttle(event, 1);
2506         event->hw.interrupts = 0;
2507     }
2508 
2509     perf_pmu_disable(event->pmu);
2510 
2511     perf_log_itrace_start(event);
2512 
2513     if (event->pmu->add(event, PERF_EF_START)) {
2514         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515         event->oncpu = -1;
2516         ret = -EAGAIN;
2517         goto out;
2518     }
2519 
2520     if (!is_software_event(event))
2521         cpuctx->active_oncpu++;
2522     if (!ctx->nr_active++)
2523         perf_event_ctx_activate(ctx);
2524     if (event->attr.freq && event->attr.sample_freq)
2525         ctx->nr_freq++;
2526 
2527     if (event->attr.exclusive)
2528         cpuctx->exclusive = 1;
2529 
2530 out:
2531     perf_pmu_enable(event->pmu);
2532 
2533     return ret;
2534 }
2535 
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538            struct perf_cpu_context *cpuctx,
2539            struct perf_event_context *ctx)
2540 {
2541     struct perf_event *event, *partial_group = NULL;
2542     struct pmu *pmu = ctx->pmu;
2543 
2544     if (group_event->state == PERF_EVENT_STATE_OFF)
2545         return 0;
2546 
2547     pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548 
2549     if (event_sched_in(group_event, cpuctx, ctx))
2550         goto error;
2551 
2552     /*
2553      * Schedule in siblings as one group (if any):
2554      */
2555     for_each_sibling_event(event, group_event) {
2556         if (event_sched_in(event, cpuctx, ctx)) {
2557             partial_group = event;
2558             goto group_error;
2559         }
2560     }
2561 
2562     if (!pmu->commit_txn(pmu))
2563         return 0;
2564 
2565 group_error:
2566     /*
2567      * Groups can be scheduled in as one unit only, so undo any
2568      * partial group before returning:
2569      * The events up to the failed event are scheduled out normally.
2570      */
2571     for_each_sibling_event(event, group_event) {
2572         if (event == partial_group)
2573             break;
2574 
2575         event_sched_out(event, cpuctx, ctx);
2576     }
2577     event_sched_out(group_event, cpuctx, ctx);
2578 
2579 error:
2580     pmu->cancel_txn(pmu);
2581     return -EAGAIN;
2582 }
2583 
2584 /*
2585  * Work out whether we can put this event group on the CPU now.
2586  */
2587 static int group_can_go_on(struct perf_event *event,
2588                struct perf_cpu_context *cpuctx,
2589                int can_add_hw)
2590 {
2591     /*
2592      * Groups consisting entirely of software events can always go on.
2593      */
2594     if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2595         return 1;
2596     /*
2597      * If an exclusive group is already on, no other hardware
2598      * events can go on.
2599      */
2600     if (cpuctx->exclusive)
2601         return 0;
2602     /*
2603      * If this group is exclusive and there are already
2604      * events on the CPU, it can't go on.
2605      */
2606     if (event->attr.exclusive && !list_empty(get_event_list(event)))
2607         return 0;
2608     /*
2609      * Otherwise, try to add it if all previous groups were able
2610      * to go on.
2611      */
2612     return can_add_hw;
2613 }
2614 
2615 static void add_event_to_ctx(struct perf_event *event,
2616                    struct perf_event_context *ctx)
2617 {
2618     list_add_event(event, ctx);
2619     perf_group_attach(event);
2620 }
2621 
2622 static void ctx_sched_out(struct perf_event_context *ctx,
2623               struct perf_cpu_context *cpuctx,
2624               enum event_type_t event_type);
2625 static void
2626 ctx_sched_in(struct perf_event_context *ctx,
2627          struct perf_cpu_context *cpuctx,
2628          enum event_type_t event_type);
2629 
2630 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2631                    struct perf_event_context *ctx,
2632                    enum event_type_t event_type)
2633 {
2634     if (!cpuctx->task_ctx)
2635         return;
2636 
2637     if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2638         return;
2639 
2640     ctx_sched_out(ctx, cpuctx, event_type);
2641 }
2642 
2643 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2644                 struct perf_event_context *ctx)
2645 {
2646     cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2647     if (ctx)
2648         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2649     cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2650     if (ctx)
2651         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2652 }
2653 
2654 /*
2655  * We want to maintain the following priority of scheduling:
2656  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2657  *  - task pinned (EVENT_PINNED)
2658  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2659  *  - task flexible (EVENT_FLEXIBLE).
2660  *
2661  * In order to avoid unscheduling and scheduling back in everything every
2662  * time an event is added, only do it for the groups of equal priority and
2663  * below.
2664  *
2665  * This can be called after a batch operation on task events, in which case
2666  * event_type is a bit mask of the types of events involved. For CPU events,
2667  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2668  */
2669 static void ctx_resched(struct perf_cpu_context *cpuctx,
2670             struct perf_event_context *task_ctx,
2671             enum event_type_t event_type)
2672 {
2673     enum event_type_t ctx_event_type;
2674     bool cpu_event = !!(event_type & EVENT_CPU);
2675 
2676     /*
2677      * If pinned groups are involved, flexible groups also need to be
2678      * scheduled out.
2679      */
2680     if (event_type & EVENT_PINNED)
2681         event_type |= EVENT_FLEXIBLE;
2682 
2683     ctx_event_type = event_type & EVENT_ALL;
2684 
2685     perf_pmu_disable(cpuctx->ctx.pmu);
2686     if (task_ctx)
2687         task_ctx_sched_out(cpuctx, task_ctx, event_type);
2688 
2689     /*
2690      * Decide which cpu ctx groups to schedule out based on the types
2691      * of events that caused rescheduling:
2692      *  - EVENT_CPU: schedule out corresponding groups;
2693      *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2694      *  - otherwise, do nothing more.
2695      */
2696     if (cpu_event)
2697         cpu_ctx_sched_out(cpuctx, ctx_event_type);
2698     else if (ctx_event_type & EVENT_PINNED)
2699         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2700 
2701     perf_event_sched_in(cpuctx, task_ctx);
2702     perf_pmu_enable(cpuctx->ctx.pmu);
2703 }
2704 
2705 void perf_pmu_resched(struct pmu *pmu)
2706 {
2707     struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2708     struct perf_event_context *task_ctx = cpuctx->task_ctx;
2709 
2710     perf_ctx_lock(cpuctx, task_ctx);
2711     ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2712     perf_ctx_unlock(cpuctx, task_ctx);
2713 }
2714 
2715 /*
2716  * Cross CPU call to install and enable a performance event
2717  *
2718  * Very similar to remote_function() + event_function() but cannot assume that
2719  * things like ctx->is_active and cpuctx->task_ctx are set.
2720  */
2721 static int  __perf_install_in_context(void *info)
2722 {
2723     struct perf_event *event = info;
2724     struct perf_event_context *ctx = event->ctx;
2725     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2726     struct perf_event_context *task_ctx = cpuctx->task_ctx;
2727     bool reprogram = true;
2728     int ret = 0;
2729 
2730     raw_spin_lock(&cpuctx->ctx.lock);
2731     if (ctx->task) {
2732         raw_spin_lock(&ctx->lock);
2733         task_ctx = ctx;
2734 
2735         reprogram = (ctx->task == current);
2736 
2737         /*
2738          * If the task is running, it must be running on this CPU,
2739          * otherwise we cannot reprogram things.
2740          *
2741          * If its not running, we don't care, ctx->lock will
2742          * serialize against it becoming runnable.
2743          */
2744         if (task_curr(ctx->task) && !reprogram) {
2745             ret = -ESRCH;
2746             goto unlock;
2747         }
2748 
2749         WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2750     } else if (task_ctx) {
2751         raw_spin_lock(&task_ctx->lock);
2752     }
2753 
2754 #ifdef CONFIG_CGROUP_PERF
2755     if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2756         /*
2757          * If the current cgroup doesn't match the event's
2758          * cgroup, we should not try to schedule it.
2759          */
2760         struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2761         reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2762                     event->cgrp->css.cgroup);
2763     }
2764 #endif
2765 
2766     if (reprogram) {
2767         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2768         add_event_to_ctx(event, ctx);
2769         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2770     } else {
2771         add_event_to_ctx(event, ctx);
2772     }
2773 
2774 unlock:
2775     perf_ctx_unlock(cpuctx, task_ctx);
2776 
2777     return ret;
2778 }
2779 
2780 static bool exclusive_event_installable(struct perf_event *event,
2781                     struct perf_event_context *ctx);
2782 
2783 /*
2784  * Attach a performance event to a context.
2785  *
2786  * Very similar to event_function_call, see comment there.
2787  */
2788 static void
2789 perf_install_in_context(struct perf_event_context *ctx,
2790             struct perf_event *event,
2791             int cpu)
2792 {
2793     struct task_struct *task = READ_ONCE(ctx->task);
2794 
2795     lockdep_assert_held(&ctx->mutex);
2796 
2797     WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2798 
2799     if (event->cpu != -1)
2800         event->cpu = cpu;
2801 
2802     /*
2803      * Ensures that if we can observe event->ctx, both the event and ctx
2804      * will be 'complete'. See perf_iterate_sb_cpu().
2805      */
2806     smp_store_release(&event->ctx, ctx);
2807 
2808     /*
2809      * perf_event_attr::disabled events will not run and can be initialized
2810      * without IPI. Except when this is the first event for the context, in
2811      * that case we need the magic of the IPI to set ctx->is_active.
2812      * Similarly, cgroup events for the context also needs the IPI to
2813      * manipulate the cgrp_cpuctx_list.
2814      *
2815      * The IOC_ENABLE that is sure to follow the creation of a disabled
2816      * event will issue the IPI and reprogram the hardware.
2817      */
2818     if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2819         ctx->nr_events && !is_cgroup_event(event)) {
2820         raw_spin_lock_irq(&ctx->lock);
2821         if (ctx->task == TASK_TOMBSTONE) {
2822             raw_spin_unlock_irq(&ctx->lock);
2823             return;
2824         }
2825         add_event_to_ctx(event, ctx);
2826         raw_spin_unlock_irq(&ctx->lock);
2827         return;
2828     }
2829 
2830     if (!task) {
2831         cpu_function_call(cpu, __perf_install_in_context, event);
2832         return;
2833     }
2834 
2835     /*
2836      * Should not happen, we validate the ctx is still alive before calling.
2837      */
2838     if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2839         return;
2840 
2841     /*
2842      * Installing events is tricky because we cannot rely on ctx->is_active
2843      * to be set in case this is the nr_events 0 -> 1 transition.
2844      *
2845      * Instead we use task_curr(), which tells us if the task is running.
2846      * However, since we use task_curr() outside of rq::lock, we can race
2847      * against the actual state. This means the result can be wrong.
2848      *
2849      * If we get a false positive, we retry, this is harmless.
2850      *
2851      * If we get a false negative, things are complicated. If we are after
2852      * perf_event_context_sched_in() ctx::lock will serialize us, and the
2853      * value must be correct. If we're before, it doesn't matter since
2854      * perf_event_context_sched_in() will program the counter.
2855      *
2856      * However, this hinges on the remote context switch having observed
2857      * our task->perf_event_ctxp[] store, such that it will in fact take
2858      * ctx::lock in perf_event_context_sched_in().
2859      *
2860      * We do this by task_function_call(), if the IPI fails to hit the task
2861      * we know any future context switch of task must see the
2862      * perf_event_ctpx[] store.
2863      */
2864 
2865     /*
2866      * This smp_mb() orders the task->perf_event_ctxp[] store with the
2867      * task_cpu() load, such that if the IPI then does not find the task
2868      * running, a future context switch of that task must observe the
2869      * store.
2870      */
2871     smp_mb();
2872 again:
2873     if (!task_function_call(task, __perf_install_in_context, event))
2874         return;
2875 
2876     raw_spin_lock_irq(&ctx->lock);
2877     task = ctx->task;
2878     if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2879         /*
2880          * Cannot happen because we already checked above (which also
2881          * cannot happen), and we hold ctx->mutex, which serializes us
2882          * against perf_event_exit_task_context().
2883          */
2884         raw_spin_unlock_irq(&ctx->lock);
2885         return;
2886     }
2887     /*
2888      * If the task is not running, ctx->lock will avoid it becoming so,
2889      * thus we can safely install the event.
2890      */
2891     if (task_curr(task)) {
2892         raw_spin_unlock_irq(&ctx->lock);
2893         goto again;
2894     }
2895     add_event_to_ctx(event, ctx);
2896     raw_spin_unlock_irq(&ctx->lock);
2897 }
2898 
2899 /*
2900  * Cross CPU call to enable a performance event
2901  */
2902 static void __perf_event_enable(struct perf_event *event,
2903                 struct perf_cpu_context *cpuctx,
2904                 struct perf_event_context *ctx,
2905                 void *info)
2906 {
2907     struct perf_event *leader = event->group_leader;
2908     struct perf_event_context *task_ctx;
2909 
2910     if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2911         event->state <= PERF_EVENT_STATE_ERROR)
2912         return;
2913 
2914     if (ctx->is_active)
2915         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2916 
2917     perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2918     perf_cgroup_event_enable(event, ctx);
2919 
2920     if (!ctx->is_active)
2921         return;
2922 
2923     if (!event_filter_match(event)) {
2924         ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2925         return;
2926     }
2927 
2928     /*
2929      * If the event is in a group and isn't the group leader,
2930      * then don't put it on unless the group is on.
2931      */
2932     if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2933         ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2934         return;
2935     }
2936 
2937     task_ctx = cpuctx->task_ctx;
2938     if (ctx->task)
2939         WARN_ON_ONCE(task_ctx != ctx);
2940 
2941     ctx_resched(cpuctx, task_ctx, get_event_type(event));
2942 }
2943 
2944 /*
2945  * Enable an event.
2946  *
2947  * If event->ctx is a cloned context, callers must make sure that
2948  * every task struct that event->ctx->task could possibly point to
2949  * remains valid.  This condition is satisfied when called through
2950  * perf_event_for_each_child or perf_event_for_each as described
2951  * for perf_event_disable.
2952  */
2953 static void _perf_event_enable(struct perf_event *event)
2954 {
2955     struct perf_event_context *ctx = event->ctx;
2956 
2957     raw_spin_lock_irq(&ctx->lock);
2958     if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2959         event->state <  PERF_EVENT_STATE_ERROR) {
2960 out:
2961         raw_spin_unlock_irq(&ctx->lock);
2962         return;
2963     }
2964 
2965     /*
2966      * If the event is in error state, clear that first.
2967      *
2968      * That way, if we see the event in error state below, we know that it
2969      * has gone back into error state, as distinct from the task having
2970      * been scheduled away before the cross-call arrived.
2971      */
2972     if (event->state == PERF_EVENT_STATE_ERROR) {
2973         /*
2974          * Detached SIBLING events cannot leave ERROR state.
2975          */
2976         if (event->event_caps & PERF_EV_CAP_SIBLING &&
2977             event->group_leader == event)
2978             goto out;
2979 
2980         event->state = PERF_EVENT_STATE_OFF;
2981     }
2982     raw_spin_unlock_irq(&ctx->lock);
2983 
2984     event_function_call(event, __perf_event_enable, NULL);
2985 }
2986 
2987 /*
2988  * See perf_event_disable();
2989  */
2990 void perf_event_enable(struct perf_event *event)
2991 {
2992     struct perf_event_context *ctx;
2993 
2994     ctx = perf_event_ctx_lock(event);
2995     _perf_event_enable(event);
2996     perf_event_ctx_unlock(event, ctx);
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_enable);
2999 
3000 struct stop_event_data {
3001     struct perf_event   *event;
3002     unsigned int        restart;
3003 };
3004 
3005 static int __perf_event_stop(void *info)
3006 {
3007     struct stop_event_data *sd = info;
3008     struct perf_event *event = sd->event;
3009 
3010     /* if it's already INACTIVE, do nothing */
3011     if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012         return 0;
3013 
3014     /* matches smp_wmb() in event_sched_in() */
3015     smp_rmb();
3016 
3017     /*
3018      * There is a window with interrupts enabled before we get here,
3019      * so we need to check again lest we try to stop another CPU's event.
3020      */
3021     if (READ_ONCE(event->oncpu) != smp_processor_id())
3022         return -EAGAIN;
3023 
3024     event->pmu->stop(event, PERF_EF_UPDATE);
3025 
3026     /*
3027      * May race with the actual stop (through perf_pmu_output_stop()),
3028      * but it is only used for events with AUX ring buffer, and such
3029      * events will refuse to restart because of rb::aux_mmap_count==0,
3030      * see comments in perf_aux_output_begin().
3031      *
3032      * Since this is happening on an event-local CPU, no trace is lost
3033      * while restarting.
3034      */
3035     if (sd->restart)
3036         event->pmu->start(event, 0);
3037 
3038     return 0;
3039 }
3040 
3041 static int perf_event_stop(struct perf_event *event, int restart)
3042 {
3043     struct stop_event_data sd = {
3044         .event      = event,
3045         .restart    = restart,
3046     };
3047     int ret = 0;
3048 
3049     do {
3050         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051             return 0;
3052 
3053         /* matches smp_wmb() in event_sched_in() */
3054         smp_rmb();
3055 
3056         /*
3057          * We only want to restart ACTIVE events, so if the event goes
3058          * inactive here (event->oncpu==-1), there's nothing more to do;
3059          * fall through with ret==-ENXIO.
3060          */
3061         ret = cpu_function_call(READ_ONCE(event->oncpu),
3062                     __perf_event_stop, &sd);
3063     } while (ret == -EAGAIN);
3064 
3065     return ret;
3066 }
3067 
3068 /*
3069  * In order to contain the amount of racy and tricky in the address filter
3070  * configuration management, it is a two part process:
3071  *
3072  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3073  *      we update the addresses of corresponding vmas in
3074  *  event::addr_filter_ranges array and bump the event::addr_filters_gen;
3075  * (p2) when an event is scheduled in (pmu::add), it calls
3076  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3077  *      if the generation has changed since the previous call.
3078  *
3079  * If (p1) happens while the event is active, we restart it to force (p2).
3080  *
3081  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3082  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3083  *     ioctl;
3084  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3085  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3086  *     for reading;
3087  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088  *     of exec.
3089  */
3090 void perf_event_addr_filters_sync(struct perf_event *event)
3091 {
3092     struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3093 
3094     if (!has_addr_filter(event))
3095         return;
3096 
3097     raw_spin_lock(&ifh->lock);
3098     if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3099         event->pmu->addr_filters_sync(event);
3100         event->hw.addr_filters_gen = event->addr_filters_gen;
3101     }
3102     raw_spin_unlock(&ifh->lock);
3103 }
3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3105 
3106 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 {
3108     /*
3109      * not supported on inherited events
3110      */
3111     if (event->attr.inherit || !is_sampling_event(event))
3112         return -EINVAL;
3113 
3114     atomic_add(refresh, &event->event_limit);
3115     _perf_event_enable(event);
3116 
3117     return 0;
3118 }
3119 
3120 /*
3121  * See perf_event_disable()
3122  */
3123 int perf_event_refresh(struct perf_event *event, int refresh)
3124 {
3125     struct perf_event_context *ctx;
3126     int ret;
3127 
3128     ctx = perf_event_ctx_lock(event);
3129     ret = _perf_event_refresh(event, refresh);
3130     perf_event_ctx_unlock(event, ctx);
3131 
3132     return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_refresh);
3135 
3136 static int perf_event_modify_breakpoint(struct perf_event *bp,
3137                      struct perf_event_attr *attr)
3138 {
3139     int err;
3140 
3141     _perf_event_disable(bp);
3142 
3143     err = modify_user_hw_breakpoint_check(bp, attr, true);
3144 
3145     if (!bp->attr.disabled)
3146         _perf_event_enable(bp);
3147 
3148     return err;
3149 }
3150 
3151 /*
3152  * Copy event-type-independent attributes that may be modified.
3153  */
3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3155                     const struct perf_event_attr *from)
3156 {
3157     to->sig_data = from->sig_data;
3158 }
3159 
3160 static int perf_event_modify_attr(struct perf_event *event,
3161                   struct perf_event_attr *attr)
3162 {
3163     int (*func)(struct perf_event *, struct perf_event_attr *);
3164     struct perf_event *child;
3165     int err;
3166 
3167     if (event->attr.type != attr->type)
3168         return -EINVAL;
3169 
3170     switch (event->attr.type) {
3171     case PERF_TYPE_BREAKPOINT:
3172         func = perf_event_modify_breakpoint;
3173         break;
3174     default:
3175         /* Place holder for future additions. */
3176         return -EOPNOTSUPP;
3177     }
3178 
3179     WARN_ON_ONCE(event->ctx->parent_ctx);
3180 
3181     mutex_lock(&event->child_mutex);
3182     /*
3183      * Event-type-independent attributes must be copied before event-type
3184      * modification, which will validate that final attributes match the
3185      * source attributes after all relevant attributes have been copied.
3186      */
3187     perf_event_modify_copy_attr(&event->attr, attr);
3188     err = func(event, attr);
3189     if (err)
3190         goto out;
3191     list_for_each_entry(child, &event->child_list, child_list) {
3192         perf_event_modify_copy_attr(&child->attr, attr);
3193         err = func(child, attr);
3194         if (err)
3195             goto out;
3196     }
3197 out:
3198     mutex_unlock(&event->child_mutex);
3199     return err;
3200 }
3201 
3202 static void ctx_sched_out(struct perf_event_context *ctx,
3203               struct perf_cpu_context *cpuctx,
3204               enum event_type_t event_type)
3205 {
3206     struct perf_event *event, *tmp;
3207     int is_active = ctx->is_active;
3208 
3209     lockdep_assert_held(&ctx->lock);
3210 
3211     if (likely(!ctx->nr_events)) {
3212         /*
3213          * See __perf_remove_from_context().
3214          */
3215         WARN_ON_ONCE(ctx->is_active);
3216         if (ctx->task)
3217             WARN_ON_ONCE(cpuctx->task_ctx);
3218         return;
3219     }
3220 
3221     /*
3222      * Always update time if it was set; not only when it changes.
3223      * Otherwise we can 'forget' to update time for any but the last
3224      * context we sched out. For example:
3225      *
3226      *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3227      *   ctx_sched_out(.event_type = EVENT_PINNED)
3228      *
3229      * would only update time for the pinned events.
3230      */
3231     if (is_active & EVENT_TIME) {
3232         /* update (and stop) ctx time */
3233         update_context_time(ctx);
3234         update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3235         /*
3236          * CPU-release for the below ->is_active store,
3237          * see __load_acquire() in perf_event_time_now()
3238          */
3239         barrier();
3240     }
3241 
3242     ctx->is_active &= ~event_type;
3243     if (!(ctx->is_active & EVENT_ALL))
3244         ctx->is_active = 0;
3245 
3246     if (ctx->task) {
3247         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3248         if (!ctx->is_active)
3249             cpuctx->task_ctx = NULL;
3250     }
3251 
3252     is_active ^= ctx->is_active; /* changed bits */
3253 
3254     if (!ctx->nr_active || !(is_active & EVENT_ALL))
3255         return;
3256 
3257     perf_pmu_disable(ctx->pmu);
3258     if (is_active & EVENT_PINNED) {
3259         list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3260             group_sched_out(event, cpuctx, ctx);
3261     }
3262 
3263     if (is_active & EVENT_FLEXIBLE) {
3264         list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3265             group_sched_out(event, cpuctx, ctx);
3266 
3267         /*
3268          * Since we cleared EVENT_FLEXIBLE, also clear
3269          * rotate_necessary, is will be reset by
3270          * ctx_flexible_sched_in() when needed.
3271          */
3272         ctx->rotate_necessary = 0;
3273     }
3274     perf_pmu_enable(ctx->pmu);
3275 }
3276 
3277 /*
3278  * Test whether two contexts are equivalent, i.e. whether they have both been
3279  * cloned from the same version of the same context.
3280  *
3281  * Equivalence is measured using a generation number in the context that is
3282  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3283  * and list_del_event().
3284  */
3285 static int context_equiv(struct perf_event_context *ctx1,
3286              struct perf_event_context *ctx2)
3287 {
3288     lockdep_assert_held(&ctx1->lock);
3289     lockdep_assert_held(&ctx2->lock);
3290 
3291     /* Pinning disables the swap optimization */
3292     if (ctx1->pin_count || ctx2->pin_count)
3293         return 0;
3294 
3295     /* If ctx1 is the parent of ctx2 */
3296     if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3297         return 1;
3298 
3299     /* If ctx2 is the parent of ctx1 */
3300     if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3301         return 1;
3302 
3303     /*
3304      * If ctx1 and ctx2 have the same parent; we flatten the parent
3305      * hierarchy, see perf_event_init_context().
3306      */
3307     if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3308             ctx1->parent_gen == ctx2->parent_gen)
3309         return 1;
3310 
3311     /* Unmatched */
3312     return 0;
3313 }
3314 
3315 static void __perf_event_sync_stat(struct perf_event *event,
3316                      struct perf_event *next_event)
3317 {
3318     u64 value;
3319 
3320     if (!event->attr.inherit_stat)
3321         return;
3322 
3323     /*
3324      * Update the event value, we cannot use perf_event_read()
3325      * because we're in the middle of a context switch and have IRQs
3326      * disabled, which upsets smp_call_function_single(), however
3327      * we know the event must be on the current CPU, therefore we
3328      * don't need to use it.
3329      */
3330     if (event->state == PERF_EVENT_STATE_ACTIVE)
3331         event->pmu->read(event);
3332 
3333     perf_event_update_time(event);
3334 
3335     /*
3336      * In order to keep per-task stats reliable we need to flip the event
3337      * values when we flip the contexts.
3338      */
3339     value = local64_read(&next_event->count);
3340     value = local64_xchg(&event->count, value);
3341     local64_set(&next_event->count, value);
3342 
3343     swap(event->total_time_enabled, next_event->total_time_enabled);
3344     swap(event->total_time_running, next_event->total_time_running);
3345 
3346     /*
3347      * Since we swizzled the values, update the user visible data too.
3348      */
3349     perf_event_update_userpage(event);
3350     perf_event_update_userpage(next_event);
3351 }
3352 
3353 static void perf_event_sync_stat(struct perf_event_context *ctx,
3354                    struct perf_event_context *next_ctx)
3355 {
3356     struct perf_event *event, *next_event;
3357 
3358     if (!ctx->nr_stat)
3359         return;
3360 
3361     update_context_time(ctx);
3362 
3363     event = list_first_entry(&ctx->event_list,
3364                    struct perf_event, event_entry);
3365 
3366     next_event = list_first_entry(&next_ctx->event_list,
3367                     struct perf_event, event_entry);
3368 
3369     while (&event->event_entry != &ctx->event_list &&
3370            &next_event->event_entry != &next_ctx->event_list) {
3371 
3372         __perf_event_sync_stat(event, next_event);
3373 
3374         event = list_next_entry(event, event_entry);
3375         next_event = list_next_entry(next_event, event_entry);
3376     }
3377 }
3378 
3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3380                      struct task_struct *next)
3381 {
3382     struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3383     struct perf_event_context *next_ctx;
3384     struct perf_event_context *parent, *next_parent;
3385     struct perf_cpu_context *cpuctx;
3386     int do_switch = 1;
3387     struct pmu *pmu;
3388 
3389     if (likely(!ctx))
3390         return;
3391 
3392     pmu = ctx->pmu;
3393     cpuctx = __get_cpu_context(ctx);
3394     if (!cpuctx->task_ctx)
3395         return;
3396 
3397     rcu_read_lock();
3398     next_ctx = next->perf_event_ctxp[ctxn];
3399     if (!next_ctx)
3400         goto unlock;
3401 
3402     parent = rcu_dereference(ctx->parent_ctx);
3403     next_parent = rcu_dereference(next_ctx->parent_ctx);
3404 
3405     /* If neither context have a parent context; they cannot be clones. */
3406     if (!parent && !next_parent)
3407         goto unlock;
3408 
3409     if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3410         /*
3411          * Looks like the two contexts are clones, so we might be
3412          * able to optimize the context switch.  We lock both
3413          * contexts and check that they are clones under the
3414          * lock (including re-checking that neither has been
3415          * uncloned in the meantime).  It doesn't matter which
3416          * order we take the locks because no other cpu could
3417          * be trying to lock both of these tasks.
3418          */
3419         raw_spin_lock(&ctx->lock);
3420         raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3421         if (context_equiv(ctx, next_ctx)) {
3422 
3423             WRITE_ONCE(ctx->task, next);
3424             WRITE_ONCE(next_ctx->task, task);
3425 
3426             perf_pmu_disable(pmu);
3427 
3428             if (cpuctx->sched_cb_usage && pmu->sched_task)
3429                 pmu->sched_task(ctx, false);
3430 
3431             /*
3432              * PMU specific parts of task perf context can require
3433              * additional synchronization. As an example of such
3434              * synchronization see implementation details of Intel
3435              * LBR call stack data profiling;
3436              */
3437             if (pmu->swap_task_ctx)
3438                 pmu->swap_task_ctx(ctx, next_ctx);
3439             else
3440                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3441 
3442             perf_pmu_enable(pmu);
3443 
3444             /*
3445              * RCU_INIT_POINTER here is safe because we've not
3446              * modified the ctx and the above modification of
3447              * ctx->task and ctx->task_ctx_data are immaterial
3448              * since those values are always verified under
3449              * ctx->lock which we're now holding.
3450              */
3451             RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3452             RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3453 
3454             do_switch = 0;
3455 
3456             perf_event_sync_stat(ctx, next_ctx);
3457         }
3458         raw_spin_unlock(&next_ctx->lock);
3459         raw_spin_unlock(&ctx->lock);
3460     }
3461 unlock:
3462     rcu_read_unlock();
3463 
3464     if (do_switch) {
3465         raw_spin_lock(&ctx->lock);
3466         perf_pmu_disable(pmu);
3467 
3468         if (cpuctx->sched_cb_usage && pmu->sched_task)
3469             pmu->sched_task(ctx, false);
3470         task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3471 
3472         perf_pmu_enable(pmu);
3473         raw_spin_unlock(&ctx->lock);
3474     }
3475 }
3476 
3477 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3478 
3479 void perf_sched_cb_dec(struct pmu *pmu)
3480 {
3481     struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3482 
3483     this_cpu_dec(perf_sched_cb_usages);
3484 
3485     if (!--cpuctx->sched_cb_usage)
3486         list_del(&cpuctx->sched_cb_entry);
3487 }
3488 
3489 
3490 void perf_sched_cb_inc(struct pmu *pmu)
3491 {
3492     struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3493 
3494     if (!cpuctx->sched_cb_usage++)
3495         list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3496 
3497     this_cpu_inc(perf_sched_cb_usages);
3498 }
3499 
3500 /*
3501  * This function provides the context switch callback to the lower code
3502  * layer. It is invoked ONLY when the context switch callback is enabled.
3503  *
3504  * This callback is relevant even to per-cpu events; for example multi event
3505  * PEBS requires this to provide PID/TID information. This requires we flush
3506  * all queued PEBS records before we context switch to a new task.
3507  */
3508 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3509 {
3510     struct pmu *pmu;
3511 
3512     pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3513 
3514     if (WARN_ON_ONCE(!pmu->sched_task))
3515         return;
3516 
3517     perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3518     perf_pmu_disable(pmu);
3519 
3520     pmu->sched_task(cpuctx->task_ctx, sched_in);
3521 
3522     perf_pmu_enable(pmu);
3523     perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3524 }
3525 
3526 static void perf_pmu_sched_task(struct task_struct *prev,
3527                 struct task_struct *next,
3528                 bool sched_in)
3529 {
3530     struct perf_cpu_context *cpuctx;
3531 
3532     if (prev == next)
3533         return;
3534 
3535     list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3536         /* will be handled in perf_event_context_sched_in/out */
3537         if (cpuctx->task_ctx)
3538             continue;
3539 
3540         __perf_pmu_sched_task(cpuctx, sched_in);
3541     }
3542 }
3543 
3544 static void perf_event_switch(struct task_struct *task,
3545                   struct task_struct *next_prev, bool sched_in);
3546 
3547 #define for_each_task_context_nr(ctxn)                  \
3548     for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3549 
3550 /*
3551  * Called from scheduler to remove the events of the current task,
3552  * with interrupts disabled.
3553  *
3554  * We stop each event and update the event value in event->count.
3555  *
3556  * This does not protect us against NMI, but disable()
3557  * sets the disabled bit in the control field of event _before_
3558  * accessing the event control register. If a NMI hits, then it will
3559  * not restart the event.
3560  */
3561 void __perf_event_task_sched_out(struct task_struct *task,
3562                  struct task_struct *next)
3563 {
3564     int ctxn;
3565 
3566     if (__this_cpu_read(perf_sched_cb_usages))
3567         perf_pmu_sched_task(task, next, false);
3568 
3569     if (atomic_read(&nr_switch_events))
3570         perf_event_switch(task, next, false);
3571 
3572     for_each_task_context_nr(ctxn)
3573         perf_event_context_sched_out(task, ctxn, next);
3574 
3575     /*
3576      * if cgroup events exist on this CPU, then we need
3577      * to check if we have to switch out PMU state.
3578      * cgroup event are system-wide mode only
3579      */
3580     if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3581         perf_cgroup_switch(next);
3582 }
3583 
3584 /*
3585  * Called with IRQs disabled
3586  */
3587 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3588                   enum event_type_t event_type)
3589 {
3590     ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3591 }
3592 
3593 static bool perf_less_group_idx(const void *l, const void *r)
3594 {
3595     const struct perf_event *le = *(const struct perf_event **)l;
3596     const struct perf_event *re = *(const struct perf_event **)r;
3597 
3598     return le->group_index < re->group_index;
3599 }
3600 
3601 static void swap_ptr(void *l, void *r)
3602 {
3603     void **lp = l, **rp = r;
3604 
3605     swap(*lp, *rp);
3606 }
3607 
3608 static const struct min_heap_callbacks perf_min_heap = {
3609     .elem_size = sizeof(struct perf_event *),
3610     .less = perf_less_group_idx,
3611     .swp = swap_ptr,
3612 };
3613 
3614 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3615 {
3616     struct perf_event **itrs = heap->data;
3617 
3618     if (event) {
3619         itrs[heap->nr] = event;
3620         heap->nr++;
3621     }
3622 }
3623 
3624 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3625                 struct perf_event_groups *groups, int cpu,
3626                 int (*func)(struct perf_event *, void *),
3627                 void *data)
3628 {
3629 #ifdef CONFIG_CGROUP_PERF
3630     struct cgroup_subsys_state *css = NULL;
3631 #endif
3632     /* Space for per CPU and/or any CPU event iterators. */
3633     struct perf_event *itrs[2];
3634     struct min_heap event_heap;
3635     struct perf_event **evt;
3636     int ret;
3637 
3638     if (cpuctx) {
3639         event_heap = (struct min_heap){
3640             .data = cpuctx->heap,
3641             .nr = 0,
3642             .size = cpuctx->heap_size,
3643         };
3644 
3645         lockdep_assert_held(&cpuctx->ctx.lock);
3646 
3647 #ifdef CONFIG_CGROUP_PERF
3648         if (cpuctx->cgrp)
3649             css = &cpuctx->cgrp->css;
3650 #endif
3651     } else {
3652         event_heap = (struct min_heap){
3653             .data = itrs,
3654             .nr = 0,
3655             .size = ARRAY_SIZE(itrs),
3656         };
3657         /* Events not within a CPU context may be on any CPU. */
3658         __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3659     }
3660     evt = event_heap.data;
3661 
3662     __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3663 
3664 #ifdef CONFIG_CGROUP_PERF
3665     for (; css; css = css->parent)
3666         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3667 #endif
3668 
3669     min_heapify_all(&event_heap, &perf_min_heap);
3670 
3671     while (event_heap.nr) {
3672         ret = func(*evt, data);
3673         if (ret)
3674             return ret;
3675 
3676         *evt = perf_event_groups_next(*evt);
3677         if (*evt)
3678             min_heapify(&event_heap, 0, &perf_min_heap);
3679         else
3680             min_heap_pop(&event_heap, &perf_min_heap);
3681     }
3682 
3683     return 0;
3684 }
3685 
3686 /*
3687  * Because the userpage is strictly per-event (there is no concept of context,
3688  * so there cannot be a context indirection), every userpage must be updated
3689  * when context time starts :-(
3690  *
3691  * IOW, we must not miss EVENT_TIME edges.
3692  */
3693 static inline bool event_update_userpage(struct perf_event *event)
3694 {
3695     if (likely(!atomic_read(&event->mmap_count)))
3696         return false;
3697 
3698     perf_event_update_time(event);
3699     perf_event_update_userpage(event);
3700 
3701     return true;
3702 }
3703 
3704 static inline void group_update_userpage(struct perf_event *group_event)
3705 {
3706     struct perf_event *event;
3707 
3708     if (!event_update_userpage(group_event))
3709         return;
3710 
3711     for_each_sibling_event(event, group_event)
3712         event_update_userpage(event);
3713 }
3714 
3715 static int merge_sched_in(struct perf_event *event, void *data)
3716 {
3717     struct perf_event_context *ctx = event->ctx;
3718     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3719     int *can_add_hw = data;
3720 
3721     if (event->state <= PERF_EVENT_STATE_OFF)
3722         return 0;
3723 
3724     if (!event_filter_match(event))
3725         return 0;
3726 
3727     if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3728         if (!group_sched_in(event, cpuctx, ctx))
3729             list_add_tail(&event->active_list, get_event_list(event));
3730     }
3731 
3732     if (event->state == PERF_EVENT_STATE_INACTIVE) {
3733         *can_add_hw = 0;
3734         if (event->attr.pinned) {
3735             perf_cgroup_event_disable(event, ctx);
3736             perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3737         } else {
3738             ctx->rotate_necessary = 1;
3739             perf_mux_hrtimer_restart(cpuctx);
3740             group_update_userpage(event);
3741         }
3742     }
3743 
3744     return 0;
3745 }
3746 
3747 static void
3748 ctx_pinned_sched_in(struct perf_event_context *ctx,
3749             struct perf_cpu_context *cpuctx)
3750 {
3751     int can_add_hw = 1;
3752 
3753     if (ctx != &cpuctx->ctx)
3754         cpuctx = NULL;
3755 
3756     visit_groups_merge(cpuctx, &ctx->pinned_groups,
3757                smp_processor_id(),
3758                merge_sched_in, &can_add_hw);
3759 }
3760 
3761 static void
3762 ctx_flexible_sched_in(struct perf_event_context *ctx,
3763               struct perf_cpu_context *cpuctx)
3764 {
3765     int can_add_hw = 1;
3766 
3767     if (ctx != &cpuctx->ctx)
3768         cpuctx = NULL;
3769 
3770     visit_groups_merge(cpuctx, &ctx->flexible_groups,
3771                smp_processor_id(),
3772                merge_sched_in, &can_add_hw);
3773 }
3774 
3775 static void
3776 ctx_sched_in(struct perf_event_context *ctx,
3777          struct perf_cpu_context *cpuctx,
3778          enum event_type_t event_type)
3779 {
3780     int is_active = ctx->is_active;
3781 
3782     lockdep_assert_held(&ctx->lock);
3783 
3784     if (likely(!ctx->nr_events))
3785         return;
3786 
3787     if (is_active ^ EVENT_TIME) {
3788         /* start ctx time */
3789         __update_context_time(ctx, false);
3790         perf_cgroup_set_timestamp(cpuctx);
3791         /*
3792          * CPU-release for the below ->is_active store,
3793          * see __load_acquire() in perf_event_time_now()
3794          */
3795         barrier();
3796     }
3797 
3798     ctx->is_active |= (event_type | EVENT_TIME);
3799     if (ctx->task) {
3800         if (!is_active)
3801             cpuctx->task_ctx = ctx;
3802         else
3803             WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3804     }
3805 
3806     is_active ^= ctx->is_active; /* changed bits */
3807 
3808     /*
3809      * First go through the list and put on any pinned groups
3810      * in order to give them the best chance of going on.
3811      */
3812     if (is_active & EVENT_PINNED)
3813         ctx_pinned_sched_in(ctx, cpuctx);
3814 
3815     /* Then walk through the lower prio flexible groups */
3816     if (is_active & EVENT_FLEXIBLE)
3817         ctx_flexible_sched_in(ctx, cpuctx);
3818 }
3819 
3820 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3821                  enum event_type_t event_type)
3822 {
3823     struct perf_event_context *ctx = &cpuctx->ctx;
3824 
3825     ctx_sched_in(ctx, cpuctx, event_type);
3826 }
3827 
3828 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3829                     struct task_struct *task)
3830 {
3831     struct perf_cpu_context *cpuctx;
3832     struct pmu *pmu;
3833 
3834     cpuctx = __get_cpu_context(ctx);
3835 
3836     /*
3837      * HACK: for HETEROGENEOUS the task context might have switched to a
3838      * different PMU, force (re)set the context,
3839      */
3840     pmu = ctx->pmu = cpuctx->ctx.pmu;
3841 
3842     if (cpuctx->task_ctx == ctx) {
3843         if (cpuctx->sched_cb_usage)
3844             __perf_pmu_sched_task(cpuctx, true);
3845         return;
3846     }
3847 
3848     perf_ctx_lock(cpuctx, ctx);
3849     /*
3850      * We must check ctx->nr_events while holding ctx->lock, such
3851      * that we serialize against perf_install_in_context().
3852      */
3853     if (!ctx->nr_events)
3854         goto unlock;
3855 
3856     perf_pmu_disable(pmu);
3857     /*
3858      * We want to keep the following priority order:
3859      * cpu pinned (that don't need to move), task pinned,
3860      * cpu flexible, task flexible.
3861      *
3862      * However, if task's ctx is not carrying any pinned
3863      * events, no need to flip the cpuctx's events around.
3864      */
3865     if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3866         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3867     perf_event_sched_in(cpuctx, ctx);
3868 
3869     if (cpuctx->sched_cb_usage && pmu->sched_task)
3870         pmu->sched_task(cpuctx->task_ctx, true);
3871 
3872     perf_pmu_enable(pmu);
3873 
3874 unlock:
3875     perf_ctx_unlock(cpuctx, ctx);
3876 }
3877 
3878 /*
3879  * Called from scheduler to add the events of the current task
3880  * with interrupts disabled.
3881  *
3882  * We restore the event value and then enable it.
3883  *
3884  * This does not protect us against NMI, but enable()
3885  * sets the enabled bit in the control field of event _before_
3886  * accessing the event control register. If a NMI hits, then it will
3887  * keep the event running.
3888  */
3889 void __perf_event_task_sched_in(struct task_struct *prev,
3890                 struct task_struct *task)
3891 {
3892     struct perf_event_context *ctx;
3893     int ctxn;
3894 
3895     for_each_task_context_nr(ctxn) {
3896         ctx = task->perf_event_ctxp[ctxn];
3897         if (likely(!ctx))
3898             continue;
3899 
3900         perf_event_context_sched_in(ctx, task);
3901     }
3902 
3903     if (atomic_read(&nr_switch_events))
3904         perf_event_switch(task, prev, true);
3905 
3906     if (__this_cpu_read(perf_sched_cb_usages))
3907         perf_pmu_sched_task(prev, task, true);
3908 }
3909 
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911 {
3912     u64 frequency = event->attr.sample_freq;
3913     u64 sec = NSEC_PER_SEC;
3914     u64 divisor, dividend;
3915 
3916     int count_fls, nsec_fls, frequency_fls, sec_fls;
3917 
3918     count_fls = fls64(count);
3919     nsec_fls = fls64(nsec);
3920     frequency_fls = fls64(frequency);
3921     sec_fls = 30;
3922 
3923     /*
3924      * We got @count in @nsec, with a target of sample_freq HZ
3925      * the target period becomes:
3926      *
3927      *             @count * 10^9
3928      * period = -------------------
3929      *          @nsec * sample_freq
3930      *
3931      */
3932 
3933     /*
3934      * Reduce accuracy by one bit such that @a and @b converge
3935      * to a similar magnitude.
3936      */
3937 #define REDUCE_FLS(a, b)        \
3938 do {                    \
3939     if (a##_fls > b##_fls) {    \
3940         a >>= 1;        \
3941         a##_fls--;      \
3942     } else {            \
3943         b >>= 1;        \
3944         b##_fls--;      \
3945     }               \
3946 } while (0)
3947 
3948     /*
3949      * Reduce accuracy until either term fits in a u64, then proceed with
3950      * the other, so that finally we can do a u64/u64 division.
3951      */
3952     while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953         REDUCE_FLS(nsec, frequency);
3954         REDUCE_FLS(sec, count);
3955     }
3956 
3957     if (count_fls + sec_fls > 64) {
3958         divisor = nsec * frequency;
3959 
3960         while (count_fls + sec_fls > 64) {
3961             REDUCE_FLS(count, sec);
3962             divisor >>= 1;
3963         }
3964 
3965         dividend = count * sec;
3966     } else {
3967         dividend = count * sec;
3968 
3969         while (nsec_fls + frequency_fls > 64) {
3970             REDUCE_FLS(nsec, frequency);
3971             dividend >>= 1;
3972         }
3973 
3974         divisor = nsec * frequency;
3975     }
3976 
3977     if (!divisor)
3978         return dividend;
3979 
3980     return div64_u64(dividend, divisor);
3981 }
3982 
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985 
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3987 {
3988     struct hw_perf_event *hwc = &event->hw;
3989     s64 period, sample_period;
3990     s64 delta;
3991 
3992     period = perf_calculate_period(event, nsec, count);
3993 
3994     delta = (s64)(period - hwc->sample_period);
3995     delta = (delta + 7) / 8; /* low pass filter */
3996 
3997     sample_period = hwc->sample_period + delta;
3998 
3999     if (!sample_period)
4000         sample_period = 1;
4001 
4002     hwc->sample_period = sample_period;
4003 
4004     if (local64_read(&hwc->period_left) > 8*sample_period) {
4005         if (disable)
4006             event->pmu->stop(event, PERF_EF_UPDATE);
4007 
4008         local64_set(&hwc->period_left, 0);
4009 
4010         if (disable)
4011             event->pmu->start(event, PERF_EF_RELOAD);
4012     }
4013 }
4014 
4015 /*
4016  * combine freq adjustment with unthrottling to avoid two passes over the
4017  * events. At the same time, make sure, having freq events does not change
4018  * the rate of unthrottling as that would introduce bias.
4019  */
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021                        int needs_unthr)
4022 {
4023     struct perf_event *event;
4024     struct hw_perf_event *hwc;
4025     u64 now, period = TICK_NSEC;
4026     s64 delta;
4027 
4028     /*
4029      * only need to iterate over all events iff:
4030      * - context have events in frequency mode (needs freq adjust)
4031      * - there are events to unthrottle on this cpu
4032      */
4033     if (!(ctx->nr_freq || needs_unthr))
4034         return;
4035 
4036     raw_spin_lock(&ctx->lock);
4037     perf_pmu_disable(ctx->pmu);
4038 
4039     list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040         if (event->state != PERF_EVENT_STATE_ACTIVE)
4041             continue;
4042 
4043         if (!event_filter_match(event))
4044             continue;
4045 
4046         perf_pmu_disable(event->pmu);
4047 
4048         hwc = &event->hw;
4049 
4050         if (hwc->interrupts == MAX_INTERRUPTS) {
4051             hwc->interrupts = 0;
4052             perf_log_throttle(event, 1);
4053             event->pmu->start(event, 0);
4054         }
4055 
4056         if (!event->attr.freq || !event->attr.sample_freq)
4057             goto next;
4058 
4059         /*
4060          * stop the event and update event->count
4061          */
4062         event->pmu->stop(event, PERF_EF_UPDATE);
4063 
4064         now = local64_read(&event->count);
4065         delta = now - hwc->freq_count_stamp;
4066         hwc->freq_count_stamp = now;
4067 
4068         /*
4069          * restart the event
4070          * reload only if value has changed
4071          * we have stopped the event so tell that
4072          * to perf_adjust_period() to avoid stopping it
4073          * twice.
4074          */
4075         if (delta > 0)
4076             perf_adjust_period(event, period, delta, false);
4077 
4078         event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4079     next:
4080         perf_pmu_enable(event->pmu);
4081     }
4082 
4083     perf_pmu_enable(ctx->pmu);
4084     raw_spin_unlock(&ctx->lock);
4085 }
4086 
4087 /*
4088  * Move @event to the tail of the @ctx's elegible events.
4089  */
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4091 {
4092     /*
4093      * Rotate the first entry last of non-pinned groups. Rotation might be
4094      * disabled by the inheritance code.
4095      */
4096     if (ctx->rotate_disable)
4097         return;
4098 
4099     perf_event_groups_delete(&ctx->flexible_groups, event);
4100     perf_event_groups_insert(&ctx->flexible_groups, event);
4101 }
4102 
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4106 {
4107     struct perf_event *event;
4108 
4109     /* pick the first active flexible event */
4110     event = list_first_entry_or_null(&ctx->flexible_active,
4111                      struct perf_event, active_list);
4112 
4113     /* if no active flexible event, pick the first event */
4114     if (!event) {
4115         event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116                       typeof(*event), group_node);
4117     }
4118 
4119     /*
4120      * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121      * finds there are unschedulable events, it will set it again.
4122      */
4123     ctx->rotate_necessary = 0;
4124 
4125     return event;
4126 }
4127 
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129 {
4130     struct perf_event *cpu_event = NULL, *task_event = NULL;
4131     struct perf_event_context *task_ctx = NULL;
4132     int cpu_rotate, task_rotate;
4133 
4134     /*
4135      * Since we run this from IRQ context, nobody can install new
4136      * events, thus the event count values are stable.
4137      */
4138 
4139     cpu_rotate = cpuctx->ctx.rotate_necessary;
4140     task_ctx = cpuctx->task_ctx;
4141     task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4142 
4143     if (!(cpu_rotate || task_rotate))
4144         return false;
4145 
4146     perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147     perf_pmu_disable(cpuctx->ctx.pmu);
4148 
4149     if (task_rotate)
4150         task_event = ctx_event_to_rotate(task_ctx);
4151     if (cpu_rotate)
4152         cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4153 
4154     /*
4155      * As per the order given at ctx_resched() first 'pop' task flexible
4156      * and then, if needed CPU flexible.
4157      */
4158     if (task_event || (task_ctx && cpu_event))
4159         ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4160     if (cpu_event)
4161         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4162 
4163     if (task_event)
4164         rotate_ctx(task_ctx, task_event);
4165     if (cpu_event)
4166         rotate_ctx(&cpuctx->ctx, cpu_event);
4167 
4168     perf_event_sched_in(cpuctx, task_ctx);
4169 
4170     perf_pmu_enable(cpuctx->ctx.pmu);
4171     perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4172 
4173     return true;
4174 }
4175 
4176 void perf_event_task_tick(void)
4177 {
4178     struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179     struct perf_event_context *ctx, *tmp;
4180     int throttled;
4181 
4182     lockdep_assert_irqs_disabled();
4183 
4184     __this_cpu_inc(perf_throttled_seq);
4185     throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186     tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4187 
4188     list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189         perf_adjust_freq_unthr_context(ctx, throttled);
4190 }
4191 
4192 static int event_enable_on_exec(struct perf_event *event,
4193                 struct perf_event_context *ctx)
4194 {
4195     if (!event->attr.enable_on_exec)
4196         return 0;
4197 
4198     event->attr.enable_on_exec = 0;
4199     if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200         return 0;
4201 
4202     perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4203 
4204     return 1;
4205 }
4206 
4207 /*
4208  * Enable all of a task's events that have been marked enable-on-exec.
4209  * This expects task == current.
4210  */
4211 static void perf_event_enable_on_exec(int ctxn)
4212 {
4213     struct perf_event_context *ctx, *clone_ctx = NULL;
4214     enum event_type_t event_type = 0;
4215     struct perf_cpu_context *cpuctx;
4216     struct perf_event *event;
4217     unsigned long flags;
4218     int enabled = 0;
4219 
4220     local_irq_save(flags);
4221     ctx = current->perf_event_ctxp[ctxn];
4222     if (!ctx || !ctx->nr_events)
4223         goto out;
4224 
4225     cpuctx = __get_cpu_context(ctx);
4226     perf_ctx_lock(cpuctx, ctx);
4227     ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228     list_for_each_entry(event, &ctx->event_list, event_entry) {
4229         enabled |= event_enable_on_exec(event, ctx);
4230         event_type |= get_event_type(event);
4231     }
4232 
4233     /*
4234      * Unclone and reschedule this context if we enabled any event.
4235      */
4236     if (enabled) {
4237         clone_ctx = unclone_ctx(ctx);
4238         ctx_resched(cpuctx, ctx, event_type);
4239     } else {
4240         ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4241     }
4242     perf_ctx_unlock(cpuctx, ctx);
4243 
4244 out:
4245     local_irq_restore(flags);
4246 
4247     if (clone_ctx)
4248         put_ctx(clone_ctx);
4249 }
4250 
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253                   struct perf_event_context *ctx);
4254 
4255 /*
4256  * Removes all events from the current task that have been marked
4257  * remove-on-exec, and feeds their values back to parent events.
4258  */
4259 static void perf_event_remove_on_exec(int ctxn)
4260 {
4261     struct perf_event_context *ctx, *clone_ctx = NULL;
4262     struct perf_event *event, *next;
4263     unsigned long flags;
4264     bool modified = false;
4265 
4266     ctx = perf_pin_task_context(current, ctxn);
4267     if (!ctx)
4268         return;
4269 
4270     mutex_lock(&ctx->mutex);
4271 
4272     if (WARN_ON_ONCE(ctx->task != current))
4273         goto unlock;
4274 
4275     list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4276         if (!event->attr.remove_on_exec)
4277             continue;
4278 
4279         if (!is_kernel_event(event))
4280             perf_remove_from_owner(event);
4281 
4282         modified = true;
4283 
4284         perf_event_exit_event(event, ctx);
4285     }
4286 
4287     raw_spin_lock_irqsave(&ctx->lock, flags);
4288     if (modified)
4289         clone_ctx = unclone_ctx(ctx);
4290     --ctx->pin_count;
4291     raw_spin_unlock_irqrestore(&ctx->lock, flags);
4292 
4293 unlock:
4294     mutex_unlock(&ctx->mutex);
4295 
4296     put_ctx(ctx);
4297     if (clone_ctx)
4298         put_ctx(clone_ctx);
4299 }
4300 
4301 struct perf_read_data {
4302     struct perf_event *event;
4303     bool group;
4304     int ret;
4305 };
4306 
4307 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4308 {
4309     u16 local_pkg, event_pkg;
4310 
4311     if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4312         int local_cpu = smp_processor_id();
4313 
4314         event_pkg = topology_physical_package_id(event_cpu);
4315         local_pkg = topology_physical_package_id(local_cpu);
4316 
4317         if (event_pkg == local_pkg)
4318             return local_cpu;
4319     }
4320 
4321     return event_cpu;
4322 }
4323 
4324 /*
4325  * Cross CPU call to read the hardware event
4326  */
4327 static void __perf_event_read(void *info)
4328 {
4329     struct perf_read_data *data = info;
4330     struct perf_event *sub, *event = data->event;
4331     struct perf_event_context *ctx = event->ctx;
4332     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4333     struct pmu *pmu = event->pmu;
4334 
4335     /*
4336      * If this is a task context, we need to check whether it is
4337      * the current task context of this cpu.  If not it has been
4338      * scheduled out before the smp call arrived.  In that case
4339      * event->count would have been updated to a recent sample
4340      * when the event was scheduled out.
4341      */
4342     if (ctx->task && cpuctx->task_ctx != ctx)
4343         return;
4344 
4345     raw_spin_lock(&ctx->lock);
4346     if (ctx->is_active & EVENT_TIME) {
4347         update_context_time(ctx);
4348         update_cgrp_time_from_event(event);
4349     }
4350 
4351     perf_event_update_time(event);
4352     if (data->group)
4353         perf_event_update_sibling_time(event);
4354 
4355     if (event->state != PERF_EVENT_STATE_ACTIVE)
4356         goto unlock;
4357 
4358     if (!data->group) {
4359         pmu->read(event);
4360         data->ret = 0;
4361         goto unlock;
4362     }
4363 
4364     pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4365 
4366     pmu->read(event);
4367 
4368     for_each_sibling_event(sub, event) {
4369         if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4370             /*
4371              * Use sibling's PMU rather than @event's since
4372              * sibling could be on different (eg: software) PMU.
4373              */
4374             sub->pmu->read(sub);
4375         }
4376     }
4377 
4378     data->ret = pmu->commit_txn(pmu);
4379 
4380 unlock:
4381     raw_spin_unlock(&ctx->lock);
4382 }
4383 
4384 static inline u64 perf_event_count(struct perf_event *event)
4385 {
4386     return local64_read(&event->count) + atomic64_read(&event->child_count);
4387 }
4388 
4389 static void calc_timer_values(struct perf_event *event,
4390                 u64 *now,
4391                 u64 *enabled,
4392                 u64 *running)
4393 {
4394     u64 ctx_time;
4395 
4396     *now = perf_clock();
4397     ctx_time = perf_event_time_now(event, *now);
4398     __perf_update_times(event, ctx_time, enabled, running);
4399 }
4400 
4401 /*
4402  * NMI-safe method to read a local event, that is an event that
4403  * is:
4404  *   - either for the current task, or for this CPU
4405  *   - does not have inherit set, for inherited task events
4406  *     will not be local and we cannot read them atomically
4407  *   - must not have a pmu::count method
4408  */
4409 int perf_event_read_local(struct perf_event *event, u64 *value,
4410               u64 *enabled, u64 *running)
4411 {
4412     unsigned long flags;
4413     int ret = 0;
4414 
4415     /*
4416      * Disabling interrupts avoids all counter scheduling (context
4417      * switches, timer based rotation and IPIs).
4418      */
4419     local_irq_save(flags);
4420 
4421     /*
4422      * It must not be an event with inherit set, we cannot read
4423      * all child counters from atomic context.
4424      */
4425     if (event->attr.inherit) {
4426         ret = -EOPNOTSUPP;
4427         goto out;
4428     }
4429 
4430     /* If this is a per-task event, it must be for current */
4431     if ((event->attach_state & PERF_ATTACH_TASK) &&
4432         event->hw.target != current) {
4433         ret = -EINVAL;
4434         goto out;
4435     }
4436 
4437     /* If this is a per-CPU event, it must be for this CPU */
4438     if (!(event->attach_state & PERF_ATTACH_TASK) &&
4439         event->cpu != smp_processor_id()) {
4440         ret = -EINVAL;
4441         goto out;
4442     }
4443 
4444     /* If this is a pinned event it must be running on this CPU */
4445     if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4446         ret = -EBUSY;
4447         goto out;
4448     }
4449 
4450     /*
4451      * If the event is currently on this CPU, its either a per-task event,
4452      * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4453      * oncpu == -1).
4454      */
4455     if (event->oncpu == smp_processor_id())
4456         event->pmu->read(event);
4457 
4458     *value = local64_read(&event->count);
4459     if (enabled || running) {
4460         u64 __enabled, __running, __now;
4461 
4462         calc_timer_values(event, &__now, &__enabled, &__running);
4463         if (enabled)
4464             *enabled = __enabled;
4465         if (running)
4466             *running = __running;
4467     }
4468 out:
4469     local_irq_restore(flags);
4470 
4471     return ret;
4472 }
4473 
4474 static int perf_event_read(struct perf_event *event, bool group)
4475 {
4476     enum perf_event_state state = READ_ONCE(event->state);
4477     int event_cpu, ret = 0;
4478 
4479     /*
4480      * If event is enabled and currently active on a CPU, update the
4481      * value in the event structure:
4482      */
4483 again:
4484     if (state == PERF_EVENT_STATE_ACTIVE) {
4485         struct perf_read_data data;
4486 
4487         /*
4488          * Orders the ->state and ->oncpu loads such that if we see
4489          * ACTIVE we must also see the right ->oncpu.
4490          *
4491          * Matches the smp_wmb() from event_sched_in().
4492          */
4493         smp_rmb();
4494 
4495         event_cpu = READ_ONCE(event->oncpu);
4496         if ((unsigned)event_cpu >= nr_cpu_ids)
4497             return 0;
4498 
4499         data = (struct perf_read_data){
4500             .event = event,
4501             .group = group,
4502             .ret = 0,
4503         };
4504 
4505         preempt_disable();
4506         event_cpu = __perf_event_read_cpu(event, event_cpu);
4507 
4508         /*
4509          * Purposely ignore the smp_call_function_single() return
4510          * value.
4511          *
4512          * If event_cpu isn't a valid CPU it means the event got
4513          * scheduled out and that will have updated the event count.
4514          *
4515          * Therefore, either way, we'll have an up-to-date event count
4516          * after this.
4517          */
4518         (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4519         preempt_enable();
4520         ret = data.ret;
4521 
4522     } else if (state == PERF_EVENT_STATE_INACTIVE) {
4523         struct perf_event_context *ctx = event->ctx;
4524         unsigned long flags;
4525 
4526         raw_spin_lock_irqsave(&ctx->lock, flags);
4527         state = event->state;
4528         if (state != PERF_EVENT_STATE_INACTIVE) {
4529             raw_spin_unlock_irqrestore(&ctx->lock, flags);
4530             goto again;
4531         }
4532 
4533         /*
4534          * May read while context is not active (e.g., thread is
4535          * blocked), in that case we cannot update context time
4536          */
4537         if (ctx->is_active & EVENT_TIME) {
4538             update_context_time(ctx);
4539             update_cgrp_time_from_event(event);
4540         }
4541 
4542         perf_event_update_time(event);
4543         if (group)
4544             perf_event_update_sibling_time(event);
4545         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4546     }
4547 
4548     return ret;
4549 }
4550 
4551 /*
4552  * Initialize the perf_event context in a task_struct:
4553  */
4554 static void __perf_event_init_context(struct perf_event_context *ctx)
4555 {
4556     raw_spin_lock_init(&ctx->lock);
4557     mutex_init(&ctx->mutex);
4558     INIT_LIST_HEAD(&ctx->active_ctx_list);
4559     perf_event_groups_init(&ctx->pinned_groups);
4560     perf_event_groups_init(&ctx->flexible_groups);
4561     INIT_LIST_HEAD(&ctx->event_list);
4562     INIT_LIST_HEAD(&ctx->pinned_active);
4563     INIT_LIST_HEAD(&ctx->flexible_active);
4564     refcount_set(&ctx->refcount, 1);
4565 }
4566 
4567 static struct perf_event_context *
4568 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4569 {
4570     struct perf_event_context *ctx;
4571 
4572     ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4573     if (!ctx)
4574         return NULL;
4575 
4576     __perf_event_init_context(ctx);
4577     if (task)
4578         ctx->task = get_task_struct(task);
4579     ctx->pmu = pmu;
4580 
4581     return ctx;
4582 }
4583 
4584 static struct task_struct *
4585 find_lively_task_by_vpid(pid_t vpid)
4586 {
4587     struct task_struct *task;
4588 
4589     rcu_read_lock();
4590     if (!vpid)
4591         task = current;
4592     else
4593         task = find_task_by_vpid(vpid);
4594     if (task)
4595         get_task_struct(task);
4596     rcu_read_unlock();
4597 
4598     if (!task)
4599         return ERR_PTR(-ESRCH);
4600 
4601     return task;
4602 }
4603 
4604 /*
4605  * Returns a matching context with refcount and pincount.
4606  */
4607 static struct perf_event_context *
4608 find_get_context(struct pmu *pmu, struct task_struct *task,
4609         struct perf_event *event)
4610 {
4611     struct perf_event_context *ctx, *clone_ctx = NULL;
4612     struct perf_cpu_context *cpuctx;
4613     void *task_ctx_data = NULL;
4614     unsigned long flags;
4615     int ctxn, err;
4616     int cpu = event->cpu;
4617 
4618     if (!task) {
4619         /* Must be root to operate on a CPU event: */
4620         err = perf_allow_cpu(&event->attr);
4621         if (err)
4622             return ERR_PTR(err);
4623 
4624         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4625         ctx = &cpuctx->ctx;
4626         get_ctx(ctx);
4627         raw_spin_lock_irqsave(&ctx->lock, flags);
4628         ++ctx->pin_count;
4629         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4630 
4631         return ctx;
4632     }
4633 
4634     err = -EINVAL;
4635     ctxn = pmu->task_ctx_nr;
4636     if (ctxn < 0)
4637         goto errout;
4638 
4639     if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4640         task_ctx_data = alloc_task_ctx_data(pmu);
4641         if (!task_ctx_data) {
4642             err = -ENOMEM;
4643             goto errout;
4644         }
4645     }
4646 
4647 retry:
4648     ctx = perf_lock_task_context(task, ctxn, &flags);
4649     if (ctx) {
4650         clone_ctx = unclone_ctx(ctx);
4651         ++ctx->pin_count;
4652 
4653         if (task_ctx_data && !ctx->task_ctx_data) {
4654             ctx->task_ctx_data = task_ctx_data;
4655             task_ctx_data = NULL;
4656         }
4657         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4658 
4659         if (clone_ctx)
4660             put_ctx(clone_ctx);
4661     } else {
4662         ctx = alloc_perf_context(pmu, task);
4663         err = -ENOMEM;
4664         if (!ctx)
4665             goto errout;
4666 
4667         if (task_ctx_data) {
4668             ctx->task_ctx_data = task_ctx_data;
4669             task_ctx_data = NULL;
4670         }
4671 
4672         err = 0;
4673         mutex_lock(&task->perf_event_mutex);
4674         /*
4675          * If it has already passed perf_event_exit_task().
4676          * we must see PF_EXITING, it takes this mutex too.
4677          */
4678         if (task->flags & PF_EXITING)
4679             err = -ESRCH;
4680         else if (task->perf_event_ctxp[ctxn])
4681             err = -EAGAIN;
4682         else {
4683             get_ctx(ctx);
4684             ++ctx->pin_count;
4685             rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4686         }
4687         mutex_unlock(&task->perf_event_mutex);
4688 
4689         if (unlikely(err)) {
4690             put_ctx(ctx);
4691 
4692             if (err == -EAGAIN)
4693                 goto retry;
4694             goto errout;
4695         }
4696     }
4697 
4698     free_task_ctx_data(pmu, task_ctx_data);
4699     return ctx;
4700 
4701 errout:
4702     free_task_ctx_data(pmu, task_ctx_data);
4703     return ERR_PTR(err);
4704 }
4705 
4706 static void perf_event_free_filter(struct perf_event *event);
4707 
4708 static void free_event_rcu(struct rcu_head *head)
4709 {
4710     struct perf_event *event;
4711 
4712     event = container_of(head, struct perf_event, rcu_head);
4713     if (event->ns)
4714         put_pid_ns(event->ns);
4715     perf_event_free_filter(event);
4716     kmem_cache_free(perf_event_cache, event);
4717 }
4718 
4719 static void ring_buffer_attach(struct perf_event *event,
4720                    struct perf_buffer *rb);
4721 
4722 static void detach_sb_event(struct perf_event *event)
4723 {
4724     struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4725 
4726     raw_spin_lock(&pel->lock);
4727     list_del_rcu(&event->sb_list);
4728     raw_spin_unlock(&pel->lock);
4729 }
4730 
4731 static bool is_sb_event(struct perf_event *event)
4732 {
4733     struct perf_event_attr *attr = &event->attr;
4734 
4735     if (event->parent)
4736         return false;
4737 
4738     if (event->attach_state & PERF_ATTACH_TASK)
4739         return false;
4740 
4741     if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4742         attr->comm || attr->comm_exec ||
4743         attr->task || attr->ksymbol ||
4744         attr->context_switch || attr->text_poke ||
4745         attr->bpf_event)
4746         return true;
4747     return false;
4748 }
4749 
4750 static void unaccount_pmu_sb_event(struct perf_event *event)
4751 {
4752     if (is_sb_event(event))
4753         detach_sb_event(event);
4754 }
4755 
4756 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4757 {
4758     if (event->parent)
4759         return;
4760 
4761     if (is_cgroup_event(event))
4762         atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4763 }
4764 
4765 #ifdef CONFIG_NO_HZ_FULL
4766 static DEFINE_SPINLOCK(nr_freq_lock);
4767 #endif
4768 
4769 static void unaccount_freq_event_nohz(void)
4770 {
4771 #ifdef CONFIG_NO_HZ_FULL
4772     spin_lock(&nr_freq_lock);
4773     if (atomic_dec_and_test(&nr_freq_events))
4774         tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4775     spin_unlock(&nr_freq_lock);
4776 #endif
4777 }
4778 
4779 static void unaccount_freq_event(void)
4780 {
4781     if (tick_nohz_full_enabled())
4782         unaccount_freq_event_nohz();
4783     else
4784         atomic_dec(&nr_freq_events);
4785 }
4786 
4787 static void unaccount_event(struct perf_event *event)
4788 {
4789     bool dec = false;
4790 
4791     if (event->parent)
4792         return;
4793 
4794     if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4795         dec = true;
4796     if (event->attr.mmap || event->attr.mmap_data)
4797         atomic_dec(&nr_mmap_events);
4798     if (event->attr.build_id)
4799         atomic_dec(&nr_build_id_events);
4800     if (event->attr.comm)
4801         atomic_dec(&nr_comm_events);
4802     if (event->attr.namespaces)
4803         atomic_dec(&nr_namespaces_events);
4804     if (event->attr.cgroup)
4805         atomic_dec(&nr_cgroup_events);
4806     if (event->attr.task)
4807         atomic_dec(&nr_task_events);
4808     if (event->attr.freq)
4809         unaccount_freq_event();
4810     if (event->attr.context_switch) {
4811         dec = true;
4812         atomic_dec(&nr_switch_events);
4813     }
4814     if (is_cgroup_event(event))
4815         dec = true;
4816     if (has_branch_stack(event))
4817         dec = true;
4818     if (event->attr.ksymbol)
4819         atomic_dec(&nr_ksymbol_events);
4820     if (event->attr.bpf_event)
4821         atomic_dec(&nr_bpf_events);
4822     if (event->attr.text_poke)
4823         atomic_dec(&nr_text_poke_events);
4824 
4825     if (dec) {
4826         if (!atomic_add_unless(&perf_sched_count, -1, 1))
4827             schedule_delayed_work(&perf_sched_work, HZ);
4828     }
4829 
4830     unaccount_event_cpu(event, event->cpu);
4831 
4832     unaccount_pmu_sb_event(event);
4833 }
4834 
4835 static void perf_sched_delayed(struct work_struct *work)
4836 {
4837     mutex_lock(&perf_sched_mutex);
4838     if (atomic_dec_and_test(&perf_sched_count))
4839         static_branch_disable(&perf_sched_events);
4840     mutex_unlock(&perf_sched_mutex);
4841 }
4842 
4843 /*
4844  * The following implement mutual exclusion of events on "exclusive" pmus
4845  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4846  * at a time, so we disallow creating events that might conflict, namely:
4847  *
4848  *  1) cpu-wide events in the presence of per-task events,
4849  *  2) per-task events in the presence of cpu-wide events,
4850  *  3) two matching events on the same context.
4851  *
4852  * The former two cases are handled in the allocation path (perf_event_alloc(),
4853  * _free_event()), the latter -- before the first perf_install_in_context().
4854  */
4855 static int exclusive_event_init(struct perf_event *event)
4856 {
4857     struct pmu *pmu = event->pmu;
4858 
4859     if (!is_exclusive_pmu(pmu))
4860         return 0;
4861 
4862     /*
4863      * Prevent co-existence of per-task and cpu-wide events on the
4864      * same exclusive pmu.
4865      *
4866      * Negative pmu::exclusive_cnt means there are cpu-wide
4867      * events on this "exclusive" pmu, positive means there are
4868      * per-task events.
4869      *
4870      * Since this is called in perf_event_alloc() path, event::ctx
4871      * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4872      * to mean "per-task event", because unlike other attach states it
4873      * never gets cleared.
4874      */
4875     if (event->attach_state & PERF_ATTACH_TASK) {
4876         if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4877             return -EBUSY;
4878     } else {
4879         if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4880             return -EBUSY;
4881     }
4882 
4883     return 0;
4884 }
4885 
4886 static void exclusive_event_destroy(struct perf_event *event)
4887 {
4888     struct pmu *pmu = event->pmu;
4889 
4890     if (!is_exclusive_pmu(pmu))
4891         return;
4892 
4893     /* see comment in exclusive_event_init() */
4894     if (event->attach_state & PERF_ATTACH_TASK)
4895         atomic_dec(&pmu->exclusive_cnt);
4896     else
4897         atomic_inc(&pmu->exclusive_cnt);
4898 }
4899 
4900 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4901 {
4902     if ((e1->pmu == e2->pmu) &&
4903         (e1->cpu == e2->cpu ||
4904          e1->cpu == -1 ||
4905          e2->cpu == -1))
4906         return true;
4907     return false;
4908 }
4909 
4910 static bool exclusive_event_installable(struct perf_event *event,
4911                     struct perf_event_context *ctx)
4912 {
4913     struct perf_event *iter_event;
4914     struct pmu *pmu = event->pmu;
4915 
4916     lockdep_assert_held(&ctx->mutex);
4917 
4918     if (!is_exclusive_pmu(pmu))
4919         return true;
4920 
4921     list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4922         if (exclusive_event_match(iter_event, event))
4923             return false;
4924     }
4925 
4926     return true;
4927 }
4928 
4929 static void perf_addr_filters_splice(struct perf_event *event,
4930                        struct list_head *head);
4931 
4932 static void _free_event(struct perf_event *event)
4933 {
4934     irq_work_sync(&event->pending);
4935 
4936     unaccount_event(event);
4937 
4938     security_perf_event_free(event);
4939 
4940     if (event->rb) {
4941         /*
4942          * Can happen when we close an event with re-directed output.
4943          *
4944          * Since we have a 0 refcount, perf_mmap_close() will skip
4945          * over us; possibly making our ring_buffer_put() the last.
4946          */
4947         mutex_lock(&event->mmap_mutex);
4948         ring_buffer_attach(event, NULL);
4949         mutex_unlock(&event->mmap_mutex);
4950     }
4951 
4952     if (is_cgroup_event(event))
4953         perf_detach_cgroup(event);
4954 
4955     if (!event->parent) {
4956         if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4957             put_callchain_buffers();
4958     }
4959 
4960     perf_event_free_bpf_prog(event);
4961     perf_addr_filters_splice(event, NULL);
4962     kfree(event->addr_filter_ranges);
4963 
4964     if (event->destroy)
4965         event->destroy(event);
4966 
4967     /*
4968      * Must be after ->destroy(), due to uprobe_perf_close() using
4969      * hw.target.
4970      */
4971     if (event->hw.target)
4972         put_task_struct(event->hw.target);
4973 
4974     /*
4975      * perf_event_free_task() relies on put_ctx() being 'last', in particular
4976      * all task references must be cleaned up.
4977      */
4978     if (event->ctx)
4979         put_ctx(event->ctx);
4980 
4981     exclusive_event_destroy(event);
4982     module_put(event->pmu->module);
4983 
4984     call_rcu(&event->rcu_head, free_event_rcu);
4985 }
4986 
4987 /*
4988  * Used to free events which have a known refcount of 1, such as in error paths
4989  * where the event isn't exposed yet and inherited events.
4990  */
4991 static void free_event(struct perf_event *event)
4992 {
4993     if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4994                 "unexpected event refcount: %ld; ptr=%p\n",
4995                 atomic_long_read(&event->refcount), event)) {
4996         /* leak to avoid use-after-free */
4997         return;
4998     }
4999 
5000     _free_event(event);
5001 }
5002 
5003 /*
5004  * Remove user event from the owner task.
5005  */
5006 static void perf_remove_from_owner(struct perf_event *event)
5007 {
5008     struct task_struct *owner;
5009 
5010     rcu_read_lock();
5011     /*
5012      * Matches the smp_store_release() in perf_event_exit_task(). If we
5013      * observe !owner it means the list deletion is complete and we can
5014      * indeed free this event, otherwise we need to serialize on
5015      * owner->perf_event_mutex.
5016      */
5017     owner = READ_ONCE(event->owner);
5018     if (owner) {
5019         /*
5020          * Since delayed_put_task_struct() also drops the last
5021          * task reference we can safely take a new reference
5022          * while holding the rcu_read_lock().
5023          */
5024         get_task_struct(owner);
5025     }
5026     rcu_read_unlock();
5027 
5028     if (owner) {
5029         /*
5030          * If we're here through perf_event_exit_task() we're already
5031          * holding ctx->mutex which would be an inversion wrt. the
5032          * normal lock order.
5033          *
5034          * However we can safely take this lock because its the child
5035          * ctx->mutex.
5036          */
5037         mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5038 
5039         /*
5040          * We have to re-check the event->owner field, if it is cleared
5041          * we raced with perf_event_exit_task(), acquiring the mutex
5042          * ensured they're done, and we can proceed with freeing the
5043          * event.
5044          */
5045         if (event->owner) {
5046             list_del_init(&event->owner_entry);
5047             smp_store_release(&event->owner, NULL);
5048         }
5049         mutex_unlock(&owner->perf_event_mutex);
5050         put_task_struct(owner);
5051     }
5052 }
5053 
5054 static void put_event(struct perf_event *event)
5055 {
5056     if (!atomic_long_dec_and_test(&event->refcount))
5057         return;
5058 
5059     _free_event(event);
5060 }
5061 
5062 /*
5063  * Kill an event dead; while event:refcount will preserve the event
5064  * object, it will not preserve its functionality. Once the last 'user'
5065  * gives up the object, we'll destroy the thing.
5066  */
5067 int perf_event_release_kernel(struct perf_event *event)
5068 {
5069     struct perf_event_context *ctx = event->ctx;
5070     struct perf_event *child, *tmp;
5071     LIST_HEAD(free_list);
5072 
5073     /*
5074      * If we got here through err_file: fput(event_file); we will not have
5075      * attached to a context yet.
5076      */
5077     if (!ctx) {
5078         WARN_ON_ONCE(event->attach_state &
5079                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5080         goto no_ctx;
5081     }
5082 
5083     if (!is_kernel_event(event))
5084         perf_remove_from_owner(event);
5085 
5086     ctx = perf_event_ctx_lock(event);
5087     WARN_ON_ONCE(ctx->parent_ctx);
5088     perf_remove_from_context(event, DETACH_GROUP);
5089 
5090     raw_spin_lock_irq(&ctx->lock);
5091     /*
5092      * Mark this event as STATE_DEAD, there is no external reference to it
5093      * anymore.
5094      *
5095      * Anybody acquiring event->child_mutex after the below loop _must_
5096      * also see this, most importantly inherit_event() which will avoid
5097      * placing more children on the list.
5098      *
5099      * Thus this guarantees that we will in fact observe and kill _ALL_
5100      * child events.
5101      */
5102     event->state = PERF_EVENT_STATE_DEAD;
5103     raw_spin_unlock_irq(&ctx->lock);
5104 
5105     perf_event_ctx_unlock(event, ctx);
5106 
5107 again:
5108     mutex_lock(&event->child_mutex);
5109     list_for_each_entry(child, &event->child_list, child_list) {
5110 
5111         /*
5112          * Cannot change, child events are not migrated, see the
5113          * comment with perf_event_ctx_lock_nested().
5114          */
5115         ctx = READ_ONCE(child->ctx);
5116         /*
5117          * Since child_mutex nests inside ctx::mutex, we must jump
5118          * through hoops. We start by grabbing a reference on the ctx.
5119          *
5120          * Since the event cannot get freed while we hold the
5121          * child_mutex, the context must also exist and have a !0
5122          * reference count.
5123          */
5124         get_ctx(ctx);
5125 
5126         /*
5127          * Now that we have a ctx ref, we can drop child_mutex, and
5128          * acquire ctx::mutex without fear of it going away. Then we
5129          * can re-acquire child_mutex.
5130          */
5131         mutex_unlock(&event->child_mutex);
5132         mutex_lock(&ctx->mutex);
5133         mutex_lock(&event->child_mutex);
5134 
5135         /*
5136          * Now that we hold ctx::mutex and child_mutex, revalidate our
5137          * state, if child is still the first entry, it didn't get freed
5138          * and we can continue doing so.
5139          */
5140         tmp = list_first_entry_or_null(&event->child_list,
5141                            struct perf_event, child_list);
5142         if (tmp == child) {
5143             perf_remove_from_context(child, DETACH_GROUP);
5144             list_move(&child->child_list, &free_list);
5145             /*
5146              * This matches the refcount bump in inherit_event();
5147              * this can't be the last reference.
5148              */
5149             put_event(event);
5150         }
5151 
5152         mutex_unlock(&event->child_mutex);
5153         mutex_unlock(&ctx->mutex);
5154         put_ctx(ctx);
5155         goto again;
5156     }
5157     mutex_unlock(&event->child_mutex);
5158 
5159     list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5160         void *var = &child->ctx->refcount;
5161 
5162         list_del(&child->child_list);
5163         free_event(child);
5164 
5165         /*
5166          * Wake any perf_event_free_task() waiting for this event to be
5167          * freed.
5168          */
5169         smp_mb(); /* pairs with wait_var_event() */
5170         wake_up_var(var);
5171     }
5172 
5173 no_ctx:
5174     put_event(event); /* Must be the 'last' reference */
5175     return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5178 
5179 /*
5180  * Called when the last reference to the file is gone.
5181  */
5182 static int perf_release(struct inode *inode, struct file *file)
5183 {
5184     perf_event_release_kernel(file->private_data);
5185     return 0;
5186 }
5187 
5188 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5189 {
5190     struct perf_event *child;
5191     u64 total = 0;
5192 
5193     *enabled = 0;
5194     *running = 0;
5195 
5196     mutex_lock(&event->child_mutex);
5197 
5198     (void)perf_event_read(event, false);
5199     total += perf_event_count(event);
5200 
5201     *enabled += event->total_time_enabled +
5202             atomic64_read(&event->child_total_time_enabled);
5203     *running += event->total_time_running +
5204             atomic64_read(&event->child_total_time_running);
5205 
5206     list_for_each_entry(child, &event->child_list, child_list) {
5207         (void)perf_event_read(child, false);
5208         total += perf_event_count(child);
5209         *enabled += child->total_time_enabled;
5210         *running += child->total_time_running;
5211     }
5212     mutex_unlock(&event->child_mutex);
5213 
5214     return total;
5215 }
5216 
5217 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5218 {
5219     struct perf_event_context *ctx;
5220     u64 count;
5221 
5222     ctx = perf_event_ctx_lock(event);
5223     count = __perf_event_read_value(event, enabled, running);
5224     perf_event_ctx_unlock(event, ctx);
5225 
5226     return count;
5227 }
5228 EXPORT_SYMBOL_GPL(perf_event_read_value);
5229 
5230 static int __perf_read_group_add(struct perf_event *leader,
5231                     u64 read_format, u64 *values)
5232 {
5233     struct perf_event_context *ctx = leader->ctx;
5234     struct perf_event *sub;
5235     unsigned long flags;
5236     int n = 1; /* skip @nr */
5237     int ret;
5238 
5239     ret = perf_event_read(leader, true);
5240     if (ret)
5241         return ret;
5242 
5243     raw_spin_lock_irqsave(&ctx->lock, flags);
5244 
5245     /*
5246      * Since we co-schedule groups, {enabled,running} times of siblings
5247      * will be identical to those of the leader, so we only publish one
5248      * set.
5249      */
5250     if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5251         values[n++] += leader->total_time_enabled +
5252             atomic64_read(&leader->child_total_time_enabled);
5253     }
5254 
5255     if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5256         values[n++] += leader->total_time_running +
5257             atomic64_read(&leader->child_total_time_running);
5258     }
5259 
5260     /*
5261      * Write {count,id} tuples for every sibling.
5262      */
5263     values[n++] += perf_event_count(leader);
5264     if (read_format & PERF_FORMAT_ID)
5265         values[n++] = primary_event_id(leader);
5266     if (read_format & PERF_FORMAT_LOST)
5267         values[n++] = atomic64_read(&leader->lost_samples);
5268 
5269     for_each_sibling_event(sub, leader) {
5270         values[n++] += perf_event_count(sub);
5271         if (read_format & PERF_FORMAT_ID)
5272             values[n++] = primary_event_id(sub);
5273         if (read_format & PERF_FORMAT_LOST)
5274             values[n++] = atomic64_read(&sub->lost_samples);
5275     }
5276 
5277     raw_spin_unlock_irqrestore(&ctx->lock, flags);
5278     return 0;
5279 }
5280 
5281 static int perf_read_group(struct perf_event *event,
5282                    u64 read_format, char __user *buf)
5283 {
5284     struct perf_event *leader = event->group_leader, *child;
5285     struct perf_event_context *ctx = leader->ctx;
5286     int ret;
5287     u64 *values;
5288 
5289     lockdep_assert_held(&ctx->mutex);
5290 
5291     values = kzalloc(event->read_size, GFP_KERNEL);
5292     if (!values)
5293         return -ENOMEM;
5294 
5295     values[0] = 1 + leader->nr_siblings;
5296 
5297     /*
5298      * By locking the child_mutex of the leader we effectively
5299      * lock the child list of all siblings.. XXX explain how.
5300      */
5301     mutex_lock(&leader->child_mutex);
5302 
5303     ret = __perf_read_group_add(leader, read_format, values);
5304     if (ret)
5305         goto unlock;
5306 
5307     list_for_each_entry(child, &leader->child_list, child_list) {
5308         ret = __perf_read_group_add(child, read_format, values);
5309         if (ret)
5310             goto unlock;
5311     }
5312 
5313     mutex_unlock(&leader->child_mutex);
5314 
5315     ret = event->read_size;
5316     if (copy_to_user(buf, values, event->read_size))
5317         ret = -EFAULT;
5318     goto out;
5319 
5320 unlock:
5321     mutex_unlock(&leader->child_mutex);
5322 out:
5323     kfree(values);
5324     return ret;
5325 }
5326 
5327 static int perf_read_one(struct perf_event *event,
5328                  u64 read_format, char __user *buf)
5329 {
5330     u64 enabled, running;
5331     u64 values[5];
5332     int n = 0;
5333 
5334     values[n++] = __perf_event_read_value(event, &enabled, &running);
5335     if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5336         values[n++] = enabled;
5337     if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5338         values[n++] = running;
5339     if (read_format & PERF_FORMAT_ID)
5340         values[n++] = primary_event_id(event);
5341     if (read_format & PERF_FORMAT_LOST)
5342         values[n++] = atomic64_read(&event->lost_samples);
5343 
5344     if (copy_to_user(buf, values, n * sizeof(u64)))
5345         return -EFAULT;
5346 
5347     return n * sizeof(u64);
5348 }
5349 
5350 static bool is_event_hup(struct perf_event *event)
5351 {
5352     bool no_children;
5353 
5354     if (event->state > PERF_EVENT_STATE_EXIT)
5355         return false;
5356 
5357     mutex_lock(&event->child_mutex);
5358     no_children = list_empty(&event->child_list);
5359     mutex_unlock(&event->child_mutex);
5360     return no_children;
5361 }
5362 
5363 /*
5364  * Read the performance event - simple non blocking version for now
5365  */
5366 static ssize_t
5367 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5368 {
5369     u64 read_format = event->attr.read_format;
5370     int ret;
5371 
5372     /*
5373      * Return end-of-file for a read on an event that is in
5374      * error state (i.e. because it was pinned but it couldn't be
5375      * scheduled on to the CPU at some point).
5376      */
5377     if (event->state == PERF_EVENT_STATE_ERROR)
5378         return 0;
5379 
5380     if (count < event->read_size)
5381         return -ENOSPC;
5382 
5383     WARN_ON_ONCE(event->ctx->parent_ctx);
5384     if (read_format & PERF_FORMAT_GROUP)
5385         ret = perf_read_group(event, read_format, buf);
5386     else
5387         ret = perf_read_one(event, read_format, buf);
5388 
5389     return ret;
5390 }
5391 
5392 static ssize_t
5393 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5394 {
5395     struct perf_event *event = file->private_data;
5396     struct perf_event_context *ctx;
5397     int ret;
5398 
5399     ret = security_perf_event_read(event);
5400     if (ret)
5401         return ret;
5402 
5403     ctx = perf_event_ctx_lock(event);
5404     ret = __perf_read(event, buf, count);
5405     perf_event_ctx_unlock(event, ctx);
5406 
5407     return ret;
5408 }
5409 
5410 static __poll_t perf_poll(struct file *file, poll_table *wait)
5411 {
5412     struct perf_event *event = file->private_data;
5413     struct perf_buffer *rb;
5414     __poll_t events = EPOLLHUP;
5415 
5416     poll_wait(file, &event->waitq, wait);
5417 
5418     if (is_event_hup(event))
5419         return events;
5420 
5421     /*
5422      * Pin the event->rb by taking event->mmap_mutex; otherwise
5423      * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5424      */
5425     mutex_lock(&event->mmap_mutex);
5426     rb = event->rb;
5427     if (rb)
5428         events = atomic_xchg(&rb->poll, 0);
5429     mutex_unlock(&event->mmap_mutex);
5430     return events;
5431 }
5432 
5433 static void _perf_event_reset(struct perf_event *event)
5434 {
5435     (void)perf_event_read(event, false);
5436     local64_set(&event->count, 0);
5437     perf_event_update_userpage(event);
5438 }
5439 
5440 /* Assume it's not an event with inherit set. */
5441 u64 perf_event_pause(struct perf_event *event, bool reset)
5442 {
5443     struct perf_event_context *ctx;
5444     u64 count;
5445 
5446     ctx = perf_event_ctx_lock(event);
5447     WARN_ON_ONCE(event->attr.inherit);
5448     _perf_event_disable(event);
5449     count = local64_read(&event->count);
5450     if (reset)
5451         local64_set(&event->count, 0);
5452     perf_event_ctx_unlock(event, ctx);
5453 
5454     return count;
5455 }
5456 EXPORT_SYMBOL_GPL(perf_event_pause);
5457 
5458 /*
5459  * Holding the top-level event's child_mutex means that any
5460  * descendant process that has inherited this event will block
5461  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5462  * task existence requirements of perf_event_enable/disable.
5463  */
5464 static void perf_event_for_each_child(struct perf_event *event,
5465                     void (*func)(struct perf_event *))
5466 {
5467     struct perf_event *child;
5468 
5469     WARN_ON_ONCE(event->ctx->parent_ctx);
5470 
5471     mutex_lock(&event->child_mutex);
5472     func(event);
5473     list_for_each_entry(child, &event->child_list, child_list)
5474         func(child);
5475     mutex_unlock(&event->child_mutex);
5476 }
5477 
5478 static void perf_event_for_each(struct perf_event *event,
5479                   void (*func)(struct perf_event *))
5480 {
5481     struct perf_event_context *ctx = event->ctx;
5482     struct perf_event *sibling;
5483 
5484     lockdep_assert_held(&ctx->mutex);
5485 
5486     event = event->group_leader;
5487 
5488     perf_event_for_each_child(event, func);
5489     for_each_sibling_event(sibling, event)
5490         perf_event_for_each_child(sibling, func);
5491 }
5492 
5493 static void __perf_event_period(struct perf_event *event,
5494                 struct perf_cpu_context *cpuctx,
5495                 struct perf_event_context *ctx,
5496                 void *info)
5497 {
5498     u64 value = *((u64 *)info);
5499     bool active;
5500 
5501     if (event->attr.freq) {
5502         event->attr.sample_freq = value;
5503     } else {
5504         event->attr.sample_period = value;
5505         event->hw.sample_period = value;
5506     }
5507 
5508     active = (event->state == PERF_EVENT_STATE_ACTIVE);
5509     if (active) {
5510         perf_pmu_disable(ctx->pmu);
5511         /*
5512          * We could be throttled; unthrottle now to avoid the tick
5513          * trying to unthrottle while we already re-started the event.
5514          */
5515         if (event->hw.interrupts == MAX_INTERRUPTS) {
5516             event->hw.interrupts = 0;
5517             perf_log_throttle(event, 1);
5518         }
5519         event->pmu->stop(event, PERF_EF_UPDATE);
5520     }
5521 
5522     local64_set(&event->hw.period_left, 0);
5523 
5524     if (active) {
5525         event->pmu->start(event, PERF_EF_RELOAD);
5526         perf_pmu_enable(ctx->pmu);
5527     }
5528 }
5529 
5530 static int perf_event_check_period(struct perf_event *event, u64 value)
5531 {
5532     return event->pmu->check_period(event, value);
5533 }
5534 
5535 static int _perf_event_period(struct perf_event *event, u64 value)
5536 {
5537     if (!is_sampling_event(event))
5538         return -EINVAL;
5539 
5540     if (!value)
5541         return -EINVAL;
5542 
5543     if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5544         return -EINVAL;
5545 
5546     if (perf_event_check_period(event, value))
5547         return -EINVAL;
5548 
5549     if (!event->attr.freq && (value & (1ULL << 63)))
5550         return -EINVAL;
5551 
5552     event_function_call(event, __perf_event_period, &value);
5553 
5554     return 0;
5555 }
5556 
5557 int perf_event_period(struct perf_event *event, u64 value)
5558 {
5559     struct perf_event_context *ctx;
5560     int ret;
5561 
5562     ctx = perf_event_ctx_lock(event);
5563     ret = _perf_event_period(event, value);
5564     perf_event_ctx_unlock(event, ctx);
5565 
5566     return ret;
5567 }
5568 EXPORT_SYMBOL_GPL(perf_event_period);
5569 
5570 static const struct file_operations perf_fops;
5571 
5572 static inline int perf_fget_light(int fd, struct fd *p)
5573 {
5574     struct fd f = fdget(fd);
5575     if (!f.file)
5576         return -EBADF;
5577 
5578     if (f.file->f_op != &perf_fops) {
5579         fdput(f);
5580         return -EBADF;
5581     }
5582     *p = f;
5583     return 0;
5584 }
5585 
5586 static int perf_event_set_output(struct perf_event *event,
5587                  struct perf_event *output_event);
5588 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5589 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5590               struct perf_event_attr *attr);
5591 
5592 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5593 {
5594     void (*func)(struct perf_event *);
5595     u32 flags = arg;
5596 
5597     switch (cmd) {
5598     case PERF_EVENT_IOC_ENABLE:
5599         func = _perf_event_enable;
5600         break;
5601     case PERF_EVENT_IOC_DISABLE:
5602         func = _perf_event_disable;
5603         break;
5604     case PERF_EVENT_IOC_RESET:
5605         func = _perf_event_reset;
5606         break;
5607 
5608     case PERF_EVENT_IOC_REFRESH:
5609         return _perf_event_refresh(event, arg);
5610 
5611     case PERF_EVENT_IOC_PERIOD:
5612     {
5613         u64 value;
5614 
5615         if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5616             return -EFAULT;
5617 
5618         return _perf_event_period(event, value);
5619     }
5620     case PERF_EVENT_IOC_ID:
5621     {
5622         u64 id = primary_event_id(event);
5623 
5624         if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5625             return -EFAULT;
5626         return 0;
5627     }
5628 
5629     case PERF_EVENT_IOC_SET_OUTPUT:
5630     {
5631         int ret;
5632         if (arg != -1) {
5633             struct perf_event *output_event;
5634             struct fd output;
5635             ret = perf_fget_light(arg, &output);
5636             if (ret)
5637                 return ret;
5638             output_event = output.file->private_data;
5639             ret = perf_event_set_output(event, output_event);
5640             fdput(output);
5641         } else {
5642             ret = perf_event_set_output(event, NULL);
5643         }
5644         return ret;
5645     }
5646 
5647     case PERF_EVENT_IOC_SET_FILTER:
5648         return perf_event_set_filter(event, (void __user *)arg);
5649 
5650     case PERF_EVENT_IOC_SET_BPF:
5651     {
5652         struct bpf_prog *prog;
5653         int err;
5654 
5655         prog = bpf_prog_get(arg);
5656         if (IS_ERR(prog))
5657             return PTR_ERR(prog);
5658 
5659         err = perf_event_set_bpf_prog(event, prog, 0);
5660         if (err) {
5661             bpf_prog_put(prog);
5662             return err;
5663         }
5664 
5665         return 0;
5666     }
5667 
5668     case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5669         struct perf_buffer *rb;
5670 
5671         rcu_read_lock();
5672         rb = rcu_dereference(event->rb);
5673         if (!rb || !rb->nr_pages) {
5674             rcu_read_unlock();
5675             return -EINVAL;
5676         }
5677         rb_toggle_paused(rb, !!arg);
5678         rcu_read_unlock();
5679         return 0;
5680     }
5681 
5682     case PERF_EVENT_IOC_QUERY_BPF:
5683         return perf_event_query_prog_array(event, (void __user *)arg);
5684 
5685     case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5686         struct perf_event_attr new_attr;
5687         int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5688                      &new_attr);
5689 
5690         if (err)
5691             return err;
5692 
5693         return perf_event_modify_attr(event,  &new_attr);
5694     }
5695     default:
5696         return -ENOTTY;
5697     }
5698 
5699     if (flags & PERF_IOC_FLAG_GROUP)
5700         perf_event_for_each(event, func);
5701     else
5702         perf_event_for_each_child(event, func);
5703 
5704     return 0;
5705 }
5706 
5707 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5708 {
5709     struct perf_event *event = file->private_data;
5710     struct perf_event_context *ctx;
5711     long ret;
5712 
5713     /* Treat ioctl like writes as it is likely a mutating operation. */
5714     ret = security_perf_event_write(event);
5715     if (ret)
5716         return ret;
5717 
5718     ctx = perf_event_ctx_lock(event);
5719     ret = _perf_ioctl(event, cmd, arg);
5720     perf_event_ctx_unlock(event, ctx);
5721 
5722     return ret;
5723 }
5724 
5725 #ifdef CONFIG_COMPAT
5726 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5727                 unsigned long arg)
5728 {
5729     switch (_IOC_NR(cmd)) {
5730     case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5731     case _IOC_NR(PERF_EVENT_IOC_ID):
5732     case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5733     case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5734         /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5735         if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5736             cmd &= ~IOCSIZE_MASK;
5737             cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5738         }
5739         break;
5740     }
5741     return perf_ioctl(file, cmd, arg);
5742 }
5743 #else
5744 # define perf_compat_ioctl NULL
5745 #endif
5746 
5747 int perf_event_task_enable(void)
5748 {
5749     struct perf_event_context *ctx;
5750     struct perf_event *event;
5751 
5752     mutex_lock(&current->perf_event_mutex);
5753     list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5754         ctx = perf_event_ctx_lock(event);
5755         perf_event_for_each_child(event, _perf_event_enable);
5756         perf_event_ctx_unlock(event, ctx);
5757     }
5758     mutex_unlock(&current->perf_event_mutex);
5759 
5760     return 0;
5761 }
5762 
5763 int perf_event_task_disable(void)
5764 {
5765     struct perf_event_context *ctx;
5766     struct perf_event *event;
5767 
5768     mutex_lock(&current->perf_event_mutex);
5769     list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5770         ctx = perf_event_ctx_lock(event);
5771         perf_event_for_each_child(event, _perf_event_disable);
5772         perf_event_ctx_unlock(event, ctx);
5773     }
5774     mutex_unlock(&current->perf_event_mutex);
5775 
5776     return 0;
5777 }
5778 
5779 static int perf_event_index(struct perf_event *event)
5780 {
5781     if (event->hw.state & PERF_HES_STOPPED)
5782         return 0;
5783 
5784     if (event->state != PERF_EVENT_STATE_ACTIVE)
5785         return 0;
5786 
5787     return event->pmu->event_idx(event);
5788 }
5789 
5790 static void perf_event_init_userpage(struct perf_event *event)
5791 {
5792     struct perf_event_mmap_page *userpg;
5793     struct perf_buffer *rb;
5794 
5795     rcu_read_lock();
5796     rb = rcu_dereference(event->rb);
5797     if (!rb)
5798         goto unlock;
5799 
5800     userpg = rb->user_page;
5801 
5802     /* Allow new userspace to detect that bit 0 is deprecated */
5803     userpg->cap_bit0_is_deprecated = 1;
5804     userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5805     userpg->data_offset = PAGE_SIZE;
5806     userpg->data_size = perf_data_size(rb);
5807 
5808 unlock:
5809     rcu_read_unlock();
5810 }
5811 
5812 void __weak arch_perf_update_userpage(
5813     struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5814 {
5815 }
5816 
5817 /*
5818  * Callers need to ensure there can be no nesting of this function, otherwise
5819  * the seqlock logic goes bad. We can not serialize this because the arch
5820  * code calls this from NMI context.
5821  */
5822 void perf_event_update_userpage(struct perf_event *event)
5823 {
5824     struct perf_event_mmap_page *userpg;
5825     struct perf_buffer *rb;
5826     u64 enabled, running, now;
5827 
5828     rcu_read_lock();
5829     rb = rcu_dereference(event->rb);
5830     if (!rb)
5831         goto unlock;
5832 
5833     /*
5834      * compute total_time_enabled, total_time_running
5835      * based on snapshot values taken when the event
5836      * was last scheduled in.
5837      *
5838      * we cannot simply called update_context_time()
5839      * because of locking issue as we can be called in
5840      * NMI context
5841      */
5842     calc_timer_values(event, &now, &enabled, &running);
5843 
5844     userpg = rb->user_page;
5845     /*
5846      * Disable preemption to guarantee consistent time stamps are stored to
5847      * the user page.
5848      */
5849     preempt_disable();
5850     ++userpg->lock;
5851     barrier();
5852     userpg->index = perf_event_index(event);
5853     userpg->offset = perf_event_count(event);
5854     if (userpg->index)
5855         userpg->offset -= local64_read(&event->hw.prev_count);
5856 
5857     userpg->time_enabled = enabled +
5858             atomic64_read(&event->child_total_time_enabled);
5859 
5860     userpg->time_running = running +
5861             atomic64_read(&event->child_total_time_running);
5862 
5863     arch_perf_update_userpage(event, userpg, now);
5864 
5865     barrier();
5866     ++userpg->lock;
5867     preempt_enable();
5868 unlock:
5869     rcu_read_unlock();
5870 }
5871 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5872 
5873 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5874 {
5875     struct perf_event *event = vmf->vma->vm_file->private_data;
5876     struct perf_buffer *rb;
5877     vm_fault_t ret = VM_FAULT_SIGBUS;
5878 
5879     if (vmf->flags & FAULT_FLAG_MKWRITE) {
5880         if (vmf->pgoff == 0)
5881             ret = 0;
5882         return ret;
5883     }
5884 
5885     rcu_read_lock();
5886     rb = rcu_dereference(event->rb);
5887     if (!rb)
5888         goto unlock;
5889 
5890     if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5891         goto unlock;
5892 
5893     vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5894     if (!vmf->page)
5895         goto unlock;
5896 
5897     get_page(vmf->page);
5898     vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5899     vmf->page->index   = vmf->pgoff;
5900 
5901     ret = 0;
5902 unlock:
5903     rcu_read_unlock();
5904 
5905     return ret;
5906 }
5907 
5908 static void ring_buffer_attach(struct perf_event *event,
5909                    struct perf_buffer *rb)
5910 {
5911     struct perf_buffer *old_rb = NULL;
5912     unsigned long flags;
5913 
5914     WARN_ON_ONCE(event->parent);
5915 
5916     if (event->rb) {
5917         /*
5918          * Should be impossible, we set this when removing
5919          * event->rb_entry and wait/clear when adding event->rb_entry.
5920          */
5921         WARN_ON_ONCE(event->rcu_pending);
5922 
5923         old_rb = event->rb;
5924         spin_lock_irqsave(&old_rb->event_lock, flags);
5925         list_del_rcu(&event->rb_entry);
5926         spin_unlock_irqrestore(&old_rb->event_lock, flags);
5927 
5928         event->rcu_batches = get_state_synchronize_rcu();
5929         event->rcu_pending = 1;
5930     }
5931 
5932     if (rb) {
5933         if (event->rcu_pending) {
5934             cond_synchronize_rcu(event->rcu_batches);
5935             event->rcu_pending = 0;
5936         }
5937 
5938         spin_lock_irqsave(&rb->event_lock, flags);
5939         list_add_rcu(&event->rb_entry, &rb->event_list);
5940         spin_unlock_irqrestore(&rb->event_lock, flags);
5941     }
5942 
5943     /*
5944      * Avoid racing with perf_mmap_close(AUX): stop the event
5945      * before swizzling the event::rb pointer; if it's getting
5946      * unmapped, its aux_mmap_count will be 0 and it won't
5947      * restart. See the comment in __perf_pmu_output_stop().
5948      *
5949      * Data will inevitably be lost when set_output is done in
5950      * mid-air, but then again, whoever does it like this is
5951      * not in for the data anyway.
5952      */
5953     if (has_aux(event))
5954         perf_event_stop(event, 0);
5955 
5956     rcu_assign_pointer(event->rb, rb);
5957 
5958     if (old_rb) {
5959         ring_buffer_put(old_rb);
5960         /*
5961          * Since we detached before setting the new rb, so that we
5962          * could attach the new rb, we could have missed a wakeup.
5963          * Provide it now.
5964          */
5965         wake_up_all(&event->waitq);
5966     }
5967 }
5968 
5969 static void ring_buffer_wakeup(struct perf_event *event)
5970 {
5971     struct perf_buffer *rb;
5972 
5973     if (event->parent)
5974         event = event->parent;
5975 
5976     rcu_read_lock();
5977     rb = rcu_dereference(event->rb);
5978     if (rb) {
5979         list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5980             wake_up_all(&event->waitq);
5981     }
5982     rcu_read_unlock();
5983 }
5984 
5985 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5986 {
5987     struct perf_buffer *rb;
5988 
5989     if (event->parent)
5990         event = event->parent;
5991 
5992     rcu_read_lock();
5993     rb = rcu_dereference(event->rb);
5994     if (rb) {
5995         if (!refcount_inc_not_zero(&rb->refcount))
5996             rb = NULL;
5997     }
5998     rcu_read_unlock();
5999 
6000     return rb;
6001 }
6002 
6003 void ring_buffer_put(struct perf_buffer *rb)
6004 {
6005     if (!refcount_dec_and_test(&rb->refcount))
6006         return;
6007 
6008     WARN_ON_ONCE(!list_empty(&rb->event_list));
6009 
6010     call_rcu(&rb->rcu_head, rb_free_rcu);
6011 }
6012 
6013 static void perf_mmap_open(struct vm_area_struct *vma)
6014 {
6015     struct perf_event *event = vma->vm_file->private_data;
6016 
6017     atomic_inc(&event->mmap_count);
6018     atomic_inc(&event->rb->mmap_count);
6019 
6020     if (vma->vm_pgoff)
6021         atomic_inc(&event->rb->aux_mmap_count);
6022 
6023     if (event->pmu->event_mapped)
6024         event->pmu->event_mapped(event, vma->vm_mm);
6025 }
6026 
6027 static void perf_pmu_output_stop(struct perf_event *event);
6028 
6029 /*
6030  * A buffer can be mmap()ed multiple times; either directly through the same
6031  * event, or through other events by use of perf_event_set_output().
6032  *
6033  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6034  * the buffer here, where we still have a VM context. This means we need
6035  * to detach all events redirecting to us.
6036  */
6037 static void perf_mmap_close(struct vm_area_struct *vma)
6038 {
6039     struct perf_event *event = vma->vm_file->private_data;
6040     struct perf_buffer *rb = ring_buffer_get(event);
6041     struct user_struct *mmap_user = rb->mmap_user;
6042     int mmap_locked = rb->mmap_locked;
6043     unsigned long size = perf_data_size(rb);
6044     bool detach_rest = false;
6045 
6046     if (event->pmu->event_unmapped)
6047         event->pmu->event_unmapped(event, vma->vm_mm);
6048 
6049     /*
6050      * rb->aux_mmap_count will always drop before rb->mmap_count and
6051      * event->mmap_count, so it is ok to use event->mmap_mutex to
6052      * serialize with perf_mmap here.
6053      */
6054     if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6055         atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6056         /*
6057          * Stop all AUX events that are writing to this buffer,
6058          * so that we can free its AUX pages and corresponding PMU
6059          * data. Note that after rb::aux_mmap_count dropped to zero,
6060          * they won't start any more (see perf_aux_output_begin()).
6061          */
6062         perf_pmu_output_stop(event);
6063 
6064         /* now it's safe to free the pages */
6065         atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6066         atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6067 
6068         /* this has to be the last one */
6069         rb_free_aux(rb);
6070         WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6071 
6072         mutex_unlock(&event->mmap_mutex);
6073     }
6074 
6075     if (atomic_dec_and_test(&rb->mmap_count))
6076         detach_rest = true;
6077 
6078     if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6079         goto out_put;
6080 
6081     ring_buffer_attach(event, NULL);
6082     mutex_unlock(&event->mmap_mutex);
6083 
6084     /* If there's still other mmap()s of this buffer, we're done. */
6085     if (!detach_rest)
6086         goto out_put;
6087 
6088     /*
6089      * No other mmap()s, detach from all other events that might redirect
6090      * into the now unreachable buffer. Somewhat complicated by the
6091      * fact that rb::event_lock otherwise nests inside mmap_mutex.
6092      */
6093 again:
6094     rcu_read_lock();
6095     list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6096         if (!atomic_long_inc_not_zero(&event->refcount)) {
6097             /*
6098              * This event is en-route to free_event() which will
6099              * detach it and remove it from the list.
6100              */
6101             continue;
6102         }
6103         rcu_read_unlock();
6104 
6105         mutex_lock(&event->mmap_mutex);
6106         /*
6107          * Check we didn't race with perf_event_set_output() which can
6108          * swizzle the rb from under us while we were waiting to
6109          * acquire mmap_mutex.
6110          *
6111          * If we find a different rb; ignore this event, a next
6112          * iteration will no longer find it on the list. We have to
6113          * still restart the iteration to make sure we're not now
6114          * iterating the wrong list.
6115          */
6116         if (event->rb == rb)
6117             ring_buffer_attach(event, NULL);
6118 
6119         mutex_unlock(&event->mmap_mutex);
6120         put_event(event);
6121 
6122         /*
6123          * Restart the iteration; either we're on the wrong list or
6124          * destroyed its integrity by doing a deletion.
6125          */
6126         goto again;
6127     }
6128     rcu_read_unlock();
6129 
6130     /*
6131      * It could be there's still a few 0-ref events on the list; they'll
6132      * get cleaned up by free_event() -- they'll also still have their
6133      * ref on the rb and will free it whenever they are done with it.
6134      *
6135      * Aside from that, this buffer is 'fully' detached and unmapped,
6136      * undo the VM accounting.
6137      */
6138 
6139     atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6140             &mmap_user->locked_vm);
6141     atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6142     free_uid(mmap_user);
6143 
6144 out_put:
6145     ring_buffer_put(rb); /* could be last */
6146 }
6147 
6148 static const struct vm_operations_struct perf_mmap_vmops = {
6149     .open       = perf_mmap_open,
6150     .close      = perf_mmap_close, /* non mergeable */
6151     .fault      = perf_mmap_fault,
6152     .page_mkwrite   = perf_mmap_fault,
6153 };
6154 
6155 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6156 {
6157     struct perf_event *event = file->private_data;
6158     unsigned long user_locked, user_lock_limit;
6159     struct user_struct *user = current_user();
6160     struct perf_buffer *rb = NULL;
6161     unsigned long locked, lock_limit;
6162     unsigned long vma_size;
6163     unsigned long nr_pages;
6164     long user_extra = 0, extra = 0;
6165     int ret = 0, flags = 0;
6166 
6167     /*
6168      * Don't allow mmap() of inherited per-task counters. This would
6169      * create a performance issue due to all children writing to the
6170      * same rb.
6171      */
6172     if (event->cpu == -1 && event->attr.inherit)
6173         return -EINVAL;
6174 
6175     if (!(vma->vm_flags & VM_SHARED))
6176         return -EINVAL;
6177 
6178     ret = security_perf_event_read(event);
6179     if (ret)
6180         return ret;
6181 
6182     vma_size = vma->vm_end - vma->vm_start;
6183 
6184     if (vma->vm_pgoff == 0) {
6185         nr_pages = (vma_size / PAGE_SIZE) - 1;
6186     } else {
6187         /*
6188          * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6189          * mapped, all subsequent mappings should have the same size
6190          * and offset. Must be above the normal perf buffer.
6191          */
6192         u64 aux_offset, aux_size;
6193 
6194         if (!event->rb)
6195             return -EINVAL;
6196 
6197         nr_pages = vma_size / PAGE_SIZE;
6198 
6199         mutex_lock(&event->mmap_mutex);
6200         ret = -EINVAL;
6201 
6202         rb = event->rb;
6203         if (!rb)
6204             goto aux_unlock;
6205 
6206         aux_offset = READ_ONCE(rb->user_page->aux_offset);
6207         aux_size = READ_ONCE(rb->user_page->aux_size);
6208 
6209         if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6210             goto aux_unlock;
6211 
6212         if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6213             goto aux_unlock;
6214 
6215         /* already mapped with a different offset */
6216         if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6217             goto aux_unlock;
6218 
6219         if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6220             goto aux_unlock;
6221 
6222         /* already mapped with a different size */
6223         if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6224             goto aux_unlock;
6225 
6226         if (!is_power_of_2(nr_pages))
6227             goto aux_unlock;
6228 
6229         if (!atomic_inc_not_zero(&rb->mmap_count))
6230             goto aux_unlock;
6231 
6232         if (rb_has_aux(rb)) {
6233             atomic_inc(&rb->aux_mmap_count);
6234             ret = 0;
6235             goto unlock;
6236         }
6237 
6238         atomic_set(&rb->aux_mmap_count, 1);
6239         user_extra = nr_pages;
6240 
6241         goto accounting;
6242     }
6243 
6244     /*
6245      * If we have rb pages ensure they're a power-of-two number, so we
6246      * can do bitmasks instead of modulo.
6247      */
6248     if (nr_pages != 0 && !is_power_of_2(nr_pages))
6249         return -EINVAL;
6250 
6251     if (vma_size != PAGE_SIZE * (1 + nr_pages))
6252         return -EINVAL;
6253 
6254     WARN_ON_ONCE(event->ctx->parent_ctx);
6255 again:
6256     mutex_lock(&event->mmap_mutex);
6257     if (event->rb) {
6258         if (data_page_nr(event->rb) != nr_pages) {
6259             ret = -EINVAL;
6260             goto unlock;
6261         }
6262 
6263         if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6264             /*
6265              * Raced against perf_mmap_close(); remove the
6266              * event and try again.
6267              */
6268             ring_buffer_attach(event, NULL);
6269             mutex_unlock(&event->mmap_mutex);
6270             goto again;
6271         }
6272 
6273         goto unlock;
6274     }
6275 
6276     user_extra = nr_pages + 1;
6277 
6278 accounting:
6279     user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6280 
6281     /*
6282      * Increase the limit linearly with more CPUs:
6283      */
6284     user_lock_limit *= num_online_cpus();
6285 
6286     user_locked = atomic_long_read(&user->locked_vm);
6287 
6288     /*
6289      * sysctl_perf_event_mlock may have changed, so that
6290      *     user->locked_vm > user_lock_limit
6291      */
6292     if (user_locked > user_lock_limit)
6293         user_locked = user_lock_limit;
6294     user_locked += user_extra;
6295 
6296     if (user_locked > user_lock_limit) {
6297         /*
6298          * charge locked_vm until it hits user_lock_limit;
6299          * charge the rest from pinned_vm
6300          */
6301         extra = user_locked - user_lock_limit;
6302         user_extra -= extra;
6303     }
6304 
6305     lock_limit = rlimit(RLIMIT_MEMLOCK);
6306     lock_limit >>= PAGE_SHIFT;
6307     locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6308 
6309     if ((locked > lock_limit) && perf_is_paranoid() &&
6310         !capable(CAP_IPC_LOCK)) {
6311         ret = -EPERM;
6312         goto unlock;
6313     }
6314 
6315     WARN_ON(!rb && event->rb);
6316 
6317     if (vma->vm_flags & VM_WRITE)
6318         flags |= RING_BUFFER_WRITABLE;
6319 
6320     if (!rb) {
6321         rb = rb_alloc(nr_pages,
6322                   event->attr.watermark ? event->attr.wakeup_watermark : 0,
6323                   event->cpu, flags);
6324 
6325         if (!rb) {
6326             ret = -ENOMEM;
6327             goto unlock;
6328         }
6329 
6330         atomic_set(&rb->mmap_count, 1);
6331         rb->mmap_user = get_current_user();
6332         rb->mmap_locked = extra;
6333 
6334         ring_buffer_attach(event, rb);
6335 
6336         perf_event_update_time(event);
6337         perf_event_init_userpage(event);
6338         perf_event_update_userpage(event);
6339     } else {
6340         ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6341                    event->attr.aux_watermark, flags);
6342         if (!ret)
6343             rb->aux_mmap_locked = extra;
6344     }
6345 
6346 unlock:
6347     if (!ret) {
6348         atomic_long_add(user_extra, &user->locked_vm);
6349         atomic64_add(extra, &vma->vm_mm->pinned_vm);
6350 
6351         atomic_inc(&event->mmap_count);
6352     } else if (rb) {
6353         atomic_dec(&rb->mmap_count);
6354     }
6355 aux_unlock:
6356     mutex_unlock(&event->mmap_mutex);
6357 
6358     /*
6359      * Since pinned accounting is per vm we cannot allow fork() to copy our
6360      * vma.
6361      */
6362     vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6363     vma->vm_ops = &perf_mmap_vmops;
6364 
6365     if (event->pmu->event_mapped)
6366         event->pmu->event_mapped(event, vma->vm_mm);
6367 
6368     return ret;
6369 }
6370 
6371 static int perf_fasync(int fd, struct file *filp, int on)
6372 {
6373     struct inode *inode = file_inode(filp);
6374     struct perf_event *event = filp->private_data;
6375     int retval;
6376 
6377     inode_lock(inode);
6378     retval = fasync_helper(fd, filp, on, &event->fasync);
6379     inode_unlock(inode);
6380 
6381     if (retval < 0)
6382         return retval;
6383 
6384     return 0;
6385 }
6386 
6387 static const struct file_operations perf_fops = {
6388     .llseek         = no_llseek,
6389     .release        = perf_release,
6390     .read           = perf_read,
6391     .poll           = perf_poll,
6392     .unlocked_ioctl     = perf_ioctl,
6393     .compat_ioctl       = perf_compat_ioctl,
6394     .mmap           = perf_mmap,
6395     .fasync         = perf_fasync,
6396 };
6397 
6398 /*
6399  * Perf event wakeup
6400  *
6401  * If there's data, ensure we set the poll() state and publish everything
6402  * to user-space before waking everybody up.
6403  */
6404 
6405 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6406 {
6407     /* only the parent has fasync state */
6408     if (event->parent)
6409         event = event->parent;
6410     return &event->fasync;
6411 }
6412 
6413 void perf_event_wakeup(struct perf_event *event)
6414 {
6415     ring_buffer_wakeup(event);
6416 
6417     if (event->pending_kill) {
6418         kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6419         event->pending_kill = 0;
6420     }
6421 }
6422 
6423 static void perf_sigtrap(struct perf_event *event)
6424 {
6425     /*
6426      * We'd expect this to only occur if the irq_work is delayed and either
6427      * ctx->task or current has changed in the meantime. This can be the
6428      * case on architectures that do not implement arch_irq_work_raise().
6429      */
6430     if (WARN_ON_ONCE(event->ctx->task != current))
6431         return;
6432 
6433     /*
6434      * perf_pending_event() can race with the task exiting.
6435      */
6436     if (current->flags & PF_EXITING)
6437         return;
6438 
6439     send_sig_perf((void __user *)event->pending_addr,
6440               event->attr.type, event->attr.sig_data);
6441 }
6442 
6443 static void perf_pending_event_disable(struct perf_event *event)
6444 {
6445     int cpu = READ_ONCE(event->pending_disable);
6446 
6447     if (cpu < 0)
6448         return;
6449 
6450     if (cpu == smp_processor_id()) {
6451         WRITE_ONCE(event->pending_disable, -1);
6452 
6453         if (event->attr.sigtrap) {
6454             perf_sigtrap(event);
6455             atomic_set_release(&event->event_limit, 1); /* rearm event */
6456             return;
6457         }
6458 
6459         perf_event_disable_local(event);
6460         return;
6461     }
6462 
6463     /*
6464      *  CPU-A           CPU-B
6465      *
6466      *  perf_event_disable_inatomic()
6467      *    @pending_disable = CPU-A;
6468      *    irq_work_queue();
6469      *
6470      *  sched-out
6471      *    @pending_disable = -1;
6472      *
6473      *              sched-in
6474      *              perf_event_disable_inatomic()
6475      *                @pending_disable = CPU-B;
6476      *                irq_work_queue(); // FAILS
6477      *
6478      *  irq_work_run()
6479      *    perf_pending_event()
6480      *
6481      * But the event runs on CPU-B and wants disabling there.
6482      */
6483     irq_work_queue_on(&event->pending, cpu);
6484 }
6485 
6486 static void perf_pending_event(struct irq_work *entry)
6487 {
6488     struct perf_event *event = container_of(entry, struct perf_event, pending);
6489     int rctx;
6490 
6491     rctx = perf_swevent_get_recursion_context();
6492     /*
6493      * If we 'fail' here, that's OK, it means recursion is already disabled
6494      * and we won't recurse 'further'.
6495      */
6496 
6497     perf_pending_event_disable(event);
6498 
6499     if (event->pending_wakeup) {
6500         event->pending_wakeup = 0;
6501         perf_event_wakeup(event);
6502     }
6503 
6504     if (rctx >= 0)
6505         perf_swevent_put_recursion_context(rctx);
6506 }
6507 
6508 #ifdef CONFIG_GUEST_PERF_EVENTS
6509 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6510 
6511 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6512 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6513 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6514 
6515 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6516 {
6517     if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6518         return;
6519 
6520     rcu_assign_pointer(perf_guest_cbs, cbs);
6521     static_call_update(__perf_guest_state, cbs->state);
6522     static_call_update(__perf_guest_get_ip, cbs->get_ip);
6523 
6524     /* Implementing ->handle_intel_pt_intr is optional. */
6525     if (cbs->handle_intel_pt_intr)
6526         static_call_update(__perf_guest_handle_intel_pt_intr,
6527                    cbs->handle_intel_pt_intr);
6528 }
6529 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6530 
6531 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533     if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6534         return;
6535 
6536     rcu_assign_pointer(perf_guest_cbs, NULL);
6537     static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6538     static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6539     static_call_update(__perf_guest_handle_intel_pt_intr,
6540                (void *)&__static_call_return0);
6541     synchronize_rcu();
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544 #endif
6545 
6546 static void
6547 perf_output_sample_regs(struct perf_output_handle *handle,
6548             struct pt_regs *regs, u64 mask)
6549 {
6550     int bit;
6551     DECLARE_BITMAP(_mask, 64);
6552 
6553     bitmap_from_u64(_mask, mask);
6554     for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6555         u64 val;
6556 
6557         val = perf_reg_value(regs, bit);
6558         perf_output_put(handle, val);
6559     }
6560 }
6561 
6562 static void perf_sample_regs_user(struct perf_regs *regs_user,
6563                   struct pt_regs *regs)
6564 {
6565     if (user_mode(regs)) {
6566         regs_user->abi = perf_reg_abi(current);
6567         regs_user->regs = regs;
6568     } else if (!(current->flags & PF_KTHREAD)) {
6569         perf_get_regs_user(regs_user, regs);
6570     } else {
6571         regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6572         regs_user->regs = NULL;
6573     }
6574 }
6575 
6576 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6577                   struct pt_regs *regs)
6578 {
6579     regs_intr->regs = regs;
6580     regs_intr->abi  = perf_reg_abi(current);
6581 }
6582 
6583 
6584 /*
6585  * Get remaining task size from user stack pointer.
6586  *
6587  * It'd be better to take stack vma map and limit this more
6588  * precisely, but there's no way to get it safely under interrupt,
6589  * so using TASK_SIZE as limit.
6590  */
6591 static u64 perf_ustack_task_size(struct pt_regs *regs)
6592 {
6593     unsigned long addr = perf_user_stack_pointer(regs);
6594 
6595     if (!addr || addr >= TASK_SIZE)
6596         return 0;
6597 
6598     return TASK_SIZE - addr;
6599 }
6600 
6601 static u16
6602 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6603             struct pt_regs *regs)
6604 {
6605     u64 task_size;
6606 
6607     /* No regs, no stack pointer, no dump. */
6608     if (!regs)
6609         return 0;
6610 
6611     /*
6612      * Check if we fit in with the requested stack size into the:
6613      * - TASK_SIZE
6614      *   If we don't, we limit the size to the TASK_SIZE.
6615      *
6616      * - remaining sample size
6617      *   If we don't, we customize the stack size to
6618      *   fit in to the remaining sample size.
6619      */
6620 
6621     task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6622     stack_size = min(stack_size, (u16) task_size);
6623 
6624     /* Current header size plus static size and dynamic size. */
6625     header_size += 2 * sizeof(u64);
6626 
6627     /* Do we fit in with the current stack dump size? */
6628     if ((u16) (header_size + stack_size) < header_size) {
6629         /*
6630          * If we overflow the maximum size for the sample,
6631          * we customize the stack dump size to fit in.
6632          */
6633         stack_size = USHRT_MAX - header_size - sizeof(u64);
6634         stack_size = round_up(stack_size, sizeof(u64));
6635     }
6636 
6637     return stack_size;
6638 }
6639 
6640 static void
6641 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6642               struct pt_regs *regs)
6643 {
6644     /* Case of a kernel thread, nothing to dump */
6645     if (!regs) {
6646         u64 size = 0;
6647         perf_output_put(handle, size);
6648     } else {
6649         unsigned long sp;
6650         unsigned int rem;
6651         u64 dyn_size;
6652 
6653         /*
6654          * We dump:
6655          * static size
6656          *   - the size requested by user or the best one we can fit
6657          *     in to the sample max size
6658          * data
6659          *   - user stack dump data
6660          * dynamic size
6661          *   - the actual dumped size
6662          */
6663 
6664         /* Static size. */
6665         perf_output_put(handle, dump_size);
6666 
6667         /* Data. */
6668         sp = perf_user_stack_pointer(regs);
6669         rem = __output_copy_user(handle, (void *) sp, dump_size);
6670         dyn_size = dump_size - rem;
6671 
6672         perf_output_skip(handle, rem);
6673 
6674         /* Dynamic size. */
6675         perf_output_put(handle, dyn_size);
6676     }
6677 }
6678 
6679 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6680                       struct perf_sample_data *data,
6681                       size_t size)
6682 {
6683     struct perf_event *sampler = event->aux_event;
6684     struct perf_buffer *rb;
6685 
6686     data->aux_size = 0;
6687 
6688     if (!sampler)
6689         goto out;
6690 
6691     if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6692         goto out;
6693 
6694     if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6695         goto out;
6696 
6697     rb = ring_buffer_get(sampler);
6698     if (!rb)
6699         goto out;
6700 
6701     /*
6702      * If this is an NMI hit inside sampling code, don't take
6703      * the sample. See also perf_aux_sample_output().
6704      */
6705     if (READ_ONCE(rb->aux_in_sampling)) {
6706         data->aux_size = 0;
6707     } else {
6708         size = min_t(size_t, size, perf_aux_size(rb));
6709         data->aux_size = ALIGN(size, sizeof(u64));
6710     }
6711     ring_buffer_put(rb);
6712 
6713 out:
6714     return data->aux_size;
6715 }
6716 
6717 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6718                                  struct perf_event *event,
6719                                  struct perf_output_handle *handle,
6720                                  unsigned long size)
6721 {
6722     unsigned long flags;
6723     long ret;
6724 
6725     /*
6726      * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6727      * paths. If we start calling them in NMI context, they may race with
6728      * the IRQ ones, that is, for example, re-starting an event that's just
6729      * been stopped, which is why we're using a separate callback that
6730      * doesn't change the event state.
6731      *
6732      * IRQs need to be disabled to prevent IPIs from racing with us.
6733      */
6734     local_irq_save(flags);
6735     /*
6736      * Guard against NMI hits inside the critical section;
6737      * see also perf_prepare_sample_aux().
6738      */
6739     WRITE_ONCE(rb->aux_in_sampling, 1);
6740     barrier();
6741 
6742     ret = event->pmu->snapshot_aux(event, handle, size);
6743 
6744     barrier();
6745     WRITE_ONCE(rb->aux_in_sampling, 0);
6746     local_irq_restore(flags);
6747 
6748     return ret;
6749 }
6750 
6751 static void perf_aux_sample_output(struct perf_event *event,
6752                    struct perf_output_handle *handle,
6753                    struct perf_sample_data *data)
6754 {
6755     struct perf_event *sampler = event->aux_event;
6756     struct perf_buffer *rb;
6757     unsigned long pad;
6758     long size;
6759 
6760     if (WARN_ON_ONCE(!sampler || !data->aux_size))
6761         return;
6762 
6763     rb = ring_buffer_get(sampler);
6764     if (!rb)
6765         return;
6766 
6767     size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6768 
6769     /*
6770      * An error here means that perf_output_copy() failed (returned a
6771      * non-zero surplus that it didn't copy), which in its current
6772      * enlightened implementation is not possible. If that changes, we'd
6773      * like to know.
6774      */
6775     if (WARN_ON_ONCE(size < 0))
6776         goto out_put;
6777 
6778     /*
6779      * The pad comes from ALIGN()ing data->aux_size up to u64 in
6780      * perf_prepare_sample_aux(), so should not be more than that.
6781      */
6782     pad = data->aux_size - size;
6783     if (WARN_ON_ONCE(pad >= sizeof(u64)))
6784         pad = 8;
6785 
6786     if (pad) {
6787         u64 zero = 0;
6788         perf_output_copy(handle, &zero, pad);
6789     }
6790 
6791 out_put:
6792     ring_buffer_put(rb);
6793 }
6794 
6795 static void __perf_event_header__init_id(struct perf_event_header *header,
6796                      struct perf_sample_data *data,
6797                      struct perf_event *event)
6798 {
6799     u64 sample_type = event->attr.sample_type;
6800 
6801     data->type = sample_type;
6802     header->size += event->id_header_size;
6803 
6804     if (sample_type & PERF_SAMPLE_TID) {
6805         /* namespace issues */
6806         data->tid_entry.pid = perf_event_pid(event, current);
6807         data->tid_entry.tid = perf_event_tid(event, current);
6808     }
6809 
6810     if (sample_type & PERF_SAMPLE_TIME)
6811         data->time = perf_event_clock(event);
6812 
6813     if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6814         data->id = primary_event_id(event);
6815 
6816     if (sample_type & PERF_SAMPLE_STREAM_ID)
6817         data->stream_id = event->id;
6818 
6819     if (sample_type & PERF_SAMPLE_CPU) {
6820         data->cpu_entry.cpu  = raw_smp_processor_id();
6821         data->cpu_entry.reserved = 0;
6822     }
6823 }
6824 
6825 void perf_event_header__init_id(struct perf_event_header *header,
6826                 struct perf_sample_data *data,
6827                 struct perf_event *event)
6828 {
6829     if (event->attr.sample_id_all)
6830         __perf_event_header__init_id(header, data, event);
6831 }
6832 
6833 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6834                        struct perf_sample_data *data)
6835 {
6836     u64 sample_type = data->type;
6837 
6838     if (sample_type & PERF_SAMPLE_TID)
6839         perf_output_put(handle, data->tid_entry);
6840 
6841     if (sample_type & PERF_SAMPLE_TIME)
6842         perf_output_put(handle, data->time);
6843 
6844     if (sample_type & PERF_SAMPLE_ID)
6845         perf_output_put(handle, data->id);
6846 
6847     if (sample_type & PERF_SAMPLE_STREAM_ID)
6848         perf_output_put(handle, data->stream_id);
6849 
6850     if (sample_type & PERF_SAMPLE_CPU)
6851         perf_output_put(handle, data->cpu_entry);
6852 
6853     if (sample_type & PERF_SAMPLE_IDENTIFIER)
6854         perf_output_put(handle, data->id);
6855 }
6856 
6857 void perf_event__output_id_sample(struct perf_event *event,
6858                   struct perf_output_handle *handle,
6859                   struct perf_sample_data *sample)
6860 {
6861     if (event->attr.sample_id_all)
6862         __perf_event__output_id_sample(handle, sample);
6863 }
6864 
6865 static void perf_output_read_one(struct perf_output_handle *handle,
6866                  struct perf_event *event,
6867                  u64 enabled, u64 running)
6868 {
6869     u64 read_format = event->attr.read_format;
6870     u64 values[5];
6871     int n = 0;
6872 
6873     values[n++] = perf_event_count(event);
6874     if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6875         values[n++] = enabled +
6876             atomic64_read(&event->child_total_time_enabled);
6877     }
6878     if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6879         values[n++] = running +
6880             atomic64_read(&event->child_total_time_running);
6881     }
6882     if (read_format & PERF_FORMAT_ID)
6883         values[n++] = primary_event_id(event);
6884     if (read_format & PERF_FORMAT_LOST)
6885         values[n++] = atomic64_read(&event->lost_samples);
6886 
6887     __output_copy(handle, values, n * sizeof(u64));
6888 }
6889 
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891                 struct perf_event *event,
6892                 u64 enabled, u64 running)
6893 {
6894     struct perf_event *leader = event->group_leader, *sub;
6895     u64 read_format = event->attr.read_format;
6896     unsigned long flags;
6897     u64 values[6];
6898     int n = 0;
6899 
6900     /*
6901      * Disabling interrupts avoids all counter scheduling
6902      * (context switches, timer based rotation and IPIs).
6903      */
6904     local_irq_save(flags);
6905 
6906     values[n++] = 1 + leader->nr_siblings;
6907 
6908     if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6909         values[n++] = enabled;
6910 
6911     if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6912         values[n++] = running;
6913 
6914     if ((leader != event) &&
6915         (leader->state == PERF_EVENT_STATE_ACTIVE))
6916         leader->pmu->read(leader);
6917 
6918     values[n++] = perf_event_count(leader);
6919     if (read_format & PERF_FORMAT_ID)
6920         values[n++] = primary_event_id(leader);
6921     if (read_format & PERF_FORMAT_LOST)
6922         values[n++] = atomic64_read(&leader->lost_samples);
6923 
6924     __output_copy(handle, values, n * sizeof(u64));
6925 
6926     for_each_sibling_event(sub, leader) {
6927         n = 0;
6928 
6929         if ((sub != event) &&
6930             (sub->state == PERF_EVENT_STATE_ACTIVE))
6931             sub->pmu->read(sub);
6932 
6933         values[n++] = perf_event_count(sub);
6934         if (read_format & PERF_FORMAT_ID)
6935             values[n++] = primary_event_id(sub);
6936         if (read_format & PERF_FORMAT_LOST)
6937             values[n++] = atomic64_read(&sub->lost_samples);
6938 
6939         __output_copy(handle, values, n * sizeof(u64));
6940     }
6941 
6942     local_irq_restore(flags);
6943 }
6944 
6945 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6946                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6947 
6948 /*
6949  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6950  *
6951  * The problem is that its both hard and excessively expensive to iterate the
6952  * child list, not to mention that its impossible to IPI the children running
6953  * on another CPU, from interrupt/NMI context.
6954  */
6955 static void perf_output_read(struct perf_output_handle *handle,
6956                  struct perf_event *event)
6957 {
6958     u64 enabled = 0, running = 0, now;
6959     u64 read_format = event->attr.read_format;
6960 
6961     /*
6962      * compute total_time_enabled, total_time_running
6963      * based on snapshot values taken when the event
6964      * was last scheduled in.
6965      *
6966      * we cannot simply called update_context_time()
6967      * because of locking issue as we are called in
6968      * NMI context
6969      */
6970     if (read_format & PERF_FORMAT_TOTAL_TIMES)
6971         calc_timer_values(event, &now, &enabled, &running);
6972 
6973     if (event->attr.read_format & PERF_FORMAT_GROUP)
6974         perf_output_read_group(handle, event, enabled, running);
6975     else
6976         perf_output_read_one(handle, event, enabled, running);
6977 }
6978 
6979 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6980 {
6981     return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6982 }
6983 
6984 void perf_output_sample(struct perf_output_handle *handle,
6985             struct perf_event_header *header,
6986             struct perf_sample_data *data,
6987             struct perf_event *event)
6988 {
6989     u64 sample_type = data->type;
6990 
6991     perf_output_put(handle, *header);
6992 
6993     if (sample_type & PERF_SAMPLE_IDENTIFIER)
6994         perf_output_put(handle, data->id);
6995 
6996     if (sample_type & PERF_SAMPLE_IP)
6997         perf_output_put(handle, data->ip);
6998 
6999     if (sample_type & PERF_SAMPLE_TID)
7000         perf_output_put(handle, data->tid_entry);
7001 
7002     if (sample_type & PERF_SAMPLE_TIME)
7003         perf_output_put(handle, data->time);
7004 
7005     if (sample_type & PERF_SAMPLE_ADDR)
7006         perf_output_put(handle, data->addr);
7007 
7008     if (sample_type & PERF_SAMPLE_ID)
7009         perf_output_put(handle, data->id);
7010 
7011     if (sample_type & PERF_SAMPLE_STREAM_ID)
7012         perf_output_put(handle, data->stream_id);
7013 
7014     if (sample_type & PERF_SAMPLE_CPU)
7015         perf_output_put(handle, data->cpu_entry);
7016 
7017     if (sample_type & PERF_SAMPLE_PERIOD)
7018         perf_output_put(handle, data->period);
7019 
7020     if (sample_type & PERF_SAMPLE_READ)
7021         perf_output_read(handle, event);
7022 
7023     if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7024         int size = 1;
7025 
7026         size += data->callchain->nr;
7027         size *= sizeof(u64);
7028         __output_copy(handle, data->callchain, size);
7029     }
7030 
7031     if (sample_type & PERF_SAMPLE_RAW) {
7032         struct perf_raw_record *raw = data->raw;
7033 
7034         if (raw) {
7035             struct perf_raw_frag *frag = &raw->frag;
7036 
7037             perf_output_put(handle, raw->size);
7038             do {
7039                 if (frag->copy) {
7040                     __output_custom(handle, frag->copy,
7041                             frag->data, frag->size);
7042                 } else {
7043                     __output_copy(handle, frag->data,
7044                               frag->size);
7045                 }
7046                 if (perf_raw_frag_last(frag))
7047                     break;
7048                 frag = frag->next;
7049             } while (1);
7050             if (frag->pad)
7051                 __output_skip(handle, NULL, frag->pad);
7052         } else {
7053             struct {
7054                 u32 size;
7055                 u32 data;
7056             } raw = {
7057                 .size = sizeof(u32),
7058                 .data = 0,
7059             };
7060             perf_output_put(handle, raw);
7061         }
7062     }
7063 
7064     if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7065         if (data->br_stack) {
7066             size_t size;
7067 
7068             size = data->br_stack->nr
7069                  * sizeof(struct perf_branch_entry);
7070 
7071             perf_output_put(handle, data->br_stack->nr);
7072             if (perf_sample_save_hw_index(event))
7073                 perf_output_put(handle, data->br_stack->hw_idx);
7074             perf_output_copy(handle, data->br_stack->entries, size);
7075         } else {
7076             /*
7077              * we always store at least the value of nr
7078              */
7079             u64 nr = 0;
7080             perf_output_put(handle, nr);
7081         }
7082     }
7083 
7084     if (sample_type & PERF_SAMPLE_REGS_USER) {
7085         u64 abi = data->regs_user.abi;
7086 
7087         /*
7088          * If there are no regs to dump, notice it through
7089          * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7090          */
7091         perf_output_put(handle, abi);
7092 
7093         if (abi) {
7094             u64 mask = event->attr.sample_regs_user;
7095             perf_output_sample_regs(handle,
7096                         data->regs_user.regs,
7097                         mask);
7098         }
7099     }
7100 
7101     if (sample_type & PERF_SAMPLE_STACK_USER) {
7102         perf_output_sample_ustack(handle,
7103                       data->stack_user_size,
7104                       data->regs_user.regs);
7105     }
7106 
7107     if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7108         perf_output_put(handle, data->weight.full);
7109 
7110     if (sample_type & PERF_SAMPLE_DATA_SRC)
7111         perf_output_put(handle, data->data_src.val);
7112 
7113     if (sample_type & PERF_SAMPLE_TRANSACTION)
7114         perf_output_put(handle, data->txn);
7115 
7116     if (sample_type & PERF_SAMPLE_REGS_INTR) {
7117         u64 abi = data->regs_intr.abi;
7118         /*
7119          * If there are no regs to dump, notice it through
7120          * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7121          */
7122         perf_output_put(handle, abi);
7123 
7124         if (abi) {
7125             u64 mask = event->attr.sample_regs_intr;
7126 
7127             perf_output_sample_regs(handle,
7128                         data->regs_intr.regs,
7129                         mask);
7130         }
7131     }
7132 
7133     if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7134         perf_output_put(handle, data->phys_addr);
7135 
7136     if (sample_type & PERF_SAMPLE_CGROUP)
7137         perf_output_put(handle, data->cgroup);
7138 
7139     if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7140         perf_output_put(handle, data->data_page_size);
7141 
7142     if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7143         perf_output_put(handle, data->code_page_size);
7144 
7145     if (sample_type & PERF_SAMPLE_AUX) {
7146         perf_output_put(handle, data->aux_size);
7147 
7148         if (data->aux_size)
7149             perf_aux_sample_output(event, handle, data);
7150     }
7151 
7152     if (!event->attr.watermark) {
7153         int wakeup_events = event->attr.wakeup_events;
7154 
7155         if (wakeup_events) {
7156             struct perf_buffer *rb = handle->rb;
7157             int events = local_inc_return(&rb->events);
7158 
7159             if (events >= wakeup_events) {
7160                 local_sub(wakeup_events, &rb->events);
7161                 local_inc(&rb->wakeup);
7162             }
7163         }
7164     }
7165 }
7166 
7167 static u64 perf_virt_to_phys(u64 virt)
7168 {
7169     u64 phys_addr = 0;
7170 
7171     if (!virt)
7172         return 0;
7173 
7174     if (virt >= TASK_SIZE) {
7175         /* If it's vmalloc()d memory, leave phys_addr as 0 */
7176         if (virt_addr_valid((void *)(uintptr_t)virt) &&
7177             !(virt >= VMALLOC_START && virt < VMALLOC_END))
7178             phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7179     } else {
7180         /*
7181          * Walking the pages tables for user address.
7182          * Interrupts are disabled, so it prevents any tear down
7183          * of the page tables.
7184          * Try IRQ-safe get_user_page_fast_only first.
7185          * If failed, leave phys_addr as 0.
7186          */
7187         if (current->mm != NULL) {
7188             struct page *p;
7189 
7190             pagefault_disable();
7191             if (get_user_page_fast_only(virt, 0, &p)) {
7192                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7193                 put_page(p);
7194             }
7195             pagefault_enable();
7196         }
7197     }
7198 
7199     return phys_addr;
7200 }
7201 
7202 /*
7203  * Return the pagetable size of a given virtual address.
7204  */
7205 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7206 {
7207     u64 size = 0;
7208 
7209 #ifdef CONFIG_HAVE_FAST_GUP
7210     pgd_t *pgdp, pgd;
7211     p4d_t *p4dp, p4d;
7212     pud_t *pudp, pud;
7213     pmd_t *pmdp, pmd;
7214     pte_t *ptep, pte;
7215 
7216     pgdp = pgd_offset(mm, addr);
7217     pgd = READ_ONCE(*pgdp);
7218     if (pgd_none(pgd))
7219         return 0;
7220 
7221     if (pgd_leaf(pgd))
7222         return pgd_leaf_size(pgd);
7223 
7224     p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7225     p4d = READ_ONCE(*p4dp);
7226     if (!p4d_present(p4d))
7227         return 0;
7228 
7229     if (p4d_leaf(p4d))
7230         return p4d_leaf_size(p4d);
7231 
7232     pudp = pud_offset_lockless(p4dp, p4d, addr);
7233     pud = READ_ONCE(*pudp);
7234     if (!pud_present(pud))
7235         return 0;
7236 
7237     if (pud_leaf(pud))
7238         return pud_leaf_size(pud);
7239 
7240     pmdp = pmd_offset_lockless(pudp, pud, addr);
7241     pmd = READ_ONCE(*pmdp);
7242     if (!pmd_present(pmd))
7243         return 0;
7244 
7245     if (pmd_leaf(pmd))
7246         return pmd_leaf_size(pmd);
7247 
7248     ptep = pte_offset_map(&pmd, addr);
7249     pte = ptep_get_lockless(ptep);
7250     if (pte_present(pte))
7251         size = pte_leaf_size(pte);
7252     pte_unmap(ptep);
7253 #endif /* CONFIG_HAVE_FAST_GUP */
7254 
7255     return size;
7256 }
7257 
7258 static u64 perf_get_page_size(unsigned long addr)
7259 {
7260     struct mm_struct *mm;
7261     unsigned long flags;
7262     u64 size;
7263 
7264     if (!addr)
7265         return 0;
7266 
7267     /*
7268      * Software page-table walkers must disable IRQs,
7269      * which prevents any tear down of the page tables.
7270      */
7271     local_irq_save(flags);
7272 
7273     mm = current->mm;
7274     if (!mm) {
7275         /*
7276          * For kernel threads and the like, use init_mm so that
7277          * we can find kernel memory.
7278          */
7279         mm = &init_mm;
7280     }
7281 
7282     size = perf_get_pgtable_size(mm, addr);
7283 
7284     local_irq_restore(flags);
7285 
7286     return size;
7287 }
7288 
7289 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7290 
7291 struct perf_callchain_entry *
7292 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7293 {
7294     bool kernel = !event->attr.exclude_callchain_kernel;
7295     bool user   = !event->attr.exclude_callchain_user;
7296     /* Disallow cross-task user callchains. */
7297     bool crosstask = event->ctx->task && event->ctx->task != current;
7298     const u32 max_stack = event->attr.sample_max_stack;
7299     struct perf_callchain_entry *callchain;
7300 
7301     if (!kernel && !user)
7302         return &__empty_callchain;
7303 
7304     callchain = get_perf_callchain(regs, 0, kernel, user,
7305                        max_stack, crosstask, true);
7306     return callchain ?: &__empty_callchain;
7307 }
7308 
7309 void perf_prepare_sample(struct perf_event_header *header,
7310              struct perf_sample_data *data,
7311              struct perf_event *event,
7312              struct pt_regs *regs)
7313 {
7314     u64 sample_type = event->attr.sample_type;
7315 
7316     header->type = PERF_RECORD_SAMPLE;
7317     header->size = sizeof(*header) + event->header_size;
7318 
7319     header->misc = 0;
7320     header->misc |= perf_misc_flags(regs);
7321 
7322     __perf_event_header__init_id(header, data, event);
7323 
7324     if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7325         data->ip = perf_instruction_pointer(regs);
7326 
7327     if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7328         int size = 1;
7329 
7330         if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7331             data->callchain = perf_callchain(event, regs);
7332 
7333         size += data->callchain->nr;
7334 
7335         header->size += size * sizeof(u64);
7336     }
7337 
7338     if (sample_type & PERF_SAMPLE_RAW) {
7339         struct perf_raw_record *raw = data->raw;
7340         int size;
7341 
7342         if (raw) {
7343             struct perf_raw_frag *frag = &raw->frag;
7344             u32 sum = 0;
7345 
7346             do {
7347                 sum += frag->size;
7348                 if (perf_raw_frag_last(frag))
7349                     break;
7350                 frag = frag->next;
7351             } while (1);
7352 
7353             size = round_up(sum + sizeof(u32), sizeof(u64));
7354             raw->size = size - sizeof(u32);
7355             frag->pad = raw->size - sum;
7356         } else {
7357             size = sizeof(u64);
7358         }
7359 
7360         header->size += size;
7361     }
7362 
7363     if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7364         int size = sizeof(u64); /* nr */
7365         if (data->br_stack) {
7366             if (perf_sample_save_hw_index(event))
7367                 size += sizeof(u64);
7368 
7369             size += data->br_stack->nr
7370                   * sizeof(struct perf_branch_entry);
7371         }
7372         header->size += size;
7373     }
7374 
7375     if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7376         perf_sample_regs_user(&data->regs_user, regs);
7377 
7378     if (sample_type & PERF_SAMPLE_REGS_USER) {
7379         /* regs dump ABI info */
7380         int size = sizeof(u64);
7381 
7382         if (data->regs_user.regs) {
7383             u64 mask = event->attr.sample_regs_user;
7384             size += hweight64(mask) * sizeof(u64);
7385         }
7386 
7387         header->size += size;
7388     }
7389 
7390     if (sample_type & PERF_SAMPLE_STACK_USER) {
7391         /*
7392          * Either we need PERF_SAMPLE_STACK_USER bit to be always
7393          * processed as the last one or have additional check added
7394          * in case new sample type is added, because we could eat
7395          * up the rest of the sample size.
7396          */
7397         u16 stack_size = event->attr.sample_stack_user;
7398         u16 size = sizeof(u64);
7399 
7400         stack_size = perf_sample_ustack_size(stack_size, header->size,
7401                              data->regs_user.regs);
7402 
7403         /*
7404          * If there is something to dump, add space for the dump
7405          * itself and for the field that tells the dynamic size,
7406          * which is how many have been actually dumped.
7407          */
7408         if (stack_size)
7409             size += sizeof(u64) + stack_size;
7410 
7411         data->stack_user_size = stack_size;
7412         header->size += size;
7413     }
7414 
7415     if (sample_type & PERF_SAMPLE_REGS_INTR) {
7416         /* regs dump ABI info */
7417         int size = sizeof(u64);
7418 
7419         perf_sample_regs_intr(&data->regs_intr, regs);
7420 
7421         if (data->regs_intr.regs) {
7422             u64 mask = event->attr.sample_regs_intr;
7423 
7424             size += hweight64(mask) * sizeof(u64);
7425         }
7426 
7427         header->size += size;
7428     }
7429 
7430     if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7431         data->phys_addr = perf_virt_to_phys(data->addr);
7432 
7433 #ifdef CONFIG_CGROUP_PERF
7434     if (sample_type & PERF_SAMPLE_CGROUP) {
7435         struct cgroup *cgrp;
7436 
7437         /* protected by RCU */
7438         cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7439         data->cgroup = cgroup_id(cgrp);
7440     }
7441 #endif
7442 
7443     /*
7444      * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7445      * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7446      * but the value will not dump to the userspace.
7447      */
7448     if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7449         data->data_page_size = perf_get_page_size(data->addr);
7450 
7451     if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7452         data->code_page_size = perf_get_page_size(data->ip);
7453 
7454     if (sample_type & PERF_SAMPLE_AUX) {
7455         u64 size;
7456 
7457         header->size += sizeof(u64); /* size */
7458 
7459         /*
7460          * Given the 16bit nature of header::size, an AUX sample can
7461          * easily overflow it, what with all the preceding sample bits.
7462          * Make sure this doesn't happen by using up to U16_MAX bytes
7463          * per sample in total (rounded down to 8 byte boundary).
7464          */
7465         size = min_t(size_t, U16_MAX - header->size,
7466                  event->attr.aux_sample_size);
7467         size = rounddown(size, 8);
7468         size = perf_prepare_sample_aux(event, data, size);
7469 
7470         WARN_ON_ONCE(size + header->size > U16_MAX);
7471         header->size += size;
7472     }
7473     /*
7474      * If you're adding more sample types here, you likely need to do
7475      * something about the overflowing header::size, like repurpose the
7476      * lowest 3 bits of size, which should be always zero at the moment.
7477      * This raises a more important question, do we really need 512k sized
7478      * samples and why, so good argumentation is in order for whatever you
7479      * do here next.
7480      */
7481     WARN_ON_ONCE(header->size & 7);
7482 }
7483 
7484 static __always_inline int
7485 __perf_event_output(struct perf_event *event,
7486             struct perf_sample_data *data,
7487             struct pt_regs *regs,
7488             int (*output_begin)(struct perf_output_handle *,
7489                     struct perf_sample_data *,
7490                     struct perf_event *,
7491                     unsigned int))
7492 {
7493     struct perf_output_handle handle;
7494     struct perf_event_header header;
7495     int err;
7496 
7497     /* protect the callchain buffers */
7498     rcu_read_lock();
7499 
7500     perf_prepare_sample(&header, data, event, regs);
7501 
7502     err = output_begin(&handle, data, event, header.size);
7503     if (err)
7504         goto exit;
7505 
7506     perf_output_sample(&handle, &header, data, event);
7507 
7508     perf_output_end(&handle);
7509 
7510 exit:
7511     rcu_read_unlock();
7512     return err;
7513 }
7514 
7515 void
7516 perf_event_output_forward(struct perf_event *event,
7517              struct perf_sample_data *data,
7518              struct pt_regs *regs)
7519 {
7520     __perf_event_output(event, data, regs, perf_output_begin_forward);
7521 }
7522 
7523 void
7524 perf_event_output_backward(struct perf_event *event,
7525                struct perf_sample_data *data,
7526                struct pt_regs *regs)
7527 {
7528     __perf_event_output(event, data, regs, perf_output_begin_backward);
7529 }
7530 
7531 int
7532 perf_event_output(struct perf_event *event,
7533           struct perf_sample_data *data,
7534           struct pt_regs *regs)
7535 {
7536     return __perf_event_output(event, data, regs, perf_output_begin);
7537 }
7538 
7539 /*
7540  * read event_id
7541  */
7542 
7543 struct perf_read_event {
7544     struct perf_event_header    header;
7545 
7546     u32             pid;
7547     u32             tid;
7548 };
7549 
7550 static void
7551 perf_event_read_event(struct perf_event *event,
7552             struct task_struct *task)
7553 {
7554     struct perf_output_handle handle;
7555     struct perf_sample_data sample;
7556     struct perf_read_event read_event = {
7557         .header = {
7558             .type = PERF_RECORD_READ,
7559             .misc = 0,
7560             .size = sizeof(read_event) + event->read_size,
7561         },
7562         .pid = perf_event_pid(event, task),
7563         .tid = perf_event_tid(event, task),
7564     };
7565     int ret;
7566 
7567     perf_event_header__init_id(&read_event.header, &sample, event);
7568     ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7569     if (ret)
7570         return;
7571 
7572     perf_output_put(&handle, read_event);
7573     perf_output_read(&handle, event);
7574     perf_event__output_id_sample(event, &handle, &sample);
7575 
7576     perf_output_end(&handle);
7577 }
7578 
7579 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7580 
7581 static void
7582 perf_iterate_ctx(struct perf_event_context *ctx,
7583            perf_iterate_f output,
7584            void *data, bool all)
7585 {
7586     struct perf_event *event;
7587 
7588     list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7589         if (!all) {
7590             if (event->state < PERF_EVENT_STATE_INACTIVE)
7591                 continue;
7592             if (!event_filter_match(event))
7593                 continue;
7594         }
7595 
7596         output(event, data);
7597     }
7598 }
7599 
7600 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7601 {
7602     struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7603     struct perf_event *event;
7604 
7605     list_for_each_entry_rcu(event, &pel->list, sb_list) {
7606         /*
7607          * Skip events that are not fully formed yet; ensure that
7608          * if we observe event->ctx, both event and ctx will be
7609          * complete enough. See perf_install_in_context().
7610          */
7611         if (!smp_load_acquire(&event->ctx))
7612             continue;
7613 
7614         if (event->state < PERF_EVENT_STATE_INACTIVE)
7615             continue;
7616         if (!event_filter_match(event))
7617             continue;
7618         output(event, data);
7619     }
7620 }
7621 
7622 /*
7623  * Iterate all events that need to receive side-band events.
7624  *
7625  * For new callers; ensure that account_pmu_sb_event() includes
7626  * your event, otherwise it might not get delivered.
7627  */
7628 static void
7629 perf_iterate_sb(perf_iterate_f output, void *data,
7630            struct perf_event_context *task_ctx)
7631 {
7632     struct perf_event_context *ctx;
7633     int ctxn;
7634 
7635     rcu_read_lock();
7636     preempt_disable();
7637 
7638     /*
7639      * If we have task_ctx != NULL we only notify the task context itself.
7640      * The task_ctx is set only for EXIT events before releasing task
7641      * context.
7642      */
7643     if (task_ctx) {
7644         perf_iterate_ctx(task_ctx, output, data, false);
7645         goto done;
7646     }
7647 
7648     perf_iterate_sb_cpu(output, data);
7649 
7650     for_each_task_context_nr(ctxn) {
7651         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7652         if (ctx)
7653             perf_iterate_ctx(ctx, output, data, false);
7654     }
7655 done:
7656     preempt_enable();
7657     rcu_read_unlock();
7658 }
7659 
7660 /*
7661  * Clear all file-based filters at exec, they'll have to be
7662  * re-instated when/if these objects are mmapped again.
7663  */
7664 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7665 {
7666     struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7667     struct perf_addr_filter *filter;
7668     unsigned int restart = 0, count = 0;
7669     unsigned long flags;
7670 
7671     if (!has_addr_filter(event))
7672         return;
7673 
7674     raw_spin_lock_irqsave(&ifh->lock, flags);
7675     list_for_each_entry(filter, &ifh->list, entry) {
7676         if (filter->path.dentry) {
7677             event->addr_filter_ranges[count].start = 0;
7678             event->addr_filter_ranges[count].size = 0;
7679             restart++;
7680         }
7681 
7682         count++;
7683     }
7684 
7685     if (restart)
7686         event->addr_filters_gen++;
7687     raw_spin_unlock_irqrestore(&ifh->lock, flags);
7688 
7689     if (restart)
7690         perf_event_stop(event, 1);
7691 }
7692 
7693 void perf_event_exec(void)
7694 {
7695     struct perf_event_context *ctx;
7696     int ctxn;
7697 
7698     for_each_task_context_nr(ctxn) {
7699         perf_event_enable_on_exec(ctxn);
7700         perf_event_remove_on_exec(ctxn);
7701 
7702         rcu_read_lock();
7703         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7704         if (ctx) {
7705             perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7706                      NULL, true);
7707         }
7708         rcu_read_unlock();
7709     }
7710 }
7711 
7712 struct remote_output {
7713     struct perf_buffer  *rb;
7714     int         err;
7715 };
7716 
7717 static void __perf_event_output_stop(struct perf_event *event, void *data)
7718 {
7719     struct perf_event *parent = event->parent;
7720     struct remote_output *ro = data;
7721     struct perf_buffer *rb = ro->rb;
7722     struct stop_event_data sd = {
7723         .event  = event,
7724     };
7725 
7726     if (!has_aux(event))
7727         return;
7728 
7729     if (!parent)
7730         parent = event;
7731 
7732     /*
7733      * In case of inheritance, it will be the parent that links to the
7734      * ring-buffer, but it will be the child that's actually using it.
7735      *
7736      * We are using event::rb to determine if the event should be stopped,
7737      * however this may race with ring_buffer_attach() (through set_output),
7738      * which will make us skip the event that actually needs to be stopped.
7739      * So ring_buffer_attach() has to stop an aux event before re-assigning
7740      * its rb pointer.
7741      */
7742     if (rcu_dereference(parent->rb) == rb)
7743         ro->err = __perf_event_stop(&sd);
7744 }
7745 
7746 static int __perf_pmu_output_stop(void *info)
7747 {
7748     struct perf_event *event = info;
7749     struct pmu *pmu = event->ctx->pmu;
7750     struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7751     struct remote_output ro = {
7752         .rb = event->rb,
7753     };
7754 
7755     rcu_read_lock();
7756     perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7757     if (cpuctx->task_ctx)
7758         perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7759                    &ro, false);
7760     rcu_read_unlock();
7761 
7762     return ro.err;
7763 }
7764 
7765 static void perf_pmu_output_stop(struct perf_event *event)
7766 {
7767     struct perf_event *iter;
7768     int err, cpu;
7769 
7770 restart:
7771     rcu_read_lock();
7772     list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7773         /*
7774          * For per-CPU events, we need to make sure that neither they
7775          * nor their children are running; for cpu==-1 events it's
7776          * sufficient to stop the event itself if it's active, since
7777          * it can't have children.
7778          */
7779         cpu = iter->cpu;
7780         if (cpu == -1)
7781             cpu = READ_ONCE(iter->oncpu);
7782 
7783         if (cpu == -1)
7784             continue;
7785 
7786         err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7787         if (err == -EAGAIN) {
7788             rcu_read_unlock();
7789             goto restart;
7790         }
7791     }
7792     rcu_read_unlock();
7793 }
7794 
7795 /*
7796  * task tracking -- fork/exit
7797  *
7798  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7799  */
7800 
7801 struct perf_task_event {
7802     struct task_struct      *task;
7803     struct perf_event_context   *task_ctx;
7804 
7805     struct {
7806         struct perf_event_header    header;
7807 
7808         u32             pid;
7809         u32             ppid;
7810         u32             tid;
7811         u32             ptid;
7812         u64             time;
7813     } event_id;
7814 };
7815 
7816 static int perf_event_task_match(struct perf_event *event)
7817 {
7818     return event->attr.comm  || event->attr.mmap ||
7819            event->attr.mmap2 || event->attr.mmap_data ||
7820            event->attr.task;
7821 }
7822 
7823 static void perf_event_task_output(struct perf_event *event,
7824                    void *data)
7825 {
7826     struct perf_task_event *task_event = data;
7827     struct perf_output_handle handle;
7828     struct perf_sample_data sample;
7829     struct task_struct *task = task_event->task;
7830     int ret, size = task_event->event_id.header.size;
7831 
7832     if (!perf_event_task_match(event))
7833         return;
7834 
7835     perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7836 
7837     ret = perf_output_begin(&handle, &sample, event,
7838                 task_event->event_id.header.size);
7839     if (ret)
7840         goto out;
7841 
7842     task_event->event_id.pid = perf_event_pid(event, task);
7843     task_event->event_id.tid = perf_event_tid(event, task);
7844 
7845     if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7846         task_event->event_id.ppid = perf_event_pid(event,
7847                             task->real_parent);
7848         task_event->event_id.ptid = perf_event_pid(event,
7849                             task->real_parent);
7850     } else {  /* PERF_RECORD_FORK */
7851         task_event->event_id.ppid = perf_event_pid(event, current);
7852         task_event->event_id.ptid = perf_event_tid(event, current);
7853     }
7854 
7855     task_event->event_id.time = perf_event_clock(event);
7856 
7857     perf_output_put(&handle, task_event->event_id);
7858 
7859     perf_event__output_id_sample(event, &handle, &sample);
7860 
7861     perf_output_end(&handle);
7862 out:
7863     task_event->event_id.header.size = size;
7864 }
7865 
7866 static void perf_event_task(struct task_struct *task,
7867                   struct perf_event_context *task_ctx,
7868                   int new)
7869 {
7870     struct perf_task_event task_event;
7871 
7872     if (!atomic_read(&nr_comm_events) &&
7873         !atomic_read(&nr_mmap_events) &&
7874         !atomic_read(&nr_task_events))
7875         return;
7876 
7877     task_event = (struct perf_task_event){
7878         .task     = task,
7879         .task_ctx = task_ctx,
7880         .event_id    = {
7881             .header = {
7882                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7883                 .misc = 0,
7884                 .size = sizeof(task_event.event_id),
7885             },
7886             /* .pid  */
7887             /* .ppid */
7888             /* .tid  */
7889             /* .ptid */
7890             /* .time */
7891         },
7892     };
7893 
7894     perf_iterate_sb(perf_event_task_output,
7895                &task_event,
7896                task_ctx);
7897 }
7898 
7899 void perf_event_fork(struct task_struct *task)
7900 {
7901     perf_event_task(task, NULL, 1);
7902     perf_event_namespaces(task);
7903 }
7904 
7905 /*
7906  * comm tracking
7907  */
7908 
7909 struct perf_comm_event {
7910     struct task_struct  *task;
7911     char            *comm;
7912     int         comm_size;
7913 
7914     struct {
7915         struct perf_event_header    header;
7916 
7917         u32             pid;
7918         u32             tid;
7919     } event_id;
7920 };
7921 
7922 static int perf_event_comm_match(struct perf_event *event)
7923 {
7924     return event->attr.comm;
7925 }
7926 
7927 static void perf_event_comm_output(struct perf_event *event,
7928                    void *data)
7929 {
7930     struct perf_comm_event *comm_event = data;
7931     struct perf_output_handle handle;
7932     struct perf_sample_data sample;
7933     int size = comm_event->event_id.header.size;
7934     int ret;
7935 
7936     if (!perf_event_comm_match(event))
7937         return;
7938 
7939     perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7940     ret = perf_output_begin(&handle, &sample, event,
7941                 comm_event->event_id.header.size);
7942 
7943     if (ret)
7944         goto out;
7945 
7946     comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7947     comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7948 
7949     perf_output_put(&handle, comm_event->event_id);
7950     __output_copy(&handle, comm_event->comm,
7951                    comm_event->comm_size);
7952 
7953     perf_event__output_id_sample(event, &handle, &sample);
7954 
7955     perf_output_end(&handle);
7956 out:
7957     comm_event->event_id.header.size = size;
7958 }
7959 
7960 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7961 {
7962     char comm[TASK_COMM_LEN];
7963     unsigned int size;
7964 
7965     memset(comm, 0, sizeof(comm));
7966     strlcpy(comm, comm_event->task->comm, sizeof(comm));
7967     size = ALIGN(strlen(comm)+1, sizeof(u64));
7968 
7969     comm_event->comm = comm;
7970     comm_event->comm_size = size;
7971 
7972     comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7973 
7974     perf_iterate_sb(perf_event_comm_output,
7975                comm_event,
7976                NULL);
7977 }
7978 
7979 void perf_event_comm(struct task_struct *task, bool exec)
7980 {
7981     struct perf_comm_event comm_event;
7982 
7983     if (!atomic_read(&nr_comm_events))
7984         return;
7985 
7986     comm_event = (struct perf_comm_event){
7987         .task   = task,
7988         /* .comm      */
7989         /* .comm_size */
7990         .event_id  = {
7991             .header = {
7992                 .type = PERF_RECORD_COMM,
7993                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7994                 /* .size */
7995             },
7996             /* .pid */
7997             /* .tid */
7998         },
7999     };
8000 
8001     perf_event_comm_event(&comm_event);
8002 }
8003 
8004 /*
8005  * namespaces tracking
8006  */
8007 
8008 struct perf_namespaces_event {
8009     struct task_struct      *task;
8010 
8011     struct {
8012         struct perf_event_header    header;
8013 
8014         u32             pid;
8015         u32             tid;
8016         u64             nr_namespaces;
8017         struct perf_ns_link_info    link_info[NR_NAMESPACES];
8018     } event_id;
8019 };
8020 
8021 static int perf_event_namespaces_match(struct perf_event *event)
8022 {
8023     return event->attr.namespaces;
8024 }
8025 
8026 static void perf_event_namespaces_output(struct perf_event *event,
8027                      void *data)
8028 {
8029     struct perf_namespaces_event *namespaces_event = data;
8030     struct perf_output_handle handle;
8031     struct perf_sample_data sample;
8032     u16 header_size = namespaces_event->event_id.header.size;
8033     int ret;
8034 
8035     if (!perf_event_namespaces_match(event))
8036         return;
8037 
8038     perf_event_header__init_id(&namespaces_event->event_id.header,
8039                    &sample, event);
8040     ret = perf_output_begin(&handle, &sample, event,
8041                 namespaces_event->event_id.header.size);
8042     if (ret)
8043         goto out;
8044 
8045     namespaces_event->event_id.pid = perf_event_pid(event,
8046                             namespaces_event->task);
8047     namespaces_event->event_id.tid = perf_event_tid(event,
8048                             namespaces_event->task);
8049 
8050     perf_output_put(&handle, namespaces_event->event_id);
8051 
8052     perf_event__output_id_sample(event, &handle, &sample);
8053 
8054     perf_output_end(&handle);
8055 out:
8056     namespaces_event->event_id.header.size = header_size;
8057 }
8058 
8059 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8060                    struct task_struct *task,
8061                    const struct proc_ns_operations *ns_ops)
8062 {
8063     struct path ns_path;
8064     struct inode *ns_inode;
8065     int error;
8066 
8067     error = ns_get_path(&ns_path, task, ns_ops);
8068     if (!error) {
8069         ns_inode = ns_path.dentry->d_inode;
8070         ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8071         ns_link_info->ino = ns_inode->i_ino;
8072         path_put(&ns_path);
8073     }
8074 }
8075 
8076 void perf_event_namespaces(struct task_struct *task)
8077 {
8078     struct perf_namespaces_event namespaces_event;
8079     struct perf_ns_link_info *ns_link_info;
8080 
8081     if (!atomic_read(&nr_namespaces_events))
8082         return;
8083 
8084     namespaces_event = (struct perf_namespaces_event){
8085         .task   = task,
8086         .event_id  = {
8087             .header = {
8088                 .type = PERF_RECORD_NAMESPACES,
8089                 .misc = 0,
8090                 .size = sizeof(namespaces_event.event_id),
8091             },
8092             /* .pid */
8093             /* .tid */
8094             .nr_namespaces = NR_NAMESPACES,
8095             /* .link_info[NR_NAMESPACES] */
8096         },
8097     };
8098 
8099     ns_link_info = namespaces_event.event_id.link_info;
8100 
8101     perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8102                    task, &mntns_operations);
8103 
8104 #ifdef CONFIG_USER_NS
8105     perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8106                    task, &userns_operations);
8107 #endif
8108 #ifdef CONFIG_NET_NS
8109     perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8110                    task, &netns_operations);
8111 #endif
8112 #ifdef CONFIG_UTS_NS
8113     perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8114                    task, &utsns_operations);
8115 #endif
8116 #ifdef CONFIG_IPC_NS
8117     perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8118                    task, &ipcns_operations);
8119 #endif
8120 #ifdef CONFIG_PID_NS
8121     perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8122                    task, &pidns_operations);
8123 #endif
8124 #ifdef CONFIG_CGROUPS
8125     perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8126                    task, &cgroupns_operations);
8127 #endif
8128 
8129     perf_iterate_sb(perf_event_namespaces_output,
8130             &namespaces_event,
8131             NULL);
8132 }
8133 
8134 /*
8135  * cgroup tracking
8136  */
8137 #ifdef CONFIG_CGROUP_PERF
8138 
8139 struct perf_cgroup_event {
8140     char                *path;
8141     int             path_size;
8142     struct {
8143         struct perf_event_header    header;
8144         u64             id;
8145         char                path[];
8146     } event_id;
8147 };
8148 
8149 static int perf_event_cgroup_match(struct perf_event *event)
8150 {
8151     return event->attr.cgroup;
8152 }
8153 
8154 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8155 {
8156     struct perf_cgroup_event *cgroup_event = data;
8157     struct perf_output_handle handle;
8158     struct perf_sample_data sample;
8159     u16 header_size = cgroup_event->event_id.header.size;
8160     int ret;
8161 
8162     if (!perf_event_cgroup_match(event))
8163         return;
8164 
8165     perf_event_header__init_id(&cgroup_event->event_id.header,
8166                    &sample, event);
8167     ret = perf_output_begin(&handle, &sample, event,
8168                 cgroup_event->event_id.header.size);
8169     if (ret)
8170         goto out;
8171 
8172     perf_output_put(&handle, cgroup_event->event_id);
8173     __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8174 
8175     perf_event__output_id_sample(event, &handle, &sample);
8176 
8177     perf_output_end(&handle);
8178 out:
8179     cgroup_event->event_id.header.size = header_size;
8180 }
8181 
8182 static void perf_event_cgroup(struct cgroup *cgrp)
8183 {
8184     struct perf_cgroup_event cgroup_event;
8185     char path_enomem[16] = "//enomem";
8186     char *pathname;
8187     size_t size;
8188 
8189     if (!atomic_read(&nr_cgroup_events))
8190         return;
8191 
8192     cgroup_event = (struct perf_cgroup_event){
8193         .event_id  = {
8194             .header = {
8195                 .type = PERF_RECORD_CGROUP,
8196                 .misc = 0,
8197                 .size = sizeof(cgroup_event.event_id),
8198             },
8199             .id = cgroup_id(cgrp),
8200         },
8201     };
8202 
8203     pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8204     if (pathname == NULL) {
8205         cgroup_event.path = path_enomem;
8206     } else {
8207         /* just to be sure to have enough space for alignment */
8208         cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8209         cgroup_event.path = pathname;
8210     }
8211 
8212     /*
8213      * Since our buffer works in 8 byte units we need to align our string
8214      * size to a multiple of 8. However, we must guarantee the tail end is
8215      * zero'd out to avoid leaking random bits to userspace.
8216      */
8217     size = strlen(cgroup_event.path) + 1;
8218     while (!IS_ALIGNED(size, sizeof(u64)))
8219         cgroup_event.path[size++] = '\0';
8220 
8221     cgroup_event.event_id.header.size += size;
8222     cgroup_event.path_size = size;
8223 
8224     perf_iterate_sb(perf_event_cgroup_output,
8225             &cgroup_event,
8226             NULL);
8227 
8228     kfree(pathname);
8229 }
8230 
8231 #endif
8232 
8233 /*
8234  * mmap tracking
8235  */
8236 
8237 struct perf_mmap_event {
8238     struct vm_area_struct   *vma;
8239 
8240     const char      *file_name;
8241     int         file_size;
8242     int         maj, min;
8243     u64         ino;
8244     u64         ino_generation;
8245     u32         prot, flags;
8246     u8          build_id[BUILD_ID_SIZE_MAX];
8247     u32         build_id_size;
8248 
8249     struct {
8250         struct perf_event_header    header;
8251 
8252         u32             pid;
8253         u32             tid;
8254         u64             start;
8255         u64             len;
8256         u64             pgoff;
8257     } event_id;
8258 };
8259 
8260 static int perf_event_mmap_match(struct perf_event *event,
8261                  void *data)
8262 {
8263     struct perf_mmap_event *mmap_event = data;
8264     struct vm_area_struct *vma = mmap_event->vma;
8265     int executable = vma->vm_flags & VM_EXEC;
8266 
8267     return (!executable && event->attr.mmap_data) ||
8268            (executable && (event->attr.mmap || event->attr.mmap2));
8269 }
8270 
8271 static void perf_event_mmap_output(struct perf_event *event,
8272                    void *data)
8273 {
8274     struct perf_mmap_event *mmap_event = data;
8275     struct perf_output_handle handle;
8276     struct perf_sample_data sample;
8277     int size = mmap_event->event_id.header.size;
8278     u32 type = mmap_event->event_id.header.type;
8279     bool use_build_id;
8280     int ret;
8281 
8282     if (!perf_event_mmap_match(event, data))
8283         return;
8284 
8285     if (event->attr.mmap2) {
8286         mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8287         mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8288         mmap_event->event_id.header.size += sizeof(mmap_event->min);
8289         mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8290         mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8291         mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8292         mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8293     }
8294 
8295     perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8296     ret = perf_output_begin(&handle, &sample, event,
8297                 mmap_event->event_id.header.size);
8298     if (ret)
8299         goto out;
8300 
8301     mmap_event->event_id.pid = perf_event_pid(event, current);
8302     mmap_event->event_id.tid = perf_event_tid(event, current);
8303 
8304     use_build_id = event->attr.build_id && mmap_event->build_id_size;
8305 
8306     if (event->attr.mmap2 && use_build_id)
8307         mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8308 
8309     perf_output_put(&handle, mmap_event->event_id);
8310 
8311     if (event->attr.mmap2) {
8312         if (use_build_id) {
8313             u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8314 
8315             __output_copy(&handle, size, 4);
8316             __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8317         } else {
8318             perf_output_put(&handle, mmap_event->maj);
8319             perf_output_put(&handle, mmap_event->min);
8320             perf_output_put(&handle, mmap_event->ino);
8321             perf_output_put(&handle, mmap_event->ino_generation);
8322         }
8323         perf_output_put(&handle, mmap_event->prot);
8324         perf_output_put(&handle, mmap_event->flags);
8325     }
8326 
8327     __output_copy(&handle, mmap_event->file_name,
8328                    mmap_event->file_size);
8329 
8330     perf_event__output_id_sample(event, &handle, &sample);
8331 
8332     perf_output_end(&handle);
8333 out:
8334     mmap_event->event_id.header.size = size;
8335     mmap_event->event_id.header.type = type;
8336 }
8337 
8338 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8339 {
8340     struct vm_area_struct *vma = mmap_event->vma;
8341     struct file *file = vma->vm_file;
8342     int maj = 0, min = 0;
8343     u64 ino = 0, gen = 0;
8344     u32 prot = 0, flags = 0;
8345     unsigned int size;
8346     char tmp[16];
8347     char *buf = NULL;
8348     char *name;
8349 
8350     if (vma->vm_flags & VM_READ)
8351         prot |= PROT_READ;
8352     if (vma->vm_flags & VM_WRITE)
8353         prot |= PROT_WRITE;
8354     if (vma->vm_flags & VM_EXEC)
8355         prot |= PROT_EXEC;
8356 
8357     if (vma->vm_flags & VM_MAYSHARE)
8358         flags = MAP_SHARED;
8359     else
8360         flags = MAP_PRIVATE;
8361 
8362     if (vma->vm_flags & VM_LOCKED)
8363         flags |= MAP_LOCKED;
8364     if (is_vm_hugetlb_page(vma))
8365         flags |= MAP_HUGETLB;
8366 
8367     if (file) {
8368         struct inode *inode;
8369         dev_t dev;
8370 
8371         buf = kmalloc(PATH_MAX, GFP_KERNEL);
8372         if (!buf) {
8373             name = "//enomem";
8374             goto cpy_name;
8375         }
8376         /*
8377          * d_path() works from the end of the rb backwards, so we
8378          * need to add enough zero bytes after the string to handle
8379          * the 64bit alignment we do later.
8380          */
8381         name = file_path(file, buf, PATH_MAX - sizeof(u64));
8382         if (IS_ERR(name)) {
8383             name = "//toolong";
8384             goto cpy_name;
8385         }
8386         inode = file_inode(vma->vm_file);
8387         dev = inode->i_sb->s_dev;
8388         ino = inode->i_ino;
8389         gen = inode->i_generation;
8390         maj = MAJOR(dev);
8391         min = MINOR(dev);
8392 
8393         goto got_name;
8394     } else {
8395         if (vma->vm_ops && vma->vm_ops->name) {
8396             name = (char *) vma->vm_ops->name(vma);
8397             if (name)
8398                 goto cpy_name;
8399         }
8400 
8401         name = (char *)arch_vma_name(vma);
8402         if (name)
8403             goto cpy_name;
8404 
8405         if (vma->vm_start <= vma->vm_mm->start_brk &&
8406                 vma->vm_end >= vma->vm_mm->brk) {
8407             name = "[heap]";
8408             goto cpy_name;
8409         }
8410         if (vma->vm_start <= vma->vm_mm->start_stack &&
8411                 vma->vm_end >= vma->vm_mm->start_stack) {
8412             name = "[stack]";
8413             goto cpy_name;
8414         }
8415 
8416         name = "//anon";
8417         goto cpy_name;
8418     }
8419 
8420 cpy_name:
8421     strlcpy(tmp, name, sizeof(tmp));
8422     name = tmp;
8423 got_name:
8424     /*
8425      * Since our buffer works in 8 byte units we need to align our string
8426      * size to a multiple of 8. However, we must guarantee the tail end is
8427      * zero'd out to avoid leaking random bits to userspace.
8428      */
8429     size = strlen(name)+1;
8430     while (!IS_ALIGNED(size, sizeof(u64)))
8431         name[size++] = '\0';
8432 
8433     mmap_event->file_name = name;
8434     mmap_event->file_size = size;
8435     mmap_event->maj = maj;
8436     mmap_event->min = min;
8437     mmap_event->ino = ino;
8438     mmap_event->ino_generation = gen;
8439     mmap_event->prot = prot;
8440     mmap_event->flags = flags;
8441 
8442     if (!(vma->vm_flags & VM_EXEC))
8443         mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8444 
8445     mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8446 
8447     if (atomic_read(&nr_build_id_events))
8448         build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8449 
8450     perf_iterate_sb(perf_event_mmap_output,
8451                mmap_event,
8452                NULL);
8453 
8454     kfree(buf);
8455 }
8456 
8457 /*
8458  * Check whether inode and address range match filter criteria.
8459  */
8460 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8461                      struct file *file, unsigned long offset,
8462                      unsigned long size)
8463 {
8464     /* d_inode(NULL) won't be equal to any mapped user-space file */
8465     if (!filter->path.dentry)
8466         return false;
8467 
8468     if (d_inode(filter->path.dentry) != file_inode(file))
8469         return false;
8470 
8471     if (filter->offset > offset + size)
8472         return false;
8473 
8474     if (filter->offset + filter->size < offset)
8475         return false;
8476 
8477     return true;
8478 }
8479 
8480 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8481                     struct vm_area_struct *vma,
8482                     struct perf_addr_filter_range *fr)
8483 {
8484     unsigned long vma_size = vma->vm_end - vma->vm_start;
8485     unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8486     struct file *file = vma->vm_file;
8487 
8488     if (!perf_addr_filter_match(filter, file, off, vma_size))
8489         return false;
8490 
8491     if (filter->offset < off) {
8492         fr->start = vma->vm_start;
8493         fr->size = min(vma_size, filter->size - (off - filter->offset));
8494     } else {
8495         fr->start = vma->vm_start + filter->offset - off;
8496         fr->size = min(vma->vm_end - fr->start, filter->size);
8497     }
8498 
8499     return true;
8500 }
8501 
8502 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8503 {
8504     struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8505     struct vm_area_struct *vma = data;
8506     struct perf_addr_filter *filter;
8507     unsigned int restart = 0, count = 0;
8508     unsigned long flags;
8509 
8510     if (!has_addr_filter(event))
8511         return;
8512 
8513     if (!vma->vm_file)
8514         return;
8515 
8516     raw_spin_lock_irqsave(&ifh->lock, flags);
8517     list_for_each_entry(filter, &ifh->list, entry) {
8518         if (perf_addr_filter_vma_adjust(filter, vma,
8519                         &event->addr_filter_ranges[count]))
8520             restart++;
8521 
8522         count++;
8523     }
8524 
8525     if (restart)
8526         event->addr_filters_gen++;
8527     raw_spin_unlock_irqrestore(&ifh->lock, flags);
8528 
8529     if (restart)
8530         perf_event_stop(event, 1);
8531 }
8532 
8533 /*
8534  * Adjust all task's events' filters to the new vma
8535  */
8536 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8537 {
8538     struct perf_event_context *ctx;
8539     int ctxn;
8540 
8541     /*
8542      * Data tracing isn't supported yet and as such there is no need
8543      * to keep track of anything that isn't related to executable code:
8544      */
8545     if (!(vma->vm_flags & VM_EXEC))
8546         return;
8547 
8548     rcu_read_lock();
8549     for_each_task_context_nr(ctxn) {
8550         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8551         if (!ctx)
8552             continue;
8553 
8554         perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8555     }
8556     rcu_read_unlock();
8557 }
8558 
8559 void perf_event_mmap(struct vm_area_struct *vma)
8560 {
8561     struct perf_mmap_event mmap_event;
8562 
8563     if (!atomic_read(&nr_mmap_events))
8564         return;
8565 
8566     mmap_event = (struct perf_mmap_event){
8567         .vma    = vma,
8568         /* .file_name */
8569         /* .file_size */
8570         .event_id  = {
8571             .header = {
8572                 .type = PERF_RECORD_MMAP,
8573                 .misc = PERF_RECORD_MISC_USER,
8574                 /* .size */
8575             },
8576             /* .pid */
8577             /* .tid */
8578             .start  = vma->vm_start,
8579             .len    = vma->vm_end - vma->vm_start,
8580             .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8581         },
8582         /* .maj (attr_mmap2 only) */
8583         /* .min (attr_mmap2 only) */
8584         /* .ino (attr_mmap2 only) */
8585         /* .ino_generation (attr_mmap2 only) */
8586         /* .prot (attr_mmap2 only) */
8587         /* .flags (attr_mmap2 only) */
8588     };
8589 
8590     perf_addr_filters_adjust(vma);
8591     perf_event_mmap_event(&mmap_event);
8592 }
8593 
8594 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8595               unsigned long size, u64 flags)
8596 {
8597     struct perf_output_handle handle;
8598     struct perf_sample_data sample;
8599     struct perf_aux_event {
8600         struct perf_event_header    header;
8601         u64             offset;
8602         u64             size;
8603         u64             flags;
8604     } rec = {
8605         .header = {
8606             .type = PERF_RECORD_AUX,
8607             .misc = 0,
8608             .size = sizeof(rec),
8609         },
8610         .offset     = head,
8611         .size       = size,
8612         .flags      = flags,
8613     };
8614     int ret;
8615 
8616     perf_event_header__init_id(&rec.header, &sample, event);
8617     ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8618 
8619     if (ret)
8620         return;
8621 
8622     perf_output_put(&handle, rec);
8623     perf_event__output_id_sample(event, &handle, &sample);
8624 
8625     perf_output_end(&handle);
8626 }
8627 
8628 /*
8629  * Lost/dropped samples logging
8630  */
8631 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8632 {
8633     struct perf_output_handle handle;
8634     struct perf_sample_data sample;
8635     int ret;
8636 
8637     struct {
8638         struct perf_event_header    header;
8639         u64             lost;
8640     } lost_samples_event = {
8641         .header = {
8642             .type = PERF_RECORD_LOST_SAMPLES,
8643             .misc = 0,
8644             .size = sizeof(lost_samples_event),
8645         },
8646         .lost       = lost,
8647     };
8648 
8649     perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8650 
8651     ret = perf_output_begin(&handle, &sample, event,
8652                 lost_samples_event.header.size);
8653     if (ret)
8654         return;
8655 
8656     perf_output_put(&handle, lost_samples_event);
8657     perf_event__output_id_sample(event, &handle, &sample);
8658     perf_output_end(&handle);
8659 }
8660 
8661 /*
8662  * context_switch tracking
8663  */
8664 
8665 struct perf_switch_event {
8666     struct task_struct  *task;
8667     struct task_struct  *next_prev;
8668 
8669     struct {
8670         struct perf_event_header    header;
8671         u32             next_prev_pid;
8672         u32             next_prev_tid;
8673     } event_id;
8674 };
8675 
8676 static int perf_event_switch_match(struct perf_event *event)
8677 {
8678     return event->attr.context_switch;
8679 }
8680 
8681 static void perf_event_switch_output(struct perf_event *event, void *data)
8682 {
8683     struct perf_switch_event *se = data;
8684     struct perf_output_handle handle;
8685     struct perf_sample_data sample;
8686     int ret;
8687 
8688     if (!perf_event_switch_match(event))
8689         return;
8690 
8691     /* Only CPU-wide events are allowed to see next/prev pid/tid */
8692     if (event->ctx->task) {
8693         se->event_id.header.type = PERF_RECORD_SWITCH;
8694         se->event_id.header.size = sizeof(se->event_id.header);
8695     } else {
8696         se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8697         se->event_id.header.size = sizeof(se->event_id);
8698         se->event_id.next_prev_pid =
8699                     perf_event_pid(event, se->next_prev);
8700         se->event_id.next_prev_tid =
8701                     perf_event_tid(event, se->next_prev);
8702     }
8703 
8704     perf_event_header__init_id(&se->event_id.header, &sample, event);
8705 
8706     ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8707     if (ret)
8708         return;
8709 
8710     if (event->ctx->task)
8711         perf_output_put(&handle, se->event_id.header);
8712     else
8713         perf_output_put(&handle, se->event_id);
8714 
8715     perf_event__output_id_sample(event, &handle, &sample);
8716 
8717     perf_output_end(&handle);
8718 }
8719 
8720 static void perf_event_switch(struct task_struct *task,
8721                   struct task_struct *next_prev, bool sched_in)
8722 {
8723     struct perf_switch_event switch_event;
8724 
8725     /* N.B. caller checks nr_switch_events != 0 */
8726 
8727     switch_event = (struct perf_switch_event){
8728         .task       = task,
8729         .next_prev  = next_prev,
8730         .event_id   = {
8731             .header = {
8732                 /* .type */
8733                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8734                 /* .size */
8735             },
8736             /* .next_prev_pid */
8737             /* .next_prev_tid */
8738         },
8739     };
8740 
8741     if (!sched_in && task->on_rq) {
8742         switch_event.event_id.header.misc |=
8743                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8744     }
8745 
8746     perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8747 }
8748 
8749 /*
8750  * IRQ throttle logging
8751  */
8752 
8753 static void perf_log_throttle(struct perf_event *event, int enable)
8754 {
8755     struct perf_output_handle handle;
8756     struct perf_sample_data sample;
8757     int ret;
8758 
8759     struct {
8760         struct perf_event_header    header;
8761         u64             time;
8762         u64             id;
8763         u64             stream_id;
8764     } throttle_event = {
8765         .header = {
8766             .type = PERF_RECORD_THROTTLE,
8767             .misc = 0,
8768             .size = sizeof(throttle_event),
8769         },
8770         .time       = perf_event_clock(event),
8771         .id     = primary_event_id(event),
8772         .stream_id  = event->id,
8773     };
8774 
8775     if (enable)
8776         throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8777 
8778     perf_event_header__init_id(&throttle_event.header, &sample, event);
8779 
8780     ret = perf_output_begin(&handle, &sample, event,
8781                 throttle_event.header.size);
8782     if (ret)
8783         return;
8784 
8785     perf_output_put(&handle, throttle_event);
8786     perf_event__output_id_sample(event, &handle, &sample);
8787     perf_output_end(&handle);
8788 }
8789 
8790 /*
8791  * ksymbol register/unregister tracking
8792  */
8793 
8794 struct perf_ksymbol_event {
8795     const char  *name;
8796     int     name_len;
8797     struct {
8798         struct perf_event_header        header;
8799         u64             addr;
8800         u32             len;
8801         u16             ksym_type;
8802         u16             flags;
8803     } event_id;
8804 };
8805 
8806 static int perf_event_ksymbol_match(struct perf_event *event)
8807 {
8808     return event->attr.ksymbol;
8809 }
8810 
8811 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8812 {
8813     struct perf_ksymbol_event *ksymbol_event = data;
8814     struct perf_output_handle handle;
8815     struct perf_sample_data sample;
8816     int ret;
8817 
8818     if (!perf_event_ksymbol_match(event))
8819         return;
8820 
8821     perf_event_header__init_id(&ksymbol_event->event_id.header,
8822                    &sample, event);
8823     ret = perf_output_begin(&handle, &sample, event,
8824                 ksymbol_event->event_id.header.size);
8825     if (ret)
8826         return;
8827 
8828     perf_output_put(&handle, ksymbol_event->event_id);
8829     __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8830     perf_event__output_id_sample(event, &handle, &sample);
8831 
8832     perf_output_end(&handle);
8833 }
8834 
8835 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8836             const char *sym)
8837 {
8838     struct perf_ksymbol_event ksymbol_event;
8839     char name[KSYM_NAME_LEN];
8840     u16 flags = 0;
8841     int name_len;
8842 
8843     if (!atomic_read(&nr_ksymbol_events))
8844         return;
8845 
8846     if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8847         ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8848         goto err;
8849 
8850     strlcpy(name, sym, KSYM_NAME_LEN);
8851     name_len = strlen(name) + 1;
8852     while (!IS_ALIGNED(name_len, sizeof(u64)))
8853         name[name_len++] = '\0';
8854     BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8855 
8856     if (unregister)
8857         flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8858 
8859     ksymbol_event = (struct perf_ksymbol_event){
8860         .name = name,
8861         .name_len = name_len,
8862         .event_id = {
8863             .header = {
8864                 .type = PERF_RECORD_KSYMBOL,
8865                 .size = sizeof(ksymbol_event.event_id) +
8866                     name_len,
8867             },
8868             .addr = addr,
8869             .len = len,
8870             .ksym_type = ksym_type,
8871             .flags = flags,
8872         },
8873     };
8874 
8875     perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8876     return;
8877 err:
8878     WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8879 }
8880 
8881 /*
8882  * bpf program load/unload tracking
8883  */
8884 
8885 struct perf_bpf_event {
8886     struct bpf_prog *prog;
8887     struct {
8888         struct perf_event_header        header;
8889         u16             type;
8890         u16             flags;
8891         u32             id;
8892         u8              tag[BPF_TAG_SIZE];
8893     } event_id;
8894 };
8895 
8896 static int perf_event_bpf_match(struct perf_event *event)
8897 {
8898     return event->attr.bpf_event;
8899 }
8900 
8901 static void perf_event_bpf_output(struct perf_event *event, void *data)
8902 {
8903     struct perf_bpf_event *bpf_event = data;
8904     struct perf_output_handle handle;
8905     struct perf_sample_data sample;
8906     int ret;
8907 
8908     if (!perf_event_bpf_match(event))
8909         return;
8910 
8911     perf_event_header__init_id(&bpf_event->event_id.header,
8912                    &sample, event);
8913     ret = perf_output_begin(&handle, data, event,
8914                 bpf_event->event_id.header.size);
8915     if (ret)
8916         return;
8917 
8918     perf_output_put(&handle, bpf_event->event_id);
8919     perf_event__output_id_sample(event, &handle, &sample);
8920 
8921     perf_output_end(&handle);
8922 }
8923 
8924 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8925                      enum perf_bpf_event_type type)
8926 {
8927     bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8928     int i;
8929 
8930     if (prog->aux->func_cnt == 0) {
8931         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8932                    (u64)(unsigned long)prog->bpf_func,
8933                    prog->jited_len, unregister,
8934                    prog->aux->ksym.name);
8935     } else {
8936         for (i = 0; i < prog->aux->func_cnt; i++) {
8937             struct bpf_prog *subprog = prog->aux->func[i];
8938 
8939             perf_event_ksymbol(
8940                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8941                 (u64)(unsigned long)subprog->bpf_func,
8942                 subprog->jited_len, unregister,
8943                 prog->aux->ksym.name);
8944         }
8945     }
8946 }
8947 
8948 void perf_event_bpf_event(struct bpf_prog *prog,
8949               enum perf_bpf_event_type type,
8950               u16 flags)
8951 {
8952     struct perf_bpf_event bpf_event;
8953 
8954     if (type <= PERF_BPF_EVENT_UNKNOWN ||
8955         type >= PERF_BPF_EVENT_MAX)
8956         return;
8957 
8958     switch (type) {
8959     case PERF_BPF_EVENT_PROG_LOAD:
8960     case PERF_BPF_EVENT_PROG_UNLOAD:
8961         if (atomic_read(&nr_ksymbol_events))
8962             perf_event_bpf_emit_ksymbols(prog, type);
8963         break;
8964     default:
8965         break;
8966     }
8967 
8968     if (!atomic_read(&nr_bpf_events))
8969         return;
8970 
8971     bpf_event = (struct perf_bpf_event){
8972         .prog = prog,
8973         .event_id = {
8974             .header = {
8975                 .type = PERF_RECORD_BPF_EVENT,
8976                 .size = sizeof(bpf_event.event_id),
8977             },
8978             .type = type,
8979             .flags = flags,
8980             .id = prog->aux->id,
8981         },
8982     };
8983 
8984     BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8985 
8986     memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8987     perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8988 }
8989 
8990 struct perf_text_poke_event {
8991     const void      *old_bytes;
8992     const void      *new_bytes;
8993     size_t          pad;
8994     u16         old_len;
8995     u16         new_len;
8996 
8997     struct {
8998         struct perf_event_header    header;
8999 
9000         u64             addr;
9001     } event_id;
9002 };
9003 
9004 static int perf_event_text_poke_match(struct perf_event *event)
9005 {
9006     return event->attr.text_poke;
9007 }
9008 
9009 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9010 {
9011     struct perf_text_poke_event *text_poke_event = data;
9012     struct perf_output_handle handle;
9013     struct perf_sample_data sample;
9014     u64 padding = 0;
9015     int ret;
9016 
9017     if (!perf_event_text_poke_match(event))
9018         return;
9019 
9020     perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9021 
9022     ret = perf_output_begin(&handle, &sample, event,
9023                 text_poke_event->event_id.header.size);
9024     if (ret)
9025         return;
9026 
9027     perf_output_put(&handle, text_poke_event->event_id);
9028     perf_output_put(&handle, text_poke_event->old_len);
9029     perf_output_put(&handle, text_poke_event->new_len);
9030 
9031     __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9032     __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9033 
9034     if (text_poke_event->pad)
9035         __output_copy(&handle, &padding, text_poke_event->pad);
9036 
9037     perf_event__output_id_sample(event, &handle, &sample);
9038 
9039     perf_output_end(&handle);
9040 }
9041 
9042 void perf_event_text_poke(const void *addr, const void *old_bytes,
9043               size_t old_len, const void *new_bytes, size_t new_len)
9044 {
9045     struct perf_text_poke_event text_poke_event;
9046     size_t tot, pad;
9047 
9048     if (!atomic_read(&nr_text_poke_events))
9049         return;
9050 
9051     tot  = sizeof(text_poke_event.old_len) + old_len;
9052     tot += sizeof(text_poke_event.new_len) + new_len;
9053     pad  = ALIGN(tot, sizeof(u64)) - tot;
9054 
9055     text_poke_event = (struct perf_text_poke_event){
9056         .old_bytes    = old_bytes,
9057         .new_bytes    = new_bytes,
9058         .pad          = pad,
9059         .old_len      = old_len,
9060         .new_len      = new_len,
9061         .event_id  = {
9062             .header = {
9063                 .type = PERF_RECORD_TEXT_POKE,
9064                 .misc = PERF_RECORD_MISC_KERNEL,
9065                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9066             },
9067             .addr = (unsigned long)addr,
9068         },
9069     };
9070 
9071     perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9072 }
9073 
9074 void perf_event_itrace_started(struct perf_event *event)
9075 {
9076     event->attach_state |= PERF_ATTACH_ITRACE;
9077 }
9078 
9079 static void perf_log_itrace_start(struct perf_event *event)
9080 {
9081     struct perf_output_handle handle;
9082     struct perf_sample_data sample;
9083     struct perf_aux_event {
9084         struct perf_event_header        header;
9085         u32             pid;
9086         u32             tid;
9087     } rec;
9088     int ret;
9089 
9090     if (event->parent)
9091         event = event->parent;
9092 
9093     if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9094         event->attach_state & PERF_ATTACH_ITRACE)
9095         return;
9096 
9097     rec.header.type = PERF_RECORD_ITRACE_START;
9098     rec.header.misc = 0;
9099     rec.header.size = sizeof(rec);
9100     rec.pid = perf_event_pid(event, current);
9101     rec.tid = perf_event_tid(event, current);
9102 
9103     perf_event_header__init_id(&rec.header, &sample, event);
9104     ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9105 
9106     if (ret)
9107         return;
9108 
9109     perf_output_put(&handle, rec);
9110     perf_event__output_id_sample(event, &handle, &sample);
9111 
9112     perf_output_end(&handle);
9113 }
9114 
9115 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9116 {
9117     struct perf_output_handle handle;
9118     struct perf_sample_data sample;
9119     struct perf_aux_event {
9120         struct perf_event_header        header;
9121         u64             hw_id;
9122     } rec;
9123     int ret;
9124 
9125     if (event->parent)
9126         event = event->parent;
9127 
9128     rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9129     rec.header.misc = 0;
9130     rec.header.size = sizeof(rec);
9131     rec.hw_id   = hw_id;
9132 
9133     perf_event_header__init_id(&rec.header, &sample, event);
9134     ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9135 
9136     if (ret)
9137         return;
9138 
9139     perf_output_put(&handle, rec);
9140     perf_event__output_id_sample(event, &handle, &sample);
9141 
9142     perf_output_end(&handle);
9143 }
9144 
9145 static int
9146 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9147 {
9148     struct hw_perf_event *hwc = &event->hw;
9149     int ret = 0;
9150     u64 seq;
9151 
9152     seq = __this_cpu_read(perf_throttled_seq);
9153     if (seq != hwc->interrupts_seq) {
9154         hwc->interrupts_seq = seq;
9155         hwc->interrupts = 1;
9156     } else {
9157         hwc->interrupts++;
9158         if (unlikely(throttle
9159                  && hwc->interrupts >= max_samples_per_tick)) {
9160             __this_cpu_inc(perf_throttled_count);
9161             tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9162             hwc->interrupts = MAX_INTERRUPTS;
9163             perf_log_throttle(event, 0);
9164             ret = 1;
9165         }
9166     }
9167 
9168     if (event->attr.freq) {
9169         u64 now = perf_clock();
9170         s64 delta = now - hwc->freq_time_stamp;
9171 
9172         hwc->freq_time_stamp = now;
9173 
9174         if (delta > 0 && delta < 2*TICK_NSEC)
9175             perf_adjust_period(event, delta, hwc->last_period, true);
9176     }
9177 
9178     return ret;
9179 }
9180 
9181 int perf_event_account_interrupt(struct perf_event *event)
9182 {
9183     return __perf_event_account_interrupt(event, 1);
9184 }
9185 
9186 /*
9187  * Generic event overflow handling, sampling.
9188  */
9189 
9190 static int __perf_event_overflow(struct perf_event *event,
9191                    int throttle, struct perf_sample_data *data,
9192                    struct pt_regs *regs)
9193 {
9194     int events = atomic_read(&event->event_limit);
9195     int ret = 0;
9196 
9197     /*
9198      * Non-sampling counters might still use the PMI to fold short
9199      * hardware counters, ignore those.
9200      */
9201     if (unlikely(!is_sampling_event(event)))
9202         return 0;
9203 
9204     ret = __perf_event_account_interrupt(event, throttle);
9205 
9206     /*
9207      * XXX event_limit might not quite work as expected on inherited
9208      * events
9209      */
9210 
9211     event->pending_kill = POLL_IN;
9212     if (events && atomic_dec_and_test(&event->event_limit)) {
9213         ret = 1;
9214         event->pending_kill = POLL_HUP;
9215         event->pending_addr = data->addr;
9216 
9217         perf_event_disable_inatomic(event);
9218     }
9219 
9220     READ_ONCE(event->overflow_handler)(event, data, regs);
9221 
9222     if (*perf_event_fasync(event) && event->pending_kill) {
9223         event->pending_wakeup = 1;
9224         irq_work_queue(&event->pending);
9225     }
9226 
9227     return ret;
9228 }
9229 
9230 int perf_event_overflow(struct perf_event *event,
9231               struct perf_sample_data *data,
9232               struct pt_regs *regs)
9233 {
9234     return __perf_event_overflow(event, 1, data, regs);
9235 }
9236 
9237 /*
9238  * Generic software event infrastructure
9239  */
9240 
9241 struct swevent_htable {
9242     struct swevent_hlist        *swevent_hlist;
9243     struct mutex            hlist_mutex;
9244     int             hlist_refcount;
9245 
9246     /* Recursion avoidance in each contexts */
9247     int             recursion[PERF_NR_CONTEXTS];
9248 };
9249 
9250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9251 
9252 /*
9253  * We directly increment event->count and keep a second value in
9254  * event->hw.period_left to count intervals. This period event
9255  * is kept in the range [-sample_period, 0] so that we can use the
9256  * sign as trigger.
9257  */
9258 
9259 u64 perf_swevent_set_period(struct perf_event *event)
9260 {
9261     struct hw_perf_event *hwc = &event->hw;
9262     u64 period = hwc->last_period;
9263     u64 nr, offset;
9264     s64 old, val;
9265 
9266     hwc->last_period = hwc->sample_period;
9267 
9268 again:
9269     old = val = local64_read(&hwc->period_left);
9270     if (val < 0)
9271         return 0;
9272 
9273     nr = div64_u64(period + val, period);
9274     offset = nr * period;
9275     val -= offset;
9276     if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9277         goto again;
9278 
9279     return nr;
9280 }
9281 
9282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9283                     struct perf_sample_data *data,
9284                     struct pt_regs *regs)
9285 {
9286     struct hw_perf_event *hwc = &event->hw;
9287     int throttle = 0;
9288 
9289     if (!overflow)
9290         overflow = perf_swevent_set_period(event);
9291 
9292     if (hwc->interrupts == MAX_INTERRUPTS)
9293         return;
9294 
9295     for (; overflow; overflow--) {
9296         if (__perf_event_overflow(event, throttle,
9297                         data, regs)) {
9298             /*
9299              * We inhibit the overflow from happening when
9300              * hwc->interrupts == MAX_INTERRUPTS.
9301              */
9302             break;
9303         }
9304         throttle = 1;
9305     }
9306 }
9307 
9308 static void perf_swevent_event(struct perf_event *event, u64 nr,
9309                    struct perf_sample_data *data,
9310                    struct pt_regs *regs)
9311 {
9312     struct hw_perf_event *hwc = &event->hw;
9313 
9314     local64_add(nr, &event->count);
9315 
9316     if (!regs)
9317         return;
9318 
9319     if (!is_sampling_event(event))
9320         return;
9321 
9322     if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9323         data->period = nr;
9324         return perf_swevent_overflow(event, 1, data, regs);
9325     } else
9326         data->period = event->hw.last_period;
9327 
9328     if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9329         return perf_swevent_overflow(event, 1, data, regs);
9330 
9331     if (local64_add_negative(nr, &hwc->period_left))
9332         return;
9333 
9334     perf_swevent_overflow(event, 0, data, regs);
9335 }
9336 
9337 static int perf_exclude_event(struct perf_event *event,
9338                   struct pt_regs *regs)
9339 {
9340     if (event->hw.state & PERF_HES_STOPPED)
9341         return 1;
9342 
9343     if (regs) {
9344         if (event->attr.exclude_user && user_mode(regs))
9345             return 1;
9346 
9347         if (event->attr.exclude_kernel && !user_mode(regs))
9348             return 1;
9349     }
9350 
9351     return 0;
9352 }
9353 
9354 static int perf_swevent_match(struct perf_event *event,
9355                 enum perf_type_id type,
9356                 u32 event_id,
9357                 struct perf_sample_data *data,
9358                 struct pt_regs *regs)
9359 {
9360     if (event->attr.type != type)
9361         return 0;
9362 
9363     if (event->attr.config != event_id)
9364         return 0;
9365 
9366     if (perf_exclude_event(event, regs))
9367         return 0;
9368 
9369     return 1;
9370 }
9371 
9372 static inline u64 swevent_hash(u64 type, u32 event_id)
9373 {
9374     u64 val = event_id | (type << 32);
9375 
9376     return hash_64(val, SWEVENT_HLIST_BITS);
9377 }
9378 
9379 static inline struct hlist_head *
9380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9381 {
9382     u64 hash = swevent_hash(type, event_id);
9383 
9384     return &hlist->heads[hash];
9385 }
9386 
9387 /* For the read side: events when they trigger */
9388 static inline struct hlist_head *
9389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9390 {
9391     struct swevent_hlist *hlist;
9392 
9393     hlist = rcu_dereference(swhash->swevent_hlist);
9394     if (!hlist)
9395         return NULL;
9396 
9397     return __find_swevent_head(hlist, type, event_id);
9398 }
9399 
9400 /* For the event head insertion and removal in the hlist */
9401 static inline struct hlist_head *
9402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9403 {
9404     struct swevent_hlist *hlist;
9405     u32 event_id = event->attr.config;
9406     u64 type = event->attr.type;
9407 
9408     /*
9409      * Event scheduling is always serialized against hlist allocation
9410      * and release. Which makes the protected version suitable here.
9411      * The context lock guarantees that.
9412      */
9413     hlist = rcu_dereference_protected(swhash->swevent_hlist,
9414                       lockdep_is_held(&event->ctx->lock));
9415     if (!hlist)
9416         return NULL;
9417 
9418     return __find_swevent_head(hlist, type, event_id);
9419 }
9420 
9421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9422                     u64 nr,
9423                     struct perf_sample_data *data,
9424                     struct pt_regs *regs)
9425 {
9426     struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9427     struct perf_event *event;
9428     struct hlist_head *head;
9429 
9430     rcu_read_lock();
9431     head = find_swevent_head_rcu(swhash, type, event_id);
9432     if (!head)
9433         goto end;
9434 
9435     hlist_for_each_entry_rcu(event, head, hlist_entry) {
9436         if (perf_swevent_match(event, type, event_id, data, regs))
9437             perf_swevent_event(event, nr, data, regs);
9438     }
9439 end:
9440     rcu_read_unlock();
9441 }
9442 
9443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9444 
9445 int perf_swevent_get_recursion_context(void)
9446 {
9447     struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9448 
9449     return get_recursion_context(swhash->recursion);
9450 }
9451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9452 
9453 void perf_swevent_put_recursion_context(int rctx)
9454 {
9455     struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9456 
9457     put_recursion_context(swhash->recursion, rctx);
9458 }
9459 
9460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9461 {
9462     struct perf_sample_data data;
9463 
9464     if (WARN_ON_ONCE(!regs))
9465         return;
9466 
9467     perf_sample_data_init(&data, addr, 0);
9468     do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9469 }
9470 
9471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9472 {
9473     int rctx;
9474 
9475     preempt_disable_notrace();
9476     rctx = perf_swevent_get_recursion_context();
9477     if (unlikely(rctx < 0))
9478         goto fail;
9479 
9480     ___perf_sw_event(event_id, nr, regs, addr);
9481 
9482     perf_swevent_put_recursion_context(rctx);
9483 fail:
9484     preempt_enable_notrace();
9485 }
9486 
9487 static void perf_swevent_read(struct perf_event *event)
9488 {
9489 }
9490 
9491 static int perf_swevent_add(struct perf_event *event, int flags)
9492 {
9493     struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9494     struct hw_perf_event *hwc = &event->hw;
9495     struct hlist_head *head;
9496 
9497     if (is_sampling_event(event)) {
9498         hwc->last_period = hwc->sample_period;
9499         perf_swevent_set_period(event);
9500     }
9501 
9502     hwc->state = !(flags & PERF_EF_START);
9503 
9504     head = find_swevent_head(swhash, event);
9505     if (WARN_ON_ONCE(!head))
9506         return -EINVAL;
9507 
9508     hlist_add_head_rcu(&event->hlist_entry, head);
9509     perf_event_update_userpage(event);
9510 
9511     return 0;
9512 }
9513 
9514 static void perf_swevent_del(struct perf_event *event, int flags)
9515 {
9516     hlist_del_rcu(&event->hlist_entry);
9517 }
9518 
9519 static void perf_swevent_start(struct perf_event *event, int flags)
9520 {
9521     event->hw.state = 0;
9522 }
9523 
9524 static void perf_swevent_stop(struct perf_event *event, int flags)
9525 {
9526     event->hw.state = PERF_HES_STOPPED;
9527 }
9528 
9529 /* Deref the hlist from the update side */
9530 static inline struct swevent_hlist *
9531 swevent_hlist_deref(struct swevent_htable *swhash)
9532 {
9533     return rcu_dereference_protected(swhash->swevent_hlist,
9534                      lockdep_is_held(&swhash->hlist_mutex));
9535 }
9536 
9537 static void swevent_hlist_release(struct swevent_htable *swhash)
9538 {
9539     struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9540 
9541     if (!hlist)
9542         return;
9543 
9544     RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9545     kfree_rcu(hlist, rcu_head);
9546 }
9547 
9548 static void swevent_hlist_put_cpu(int cpu)
9549 {
9550     struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9551 
9552     mutex_lock(&swhash->hlist_mutex);
9553 
9554     if (!--swhash->hlist_refcount)
9555         swevent_hlist_release(swhash);
9556 
9557     mutex_unlock(&swhash->hlist_mutex);
9558 }
9559 
9560 static void swevent_hlist_put(void)
9561 {
9562     int cpu;
9563 
9564     for_each_possible_cpu(cpu)
9565         swevent_hlist_put_cpu(cpu);
9566 }
9567 
9568 static int swevent_hlist_get_cpu(int cpu)
9569 {
9570     struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9571     int err = 0;
9572 
9573     mutex_lock(&swhash->hlist_mutex);
9574     if (!swevent_hlist_deref(swhash) &&
9575         cpumask_test_cpu(cpu, perf_online_mask)) {
9576         struct swevent_hlist *hlist;
9577 
9578         hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9579         if (!hlist) {
9580             err = -ENOMEM;
9581             goto exit;
9582         }
9583         rcu_assign_pointer(swhash->swevent_hlist, hlist);
9584     }
9585     swhash->hlist_refcount++;
9586 exit:
9587     mutex_unlock(&swhash->hlist_mutex);
9588 
9589     return err;
9590 }
9591 
9592 static int swevent_hlist_get(void)
9593 {
9594     int err, cpu, failed_cpu;
9595 
9596     mutex_lock(&pmus_lock);
9597     for_each_possible_cpu(cpu) {
9598         err = swevent_hlist_get_cpu(cpu);
9599         if (err) {
9600             failed_cpu = cpu;
9601             goto fail;
9602         }
9603     }
9604     mutex_unlock(&pmus_lock);
9605     return 0;
9606 fail:
9607     for_each_possible_cpu(cpu) {
9608         if (cpu == failed_cpu)
9609             break;
9610         swevent_hlist_put_cpu(cpu);
9611     }
9612     mutex_unlock(&pmus_lock);
9613     return err;
9614 }
9615 
9616 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9617 
9618 static void sw_perf_event_destroy(struct perf_event *event)
9619 {
9620     u64 event_id = event->attr.config;
9621 
9622     WARN_ON(event->parent);
9623 
9624     static_key_slow_dec(&perf_swevent_enabled[event_id]);
9625     swevent_hlist_put();
9626 }
9627 
9628 static int perf_swevent_init(struct perf_event *event)
9629 {
9630     u64 event_id = event->attr.config;
9631 
9632     if (event->attr.type != PERF_TYPE_SOFTWARE)
9633         return -ENOENT;
9634 
9635     /*
9636      * no branch sampling for software events
9637      */
9638     if (has_branch_stack(event))
9639         return -EOPNOTSUPP;
9640 
9641     switch (event_id) {
9642     case PERF_COUNT_SW_CPU_CLOCK:
9643     case PERF_COUNT_SW_TASK_CLOCK:
9644         return -ENOENT;
9645 
9646     default:
9647         break;
9648     }
9649 
9650     if (event_id >= PERF_COUNT_SW_MAX)
9651         return -ENOENT;
9652 
9653     if (!event->parent) {
9654         int err;
9655 
9656         err = swevent_hlist_get();
9657         if (err)
9658             return err;
9659 
9660         static_key_slow_inc(&perf_swevent_enabled[event_id]);
9661         event->destroy = sw_perf_event_destroy;
9662     }
9663 
9664     return 0;
9665 }
9666 
9667 static struct pmu perf_swevent = {
9668     .task_ctx_nr    = perf_sw_context,
9669 
9670     .capabilities   = PERF_PMU_CAP_NO_NMI,
9671 
9672     .event_init = perf_swevent_init,
9673     .add        = perf_swevent_add,
9674     .del        = perf_swevent_del,
9675     .start      = perf_swevent_start,
9676     .stop       = perf_swevent_stop,
9677     .read       = perf_swevent_read,
9678 };
9679 
9680 #ifdef CONFIG_EVENT_TRACING
9681 
9682 static int perf_tp_filter_match(struct perf_event *event,
9683                 struct perf_sample_data *data)
9684 {
9685     void *record = data->raw->frag.data;
9686 
9687     /* only top level events have filters set */
9688     if (event->parent)
9689         event = event->parent;
9690 
9691     if (likely(!event->filter) || filter_match_preds(event->filter, record))
9692         return 1;
9693     return 0;
9694 }
9695 
9696 static int perf_tp_event_match(struct perf_event *event,
9697                 struct perf_sample_data *data,
9698                 struct pt_regs *regs)
9699 {
9700     if (event->hw.state & PERF_HES_STOPPED)
9701         return 0;
9702     /*
9703      * If exclude_kernel, only trace user-space tracepoints (uprobes)
9704      */
9705     if (event->attr.exclude_kernel && !user_mode(regs))
9706         return 0;
9707 
9708     if (!perf_tp_filter_match(event, data))
9709         return 0;
9710 
9711     return 1;
9712 }
9713 
9714 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9715                    struct trace_event_call *call, u64 count,
9716                    struct pt_regs *regs, struct hlist_head *head,
9717                    struct task_struct *task)
9718 {
9719     if (bpf_prog_array_valid(call)) {
9720         *(struct pt_regs **)raw_data = regs;
9721         if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9722             perf_swevent_put_recursion_context(rctx);
9723             return;
9724         }
9725     }
9726     perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9727               rctx, task);
9728 }
9729 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9730 
9731 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9732            struct pt_regs *regs, struct hlist_head *head, int rctx,
9733            struct task_struct *task)
9734 {
9735     struct perf_sample_data data;
9736     struct perf_event *event;
9737 
9738     struct perf_raw_record raw = {
9739         .frag = {
9740             .size = entry_size,
9741             .data = record,
9742         },
9743     };
9744 
9745     perf_sample_data_init(&data, 0, 0);
9746     data.raw = &raw;
9747 
9748     perf_trace_buf_update(record, event_type);
9749 
9750     hlist_for_each_entry_rcu(event, head, hlist_entry) {
9751         if (perf_tp_event_match(event, &data, regs))
9752             perf_swevent_event(event, count, &data, regs);
9753     }
9754 
9755     /*
9756      * If we got specified a target task, also iterate its context and
9757      * deliver this event there too.
9758      */
9759     if (task && task != current) {
9760         struct perf_event_context *ctx;
9761         struct trace_entry *entry = record;
9762 
9763         rcu_read_lock();
9764         ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9765         if (!ctx)
9766             goto unlock;
9767 
9768         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9769             if (event->cpu != smp_processor_id())
9770                 continue;
9771             if (event->attr.type != PERF_TYPE_TRACEPOINT)
9772                 continue;
9773             if (event->attr.config != entry->type)
9774                 continue;
9775             /* Cannot deliver synchronous signal to other task. */
9776             if (event->attr.sigtrap)
9777                 continue;
9778             if (perf_tp_event_match(event, &data, regs))
9779                 perf_swevent_event(event, count, &data, regs);
9780         }
9781 unlock:
9782         rcu_read_unlock();
9783     }
9784 
9785     perf_swevent_put_recursion_context(rctx);
9786 }
9787 EXPORT_SYMBOL_GPL(perf_tp_event);
9788 
9789 static void tp_perf_event_destroy(struct perf_event *event)
9790 {
9791     perf_trace_destroy(event);
9792 }
9793 
9794 static int perf_tp_event_init(struct perf_event *event)
9795 {
9796     int err;
9797 
9798     if (event->attr.type != PERF_TYPE_TRACEPOINT)
9799         return -ENOENT;
9800 
9801     /*
9802      * no branch sampling for tracepoint events
9803      */
9804     if (has_branch_stack(event))
9805         return -EOPNOTSUPP;
9806 
9807     err = perf_trace_init(event);
9808     if (err)
9809         return err;
9810 
9811     event->destroy = tp_perf_event_destroy;
9812 
9813     return 0;
9814 }
9815 
9816 static struct pmu perf_tracepoint = {
9817     .task_ctx_nr    = perf_sw_context,
9818 
9819     .event_init = perf_tp_event_init,
9820     .add        = perf_trace_add,
9821     .del        = perf_trace_del,
9822     .start      = perf_swevent_start,
9823     .stop       = perf_swevent_stop,
9824     .read       = perf_swevent_read,
9825 };
9826 
9827 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9828 /*
9829  * Flags in config, used by dynamic PMU kprobe and uprobe
9830  * The flags should match following PMU_FORMAT_ATTR().
9831  *
9832  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9833  *                               if not set, create kprobe/uprobe
9834  *
9835  * The following values specify a reference counter (or semaphore in the
9836  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9837  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9838  *
9839  * PERF_UPROBE_REF_CTR_OFFSET_BITS  # of bits in config as th offset
9840  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9841  */
9842 enum perf_probe_config {
9843     PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9844     PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9845     PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9846 };
9847 
9848 PMU_FORMAT_ATTR(retprobe, "config:0");
9849 #endif
9850 
9851 #ifdef CONFIG_KPROBE_EVENTS
9852 static struct attribute *kprobe_attrs[] = {
9853     &format_attr_retprobe.attr,
9854     NULL,
9855 };
9856 
9857 static struct attribute_group kprobe_format_group = {
9858     .name = "format",
9859     .attrs = kprobe_attrs,
9860 };
9861 
9862 static const struct attribute_group *kprobe_attr_groups[] = {
9863     &kprobe_format_group,
9864     NULL,
9865 };
9866 
9867 static int perf_kprobe_event_init(struct perf_event *event);
9868 static struct pmu perf_kprobe = {
9869     .task_ctx_nr    = perf_sw_context,
9870     .event_init = perf_kprobe_event_init,
9871     .add        = perf_trace_add,
9872     .del        = perf_trace_del,
9873     .start      = perf_swevent_start,
9874     .stop       = perf_swevent_stop,
9875     .read       = perf_swevent_read,
9876     .attr_groups    = kprobe_attr_groups,
9877 };
9878 
9879 static int perf_kprobe_event_init(struct perf_event *event)
9880 {
9881     int err;
9882     bool is_retprobe;
9883 
9884     if (event->attr.type != perf_kprobe.type)
9885         return -ENOENT;
9886 
9887     if (!perfmon_capable())
9888         return -EACCES;
9889 
9890     /*
9891      * no branch sampling for probe events
9892      */
9893     if (has_branch_stack(event))
9894         return -EOPNOTSUPP;
9895 
9896     is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9897     err = perf_kprobe_init(event, is_retprobe);
9898     if (err)
9899         return err;
9900 
9901     event->destroy = perf_kprobe_destroy;
9902 
9903     return 0;
9904 }
9905 #endif /* CONFIG_KPROBE_EVENTS */
9906 
9907 #ifdef CONFIG_UPROBE_EVENTS
9908 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9909 
9910 static struct attribute *uprobe_attrs[] = {
9911     &format_attr_retprobe.attr,
9912     &format_attr_ref_ctr_offset.attr,
9913     NULL,
9914 };
9915 
9916 static struct attribute_group uprobe_format_group = {
9917     .name = "format",
9918     .attrs = uprobe_attrs,
9919 };
9920 
9921 static const struct attribute_group *uprobe_attr_groups[] = {
9922     &uprobe_format_group,
9923     NULL,
9924 };
9925 
9926 static int perf_uprobe_event_init(struct perf_event *event);
9927 static struct pmu perf_uprobe = {
9928     .task_ctx_nr    = perf_sw_context,
9929     .event_init = perf_uprobe_event_init,
9930     .add        = perf_trace_add,
9931     .del        = perf_trace_del,
9932     .start      = perf_swevent_start,
9933     .stop       = perf_swevent_stop,
9934     .read       = perf_swevent_read,
9935     .attr_groups    = uprobe_attr_groups,
9936 };
9937 
9938 static int perf_uprobe_event_init(struct perf_event *event)
9939 {
9940     int err;
9941     unsigned long ref_ctr_offset;
9942     bool is_retprobe;
9943 
9944     if (event->attr.type != perf_uprobe.type)
9945         return -ENOENT;
9946 
9947     if (!perfmon_capable())
9948         return -EACCES;
9949 
9950     /*
9951      * no branch sampling for probe events
9952      */
9953     if (has_branch_stack(event))
9954         return -EOPNOTSUPP;
9955 
9956     is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9957     ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9958     err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9959     if (err)
9960         return err;
9961 
9962     event->destroy = perf_uprobe_destroy;
9963 
9964     return 0;
9965 }
9966 #endif /* CONFIG_UPROBE_EVENTS */
9967 
9968 static inline void perf_tp_register(void)
9969 {
9970     perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9971 #ifdef CONFIG_KPROBE_EVENTS
9972     perf_pmu_register(&perf_kprobe, "kprobe", -1);
9973 #endif
9974 #ifdef CONFIG_UPROBE_EVENTS
9975     perf_pmu_register(&perf_uprobe, "uprobe", -1);
9976 #endif
9977 }
9978 
9979 static void perf_event_free_filter(struct perf_event *event)
9980 {
9981     ftrace_profile_free_filter(event);
9982 }
9983 
9984 #ifdef CONFIG_BPF_SYSCALL
9985 static void bpf_overflow_handler(struct perf_event *event,
9986                  struct perf_sample_data *data,
9987                  struct pt_regs *regs)
9988 {
9989     struct bpf_perf_event_data_kern ctx = {
9990         .data = data,
9991         .event = event,
9992     };
9993     struct bpf_prog *prog;
9994     int ret = 0;
9995 
9996     ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9997     if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9998         goto out;
9999     rcu_read_lock();
10000     prog = READ_ONCE(event->prog);
10001     if (prog)
10002         ret = bpf_prog_run(prog, &ctx);
10003     rcu_read_unlock();
10004 out:
10005     __this_cpu_dec(bpf_prog_active);
10006     if (!ret)
10007         return;
10008 
10009     event->orig_overflow_handler(event, data, regs);
10010 }
10011 
10012 static int perf_event_set_bpf_handler(struct perf_event *event,
10013                       struct bpf_prog *prog,
10014                       u64 bpf_cookie)
10015 {
10016     if (event->overflow_handler_context)
10017         /* hw breakpoint or kernel counter */
10018         return -EINVAL;
10019 
10020     if (event->prog)
10021         return -EEXIST;
10022 
10023     if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10024         return -EINVAL;
10025 
10026     if (event->attr.precise_ip &&
10027         prog->call_get_stack &&
10028         (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10029          event->attr.exclude_callchain_kernel ||
10030          event->attr.exclude_callchain_user)) {
10031         /*
10032          * On perf_event with precise_ip, calling bpf_get_stack()
10033          * may trigger unwinder warnings and occasional crashes.
10034          * bpf_get_[stack|stackid] works around this issue by using
10035          * callchain attached to perf_sample_data. If the
10036          * perf_event does not full (kernel and user) callchain
10037          * attached to perf_sample_data, do not allow attaching BPF
10038          * program that calls bpf_get_[stack|stackid].
10039          */
10040         return -EPROTO;
10041     }
10042 
10043     event->prog = prog;
10044     event->bpf_cookie = bpf_cookie;
10045     event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10046     WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10047     return 0;
10048 }
10049 
10050 static void perf_event_free_bpf_handler(struct perf_event *event)
10051 {
10052     struct bpf_prog *prog = event->prog;
10053 
10054     if (!prog)
10055         return;
10056 
10057     WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10058     event->prog = NULL;
10059     bpf_prog_put(prog);
10060 }
10061 #else
10062 static int perf_event_set_bpf_handler(struct perf_event *event,
10063                       struct bpf_prog *prog,
10064                       u64 bpf_cookie)
10065 {
10066     return -EOPNOTSUPP;
10067 }
10068 static void perf_event_free_bpf_handler(struct perf_event *event)
10069 {
10070 }
10071 #endif
10072 
10073 /*
10074  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10075  * with perf_event_open()
10076  */
10077 static inline bool perf_event_is_tracing(struct perf_event *event)
10078 {
10079     if (event->pmu == &perf_tracepoint)
10080         return true;
10081 #ifdef CONFIG_KPROBE_EVENTS
10082     if (event->pmu == &perf_kprobe)
10083         return true;
10084 #endif
10085 #ifdef CONFIG_UPROBE_EVENTS
10086     if (event->pmu == &perf_uprobe)
10087         return true;
10088 #endif
10089     return false;
10090 }
10091 
10092 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10093                 u64 bpf_cookie)
10094 {
10095     bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10096 
10097     if (!perf_event_is_tracing(event))
10098         return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10099 
10100     is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10101     is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10102     is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10103     is_syscall_tp = is_syscall_trace_event(event->tp_event);
10104     if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10105         /* bpf programs can only be attached to u/kprobe or tracepoint */
10106         return -EINVAL;
10107 
10108     if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10109         (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10110         (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10111         return -EINVAL;
10112 
10113     if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10114         /* only uprobe programs are allowed to be sleepable */
10115         return -EINVAL;
10116 
10117     /* Kprobe override only works for kprobes, not uprobes. */
10118     if (prog->kprobe_override && !is_kprobe)
10119         return -EINVAL;
10120 
10121     if (is_tracepoint || is_syscall_tp) {
10122         int off = trace_event_get_offsets(event->tp_event);
10123 
10124         if (prog->aux->max_ctx_offset > off)
10125             return -EACCES;
10126     }
10127 
10128     return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10129 }
10130 
10131 void perf_event_free_bpf_prog(struct perf_event *event)
10132 {
10133     if (!perf_event_is_tracing(event)) {
10134         perf_event_free_bpf_handler(event);
10135         return;
10136     }
10137     perf_event_detach_bpf_prog(event);
10138 }
10139 
10140 #else
10141 
10142 static inline void perf_tp_register(void)
10143 {
10144 }
10145 
10146 static void perf_event_free_filter(struct perf_event *event)
10147 {
10148 }
10149 
10150 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10151                 u64 bpf_cookie)
10152 {
10153     return -ENOENT;
10154 }
10155 
10156 void perf_event_free_bpf_prog(struct perf_event *event)
10157 {
10158 }
10159 #endif /* CONFIG_EVENT_TRACING */
10160 
10161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10162 void perf_bp_event(struct perf_event *bp, void *data)
10163 {
10164     struct perf_sample_data sample;
10165     struct pt_regs *regs = data;
10166 
10167     perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10168 
10169     if (!bp->hw.state && !perf_exclude_event(bp, regs))
10170         perf_swevent_event(bp, 1, &sample, regs);
10171 }
10172 #endif
10173 
10174 /*
10175  * Allocate a new address filter
10176  */
10177 static struct perf_addr_filter *
10178 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10179 {
10180     int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10181     struct perf_addr_filter *filter;
10182 
10183     filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10184     if (!filter)
10185         return NULL;
10186 
10187     INIT_LIST_HEAD(&filter->entry);
10188     list_add_tail(&filter->entry, filters);
10189 
10190     return filter;
10191 }
10192 
10193 static void free_filters_list(struct list_head *filters)
10194 {
10195     struct perf_addr_filter *filter, *iter;
10196 
10197     list_for_each_entry_safe(filter, iter, filters, entry) {
10198         path_put(&filter->path);
10199         list_del(&filter->entry);
10200         kfree(filter);
10201     }
10202 }
10203 
10204 /*
10205  * Free existing address filters and optionally install new ones
10206  */
10207 static void perf_addr_filters_splice(struct perf_event *event,
10208                      struct list_head *head)
10209 {
10210     unsigned long flags;
10211     LIST_HEAD(list);
10212 
10213     if (!has_addr_filter(event))
10214         return;
10215 
10216     /* don't bother with children, they don't have their own filters */
10217     if (event->parent)
10218         return;
10219 
10220     raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10221 
10222     list_splice_init(&event->addr_filters.list, &list);
10223     if (head)
10224         list_splice(head, &event->addr_filters.list);
10225 
10226     raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10227 
10228     free_filters_list(&list);
10229 }
10230 
10231 /*
10232  * Scan through mm's vmas and see if one of them matches the
10233  * @filter; if so, adjust filter's address range.
10234  * Called with mm::mmap_lock down for reading.
10235  */
10236 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10237                    struct mm_struct *mm,
10238                    struct perf_addr_filter_range *fr)
10239 {
10240     struct vm_area_struct *vma;
10241 
10242     for (vma = mm->mmap; vma; vma = vma->vm_next) {
10243         if (!vma->vm_file)
10244             continue;
10245 
10246         if (perf_addr_filter_vma_adjust(filter, vma, fr))
10247             return;
10248     }
10249 }
10250 
10251 /*
10252  * Update event's address range filters based on the
10253  * task's existing mappings, if any.
10254  */
10255 static void perf_event_addr_filters_apply(struct perf_event *event)
10256 {
10257     struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10258     struct task_struct *task = READ_ONCE(event->ctx->task);
10259     struct perf_addr_filter *filter;
10260     struct mm_struct *mm = NULL;
10261     unsigned int count = 0;
10262     unsigned long flags;
10263 
10264     /*
10265      * We may observe TASK_TOMBSTONE, which means that the event tear-down
10266      * will stop on the parent's child_mutex that our caller is also holding
10267      */
10268     if (task == TASK_TOMBSTONE)
10269         return;
10270 
10271     if (ifh->nr_file_filters) {
10272         mm = get_task_mm(task);
10273         if (!mm)
10274             goto restart;
10275 
10276         mmap_read_lock(mm);
10277     }
10278 
10279     raw_spin_lock_irqsave(&ifh->lock, flags);
10280     list_for_each_entry(filter, &ifh->list, entry) {
10281         if (filter->path.dentry) {
10282             /*
10283              * Adjust base offset if the filter is associated to a
10284              * binary that needs to be mapped:
10285              */
10286             event->addr_filter_ranges[count].start = 0;
10287             event->addr_filter_ranges[count].size = 0;
10288 
10289             perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10290         } else {
10291             event->addr_filter_ranges[count].start = filter->offset;
10292             event->addr_filter_ranges[count].size  = filter->size;
10293         }
10294 
10295         count++;
10296     }
10297 
10298     event->addr_filters_gen++;
10299     raw_spin_unlock_irqrestore(&ifh->lock, flags);
10300 
10301     if (ifh->nr_file_filters) {
10302         mmap_read_unlock(mm);
10303 
10304         mmput(mm);
10305     }
10306 
10307 restart:
10308     perf_event_stop(event, 1);
10309 }
10310 
10311 /*
10312  * Address range filtering: limiting the data to certain
10313  * instruction address ranges. Filters are ioctl()ed to us from
10314  * userspace as ascii strings.
10315  *
10316  * Filter string format:
10317  *
10318  * ACTION RANGE_SPEC
10319  * where ACTION is one of the
10320  *  * "filter": limit the trace to this region
10321  *  * "start": start tracing from this address
10322  *  * "stop": stop tracing at this address/region;
10323  * RANGE_SPEC is
10324  *  * for kernel addresses: <start address>[/<size>]
10325  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10326  *
10327  * if <size> is not specified or is zero, the range is treated as a single
10328  * address; not valid for ACTION=="filter".
10329  */
10330 enum {
10331     IF_ACT_NONE = -1,
10332     IF_ACT_FILTER,
10333     IF_ACT_START,
10334     IF_ACT_STOP,
10335     IF_SRC_FILE,
10336     IF_SRC_KERNEL,
10337     IF_SRC_FILEADDR,
10338     IF_SRC_KERNELADDR,
10339 };
10340 
10341 enum {
10342     IF_STATE_ACTION = 0,
10343     IF_STATE_SOURCE,
10344     IF_STATE_END,
10345 };
10346 
10347 static const match_table_t if_tokens = {
10348     { IF_ACT_FILTER,    "filter" },
10349     { IF_ACT_START,     "start" },
10350     { IF_ACT_STOP,      "stop" },
10351     { IF_SRC_FILE,      "%u/%u@%s" },
10352     { IF_SRC_KERNEL,    "%u/%u" },
10353     { IF_SRC_FILEADDR,  "%u@%s" },
10354     { IF_SRC_KERNELADDR,    "%u" },
10355     { IF_ACT_NONE,      NULL },
10356 };
10357 
10358 /*
10359  * Address filter string parser
10360  */
10361 static int
10362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10363                  struct list_head *filters)
10364 {
10365     struct perf_addr_filter *filter = NULL;
10366     char *start, *orig, *filename = NULL;
10367     substring_t args[MAX_OPT_ARGS];
10368     int state = IF_STATE_ACTION, token;
10369     unsigned int kernel = 0;
10370     int ret = -EINVAL;
10371 
10372     orig = fstr = kstrdup(fstr, GFP_KERNEL);
10373     if (!fstr)
10374         return -ENOMEM;
10375 
10376     while ((start = strsep(&fstr, " ,\n")) != NULL) {
10377         static const enum perf_addr_filter_action_t actions[] = {
10378             [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10379             [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10380             [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10381         };
10382         ret = -EINVAL;
10383 
10384         if (!*start)
10385             continue;
10386 
10387         /* filter definition begins */
10388         if (state == IF_STATE_ACTION) {
10389             filter = perf_addr_filter_new(event, filters);
10390             if (!filter)
10391                 goto fail;
10392         }
10393 
10394         token = match_token(start, if_tokens, args);
10395         switch (token) {
10396         case IF_ACT_FILTER:
10397         case IF_ACT_START:
10398         case IF_ACT_STOP:
10399             if (state != IF_STATE_ACTION)
10400                 goto fail;
10401 
10402             filter->action = actions[token];
10403             state = IF_STATE_SOURCE;
10404             break;
10405 
10406         case IF_SRC_KERNELADDR:
10407         case IF_SRC_KERNEL:
10408             kernel = 1;
10409             fallthrough;
10410 
10411         case IF_SRC_FILEADDR:
10412         case IF_SRC_FILE:
10413             if (state != IF_STATE_SOURCE)
10414                 goto fail;
10415 
10416             *args[0].to = 0;
10417             ret = kstrtoul(args[0].from, 0, &filter->offset);
10418             if (ret)
10419                 goto fail;
10420 
10421             if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10422                 *args[1].to = 0;
10423                 ret = kstrtoul(args[1].from, 0, &filter->size);
10424                 if (ret)
10425                     goto fail;
10426             }
10427 
10428             if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10429                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10430 
10431                 kfree(filename);
10432                 filename = match_strdup(&args[fpos]);
10433                 if (!filename) {
10434                     ret = -ENOMEM;
10435                     goto fail;
10436                 }
10437             }
10438 
10439             state = IF_STATE_END;
10440             break;
10441 
10442         default:
10443             goto fail;
10444         }
10445 
10446         /*
10447          * Filter definition is fully parsed, validate and install it.
10448          * Make sure that it doesn't contradict itself or the event's
10449          * attribute.
10450          */
10451         if (state == IF_STATE_END) {
10452             ret = -EINVAL;
10453 
10454             /*
10455              * ACTION "filter" must have a non-zero length region
10456              * specified.
10457              */
10458             if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10459                 !filter->size)
10460                 goto fail;
10461 
10462             if (!kernel) {
10463                 if (!filename)
10464                     goto fail;
10465 
10466                 /*
10467                  * For now, we only support file-based filters
10468                  * in per-task events; doing so for CPU-wide
10469                  * events requires additional context switching
10470                  * trickery, since same object code will be
10471                  * mapped at different virtual addresses in
10472                  * different processes.
10473                  */
10474                 ret = -EOPNOTSUPP;
10475                 if (!event->ctx->task)
10476                     goto fail;
10477 
10478                 /* look up the path and grab its inode */
10479                 ret = kern_path(filename, LOOKUP_FOLLOW,
10480                         &filter->path);
10481                 if (ret)
10482                     goto fail;
10483 
10484                 ret = -EINVAL;
10485                 if (!filter->path.dentry ||
10486                     !S_ISREG(d_inode(filter->path.dentry)
10487                          ->i_mode))
10488                     goto fail;
10489 
10490                 event->addr_filters.nr_file_filters++;
10491             }
10492 
10493             /* ready to consume more filters */
10494             kfree(filename);
10495             filename = NULL;
10496             state = IF_STATE_ACTION;
10497             filter = NULL;
10498             kernel = 0;
10499         }
10500     }
10501 
10502     if (state != IF_STATE_ACTION)
10503         goto fail;
10504 
10505     kfree(filename);
10506     kfree(orig);
10507 
10508     return 0;
10509 
10510 fail:
10511     kfree(filename);
10512     free_filters_list(filters);
10513     kfree(orig);
10514 
10515     return ret;
10516 }
10517 
10518 static int
10519 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10520 {
10521     LIST_HEAD(filters);
10522     int ret;
10523 
10524     /*
10525      * Since this is called in perf_ioctl() path, we're already holding
10526      * ctx::mutex.
10527      */
10528     lockdep_assert_held(&event->ctx->mutex);
10529 
10530     if (WARN_ON_ONCE(event->parent))
10531         return -EINVAL;
10532 
10533     ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10534     if (ret)
10535         goto fail_clear_files;
10536 
10537     ret = event->pmu->addr_filters_validate(&filters);
10538     if (ret)
10539         goto fail_free_filters;
10540 
10541     /* remove existing filters, if any */
10542     perf_addr_filters_splice(event, &filters);
10543 
10544     /* install new filters */
10545     perf_event_for_each_child(event, perf_event_addr_filters_apply);
10546 
10547     return ret;
10548 
10549 fail_free_filters:
10550     free_filters_list(&filters);
10551 
10552 fail_clear_files:
10553     event->addr_filters.nr_file_filters = 0;
10554 
10555     return ret;
10556 }
10557 
10558 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10559 {
10560     int ret = -EINVAL;
10561     char *filter_str;
10562 
10563     filter_str = strndup_user(arg, PAGE_SIZE);
10564     if (IS_ERR(filter_str))
10565         return PTR_ERR(filter_str);
10566 
10567 #ifdef CONFIG_EVENT_TRACING
10568     if (perf_event_is_tracing(event)) {
10569         struct perf_event_context *ctx = event->ctx;
10570 
10571         /*
10572          * Beware, here be dragons!!
10573          *
10574          * the tracepoint muck will deadlock against ctx->mutex, but
10575          * the tracepoint stuff does not actually need it. So
10576          * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10577          * already have a reference on ctx.
10578          *
10579          * This can result in event getting moved to a different ctx,
10580          * but that does not affect the tracepoint state.
10581          */
10582         mutex_unlock(&ctx->mutex);
10583         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10584         mutex_lock(&ctx->mutex);
10585     } else
10586 #endif
10587     if (has_addr_filter(event))
10588         ret = perf_event_set_addr_filter(event, filter_str);
10589 
10590     kfree(filter_str);
10591     return ret;
10592 }
10593 
10594 /*
10595  * hrtimer based swevent callback
10596  */
10597 
10598 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10599 {
10600     enum hrtimer_restart ret = HRTIMER_RESTART;
10601     struct perf_sample_data data;
10602     struct pt_regs *regs;
10603     struct perf_event *event;
10604     u64 period;
10605 
10606     event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10607 
10608     if (event->state != PERF_EVENT_STATE_ACTIVE)
10609         return HRTIMER_NORESTART;
10610 
10611     event->pmu->read(event);
10612 
10613     perf_sample_data_init(&data, 0, event->hw.last_period);
10614     regs = get_irq_regs();
10615 
10616     if (regs && !perf_exclude_event(event, regs)) {
10617         if (!(event->attr.exclude_idle && is_idle_task(current)))
10618             if (__perf_event_overflow(event, 1, &data, regs))
10619                 ret = HRTIMER_NORESTART;
10620     }
10621 
10622     period = max_t(u64, 10000, event->hw.sample_period);
10623     hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10624 
10625     return ret;
10626 }
10627 
10628 static void perf_swevent_start_hrtimer(struct perf_event *event)
10629 {
10630     struct hw_perf_event *hwc = &event->hw;
10631     s64 period;
10632 
10633     if (!is_sampling_event(event))
10634         return;
10635 
10636     period = local64_read(&hwc->period_left);
10637     if (period) {
10638         if (period < 0)
10639             period = 10000;
10640 
10641         local64_set(&hwc->period_left, 0);
10642     } else {
10643         period = max_t(u64, 10000, hwc->sample_period);
10644     }
10645     hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10646               HRTIMER_MODE_REL_PINNED_HARD);
10647 }
10648 
10649 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10650 {
10651     struct hw_perf_event *hwc = &event->hw;
10652 
10653     if (is_sampling_event(event)) {
10654         ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10655         local64_set(&hwc->period_left, ktime_to_ns(remaining));
10656 
10657         hrtimer_cancel(&hwc->hrtimer);
10658     }
10659 }
10660 
10661 static void perf_swevent_init_hrtimer(struct perf_event *event)
10662 {
10663     struct hw_perf_event *hwc = &event->hw;
10664 
10665     if (!is_sampling_event(event))
10666         return;
10667 
10668     hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10669     hwc->hrtimer.function = perf_swevent_hrtimer;
10670 
10671     /*
10672      * Since hrtimers have a fixed rate, we can do a static freq->period
10673      * mapping and avoid the whole period adjust feedback stuff.
10674      */
10675     if (event->attr.freq) {
10676         long freq = event->attr.sample_freq;
10677 
10678         event->attr.sample_period = NSEC_PER_SEC / freq;
10679         hwc->sample_period = event->attr.sample_period;
10680         local64_set(&hwc->period_left, hwc->sample_period);
10681         hwc->last_period = hwc->sample_period;
10682         event->attr.freq = 0;
10683     }
10684 }
10685 
10686 /*
10687  * Software event: cpu wall time clock
10688  */
10689 
10690 static void cpu_clock_event_update(struct perf_event *event)
10691 {
10692     s64 prev;
10693     u64 now;
10694 
10695     now = local_clock();
10696     prev = local64_xchg(&event->hw.prev_count, now);
10697     local64_add(now - prev, &event->count);
10698 }
10699 
10700 static void cpu_clock_event_start(struct perf_event *event, int flags)
10701 {
10702     local64_set(&event->hw.prev_count, local_clock());
10703     perf_swevent_start_hrtimer(event);
10704 }
10705 
10706 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10707 {
10708     perf_swevent_cancel_hrtimer(event);
10709     cpu_clock_event_update(event);
10710 }
10711 
10712 static int cpu_clock_event_add(struct perf_event *event, int flags)
10713 {
10714     if (flags & PERF_EF_START)
10715         cpu_clock_event_start(event, flags);
10716     perf_event_update_userpage(event);
10717 
10718     return 0;
10719 }
10720 
10721 static void cpu_clock_event_del(struct perf_event *event, int flags)
10722 {
10723     cpu_clock_event_stop(event, flags);
10724 }
10725 
10726 static void cpu_clock_event_read(struct perf_event *event)
10727 {
10728     cpu_clock_event_update(event);
10729 }
10730 
10731 static int cpu_clock_event_init(struct perf_event *event)
10732 {
10733     if (event->attr.type != PERF_TYPE_SOFTWARE)
10734         return -ENOENT;
10735 
10736     if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10737         return -ENOENT;
10738 
10739     /*
10740      * no branch sampling for software events
10741      */
10742     if (has_branch_stack(event))
10743         return -EOPNOTSUPP;
10744 
10745     perf_swevent_init_hrtimer(event);
10746 
10747     return 0;
10748 }
10749 
10750 static struct pmu perf_cpu_clock = {
10751     .task_ctx_nr    = perf_sw_context,
10752 
10753     .capabilities   = PERF_PMU_CAP_NO_NMI,
10754 
10755     .event_init = cpu_clock_event_init,
10756     .add        = cpu_clock_event_add,
10757     .del        = cpu_clock_event_del,
10758     .start      = cpu_clock_event_start,
10759     .stop       = cpu_clock_event_stop,
10760     .read       = cpu_clock_event_read,
10761 };
10762 
10763 /*
10764  * Software event: task time clock
10765  */
10766 
10767 static void task_clock_event_update(struct perf_event *event, u64 now)
10768 {
10769     u64 prev;
10770     s64 delta;
10771 
10772     prev = local64_xchg(&event->hw.prev_count, now);
10773     delta = now - prev;
10774     local64_add(delta, &event->count);
10775 }
10776 
10777 static void task_clock_event_start(struct perf_event *event, int flags)
10778 {
10779     local64_set(&event->hw.prev_count, event->ctx->time);
10780     perf_swevent_start_hrtimer(event);
10781 }
10782 
10783 static void task_clock_event_stop(struct perf_event *event, int flags)
10784 {
10785     perf_swevent_cancel_hrtimer(event);
10786     task_clock_event_update(event, event->ctx->time);
10787 }
10788 
10789 static int task_clock_event_add(struct perf_event *event, int flags)
10790 {
10791     if (flags & PERF_EF_START)
10792         task_clock_event_start(event, flags);
10793     perf_event_update_userpage(event);
10794 
10795     return 0;
10796 }
10797 
10798 static void task_clock_event_del(struct perf_event *event, int flags)
10799 {
10800     task_clock_event_stop(event, PERF_EF_UPDATE);
10801 }
10802 
10803 static void task_clock_event_read(struct perf_event *event)
10804 {
10805     u64 now = perf_clock();
10806     u64 delta = now - event->ctx->timestamp;
10807     u64 time = event->ctx->time + delta;
10808 
10809     task_clock_event_update(event, time);
10810 }
10811 
10812 static int task_clock_event_init(struct perf_event *event)
10813 {
10814     if (event->attr.type != PERF_TYPE_SOFTWARE)
10815         return -ENOENT;
10816 
10817     if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10818         return -ENOENT;
10819 
10820     /*
10821      * no branch sampling for software events
10822      */
10823     if (has_branch_stack(event))
10824         return -EOPNOTSUPP;
10825 
10826     perf_swevent_init_hrtimer(event);
10827 
10828     return 0;
10829 }
10830 
10831 static struct pmu perf_task_clock = {
10832     .task_ctx_nr    = perf_sw_context,
10833 
10834     .capabilities   = PERF_PMU_CAP_NO_NMI,
10835 
10836     .event_init = task_clock_event_init,
10837     .add        = task_clock_event_add,
10838     .del        = task_clock_event_del,
10839     .start      = task_clock_event_start,
10840     .stop       = task_clock_event_stop,
10841     .read       = task_clock_event_read,
10842 };
10843 
10844 static void perf_pmu_nop_void(struct pmu *pmu)
10845 {
10846 }
10847 
10848 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10849 {
10850 }
10851 
10852 static int perf_pmu_nop_int(struct pmu *pmu)
10853 {
10854     return 0;
10855 }
10856 
10857 static int perf_event_nop_int(struct perf_event *event, u64 value)
10858 {
10859     return 0;
10860 }
10861 
10862 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10863 
10864 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10865 {
10866     __this_cpu_write(nop_txn_flags, flags);
10867 
10868     if (flags & ~PERF_PMU_TXN_ADD)
10869         return;
10870 
10871     perf_pmu_disable(pmu);
10872 }
10873 
10874 static int perf_pmu_commit_txn(struct pmu *pmu)
10875 {
10876     unsigned int flags = __this_cpu_read(nop_txn_flags);
10877 
10878     __this_cpu_write(nop_txn_flags, 0);
10879 
10880     if (flags & ~PERF_PMU_TXN_ADD)
10881         return 0;
10882 
10883     perf_pmu_enable(pmu);
10884     return 0;
10885 }
10886 
10887 static void perf_pmu_cancel_txn(struct pmu *pmu)
10888 {
10889     unsigned int flags =  __this_cpu_read(nop_txn_flags);
10890 
10891     __this_cpu_write(nop_txn_flags, 0);
10892 
10893     if (flags & ~PERF_PMU_TXN_ADD)
10894         return;
10895 
10896     perf_pmu_enable(pmu);
10897 }
10898 
10899 static int perf_event_idx_default(struct perf_event *event)
10900 {
10901     return 0;
10902 }
10903 
10904 /*
10905  * Ensures all contexts with the same task_ctx_nr have the same
10906  * pmu_cpu_context too.
10907  */
10908 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10909 {
10910     struct pmu *pmu;
10911 
10912     if (ctxn < 0)
10913         return NULL;
10914 
10915     list_for_each_entry(pmu, &pmus, entry) {
10916         if (pmu->task_ctx_nr == ctxn)
10917             return pmu->pmu_cpu_context;
10918     }
10919 
10920     return NULL;
10921 }
10922 
10923 static void free_pmu_context(struct pmu *pmu)
10924 {
10925     /*
10926      * Static contexts such as perf_sw_context have a global lifetime
10927      * and may be shared between different PMUs. Avoid freeing them
10928      * when a single PMU is going away.
10929      */
10930     if (pmu->task_ctx_nr > perf_invalid_context)
10931         return;
10932 
10933     free_percpu(pmu->pmu_cpu_context);
10934 }
10935 
10936 /*
10937  * Let userspace know that this PMU supports address range filtering:
10938  */
10939 static ssize_t nr_addr_filters_show(struct device *dev,
10940                     struct device_attribute *attr,
10941                     char *page)
10942 {
10943     struct pmu *pmu = dev_get_drvdata(dev);
10944 
10945     return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10946 }
10947 DEVICE_ATTR_RO(nr_addr_filters);
10948 
10949 static struct idr pmu_idr;
10950 
10951 static ssize_t
10952 type_show(struct device *dev, struct device_attribute *attr, char *page)
10953 {
10954     struct pmu *pmu = dev_get_drvdata(dev);
10955 
10956     return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10957 }
10958 static DEVICE_ATTR_RO(type);
10959 
10960 static ssize_t
10961 perf_event_mux_interval_ms_show(struct device *dev,
10962                 struct device_attribute *attr,
10963                 char *page)
10964 {
10965     struct pmu *pmu = dev_get_drvdata(dev);
10966 
10967     return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10968 }
10969 
10970 static DEFINE_MUTEX(mux_interval_mutex);
10971 
10972 static ssize_t
10973 perf_event_mux_interval_ms_store(struct device *dev,
10974                  struct device_attribute *attr,
10975                  const char *buf, size_t count)
10976 {
10977     struct pmu *pmu = dev_get_drvdata(dev);
10978     int timer, cpu, ret;
10979 
10980     ret = kstrtoint(buf, 0, &timer);
10981     if (ret)
10982         return ret;
10983 
10984     if (timer < 1)
10985         return -EINVAL;
10986 
10987     /* same value, noting to do */
10988     if (timer == pmu->hrtimer_interval_ms)
10989         return count;
10990 
10991     mutex_lock(&mux_interval_mutex);
10992     pmu->hrtimer_interval_ms = timer;
10993 
10994     /* update all cpuctx for this PMU */
10995     cpus_read_lock();
10996     for_each_online_cpu(cpu) {
10997         struct perf_cpu_context *cpuctx;
10998         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10999         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11000 
11001         cpu_function_call(cpu,
11002             (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11003     }
11004     cpus_read_unlock();
11005     mutex_unlock(&mux_interval_mutex);
11006 
11007     return count;
11008 }
11009 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11010 
11011 static struct attribute *pmu_dev_attrs[] = {
11012     &dev_attr_type.attr,
11013     &dev_attr_perf_event_mux_interval_ms.attr,
11014     NULL,
11015 };
11016 ATTRIBUTE_GROUPS(pmu_dev);
11017 
11018 static int pmu_bus_running;
11019 static struct bus_type pmu_bus = {
11020     .name       = "event_source",
11021     .dev_groups = pmu_dev_groups,
11022 };
11023 
11024 static void pmu_dev_release(struct device *dev)
11025 {
11026     kfree(dev);
11027 }
11028 
11029 static int pmu_dev_alloc(struct pmu *pmu)
11030 {
11031     int ret = -ENOMEM;
11032 
11033     pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11034     if (!pmu->dev)
11035         goto out;
11036 
11037     pmu->dev->groups = pmu->attr_groups;
11038     device_initialize(pmu->dev);
11039     ret = dev_set_name(pmu->dev, "%s", pmu->name);
11040     if (ret)
11041         goto free_dev;
11042 
11043     dev_set_drvdata(pmu->dev, pmu);
11044     pmu->dev->bus = &pmu_bus;
11045     pmu->dev->release = pmu_dev_release;
11046     ret = device_add(pmu->dev);
11047     if (ret)
11048         goto free_dev;
11049 
11050     /* For PMUs with address filters, throw in an extra attribute: */
11051     if (pmu->nr_addr_filters)
11052         ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11053 
11054     if (ret)
11055         goto del_dev;
11056 
11057     if (pmu->attr_update)
11058         ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11059 
11060     if (ret)
11061         goto del_dev;
11062 
11063 out:
11064     return ret;
11065 
11066 del_dev:
11067     device_del(pmu->dev);
11068 
11069 free_dev:
11070     put_device(pmu->dev);
11071     goto out;
11072 }
11073 
11074 static struct lock_class_key cpuctx_mutex;
11075 static struct lock_class_key cpuctx_lock;
11076 
11077 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11078 {
11079     int cpu, ret, max = PERF_TYPE_MAX;
11080 
11081     mutex_lock(&pmus_lock);
11082     ret = -ENOMEM;
11083     pmu->pmu_disable_count = alloc_percpu(int);
11084     if (!pmu->pmu_disable_count)
11085         goto unlock;
11086 
11087     pmu->type = -1;
11088     if (!name)
11089         goto skip_type;
11090     pmu->name = name;
11091 
11092     if (type != PERF_TYPE_SOFTWARE) {
11093         if (type >= 0)
11094             max = type;
11095 
11096         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11097         if (ret < 0)
11098             goto free_pdc;
11099 
11100         WARN_ON(type >= 0 && ret != type);
11101 
11102         type = ret;
11103     }
11104     pmu->type = type;
11105 
11106     if (pmu_bus_running) {
11107         ret = pmu_dev_alloc(pmu);
11108         if (ret)
11109             goto free_idr;
11110     }
11111 
11112 skip_type:
11113     if (pmu->task_ctx_nr == perf_hw_context) {
11114         static int hw_context_taken = 0;
11115 
11116         /*
11117          * Other than systems with heterogeneous CPUs, it never makes
11118          * sense for two PMUs to share perf_hw_context. PMUs which are
11119          * uncore must use perf_invalid_context.
11120          */
11121         if (WARN_ON_ONCE(hw_context_taken &&
11122             !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11123             pmu->task_ctx_nr = perf_invalid_context;
11124 
11125         hw_context_taken = 1;
11126     }
11127 
11128     pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11129     if (pmu->pmu_cpu_context)
11130         goto got_cpu_context;
11131 
11132     ret = -ENOMEM;
11133     pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11134     if (!pmu->pmu_cpu_context)
11135         goto free_dev;
11136 
11137     for_each_possible_cpu(cpu) {
11138         struct perf_cpu_context *cpuctx;
11139 
11140         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11141         __perf_event_init_context(&cpuctx->ctx);
11142         lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11143         lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11144         cpuctx->ctx.pmu = pmu;
11145         cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11146 
11147         __perf_mux_hrtimer_init(cpuctx, cpu);
11148 
11149         cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11150         cpuctx->heap = cpuctx->heap_default;
11151     }
11152 
11153 got_cpu_context:
11154     if (!pmu->start_txn) {
11155         if (pmu->pmu_enable) {
11156             /*
11157              * If we have pmu_enable/pmu_disable calls, install
11158              * transaction stubs that use that to try and batch
11159              * hardware accesses.
11160              */
11161             pmu->start_txn  = perf_pmu_start_txn;
11162             pmu->commit_txn = perf_pmu_commit_txn;
11163             pmu->cancel_txn = perf_pmu_cancel_txn;
11164         } else {
11165             pmu->start_txn  = perf_pmu_nop_txn;
11166             pmu->commit_txn = perf_pmu_nop_int;
11167             pmu->cancel_txn = perf_pmu_nop_void;
11168         }
11169     }
11170 
11171     if (!pmu->pmu_enable) {
11172         pmu->pmu_enable  = perf_pmu_nop_void;
11173         pmu->pmu_disable = perf_pmu_nop_void;
11174     }
11175 
11176     if (!pmu->check_period)
11177         pmu->check_period = perf_event_nop_int;
11178 
11179     if (!pmu->event_idx)
11180         pmu->event_idx = perf_event_idx_default;
11181 
11182     /*
11183      * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11184      * since these cannot be in the IDR. This way the linear search
11185      * is fast, provided a valid software event is provided.
11186      */
11187     if (type == PERF_TYPE_SOFTWARE || !name)
11188         list_add_rcu(&pmu->entry, &pmus);
11189     else
11190         list_add_tail_rcu(&pmu->entry, &pmus);
11191 
11192     atomic_set(&pmu->exclusive_cnt, 0);
11193     ret = 0;
11194 unlock:
11195     mutex_unlock(&pmus_lock);
11196 
11197     return ret;
11198 
11199 free_dev:
11200     device_del(pmu->dev);
11201     put_device(pmu->dev);
11202 
11203 free_idr:
11204     if (pmu->type != PERF_TYPE_SOFTWARE)
11205         idr_remove(&pmu_idr, pmu->type);
11206 
11207 free_pdc:
11208     free_percpu(pmu->pmu_disable_count);
11209     goto unlock;
11210 }
11211 EXPORT_SYMBOL_GPL(perf_pmu_register);
11212 
11213 void perf_pmu_unregister(struct pmu *pmu)
11214 {
11215     mutex_lock(&pmus_lock);
11216     list_del_rcu(&pmu->entry);
11217 
11218     /*
11219      * We dereference the pmu list under both SRCU and regular RCU, so
11220      * synchronize against both of those.
11221      */
11222     synchronize_srcu(&pmus_srcu);
11223     synchronize_rcu();
11224 
11225     free_percpu(pmu->pmu_disable_count);
11226     if (pmu->type != PERF_TYPE_SOFTWARE)
11227         idr_remove(&pmu_idr, pmu->type);
11228     if (pmu_bus_running) {
11229         if (pmu->nr_addr_filters)
11230             device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11231         device_del(pmu->dev);
11232         put_device(pmu->dev);
11233     }
11234     free_pmu_context(pmu);
11235     mutex_unlock(&pmus_lock);
11236 }
11237 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11238 
11239 static inline bool has_extended_regs(struct perf_event *event)
11240 {
11241     return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11242            (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11243 }
11244 
11245 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11246 {
11247     struct perf_event_context *ctx = NULL;
11248     int ret;
11249 
11250     if (!try_module_get(pmu->module))
11251         return -ENODEV;
11252 
11253     /*
11254      * A number of pmu->event_init() methods iterate the sibling_list to,
11255      * for example, validate if the group fits on the PMU. Therefore,
11256      * if this is a sibling event, acquire the ctx->mutex to protect
11257      * the sibling_list.
11258      */
11259     if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11260         /*
11261          * This ctx->mutex can nest when we're called through
11262          * inheritance. See the perf_event_ctx_lock_nested() comment.
11263          */
11264         ctx = perf_event_ctx_lock_nested(event->group_leader,
11265                          SINGLE_DEPTH_NESTING);
11266         BUG_ON(!ctx);
11267     }
11268 
11269     event->pmu = pmu;
11270     ret = pmu->event_init(event);
11271 
11272     if (ctx)
11273         perf_event_ctx_unlock(event->group_leader, ctx);
11274 
11275     if (!ret) {
11276         if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11277             has_extended_regs(event))
11278             ret = -EOPNOTSUPP;
11279 
11280         if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11281             event_has_any_exclude_flag(event))
11282             ret = -EINVAL;
11283 
11284         if (ret && event->destroy)
11285             event->destroy(event);
11286     }
11287 
11288     if (ret)
11289         module_put(pmu->module);
11290 
11291     return ret;
11292 }
11293 
11294 static struct pmu *perf_init_event(struct perf_event *event)
11295 {
11296     bool extended_type = false;
11297     int idx, type, ret;
11298     struct pmu *pmu;
11299 
11300     idx = srcu_read_lock(&pmus_srcu);
11301 
11302     /* Try parent's PMU first: */
11303     if (event->parent && event->parent->pmu) {
11304         pmu = event->parent->pmu;
11305         ret = perf_try_init_event(pmu, event);
11306         if (!ret)
11307             goto unlock;
11308     }
11309 
11310     /*
11311      * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11312      * are often aliases for PERF_TYPE_RAW.
11313      */
11314     type = event->attr.type;
11315     if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11316         type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11317         if (!type) {
11318             type = PERF_TYPE_RAW;
11319         } else {
11320             extended_type = true;
11321             event->attr.config &= PERF_HW_EVENT_MASK;
11322         }
11323     }
11324 
11325 again:
11326     rcu_read_lock();
11327     pmu = idr_find(&pmu_idr, type);
11328     rcu_read_unlock();
11329     if (pmu) {
11330         if (event->attr.type != type && type != PERF_TYPE_RAW &&
11331             !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11332             goto fail;
11333 
11334         ret = perf_try_init_event(pmu, event);
11335         if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11336             type = event->attr.type;
11337             goto again;
11338         }
11339 
11340         if (ret)
11341             pmu = ERR_PTR(ret);
11342 
11343         goto unlock;
11344     }
11345 
11346     list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11347         ret = perf_try_init_event(pmu, event);
11348         if (!ret)
11349             goto unlock;
11350 
11351         if (ret != -ENOENT) {
11352             pmu = ERR_PTR(ret);
11353             goto unlock;
11354         }
11355     }
11356 fail:
11357     pmu = ERR_PTR(-ENOENT);
11358 unlock:
11359     srcu_read_unlock(&pmus_srcu, idx);
11360 
11361     return pmu;
11362 }
11363 
11364 static void attach_sb_event(struct perf_event *event)
11365 {
11366     struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11367 
11368     raw_spin_lock(&pel->lock);
11369     list_add_rcu(&event->sb_list, &pel->list);
11370     raw_spin_unlock(&pel->lock);
11371 }
11372 
11373 /*
11374  * We keep a list of all !task (and therefore per-cpu) events
11375  * that need to receive side-band records.
11376  *
11377  * This avoids having to scan all the various PMU per-cpu contexts
11378  * looking for them.
11379  */
11380 static void account_pmu_sb_event(struct perf_event *event)
11381 {
11382     if (is_sb_event(event))
11383         attach_sb_event(event);
11384 }
11385 
11386 static void account_event_cpu(struct perf_event *event, int cpu)
11387 {
11388     if (event->parent)
11389         return;
11390 
11391     if (is_cgroup_event(event))
11392         atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11393 }
11394 
11395 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11396 static void account_freq_event_nohz(void)
11397 {
11398 #ifdef CONFIG_NO_HZ_FULL
11399     /* Lock so we don't race with concurrent unaccount */
11400     spin_lock(&nr_freq_lock);
11401     if (atomic_inc_return(&nr_freq_events) == 1)
11402         tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11403     spin_unlock(&nr_freq_lock);
11404 #endif
11405 }
11406 
11407 static void account_freq_event(void)
11408 {
11409     if (tick_nohz_full_enabled())
11410         account_freq_event_nohz();
11411     else
11412         atomic_inc(&nr_freq_events);
11413 }
11414 
11415 
11416 static void account_event(struct perf_event *event)
11417 {
11418     bool inc = false;
11419 
11420     if (event->parent)
11421         return;
11422 
11423     if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11424         inc = true;
11425     if (event->attr.mmap || event->attr.mmap_data)
11426         atomic_inc(&nr_mmap_events);
11427     if (event->attr.build_id)
11428         atomic_inc(&nr_build_id_events);
11429     if (event->attr.comm)
11430         atomic_inc(&nr_comm_events);
11431     if (event->attr.namespaces)
11432         atomic_inc(&nr_namespaces_events);
11433     if (event->attr.cgroup)
11434         atomic_inc(&nr_cgroup_events);
11435     if (event->attr.task)
11436         atomic_inc(&nr_task_events);
11437     if (event->attr.freq)
11438         account_freq_event();
11439     if (event->attr.context_switch) {
11440         atomic_inc(&nr_switch_events);
11441         inc = true;
11442     }
11443     if (has_branch_stack(event))
11444         inc = true;
11445     if (is_cgroup_event(event))
11446         inc = true;
11447     if (event->attr.ksymbol)
11448         atomic_inc(&nr_ksymbol_events);
11449     if (event->attr.bpf_event)
11450         atomic_inc(&nr_bpf_events);
11451     if (event->attr.text_poke)
11452         atomic_inc(&nr_text_poke_events);
11453 
11454     if (inc) {
11455         /*
11456          * We need the mutex here because static_branch_enable()
11457          * must complete *before* the perf_sched_count increment
11458          * becomes visible.
11459          */
11460         if (atomic_inc_not_zero(&perf_sched_count))
11461             goto enabled;
11462 
11463         mutex_lock(&perf_sched_mutex);
11464         if (!atomic_read(&perf_sched_count)) {
11465             static_branch_enable(&perf_sched_events);
11466             /*
11467              * Guarantee that all CPUs observe they key change and
11468              * call the perf scheduling hooks before proceeding to
11469              * install events that need them.
11470              */
11471             synchronize_rcu();
11472         }
11473         /*
11474          * Now that we have waited for the sync_sched(), allow further
11475          * increments to by-pass the mutex.
11476          */
11477         atomic_inc(&perf_sched_count);
11478         mutex_unlock(&perf_sched_mutex);
11479     }
11480 enabled:
11481 
11482     account_event_cpu(event, event->cpu);
11483 
11484     account_pmu_sb_event(event);
11485 }
11486 
11487 /*
11488  * Allocate and initialize an event structure
11489  */
11490 static struct perf_event *
11491 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11492          struct task_struct *task,
11493          struct perf_event *group_leader,
11494          struct perf_event *parent_event,
11495          perf_overflow_handler_t overflow_handler,
11496          void *context, int cgroup_fd)
11497 {
11498     struct pmu *pmu;
11499     struct perf_event *event;
11500     struct hw_perf_event *hwc;
11501     long err = -EINVAL;
11502     int node;
11503 
11504     if ((unsigned)cpu >= nr_cpu_ids) {
11505         if (!task || cpu != -1)
11506             return ERR_PTR(-EINVAL);
11507     }
11508     if (attr->sigtrap && !task) {
11509         /* Requires a task: avoid signalling random tasks. */
11510         return ERR_PTR(-EINVAL);
11511     }
11512 
11513     node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11514     event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11515                       node);
11516     if (!event)
11517         return ERR_PTR(-ENOMEM);
11518 
11519     /*
11520      * Single events are their own group leaders, with an
11521      * empty sibling list:
11522      */
11523     if (!group_leader)
11524         group_leader = event;
11525 
11526     mutex_init(&event->child_mutex);
11527     INIT_LIST_HEAD(&event->child_list);
11528 
11529     INIT_LIST_HEAD(&event->event_entry);
11530     INIT_LIST_HEAD(&event->sibling_list);
11531     INIT_LIST_HEAD(&event->active_list);
11532     init_event_group(event);
11533     INIT_LIST_HEAD(&event->rb_entry);
11534     INIT_LIST_HEAD(&event->active_entry);
11535     INIT_LIST_HEAD(&event->addr_filters.list);
11536     INIT_HLIST_NODE(&event->hlist_entry);
11537 
11538 
11539     init_waitqueue_head(&event->waitq);
11540     event->pending_disable = -1;
11541     init_irq_work(&event->pending, perf_pending_event);
11542 
11543     mutex_init(&event->mmap_mutex);
11544     raw_spin_lock_init(&event->addr_filters.lock);
11545 
11546     atomic_long_set(&event->refcount, 1);
11547     event->cpu      = cpu;
11548     event->attr     = *attr;
11549     event->group_leader = group_leader;
11550     event->pmu      = NULL;
11551     event->oncpu        = -1;
11552 
11553     event->parent       = parent_event;
11554 
11555     event->ns       = get_pid_ns(task_active_pid_ns(current));
11556     event->id       = atomic64_inc_return(&perf_event_id);
11557 
11558     event->state        = PERF_EVENT_STATE_INACTIVE;
11559 
11560     if (parent_event)
11561         event->event_caps = parent_event->event_caps;
11562 
11563     if (event->attr.sigtrap)
11564         atomic_set(&event->event_limit, 1);
11565 
11566     if (task) {
11567         event->attach_state = PERF_ATTACH_TASK;
11568         /*
11569          * XXX pmu::event_init needs to know what task to account to
11570          * and we cannot use the ctx information because we need the
11571          * pmu before we get a ctx.
11572          */
11573         event->hw.target = get_task_struct(task);
11574     }
11575 
11576     event->clock = &local_clock;
11577     if (parent_event)
11578         event->clock = parent_event->clock;
11579 
11580     if (!overflow_handler && parent_event) {
11581         overflow_handler = parent_event->overflow_handler;
11582         context = parent_event->overflow_handler_context;
11583 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11584         if (overflow_handler == bpf_overflow_handler) {
11585             struct bpf_prog *prog = parent_event->prog;
11586 
11587             bpf_prog_inc(prog);
11588             event->prog = prog;
11589             event->orig_overflow_handler =
11590                 parent_event->orig_overflow_handler;
11591         }
11592 #endif
11593     }
11594 
11595     if (overflow_handler) {
11596         event->overflow_handler = overflow_handler;
11597         event->overflow_handler_context = context;
11598     } else if (is_write_backward(event)){
11599         event->overflow_handler = perf_event_output_backward;
11600         event->overflow_handler_context = NULL;
11601     } else {
11602         event->overflow_handler = perf_event_output_forward;
11603         event->overflow_handler_context = NULL;
11604     }
11605 
11606     perf_event__state_init(event);
11607 
11608     pmu = NULL;
11609 
11610     hwc = &event->hw;
11611     hwc->sample_period = attr->sample_period;
11612     if (attr->freq && attr->sample_freq)
11613         hwc->sample_period = 1;
11614     hwc->last_period = hwc->sample_period;
11615 
11616     local64_set(&hwc->period_left, hwc->sample_period);
11617 
11618     /*
11619      * We currently do not support PERF_SAMPLE_READ on inherited events.
11620      * See perf_output_read().
11621      */
11622     if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11623         goto err_ns;
11624 
11625     if (!has_branch_stack(event))
11626         event->attr.branch_sample_type = 0;
11627 
11628     pmu = perf_init_event(event);
11629     if (IS_ERR(pmu)) {
11630         err = PTR_ERR(pmu);
11631         goto err_ns;
11632     }
11633 
11634     /*
11635      * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11636      * be different on other CPUs in the uncore mask.
11637      */
11638     if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11639         err = -EINVAL;
11640         goto err_pmu;
11641     }
11642 
11643     if (event->attr.aux_output &&
11644         !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11645         err = -EOPNOTSUPP;
11646         goto err_pmu;
11647     }
11648 
11649     if (cgroup_fd != -1) {
11650         err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11651         if (err)
11652             goto err_pmu;
11653     }
11654 
11655     err = exclusive_event_init(event);
11656     if (err)
11657         goto err_pmu;
11658 
11659     if (has_addr_filter(event)) {
11660         event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11661                             sizeof(struct perf_addr_filter_range),
11662                             GFP_KERNEL);
11663         if (!event->addr_filter_ranges) {
11664             err = -ENOMEM;
11665             goto err_per_task;
11666         }
11667 
11668         /*
11669          * Clone the parent's vma offsets: they are valid until exec()
11670          * even if the mm is not shared with the parent.
11671          */
11672         if (event->parent) {
11673             struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11674 
11675             raw_spin_lock_irq(&ifh->lock);
11676             memcpy(event->addr_filter_ranges,
11677                    event->parent->addr_filter_ranges,
11678                    pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11679             raw_spin_unlock_irq(&ifh->lock);
11680         }
11681 
11682         /* force hw sync on the address filters */
11683         event->addr_filters_gen = 1;
11684     }
11685 
11686     if (!event->parent) {
11687         if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11688             err = get_callchain_buffers(attr->sample_max_stack);
11689             if (err)
11690                 goto err_addr_filters;
11691         }
11692     }
11693 
11694     err = security_perf_event_alloc(event);
11695     if (err)
11696         goto err_callchain_buffer;
11697 
11698     /* symmetric to unaccount_event() in _free_event() */
11699     account_event(event);
11700 
11701     return event;
11702 
11703 err_callchain_buffer:
11704     if (!event->parent) {
11705         if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11706             put_callchain_buffers();
11707     }
11708 err_addr_filters:
11709     kfree(event->addr_filter_ranges);
11710 
11711 err_per_task:
11712     exclusive_event_destroy(event);
11713 
11714 err_pmu:
11715     if (is_cgroup_event(event))
11716         perf_detach_cgroup(event);
11717     if (event->destroy)
11718         event->destroy(event);
11719     module_put(pmu->module);
11720 err_ns:
11721     if (event->ns)
11722         put_pid_ns(event->ns);
11723     if (event->hw.target)
11724         put_task_struct(event->hw.target);
11725     kmem_cache_free(perf_event_cache, event);
11726 
11727     return ERR_PTR(err);
11728 }
11729 
11730 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11731               struct perf_event_attr *attr)
11732 {
11733     u32 size;
11734     int ret;
11735 
11736     /* Zero the full structure, so that a short copy will be nice. */
11737     memset(attr, 0, sizeof(*attr));
11738 
11739     ret = get_user(size, &uattr->size);
11740     if (ret)
11741         return ret;
11742 
11743     /* ABI compatibility quirk: */
11744     if (!size)
11745         size = PERF_ATTR_SIZE_VER0;
11746     if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11747         goto err_size;
11748 
11749     ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11750     if (ret) {
11751         if (ret == -E2BIG)
11752             goto err_size;
11753         return ret;
11754     }
11755 
11756     attr->size = size;
11757 
11758     if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11759         return -EINVAL;
11760 
11761     if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11762         return -EINVAL;
11763 
11764     if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11765         return -EINVAL;
11766 
11767     if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11768         u64 mask = attr->branch_sample_type;
11769 
11770         /* only using defined bits */
11771         if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11772             return -EINVAL;
11773 
11774         /* at least one branch bit must be set */
11775         if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11776             return -EINVAL;
11777 
11778         /* propagate priv level, when not set for branch */
11779         if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11780 
11781             /* exclude_kernel checked on syscall entry */
11782             if (!attr->exclude_kernel)
11783                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11784 
11785             if (!attr->exclude_user)
11786                 mask |= PERF_SAMPLE_BRANCH_USER;
11787 
11788             if (!attr->exclude_hv)
11789                 mask |= PERF_SAMPLE_BRANCH_HV;
11790             /*
11791              * adjust user setting (for HW filter setup)
11792              */
11793             attr->branch_sample_type = mask;
11794         }
11795         /* privileged levels capture (kernel, hv): check permissions */
11796         if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11797             ret = perf_allow_kernel(attr);
11798             if (ret)
11799                 return ret;
11800         }
11801     }
11802 
11803     if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11804         ret = perf_reg_validate(attr->sample_regs_user);
11805         if (ret)
11806             return ret;
11807     }
11808 
11809     if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11810         if (!arch_perf_have_user_stack_dump())
11811             return -ENOSYS;
11812 
11813         /*
11814          * We have __u32 type for the size, but so far
11815          * we can only use __u16 as maximum due to the
11816          * __u16 sample size limit.
11817          */
11818         if (attr->sample_stack_user >= USHRT_MAX)
11819             return -EINVAL;
11820         else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11821             return -EINVAL;
11822     }
11823 
11824     if (!attr->sample_max_stack)
11825         attr->sample_max_stack = sysctl_perf_event_max_stack;
11826 
11827     if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11828         ret = perf_reg_validate(attr->sample_regs_intr);
11829 
11830 #ifndef CONFIG_CGROUP_PERF
11831     if (attr->sample_type & PERF_SAMPLE_CGROUP)
11832         return -EINVAL;
11833 #endif
11834     if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11835         (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11836         return -EINVAL;
11837 
11838     if (!attr->inherit && attr->inherit_thread)
11839         return -EINVAL;
11840 
11841     if (attr->remove_on_exec && attr->enable_on_exec)
11842         return -EINVAL;
11843 
11844     if (attr->sigtrap && !attr->remove_on_exec)
11845         return -EINVAL;
11846 
11847 out:
11848     return ret;
11849 
11850 err_size:
11851     put_user(sizeof(*attr), &uattr->size);
11852     ret = -E2BIG;
11853     goto out;
11854 }
11855 
11856 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11857 {
11858     if (b < a)
11859         swap(a, b);
11860 
11861     mutex_lock(a);
11862     mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11863 }
11864 
11865 static int
11866 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11867 {
11868     struct perf_buffer *rb = NULL;
11869     int ret = -EINVAL;
11870 
11871     if (!output_event) {
11872         mutex_lock(&event->mmap_mutex);
11873         goto set;
11874     }
11875 
11876     /* don't allow circular references */
11877     if (event == output_event)
11878         goto out;
11879 
11880     /*
11881      * Don't allow cross-cpu buffers
11882      */
11883     if (output_event->cpu != event->cpu)
11884         goto out;
11885 
11886     /*
11887      * If its not a per-cpu rb, it must be the same task.
11888      */
11889     if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11890         goto out;
11891 
11892     /*
11893      * Mixing clocks in the same buffer is trouble you don't need.
11894      */
11895     if (output_event->clock != event->clock)
11896         goto out;
11897 
11898     /*
11899      * Either writing ring buffer from beginning or from end.
11900      * Mixing is not allowed.
11901      */
11902     if (is_write_backward(output_event) != is_write_backward(event))
11903         goto out;
11904 
11905     /*
11906      * If both events generate aux data, they must be on the same PMU
11907      */
11908     if (has_aux(event) && has_aux(output_event) &&
11909         event->pmu != output_event->pmu)
11910         goto out;
11911 
11912     /*
11913      * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
11914      * output_event is already on rb->event_list, and the list iteration
11915      * restarts after every removal, it is guaranteed this new event is
11916      * observed *OR* if output_event is already removed, it's guaranteed we
11917      * observe !rb->mmap_count.
11918      */
11919     mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11920 set:
11921     /* Can't redirect output if we've got an active mmap() */
11922     if (atomic_read(&event->mmap_count))
11923         goto unlock;
11924 
11925     if (output_event) {
11926         /* get the rb we want to redirect to */
11927         rb = ring_buffer_get(output_event);
11928         if (!rb)
11929             goto unlock;
11930 
11931         /* did we race against perf_mmap_close() */
11932         if (!atomic_read(&rb->mmap_count)) {
11933             ring_buffer_put(rb);
11934             goto unlock;
11935         }
11936     }
11937 
11938     ring_buffer_attach(event, rb);
11939 
11940     ret = 0;
11941 unlock:
11942     mutex_unlock(&event->mmap_mutex);
11943     if (output_event)
11944         mutex_unlock(&output_event->mmap_mutex);
11945 
11946 out:
11947     return ret;
11948 }
11949 
11950 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11951 {
11952     bool nmi_safe = false;
11953 
11954     switch (clk_id) {
11955     case CLOCK_MONOTONIC:
11956         event->clock = &ktime_get_mono_fast_ns;
11957         nmi_safe = true;
11958         break;
11959 
11960     case CLOCK_MONOTONIC_RAW:
11961         event->clock = &ktime_get_raw_fast_ns;
11962         nmi_safe = true;
11963         break;
11964 
11965     case CLOCK_REALTIME:
11966         event->clock = &ktime_get_real_ns;
11967         break;
11968 
11969     case CLOCK_BOOTTIME:
11970         event->clock = &ktime_get_boottime_ns;
11971         break;
11972 
11973     case CLOCK_TAI:
11974         event->clock = &ktime_get_clocktai_ns;
11975         break;
11976 
11977     default:
11978         return -EINVAL;
11979     }
11980 
11981     if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11982         return -EINVAL;
11983 
11984     return 0;
11985 }
11986 
11987 /*
11988  * Variation on perf_event_ctx_lock_nested(), except we take two context
11989  * mutexes.
11990  */
11991 static struct perf_event_context *
11992 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11993                  struct perf_event_context *ctx)
11994 {
11995     struct perf_event_context *gctx;
11996 
11997 again:
11998     rcu_read_lock();
11999     gctx = READ_ONCE(group_leader->ctx);
12000     if (!refcount_inc_not_zero(&gctx->refcount)) {
12001         rcu_read_unlock();
12002         goto again;
12003     }
12004     rcu_read_unlock();
12005 
12006     mutex_lock_double(&gctx->mutex, &ctx->mutex);
12007 
12008     if (group_leader->ctx != gctx) {
12009         mutex_unlock(&ctx->mutex);
12010         mutex_unlock(&gctx->mutex);
12011         put_ctx(gctx);
12012         goto again;
12013     }
12014 
12015     return gctx;
12016 }
12017 
12018 static bool
12019 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12020 {
12021     unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12022     bool is_capable = perfmon_capable();
12023 
12024     if (attr->sigtrap) {
12025         /*
12026          * perf_event_attr::sigtrap sends signals to the other task.
12027          * Require the current task to also have CAP_KILL.
12028          */
12029         rcu_read_lock();
12030         is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12031         rcu_read_unlock();
12032 
12033         /*
12034          * If the required capabilities aren't available, checks for
12035          * ptrace permissions: upgrade to ATTACH, since sending signals
12036          * can effectively change the target task.
12037          */
12038         ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12039     }
12040 
12041     /*
12042      * Preserve ptrace permission check for backwards compatibility. The
12043      * ptrace check also includes checks that the current task and other
12044      * task have matching uids, and is therefore not done here explicitly.
12045      */
12046     return is_capable || ptrace_may_access(task, ptrace_mode);
12047 }
12048 
12049 /**
12050  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12051  *
12052  * @attr_uptr:  event_id type attributes for monitoring/sampling
12053  * @pid:        target pid
12054  * @cpu:        target cpu
12055  * @group_fd:       group leader event fd
12056  * @flags:      perf event open flags
12057  */
12058 SYSCALL_DEFINE5(perf_event_open,
12059         struct perf_event_attr __user *, attr_uptr,
12060         pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12061 {
12062     struct perf_event *group_leader = NULL, *output_event = NULL;
12063     struct perf_event *event, *sibling;
12064     struct perf_event_attr attr;
12065     struct perf_event_context *ctx, *gctx;
12066     struct file *event_file = NULL;
12067     struct fd group = {NULL, 0};
12068     struct task_struct *task = NULL;
12069     struct pmu *pmu;
12070     int event_fd;
12071     int move_group = 0;
12072     int err;
12073     int f_flags = O_RDWR;
12074     int cgroup_fd = -1;
12075 
12076     /* for future expandability... */
12077     if (flags & ~PERF_FLAG_ALL)
12078         return -EINVAL;
12079 
12080     /* Do we allow access to perf_event_open(2) ? */
12081     err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12082     if (err)
12083         return err;
12084 
12085     err = perf_copy_attr(attr_uptr, &attr);
12086     if (err)
12087         return err;
12088 
12089     if (!attr.exclude_kernel) {
12090         err = perf_allow_kernel(&attr);
12091         if (err)
12092             return err;
12093     }
12094 
12095     if (attr.namespaces) {
12096         if (!perfmon_capable())
12097             return -EACCES;
12098     }
12099 
12100     if (attr.freq) {
12101         if (attr.sample_freq > sysctl_perf_event_sample_rate)
12102             return -EINVAL;
12103     } else {
12104         if (attr.sample_period & (1ULL << 63))
12105             return -EINVAL;
12106     }
12107 
12108     /* Only privileged users can get physical addresses */
12109     if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12110         err = perf_allow_kernel(&attr);
12111         if (err)
12112             return err;
12113     }
12114 
12115     /* REGS_INTR can leak data, lockdown must prevent this */
12116     if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12117         err = security_locked_down(LOCKDOWN_PERF);
12118         if (err)
12119             return err;
12120     }
12121 
12122     /*
12123      * In cgroup mode, the pid argument is used to pass the fd
12124      * opened to the cgroup directory in cgroupfs. The cpu argument
12125      * designates the cpu on which to monitor threads from that
12126      * cgroup.
12127      */
12128     if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12129         return -EINVAL;
12130 
12131     if (flags & PERF_FLAG_FD_CLOEXEC)
12132         f_flags |= O_CLOEXEC;
12133 
12134     event_fd = get_unused_fd_flags(f_flags);
12135     if (event_fd < 0)
12136         return event_fd;
12137 
12138     if (group_fd != -1) {
12139         err = perf_fget_light(group_fd, &group);
12140         if (err)
12141             goto err_fd;
12142         group_leader = group.file->private_data;
12143         if (flags & PERF_FLAG_FD_OUTPUT)
12144             output_event = group_leader;
12145         if (flags & PERF_FLAG_FD_NO_GROUP)
12146             group_leader = NULL;
12147     }
12148 
12149     if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12150         task = find_lively_task_by_vpid(pid);
12151         if (IS_ERR(task)) {
12152             err = PTR_ERR(task);
12153             goto err_group_fd;
12154         }
12155     }
12156 
12157     if (task && group_leader &&
12158         group_leader->attr.inherit != attr.inherit) {
12159         err = -EINVAL;
12160         goto err_task;
12161     }
12162 
12163     if (flags & PERF_FLAG_PID_CGROUP)
12164         cgroup_fd = pid;
12165 
12166     event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12167                  NULL, NULL, cgroup_fd);
12168     if (IS_ERR(event)) {
12169         err = PTR_ERR(event);
12170         goto err_task;
12171     }
12172 
12173     if (is_sampling_event(event)) {
12174         if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12175             err = -EOPNOTSUPP;
12176             goto err_alloc;
12177         }
12178     }
12179 
12180     /*
12181      * Special case software events and allow them to be part of
12182      * any hardware group.
12183      */
12184     pmu = event->pmu;
12185 
12186     if (attr.use_clockid) {
12187         err = perf_event_set_clock(event, attr.clockid);
12188         if (err)
12189             goto err_alloc;
12190     }
12191 
12192     if (pmu->task_ctx_nr == perf_sw_context)
12193         event->event_caps |= PERF_EV_CAP_SOFTWARE;
12194 
12195     if (group_leader) {
12196         if (is_software_event(event) &&
12197             !in_software_context(group_leader)) {
12198             /*
12199              * If the event is a sw event, but the group_leader
12200              * is on hw context.
12201              *
12202              * Allow the addition of software events to hw
12203              * groups, this is safe because software events
12204              * never fail to schedule.
12205              */
12206             pmu = group_leader->ctx->pmu;
12207         } else if (!is_software_event(event) &&
12208                is_software_event(group_leader) &&
12209                (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12210             /*
12211              * In case the group is a pure software group, and we
12212              * try to add a hardware event, move the whole group to
12213              * the hardware context.
12214              */
12215             move_group = 1;
12216         }
12217     }
12218 
12219     /*
12220      * Get the target context (task or percpu):
12221      */
12222     ctx = find_get_context(pmu, task, event);
12223     if (IS_ERR(ctx)) {
12224         err = PTR_ERR(ctx);
12225         goto err_alloc;
12226     }
12227 
12228     /*
12229      * Look up the group leader (we will attach this event to it):
12230      */
12231     if (group_leader) {
12232         err = -EINVAL;
12233 
12234         /*
12235          * Do not allow a recursive hierarchy (this new sibling
12236          * becoming part of another group-sibling):
12237          */
12238         if (group_leader->group_leader != group_leader)
12239             goto err_context;
12240 
12241         /* All events in a group should have the same clock */
12242         if (group_leader->clock != event->clock)
12243             goto err_context;
12244 
12245         /*
12246          * Make sure we're both events for the same CPU;
12247          * grouping events for different CPUs is broken; since
12248          * you can never concurrently schedule them anyhow.
12249          */
12250         if (group_leader->cpu != event->cpu)
12251             goto err_context;
12252 
12253         /*
12254          * Make sure we're both on the same task, or both
12255          * per-CPU events.
12256          */
12257         if (group_leader->ctx->task != ctx->task)
12258             goto err_context;
12259 
12260         /*
12261          * Do not allow to attach to a group in a different task
12262          * or CPU context. If we're moving SW events, we'll fix
12263          * this up later, so allow that.
12264          *
12265          * Racy, not holding group_leader->ctx->mutex, see comment with
12266          * perf_event_ctx_lock().
12267          */
12268         if (!move_group && group_leader->ctx != ctx)
12269             goto err_context;
12270 
12271         /*
12272          * Only a group leader can be exclusive or pinned
12273          */
12274         if (attr.exclusive || attr.pinned)
12275             goto err_context;
12276     }
12277 
12278     if (output_event) {
12279         err = perf_event_set_output(event, output_event);
12280         if (err)
12281             goto err_context;
12282     }
12283 
12284     event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12285                     f_flags);
12286     if (IS_ERR(event_file)) {
12287         err = PTR_ERR(event_file);
12288         event_file = NULL;
12289         goto err_context;
12290     }
12291 
12292     if (task) {
12293         err = down_read_interruptible(&task->signal->exec_update_lock);
12294         if (err)
12295             goto err_file;
12296 
12297         /*
12298          * We must hold exec_update_lock across this and any potential
12299          * perf_install_in_context() call for this new event to
12300          * serialize against exec() altering our credentials (and the
12301          * perf_event_exit_task() that could imply).
12302          */
12303         err = -EACCES;
12304         if (!perf_check_permission(&attr, task))
12305             goto err_cred;
12306     }
12307 
12308     if (move_group) {
12309         gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12310 
12311         if (gctx->task == TASK_TOMBSTONE) {
12312             err = -ESRCH;
12313             goto err_locked;
12314         }
12315 
12316         /*
12317          * Check if we raced against another sys_perf_event_open() call
12318          * moving the software group underneath us.
12319          */
12320         if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12321             /*
12322              * If someone moved the group out from under us, check
12323              * if this new event wound up on the same ctx, if so
12324              * its the regular !move_group case, otherwise fail.
12325              */
12326             if (gctx != ctx) {
12327                 err = -EINVAL;
12328                 goto err_locked;
12329             } else {
12330                 perf_event_ctx_unlock(group_leader, gctx);
12331                 move_group = 0;
12332                 goto not_move_group;
12333             }
12334         }
12335 
12336         /*
12337          * Failure to create exclusive events returns -EBUSY.
12338          */
12339         err = -EBUSY;
12340         if (!exclusive_event_installable(group_leader, ctx))
12341             goto err_locked;
12342 
12343         for_each_sibling_event(sibling, group_leader) {
12344             if (!exclusive_event_installable(sibling, ctx))
12345                 goto err_locked;
12346         }
12347     } else {
12348         mutex_lock(&ctx->mutex);
12349 
12350         /*
12351          * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12352          * see the group_leader && !move_group test earlier.
12353          */
12354         if (group_leader && group_leader->ctx != ctx) {
12355             err = -EINVAL;
12356             goto err_locked;
12357         }
12358     }
12359 not_move_group:
12360 
12361     if (ctx->task == TASK_TOMBSTONE) {
12362         err = -ESRCH;
12363         goto err_locked;
12364     }
12365 
12366     if (!perf_event_validate_size(event)) {
12367         err = -E2BIG;
12368         goto err_locked;
12369     }
12370 
12371     if (!task) {
12372         /*
12373          * Check if the @cpu we're creating an event for is online.
12374          *
12375          * We use the perf_cpu_context::ctx::mutex to serialize against
12376          * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12377          */
12378         struct perf_cpu_context *cpuctx =
12379             container_of(ctx, struct perf_cpu_context, ctx);
12380 
12381         if (!cpuctx->online) {
12382             err = -ENODEV;
12383             goto err_locked;
12384         }
12385     }
12386 
12387     if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12388         err = -EINVAL;
12389         goto err_locked;
12390     }
12391 
12392     /*
12393      * Must be under the same ctx::mutex as perf_install_in_context(),
12394      * because we need to serialize with concurrent event creation.
12395      */
12396     if (!exclusive_event_installable(event, ctx)) {
12397         err = -EBUSY;
12398         goto err_locked;
12399     }
12400 
12401     WARN_ON_ONCE(ctx->parent_ctx);
12402 
12403     /*
12404      * This is the point on no return; we cannot fail hereafter. This is
12405      * where we start modifying current state.
12406      */
12407 
12408     if (move_group) {
12409         /*
12410          * See perf_event_ctx_lock() for comments on the details
12411          * of swizzling perf_event::ctx.
12412          */
12413         perf_remove_from_context(group_leader, 0);
12414         put_ctx(gctx);
12415 
12416         for_each_sibling_event(sibling, group_leader) {
12417             perf_remove_from_context(sibling, 0);
12418             put_ctx(gctx);
12419         }
12420 
12421         /*
12422          * Wait for everybody to stop referencing the events through
12423          * the old lists, before installing it on new lists.
12424          */
12425         synchronize_rcu();
12426 
12427         /*
12428          * Install the group siblings before the group leader.
12429          *
12430          * Because a group leader will try and install the entire group
12431          * (through the sibling list, which is still in-tact), we can
12432          * end up with siblings installed in the wrong context.
12433          *
12434          * By installing siblings first we NO-OP because they're not
12435          * reachable through the group lists.
12436          */
12437         for_each_sibling_event(sibling, group_leader) {
12438             perf_event__state_init(sibling);
12439             perf_install_in_context(ctx, sibling, sibling->cpu);
12440             get_ctx(ctx);
12441         }
12442 
12443         /*
12444          * Removing from the context ends up with disabled
12445          * event. What we want here is event in the initial
12446          * startup state, ready to be add into new context.
12447          */
12448         perf_event__state_init(group_leader);
12449         perf_install_in_context(ctx, group_leader, group_leader->cpu);
12450         get_ctx(ctx);
12451     }
12452 
12453     /*
12454      * Precalculate sample_data sizes; do while holding ctx::mutex such
12455      * that we're serialized against further additions and before
12456      * perf_install_in_context() which is the point the event is active and
12457      * can use these values.
12458      */
12459     perf_event__header_size(event);
12460     perf_event__id_header_size(event);
12461 
12462     event->owner = current;
12463 
12464     perf_install_in_context(ctx, event, event->cpu);
12465     perf_unpin_context(ctx);
12466 
12467     if (move_group)
12468         perf_event_ctx_unlock(group_leader, gctx);
12469     mutex_unlock(&ctx->mutex);
12470 
12471     if (task) {
12472         up_read(&task->signal->exec_update_lock);
12473         put_task_struct(task);
12474     }
12475 
12476     mutex_lock(&current->perf_event_mutex);
12477     list_add_tail(&event->owner_entry, &current->perf_event_list);
12478     mutex_unlock(&current->perf_event_mutex);
12479 
12480     /*
12481      * Drop the reference on the group_event after placing the
12482      * new event on the sibling_list. This ensures destruction
12483      * of the group leader will find the pointer to itself in
12484      * perf_group_detach().
12485      */
12486     fdput(group);
12487     fd_install(event_fd, event_file);
12488     return event_fd;
12489 
12490 err_locked:
12491     if (move_group)
12492         perf_event_ctx_unlock(group_leader, gctx);
12493     mutex_unlock(&ctx->mutex);
12494 err_cred:
12495     if (task)
12496         up_read(&task->signal->exec_update_lock);
12497 err_file:
12498     fput(event_file);
12499 err_context:
12500     perf_unpin_context(ctx);
12501     put_ctx(ctx);
12502 err_alloc:
12503     /*
12504      * If event_file is set, the fput() above will have called ->release()
12505      * and that will take care of freeing the event.
12506      */
12507     if (!event_file)
12508         free_event(event);
12509 err_task:
12510     if (task)
12511         put_task_struct(task);
12512 err_group_fd:
12513     fdput(group);
12514 err_fd:
12515     put_unused_fd(event_fd);
12516     return err;
12517 }
12518 
12519 /**
12520  * perf_event_create_kernel_counter
12521  *
12522  * @attr: attributes of the counter to create
12523  * @cpu: cpu in which the counter is bound
12524  * @task: task to profile (NULL for percpu)
12525  * @overflow_handler: callback to trigger when we hit the event
12526  * @context: context data could be used in overflow_handler callback
12527  */
12528 struct perf_event *
12529 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12530                  struct task_struct *task,
12531                  perf_overflow_handler_t overflow_handler,
12532                  void *context)
12533 {
12534     struct perf_event_context *ctx;
12535     struct perf_event *event;
12536     int err;
12537 
12538     /*
12539      * Grouping is not supported for kernel events, neither is 'AUX',
12540      * make sure the caller's intentions are adjusted.
12541      */
12542     if (attr->aux_output)
12543         return ERR_PTR(-EINVAL);
12544 
12545     event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12546                  overflow_handler, context, -1);
12547     if (IS_ERR(event)) {
12548         err = PTR_ERR(event);
12549         goto err;
12550     }
12551 
12552     /* Mark owner so we could distinguish it from user events. */
12553     event->owner = TASK_TOMBSTONE;
12554 
12555     /*
12556      * Get the target context (task or percpu):
12557      */
12558     ctx = find_get_context(event->pmu, task, event);
12559     if (IS_ERR(ctx)) {
12560         err = PTR_ERR(ctx);
12561         goto err_free;
12562     }
12563 
12564     WARN_ON_ONCE(ctx->parent_ctx);
12565     mutex_lock(&ctx->mutex);
12566     if (ctx->task == TASK_TOMBSTONE) {
12567         err = -ESRCH;
12568         goto err_unlock;
12569     }
12570 
12571     if (!task) {
12572         /*
12573          * Check if the @cpu we're creating an event for is online.
12574          *
12575          * We use the perf_cpu_context::ctx::mutex to serialize against
12576          * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12577          */
12578         struct perf_cpu_context *cpuctx =
12579             container_of(ctx, struct perf_cpu_context, ctx);
12580         if (!cpuctx->online) {
12581             err = -ENODEV;
12582             goto err_unlock;
12583         }
12584     }
12585 
12586     if (!exclusive_event_installable(event, ctx)) {
12587         err = -EBUSY;
12588         goto err_unlock;
12589     }
12590 
12591     perf_install_in_context(ctx, event, event->cpu);
12592     perf_unpin_context(ctx);
12593     mutex_unlock(&ctx->mutex);
12594 
12595     return event;
12596 
12597 err_unlock:
12598     mutex_unlock(&ctx->mutex);
12599     perf_unpin_context(ctx);
12600     put_ctx(ctx);
12601 err_free:
12602     free_event(event);
12603 err:
12604     return ERR_PTR(err);
12605 }
12606 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12607 
12608 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12609 {
12610     struct perf_event_context *src_ctx;
12611     struct perf_event_context *dst_ctx;
12612     struct perf_event *event, *tmp;
12613     LIST_HEAD(events);
12614 
12615     src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12616     dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12617 
12618     /*
12619      * See perf_event_ctx_lock() for comments on the details
12620      * of swizzling perf_event::ctx.
12621      */
12622     mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12623     list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12624                  event_entry) {
12625         perf_remove_from_context(event, 0);
12626         unaccount_event_cpu(event, src_cpu);
12627         put_ctx(src_ctx);
12628         list_add(&event->migrate_entry, &events);
12629     }
12630 
12631     /*
12632      * Wait for the events to quiesce before re-instating them.
12633      */
12634     synchronize_rcu();
12635 
12636     /*
12637      * Re-instate events in 2 passes.
12638      *
12639      * Skip over group leaders and only install siblings on this first
12640      * pass, siblings will not get enabled without a leader, however a
12641      * leader will enable its siblings, even if those are still on the old
12642      * context.
12643      */
12644     list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12645         if (event->group_leader == event)
12646             continue;
12647 
12648         list_del(&event->migrate_entry);
12649         if (event->state >= PERF_EVENT_STATE_OFF)
12650             event->state = PERF_EVENT_STATE_INACTIVE;
12651         account_event_cpu(event, dst_cpu);
12652         perf_install_in_context(dst_ctx, event, dst_cpu);
12653         get_ctx(dst_ctx);
12654     }
12655 
12656     /*
12657      * Once all the siblings are setup properly, install the group leaders
12658      * to make it go.
12659      */
12660     list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12661         list_del(&event->migrate_entry);
12662         if (event->state >= PERF_EVENT_STATE_OFF)
12663             event->state = PERF_EVENT_STATE_INACTIVE;
12664         account_event_cpu(event, dst_cpu);
12665         perf_install_in_context(dst_ctx, event, dst_cpu);
12666         get_ctx(dst_ctx);
12667     }
12668     mutex_unlock(&dst_ctx->mutex);
12669     mutex_unlock(&src_ctx->mutex);
12670 }
12671 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12672 
12673 static void sync_child_event(struct perf_event *child_event)
12674 {
12675     struct perf_event *parent_event = child_event->parent;
12676     u64 child_val;
12677 
12678     if (child_event->attr.inherit_stat) {
12679         struct task_struct *task = child_event->ctx->task;
12680 
12681         if (task && task != TASK_TOMBSTONE)
12682             perf_event_read_event(child_event, task);
12683     }
12684 
12685     child_val = perf_event_count(child_event);
12686 
12687     /*
12688      * Add back the child's count to the parent's count:
12689      */
12690     atomic64_add(child_val, &parent_event->child_count);
12691     atomic64_add(child_event->total_time_enabled,
12692              &parent_event->child_total_time_enabled);
12693     atomic64_add(child_event->total_time_running,
12694              &parent_event->child_total_time_running);
12695 }
12696 
12697 static void
12698 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12699 {
12700     struct perf_event *parent_event = event->parent;
12701     unsigned long detach_flags = 0;
12702 
12703     if (parent_event) {
12704         /*
12705          * Do not destroy the 'original' grouping; because of the
12706          * context switch optimization the original events could've
12707          * ended up in a random child task.
12708          *
12709          * If we were to destroy the original group, all group related
12710          * operations would cease to function properly after this
12711          * random child dies.
12712          *
12713          * Do destroy all inherited groups, we don't care about those
12714          * and being thorough is better.
12715          */
12716         detach_flags = DETACH_GROUP | DETACH_CHILD;
12717         mutex_lock(&parent_event->child_mutex);
12718     }
12719 
12720     perf_remove_from_context(event, detach_flags);
12721 
12722     raw_spin_lock_irq(&ctx->lock);
12723     if (event->state > PERF_EVENT_STATE_EXIT)
12724         perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12725     raw_spin_unlock_irq(&ctx->lock);
12726 
12727     /*
12728      * Child events can be freed.
12729      */
12730     if (parent_event) {
12731         mutex_unlock(&parent_event->child_mutex);
12732         /*
12733          * Kick perf_poll() for is_event_hup();
12734          */
12735         perf_event_wakeup(parent_event);
12736         free_event(event);
12737         put_event(parent_event);
12738         return;
12739     }
12740 
12741     /*
12742      * Parent events are governed by their filedesc, retain them.
12743      */
12744     perf_event_wakeup(event);
12745 }
12746 
12747 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12748 {
12749     struct perf_event_context *child_ctx, *clone_ctx = NULL;
12750     struct perf_event *child_event, *next;
12751 
12752     WARN_ON_ONCE(child != current);
12753 
12754     child_ctx = perf_pin_task_context(child, ctxn);
12755     if (!child_ctx)
12756         return;
12757 
12758     /*
12759      * In order to reduce the amount of tricky in ctx tear-down, we hold
12760      * ctx::mutex over the entire thing. This serializes against almost
12761      * everything that wants to access the ctx.
12762      *
12763      * The exception is sys_perf_event_open() /
12764      * perf_event_create_kernel_count() which does find_get_context()
12765      * without ctx::mutex (it cannot because of the move_group double mutex
12766      * lock thing). See the comments in perf_install_in_context().
12767      */
12768     mutex_lock(&child_ctx->mutex);
12769 
12770     /*
12771      * In a single ctx::lock section, de-schedule the events and detach the
12772      * context from the task such that we cannot ever get it scheduled back
12773      * in.
12774      */
12775     raw_spin_lock_irq(&child_ctx->lock);
12776     task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12777 
12778     /*
12779      * Now that the context is inactive, destroy the task <-> ctx relation
12780      * and mark the context dead.
12781      */
12782     RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12783     put_ctx(child_ctx); /* cannot be last */
12784     WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12785     put_task_struct(current); /* cannot be last */
12786 
12787     clone_ctx = unclone_ctx(child_ctx);
12788     raw_spin_unlock_irq(&child_ctx->lock);
12789 
12790     if (clone_ctx)
12791         put_ctx(clone_ctx);
12792 
12793     /*
12794      * Report the task dead after unscheduling the events so that we
12795      * won't get any samples after PERF_RECORD_EXIT. We can however still
12796      * get a few PERF_RECORD_READ events.
12797      */
12798     perf_event_task(child, child_ctx, 0);
12799 
12800     list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12801         perf_event_exit_event(child_event, child_ctx);
12802 
12803     mutex_unlock(&child_ctx->mutex);
12804 
12805     put_ctx(child_ctx);
12806 }
12807 
12808 /*
12809  * When a child task exits, feed back event values to parent events.
12810  *
12811  * Can be called with exec_update_lock held when called from
12812  * setup_new_exec().
12813  */
12814 void perf_event_exit_task(struct task_struct *child)
12815 {
12816     struct perf_event *event, *tmp;
12817     int ctxn;
12818 
12819     mutex_lock(&child->perf_event_mutex);
12820     list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12821                  owner_entry) {
12822         list_del_init(&event->owner_entry);
12823 
12824         /*
12825          * Ensure the list deletion is visible before we clear
12826          * the owner, closes a race against perf_release() where
12827          * we need to serialize on the owner->perf_event_mutex.
12828          */
12829         smp_store_release(&event->owner, NULL);
12830     }
12831     mutex_unlock(&child->perf_event_mutex);
12832 
12833     for_each_task_context_nr(ctxn)
12834         perf_event_exit_task_context(child, ctxn);
12835 
12836     /*
12837      * The perf_event_exit_task_context calls perf_event_task
12838      * with child's task_ctx, which generates EXIT events for
12839      * child contexts and sets child->perf_event_ctxp[] to NULL.
12840      * At this point we need to send EXIT events to cpu contexts.
12841      */
12842     perf_event_task(child, NULL, 0);
12843 }
12844 
12845 static void perf_free_event(struct perf_event *event,
12846                 struct perf_event_context *ctx)
12847 {
12848     struct perf_event *parent = event->parent;
12849 
12850     if (WARN_ON_ONCE(!parent))
12851         return;
12852 
12853     mutex_lock(&parent->child_mutex);
12854     list_del_init(&event->child_list);
12855     mutex_unlock(&parent->child_mutex);
12856 
12857     put_event(parent);
12858 
12859     raw_spin_lock_irq(&ctx->lock);
12860     perf_group_detach(event);
12861     list_del_event(event, ctx);
12862     raw_spin_unlock_irq(&ctx->lock);
12863     free_event(event);
12864 }
12865 
12866 /*
12867  * Free a context as created by inheritance by perf_event_init_task() below,
12868  * used by fork() in case of fail.
12869  *
12870  * Even though the task has never lived, the context and events have been
12871  * exposed through the child_list, so we must take care tearing it all down.
12872  */
12873 void perf_event_free_task(struct task_struct *task)
12874 {
12875     struct perf_event_context *ctx;
12876     struct perf_event *event, *tmp;
12877     int ctxn;
12878 
12879     for_each_task_context_nr(ctxn) {
12880         ctx = task->perf_event_ctxp[ctxn];
12881         if (!ctx)
12882             continue;
12883 
12884         mutex_lock(&ctx->mutex);
12885         raw_spin_lock_irq(&ctx->lock);
12886         /*
12887          * Destroy the task <-> ctx relation and mark the context dead.
12888          *
12889          * This is important because even though the task hasn't been
12890          * exposed yet the context has been (through child_list).
12891          */
12892         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12893         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12894         put_task_struct(task); /* cannot be last */
12895         raw_spin_unlock_irq(&ctx->lock);
12896 
12897         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12898             perf_free_event(event, ctx);
12899 
12900         mutex_unlock(&ctx->mutex);
12901 
12902         /*
12903          * perf_event_release_kernel() could've stolen some of our
12904          * child events and still have them on its free_list. In that
12905          * case we must wait for these events to have been freed (in
12906          * particular all their references to this task must've been
12907          * dropped).
12908          *
12909          * Without this copy_process() will unconditionally free this
12910          * task (irrespective of its reference count) and
12911          * _free_event()'s put_task_struct(event->hw.target) will be a
12912          * use-after-free.
12913          *
12914          * Wait for all events to drop their context reference.
12915          */
12916         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12917         put_ctx(ctx); /* must be last */
12918     }
12919 }
12920 
12921 void perf_event_delayed_put(struct task_struct *task)
12922 {
12923     int ctxn;
12924 
12925     for_each_task_context_nr(ctxn)
12926         WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12927 }
12928 
12929 struct file *perf_event_get(unsigned int fd)
12930 {
12931     struct file *file = fget(fd);
12932     if (!file)
12933         return ERR_PTR(-EBADF);
12934 
12935     if (file->f_op != &perf_fops) {
12936         fput(file);
12937         return ERR_PTR(-EBADF);
12938     }
12939 
12940     return file;
12941 }
12942 
12943 const struct perf_event *perf_get_event(struct file *file)
12944 {
12945     if (file->f_op != &perf_fops)
12946         return ERR_PTR(-EINVAL);
12947 
12948     return file->private_data;
12949 }
12950 
12951 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12952 {
12953     if (!event)
12954         return ERR_PTR(-EINVAL);
12955 
12956     return &event->attr;
12957 }
12958 
12959 /*
12960  * Inherit an event from parent task to child task.
12961  *
12962  * Returns:
12963  *  - valid pointer on success
12964  *  - NULL for orphaned events
12965  *  - IS_ERR() on error
12966  */
12967 static struct perf_event *
12968 inherit_event(struct perf_event *parent_event,
12969           struct task_struct *parent,
12970           struct perf_event_context *parent_ctx,
12971           struct task_struct *child,
12972           struct perf_event *group_leader,
12973           struct perf_event_context *child_ctx)
12974 {
12975     enum perf_event_state parent_state = parent_event->state;
12976     struct perf_event *child_event;
12977     unsigned long flags;
12978 
12979     /*
12980      * Instead of creating recursive hierarchies of events,
12981      * we link inherited events back to the original parent,
12982      * which has a filp for sure, which we use as the reference
12983      * count:
12984      */
12985     if (parent_event->parent)
12986         parent_event = parent_event->parent;
12987 
12988     child_event = perf_event_alloc(&parent_event->attr,
12989                        parent_event->cpu,
12990                        child,
12991                        group_leader, parent_event,
12992                        NULL, NULL, -1);
12993     if (IS_ERR(child_event))
12994         return child_event;
12995 
12996 
12997     if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12998         !child_ctx->task_ctx_data) {
12999         struct pmu *pmu = child_event->pmu;
13000 
13001         child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13002         if (!child_ctx->task_ctx_data) {
13003             free_event(child_event);
13004             return ERR_PTR(-ENOMEM);
13005         }
13006     }
13007 
13008     /*
13009      * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13010      * must be under the same lock in order to serialize against
13011      * perf_event_release_kernel(), such that either we must observe
13012      * is_orphaned_event() or they will observe us on the child_list.
13013      */
13014     mutex_lock(&parent_event->child_mutex);
13015     if (is_orphaned_event(parent_event) ||
13016         !atomic_long_inc_not_zero(&parent_event->refcount)) {
13017         mutex_unlock(&parent_event->child_mutex);
13018         /* task_ctx_data is freed with child_ctx */
13019         free_event(child_event);
13020         return NULL;
13021     }
13022 
13023     get_ctx(child_ctx);
13024 
13025     /*
13026      * Make the child state follow the state of the parent event,
13027      * not its attr.disabled bit.  We hold the parent's mutex,
13028      * so we won't race with perf_event_{en, dis}able_family.
13029      */
13030     if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13031         child_event->state = PERF_EVENT_STATE_INACTIVE;
13032     else
13033         child_event->state = PERF_EVENT_STATE_OFF;
13034 
13035     if (parent_event->attr.freq) {
13036         u64 sample_period = parent_event->hw.sample_period;
13037         struct hw_perf_event *hwc = &child_event->hw;
13038 
13039         hwc->sample_period = sample_period;
13040         hwc->last_period   = sample_period;
13041 
13042         local64_set(&hwc->period_left, sample_period);
13043     }
13044 
13045     child_event->ctx = child_ctx;
13046     child_event->overflow_handler = parent_event->overflow_handler;
13047     child_event->overflow_handler_context
13048         = parent_event->overflow_handler_context;
13049 
13050     /*
13051      * Precalculate sample_data sizes
13052      */
13053     perf_event__header_size(child_event);
13054     perf_event__id_header_size(child_event);
13055 
13056     /*
13057      * Link it up in the child's context:
13058      */
13059     raw_spin_lock_irqsave(&child_ctx->lock, flags);
13060     add_event_to_ctx(child_event, child_ctx);
13061     child_event->attach_state |= PERF_ATTACH_CHILD;
13062     raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13063 
13064     /*
13065      * Link this into the parent event's child list
13066      */
13067     list_add_tail(&child_event->child_list, &parent_event->child_list);
13068     mutex_unlock(&parent_event->child_mutex);
13069 
13070     return child_event;
13071 }
13072 
13073 /*
13074  * Inherits an event group.
13075  *
13076  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13077  * This matches with perf_event_release_kernel() removing all child events.
13078  *
13079  * Returns:
13080  *  - 0 on success
13081  *  - <0 on error
13082  */
13083 static int inherit_group(struct perf_event *parent_event,
13084           struct task_struct *parent,
13085           struct perf_event_context *parent_ctx,
13086           struct task_struct *child,
13087           struct perf_event_context *child_ctx)
13088 {
13089     struct perf_event *leader;
13090     struct perf_event *sub;
13091     struct perf_event *child_ctr;
13092 
13093     leader = inherit_event(parent_event, parent, parent_ctx,
13094                  child, NULL, child_ctx);
13095     if (IS_ERR(leader))
13096         return PTR_ERR(leader);
13097     /*
13098      * @leader can be NULL here because of is_orphaned_event(). In this
13099      * case inherit_event() will create individual events, similar to what
13100      * perf_group_detach() would do anyway.
13101      */
13102     for_each_sibling_event(sub, parent_event) {
13103         child_ctr = inherit_event(sub, parent, parent_ctx,
13104                         child, leader, child_ctx);
13105         if (IS_ERR(child_ctr))
13106             return PTR_ERR(child_ctr);
13107 
13108         if (sub->aux_event == parent_event && child_ctr &&
13109             !perf_get_aux_event(child_ctr, leader))
13110             return -EINVAL;
13111     }
13112     return 0;
13113 }
13114 
13115 /*
13116  * Creates the child task context and tries to inherit the event-group.
13117  *
13118  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13119  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13120  * consistent with perf_event_release_kernel() removing all child events.
13121  *
13122  * Returns:
13123  *  - 0 on success
13124  *  - <0 on error
13125  */
13126 static int
13127 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13128            struct perf_event_context *parent_ctx,
13129            struct task_struct *child, int ctxn,
13130            u64 clone_flags, int *inherited_all)
13131 {
13132     int ret;
13133     struct perf_event_context *child_ctx;
13134 
13135     if (!event->attr.inherit ||
13136         (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13137         /* Do not inherit if sigtrap and signal handlers were cleared. */
13138         (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13139         *inherited_all = 0;
13140         return 0;
13141     }
13142 
13143     child_ctx = child->perf_event_ctxp[ctxn];
13144     if (!child_ctx) {
13145         /*
13146          * This is executed from the parent task context, so
13147          * inherit events that have been marked for cloning.
13148          * First allocate and initialize a context for the
13149          * child.
13150          */
13151         child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13152         if (!child_ctx)
13153             return -ENOMEM;
13154 
13155         child->perf_event_ctxp[ctxn] = child_ctx;
13156     }
13157 
13158     ret = inherit_group(event, parent, parent_ctx,
13159                 child, child_ctx);
13160 
13161     if (ret)
13162         *inherited_all = 0;
13163 
13164     return ret;
13165 }
13166 
13167 /*
13168  * Initialize the perf_event context in task_struct
13169  */
13170 static int perf_event_init_context(struct task_struct *child, int ctxn,
13171                    u64 clone_flags)
13172 {
13173     struct perf_event_context *child_ctx, *parent_ctx;
13174     struct perf_event_context *cloned_ctx;
13175     struct perf_event *event;
13176     struct task_struct *parent = current;
13177     int inherited_all = 1;
13178     unsigned long flags;
13179     int ret = 0;
13180 
13181     if (likely(!parent->perf_event_ctxp[ctxn]))
13182         return 0;
13183 
13184     /*
13185      * If the parent's context is a clone, pin it so it won't get
13186      * swapped under us.
13187      */
13188     parent_ctx = perf_pin_task_context(parent, ctxn);
13189     if (!parent_ctx)
13190         return 0;
13191 
13192     /*
13193      * No need to check if parent_ctx != NULL here; since we saw
13194      * it non-NULL earlier, the only reason for it to become NULL
13195      * is if we exit, and since we're currently in the middle of
13196      * a fork we can't be exiting at the same time.
13197      */
13198 
13199     /*
13200      * Lock the parent list. No need to lock the child - not PID
13201      * hashed yet and not running, so nobody can access it.
13202      */
13203     mutex_lock(&parent_ctx->mutex);
13204 
13205     /*
13206      * We dont have to disable NMIs - we are only looking at
13207      * the list, not manipulating it:
13208      */
13209     perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13210         ret = inherit_task_group(event, parent, parent_ctx,
13211                      child, ctxn, clone_flags,
13212                      &inherited_all);
13213         if (ret)
13214             goto out_unlock;
13215     }
13216 
13217     /*
13218      * We can't hold ctx->lock when iterating the ->flexible_group list due
13219      * to allocations, but we need to prevent rotation because
13220      * rotate_ctx() will change the list from interrupt context.
13221      */
13222     raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13223     parent_ctx->rotate_disable = 1;
13224     raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13225 
13226     perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13227         ret = inherit_task_group(event, parent, parent_ctx,
13228                      child, ctxn, clone_flags,
13229                      &inherited_all);
13230         if (ret)
13231             goto out_unlock;
13232     }
13233 
13234     raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13235     parent_ctx->rotate_disable = 0;
13236 
13237     child_ctx = child->perf_event_ctxp[ctxn];
13238 
13239     if (child_ctx && inherited_all) {
13240         /*
13241          * Mark the child context as a clone of the parent
13242          * context, or of whatever the parent is a clone of.
13243          *
13244          * Note that if the parent is a clone, the holding of
13245          * parent_ctx->lock avoids it from being uncloned.
13246          */
13247         cloned_ctx = parent_ctx->parent_ctx;
13248         if (cloned_ctx) {
13249             child_ctx->parent_ctx = cloned_ctx;
13250             child_ctx->parent_gen = parent_ctx->parent_gen;
13251         } else {
13252             child_ctx->parent_ctx = parent_ctx;
13253             child_ctx->parent_gen = parent_ctx->generation;
13254         }
13255         get_ctx(child_ctx->parent_ctx);
13256     }
13257 
13258     raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13259 out_unlock:
13260     mutex_unlock(&parent_ctx->mutex);
13261 
13262     perf_unpin_context(parent_ctx);
13263     put_ctx(parent_ctx);
13264 
13265     return ret;
13266 }
13267 
13268 /*
13269  * Initialize the perf_event context in task_struct
13270  */
13271 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13272 {
13273     int ctxn, ret;
13274 
13275     memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13276     mutex_init(&child->perf_event_mutex);
13277     INIT_LIST_HEAD(&child->perf_event_list);
13278 
13279     for_each_task_context_nr(ctxn) {
13280         ret = perf_event_init_context(child, ctxn, clone_flags);
13281         if (ret) {
13282             perf_event_free_task(child);
13283             return ret;
13284         }
13285     }
13286 
13287     return 0;
13288 }
13289 
13290 static void __init perf_event_init_all_cpus(void)
13291 {
13292     struct swevent_htable *swhash;
13293     int cpu;
13294 
13295     zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13296 
13297     for_each_possible_cpu(cpu) {
13298         swhash = &per_cpu(swevent_htable, cpu);
13299         mutex_init(&swhash->hlist_mutex);
13300         INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13301 
13302         INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13303         raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13304 
13305 #ifdef CONFIG_CGROUP_PERF
13306         INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13307 #endif
13308         INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13309     }
13310 }
13311 
13312 static void perf_swevent_init_cpu(unsigned int cpu)
13313 {
13314     struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13315 
13316     mutex_lock(&swhash->hlist_mutex);
13317     if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13318         struct swevent_hlist *hlist;
13319 
13320         hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13321         WARN_ON(!hlist);
13322         rcu_assign_pointer(swhash->swevent_hlist, hlist);
13323     }
13324     mutex_unlock(&swhash->hlist_mutex);
13325 }
13326 
13327 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13328 static void __perf_event_exit_context(void *__info)
13329 {
13330     struct perf_event_context *ctx = __info;
13331     struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13332     struct perf_event *event;
13333 
13334     raw_spin_lock(&ctx->lock);
13335     ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13336     list_for_each_entry(event, &ctx->event_list, event_entry)
13337         __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13338     raw_spin_unlock(&ctx->lock);
13339 }
13340 
13341 static void perf_event_exit_cpu_context(int cpu)
13342 {
13343     struct perf_cpu_context *cpuctx;
13344     struct perf_event_context *ctx;
13345     struct pmu *pmu;
13346 
13347     mutex_lock(&pmus_lock);
13348     list_for_each_entry(pmu, &pmus, entry) {
13349         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13350         ctx = &cpuctx->ctx;
13351 
13352         mutex_lock(&ctx->mutex);
13353         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13354         cpuctx->online = 0;
13355         mutex_unlock(&ctx->mutex);
13356     }
13357     cpumask_clear_cpu(cpu, perf_online_mask);
13358     mutex_unlock(&pmus_lock);
13359 }
13360 #else
13361 
13362 static void perf_event_exit_cpu_context(int cpu) { }
13363 
13364 #endif
13365 
13366 int perf_event_init_cpu(unsigned int cpu)
13367 {
13368     struct perf_cpu_context *cpuctx;
13369     struct perf_event_context *ctx;
13370     struct pmu *pmu;
13371 
13372     perf_swevent_init_cpu(cpu);
13373 
13374     mutex_lock(&pmus_lock);
13375     cpumask_set_cpu(cpu, perf_online_mask);
13376     list_for_each_entry(pmu, &pmus, entry) {
13377         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13378         ctx = &cpuctx->ctx;
13379 
13380         mutex_lock(&ctx->mutex);
13381         cpuctx->online = 1;
13382         mutex_unlock(&ctx->mutex);
13383     }
13384     mutex_unlock(&pmus_lock);
13385 
13386     return 0;
13387 }
13388 
13389 int perf_event_exit_cpu(unsigned int cpu)
13390 {
13391     perf_event_exit_cpu_context(cpu);
13392     return 0;
13393 }
13394 
13395 static int
13396 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13397 {
13398     int cpu;
13399 
13400     for_each_online_cpu(cpu)
13401         perf_event_exit_cpu(cpu);
13402 
13403     return NOTIFY_OK;
13404 }
13405 
13406 /*
13407  * Run the perf reboot notifier at the very last possible moment so that
13408  * the generic watchdog code runs as long as possible.
13409  */
13410 static struct notifier_block perf_reboot_notifier = {
13411     .notifier_call = perf_reboot,
13412     .priority = INT_MIN,
13413 };
13414 
13415 void __init perf_event_init(void)
13416 {
13417     int ret;
13418 
13419     idr_init(&pmu_idr);
13420 
13421     perf_event_init_all_cpus();
13422     init_srcu_struct(&pmus_srcu);
13423     perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13424     perf_pmu_register(&perf_cpu_clock, NULL, -1);
13425     perf_pmu_register(&perf_task_clock, NULL, -1);
13426     perf_tp_register();
13427     perf_event_init_cpu(smp_processor_id());
13428     register_reboot_notifier(&perf_reboot_notifier);
13429 
13430     ret = init_hw_breakpoint();
13431     WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13432 
13433     perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13434 
13435     /*
13436      * Build time assertion that we keep the data_head at the intended
13437      * location.  IOW, validation we got the __reserved[] size right.
13438      */
13439     BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13440              != 1024);
13441 }
13442 
13443 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13444                   char *page)
13445 {
13446     struct perf_pmu_events_attr *pmu_attr =
13447         container_of(attr, struct perf_pmu_events_attr, attr);
13448 
13449     if (pmu_attr->event_str)
13450         return sprintf(page, "%s\n", pmu_attr->event_str);
13451 
13452     return 0;
13453 }
13454 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13455 
13456 static int __init perf_event_sysfs_init(void)
13457 {
13458     struct pmu *pmu;
13459     int ret;
13460 
13461     mutex_lock(&pmus_lock);
13462 
13463     ret = bus_register(&pmu_bus);
13464     if (ret)
13465         goto unlock;
13466 
13467     list_for_each_entry(pmu, &pmus, entry) {
13468         if (!pmu->name || pmu->type < 0)
13469             continue;
13470 
13471         ret = pmu_dev_alloc(pmu);
13472         WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13473     }
13474     pmu_bus_running = 1;
13475     ret = 0;
13476 
13477 unlock:
13478     mutex_unlock(&pmus_lock);
13479 
13480     return ret;
13481 }
13482 device_initcall(perf_event_sysfs_init);
13483 
13484 #ifdef CONFIG_CGROUP_PERF
13485 static struct cgroup_subsys_state *
13486 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13487 {
13488     struct perf_cgroup *jc;
13489 
13490     jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13491     if (!jc)
13492         return ERR_PTR(-ENOMEM);
13493 
13494     jc->info = alloc_percpu(struct perf_cgroup_info);
13495     if (!jc->info) {
13496         kfree(jc);
13497         return ERR_PTR(-ENOMEM);
13498     }
13499 
13500     return &jc->css;
13501 }
13502 
13503 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13504 {
13505     struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13506 
13507     free_percpu(jc->info);
13508     kfree(jc);
13509 }
13510 
13511 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13512 {
13513     perf_event_cgroup(css->cgroup);
13514     return 0;
13515 }
13516 
13517 static int __perf_cgroup_move(void *info)
13518 {
13519     struct task_struct *task = info;
13520     rcu_read_lock();
13521     perf_cgroup_switch(task);
13522     rcu_read_unlock();
13523     return 0;
13524 }
13525 
13526 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13527 {
13528     struct task_struct *task;
13529     struct cgroup_subsys_state *css;
13530 
13531     cgroup_taskset_for_each(task, css, tset)
13532         task_function_call(task, __perf_cgroup_move, task);
13533 }
13534 
13535 struct cgroup_subsys perf_event_cgrp_subsys = {
13536     .css_alloc  = perf_cgroup_css_alloc,
13537     .css_free   = perf_cgroup_css_free,
13538     .css_online = perf_cgroup_css_online,
13539     .attach     = perf_cgroup_attach,
13540     /*
13541      * Implicitly enable on dfl hierarchy so that perf events can
13542      * always be filtered by cgroup2 path as long as perf_event
13543      * controller is not mounted on a legacy hierarchy.
13544      */
13545     .implicit_on_dfl = true,
13546     .threaded   = true,
13547 };
13548 #endif /* CONFIG_CGROUP_PERF */
13549 
13550 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);