0001
0002
0003
0004
0005
0006
0007 #include <linux/memblock.h> /* for max_pfn */
0008 #include <linux/export.h>
0009 #include <linux/mm.h>
0010 #include <linux/dma-map-ops.h>
0011 #include <linux/scatterlist.h>
0012 #include <linux/pfn.h>
0013 #include <linux/vmalloc.h>
0014 #include <linux/set_memory.h>
0015 #include <linux/slab.h>
0016 #include "direct.h"
0017
0018
0019
0020
0021
0022
0023 unsigned int zone_dma_bits __ro_after_init = 24;
0024
0025 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
0026 phys_addr_t phys)
0027 {
0028 if (force_dma_unencrypted(dev))
0029 return phys_to_dma_unencrypted(dev, phys);
0030 return phys_to_dma(dev, phys);
0031 }
0032
0033 static inline struct page *dma_direct_to_page(struct device *dev,
0034 dma_addr_t dma_addr)
0035 {
0036 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
0037 }
0038
0039 u64 dma_direct_get_required_mask(struct device *dev)
0040 {
0041 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
0042 u64 max_dma = phys_to_dma_direct(dev, phys);
0043
0044 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
0045 }
0046
0047 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
0048 u64 *phys_limit)
0049 {
0050 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060 *phys_limit = dma_to_phys(dev, dma_limit);
0061 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
0062 return GFP_DMA;
0063 if (*phys_limit <= DMA_BIT_MASK(32))
0064 return GFP_DMA32;
0065 return 0;
0066 }
0067
0068 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
0069 {
0070 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
0071
0072 if (dma_addr == DMA_MAPPING_ERROR)
0073 return false;
0074 return dma_addr + size - 1 <=
0075 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
0076 }
0077
0078 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
0079 {
0080 if (!force_dma_unencrypted(dev))
0081 return 0;
0082 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
0083 }
0084
0085 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
0086 {
0087 int ret;
0088
0089 if (!force_dma_unencrypted(dev))
0090 return 0;
0091 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
0092 if (ret)
0093 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
0094 return ret;
0095 }
0096
0097 static void __dma_direct_free_pages(struct device *dev, struct page *page,
0098 size_t size)
0099 {
0100 if (swiotlb_free(dev, page, size))
0101 return;
0102 dma_free_contiguous(dev, page, size);
0103 }
0104
0105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
0106 {
0107 struct page *page = swiotlb_alloc(dev, size);
0108
0109 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
0110 swiotlb_free(dev, page, size);
0111 return NULL;
0112 }
0113
0114 return page;
0115 }
0116
0117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
0118 gfp_t gfp, bool allow_highmem)
0119 {
0120 int node = dev_to_node(dev);
0121 struct page *page = NULL;
0122 u64 phys_limit;
0123
0124 WARN_ON_ONCE(!PAGE_ALIGNED(size));
0125
0126 if (is_swiotlb_for_alloc(dev))
0127 return dma_direct_alloc_swiotlb(dev, size);
0128
0129 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
0130 &phys_limit);
0131 page = dma_alloc_contiguous(dev, size, gfp);
0132 if (page) {
0133 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
0134 (!allow_highmem && PageHighMem(page))) {
0135 dma_free_contiguous(dev, page, size);
0136 page = NULL;
0137 }
0138 }
0139 again:
0140 if (!page)
0141 page = alloc_pages_node(node, gfp, get_order(size));
0142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
0143 dma_free_contiguous(dev, page, size);
0144 page = NULL;
0145
0146 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
0147 phys_limit < DMA_BIT_MASK(64) &&
0148 !(gfp & (GFP_DMA32 | GFP_DMA))) {
0149 gfp |= GFP_DMA32;
0150 goto again;
0151 }
0152
0153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
0154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
0155 goto again;
0156 }
0157 }
0158
0159 return page;
0160 }
0161
0162
0163
0164
0165
0166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
0167 {
0168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
0169 }
0170
0171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
0172 dma_addr_t *dma_handle, gfp_t gfp)
0173 {
0174 struct page *page;
0175 u64 phys_mask;
0176 void *ret;
0177
0178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
0179 return NULL;
0180
0181 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
0182 &phys_mask);
0183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
0184 if (!page)
0185 return NULL;
0186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
0187 return ret;
0188 }
0189
0190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
0191 dma_addr_t *dma_handle, gfp_t gfp)
0192 {
0193 struct page *page;
0194
0195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
0196 if (!page)
0197 return NULL;
0198
0199
0200 if (!PageHighMem(page))
0201 arch_dma_prep_coherent(page, size);
0202
0203
0204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
0205 return page;
0206 }
0207
0208 void *dma_direct_alloc(struct device *dev, size_t size,
0209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
0210 {
0211 bool remap = false, set_uncached = false;
0212 struct page *page;
0213 void *ret;
0214
0215 size = PAGE_ALIGN(size);
0216 if (attrs & DMA_ATTR_NO_WARN)
0217 gfp |= __GFP_NOWARN;
0218
0219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
0220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
0221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
0222
0223 if (!dev_is_dma_coherent(dev)) {
0224
0225
0226
0227
0228 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
0229 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
0230 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
0231 !is_swiotlb_for_alloc(dev))
0232 return arch_dma_alloc(dev, size, dma_handle, gfp,
0233 attrs);
0234
0235
0236
0237
0238
0239 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
0240 return dma_alloc_from_global_coherent(dev, size,
0241 dma_handle);
0242
0243
0244
0245
0246
0247
0248 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
0249 if (remap) {
0250 if (dma_direct_use_pool(dev, gfp))
0251 return dma_direct_alloc_from_pool(dev, size,
0252 dma_handle, gfp);
0253 } else {
0254 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
0255 return NULL;
0256 set_uncached = true;
0257 }
0258 }
0259
0260
0261
0262
0263
0264 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
0265 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
0266
0267
0268 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
0269 if (!page)
0270 return NULL;
0271
0272
0273
0274
0275
0276
0277 if (PageHighMem(page)) {
0278 remap = true;
0279 set_uncached = false;
0280 }
0281
0282 if (remap) {
0283 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
0284
0285 if (force_dma_unencrypted(dev))
0286 prot = pgprot_decrypted(prot);
0287
0288
0289 arch_dma_prep_coherent(page, size);
0290
0291
0292 ret = dma_common_contiguous_remap(page, size, prot,
0293 __builtin_return_address(0));
0294 if (!ret)
0295 goto out_free_pages;
0296 } else {
0297 ret = page_address(page);
0298 if (dma_set_decrypted(dev, ret, size))
0299 goto out_free_pages;
0300 }
0301
0302 memset(ret, 0, size);
0303
0304 if (set_uncached) {
0305 arch_dma_prep_coherent(page, size);
0306 ret = arch_dma_set_uncached(ret, size);
0307 if (IS_ERR(ret))
0308 goto out_encrypt_pages;
0309 }
0310
0311 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
0312 return ret;
0313
0314 out_encrypt_pages:
0315 if (dma_set_encrypted(dev, page_address(page), size))
0316 return NULL;
0317 out_free_pages:
0318 __dma_direct_free_pages(dev, page, size);
0319 return NULL;
0320 }
0321
0322 void dma_direct_free(struct device *dev, size_t size,
0323 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
0324 {
0325 unsigned int page_order = get_order(size);
0326
0327 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
0328 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
0329
0330 dma_free_contiguous(dev, cpu_addr, size);
0331 return;
0332 }
0333
0334 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
0335 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
0336 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
0337 !dev_is_dma_coherent(dev) &&
0338 !is_swiotlb_for_alloc(dev)) {
0339 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
0340 return;
0341 }
0342
0343 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
0344 !dev_is_dma_coherent(dev)) {
0345 if (!dma_release_from_global_coherent(page_order, cpu_addr))
0346 WARN_ON_ONCE(1);
0347 return;
0348 }
0349
0350
0351 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
0352 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
0353 return;
0354
0355 if (is_vmalloc_addr(cpu_addr)) {
0356 vunmap(cpu_addr);
0357 } else {
0358 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
0359 arch_dma_clear_uncached(cpu_addr, size);
0360 if (dma_set_encrypted(dev, cpu_addr, size))
0361 return;
0362 }
0363
0364 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
0365 }
0366
0367 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
0368 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
0369 {
0370 struct page *page;
0371 void *ret;
0372
0373 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
0374 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
0375
0376 page = __dma_direct_alloc_pages(dev, size, gfp, false);
0377 if (!page)
0378 return NULL;
0379
0380 ret = page_address(page);
0381 if (dma_set_decrypted(dev, ret, size))
0382 goto out_free_pages;
0383 memset(ret, 0, size);
0384 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
0385 return page;
0386 out_free_pages:
0387 __dma_direct_free_pages(dev, page, size);
0388 return NULL;
0389 }
0390
0391 void dma_direct_free_pages(struct device *dev, size_t size,
0392 struct page *page, dma_addr_t dma_addr,
0393 enum dma_data_direction dir)
0394 {
0395 void *vaddr = page_address(page);
0396
0397
0398 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
0399 dma_free_from_pool(dev, vaddr, size))
0400 return;
0401
0402 if (dma_set_encrypted(dev, vaddr, size))
0403 return;
0404 __dma_direct_free_pages(dev, page, size);
0405 }
0406
0407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
0408 defined(CONFIG_SWIOTLB)
0409 void dma_direct_sync_sg_for_device(struct device *dev,
0410 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
0411 {
0412 struct scatterlist *sg;
0413 int i;
0414
0415 for_each_sg(sgl, sg, nents, i) {
0416 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
0417
0418 if (unlikely(is_swiotlb_buffer(dev, paddr)))
0419 swiotlb_sync_single_for_device(dev, paddr, sg->length,
0420 dir);
0421
0422 if (!dev_is_dma_coherent(dev))
0423 arch_sync_dma_for_device(paddr, sg->length,
0424 dir);
0425 }
0426 }
0427 #endif
0428
0429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
0430 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
0431 defined(CONFIG_SWIOTLB)
0432 void dma_direct_sync_sg_for_cpu(struct device *dev,
0433 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
0434 {
0435 struct scatterlist *sg;
0436 int i;
0437
0438 for_each_sg(sgl, sg, nents, i) {
0439 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
0440
0441 if (!dev_is_dma_coherent(dev))
0442 arch_sync_dma_for_cpu(paddr, sg->length, dir);
0443
0444 if (unlikely(is_swiotlb_buffer(dev, paddr)))
0445 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
0446 dir);
0447
0448 if (dir == DMA_FROM_DEVICE)
0449 arch_dma_mark_clean(paddr, sg->length);
0450 }
0451
0452 if (!dev_is_dma_coherent(dev))
0453 arch_sync_dma_for_cpu_all();
0454 }
0455
0456
0457
0458
0459
0460 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
0461 int nents, enum dma_data_direction dir, unsigned long attrs)
0462 {
0463 struct scatterlist *sg;
0464 int i;
0465
0466 for_each_sg(sgl, sg, nents, i) {
0467 if (sg_is_dma_bus_address(sg))
0468 sg_dma_unmark_bus_address(sg);
0469 else
0470 dma_direct_unmap_page(dev, sg->dma_address,
0471 sg_dma_len(sg), dir, attrs);
0472 }
0473 }
0474 #endif
0475
0476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
0477 enum dma_data_direction dir, unsigned long attrs)
0478 {
0479 struct pci_p2pdma_map_state p2pdma_state = {};
0480 enum pci_p2pdma_map_type map;
0481 struct scatterlist *sg;
0482 int i, ret;
0483
0484 for_each_sg(sgl, sg, nents, i) {
0485 if (is_pci_p2pdma_page(sg_page(sg))) {
0486 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
0487 switch (map) {
0488 case PCI_P2PDMA_MAP_BUS_ADDR:
0489 continue;
0490 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
0491
0492
0493
0494
0495
0496
0497 break;
0498 default:
0499 ret = -EREMOTEIO;
0500 goto out_unmap;
0501 }
0502 }
0503
0504 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
0505 sg->offset, sg->length, dir, attrs);
0506 if (sg->dma_address == DMA_MAPPING_ERROR) {
0507 ret = -EIO;
0508 goto out_unmap;
0509 }
0510 sg_dma_len(sg) = sg->length;
0511 }
0512
0513 return nents;
0514
0515 out_unmap:
0516 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
0517 return ret;
0518 }
0519
0520 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
0521 size_t size, enum dma_data_direction dir, unsigned long attrs)
0522 {
0523 dma_addr_t dma_addr = paddr;
0524
0525 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
0526 dev_err_once(dev,
0527 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
0528 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
0529 WARN_ON_ONCE(1);
0530 return DMA_MAPPING_ERROR;
0531 }
0532
0533 return dma_addr;
0534 }
0535
0536 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
0537 void *cpu_addr, dma_addr_t dma_addr, size_t size,
0538 unsigned long attrs)
0539 {
0540 struct page *page = dma_direct_to_page(dev, dma_addr);
0541 int ret;
0542
0543 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
0544 if (!ret)
0545 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
0546 return ret;
0547 }
0548
0549 bool dma_direct_can_mmap(struct device *dev)
0550 {
0551 return dev_is_dma_coherent(dev) ||
0552 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
0553 }
0554
0555 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
0556 void *cpu_addr, dma_addr_t dma_addr, size_t size,
0557 unsigned long attrs)
0558 {
0559 unsigned long user_count = vma_pages(vma);
0560 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
0561 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
0562 int ret = -ENXIO;
0563
0564 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
0565 if (force_dma_unencrypted(dev))
0566 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
0567
0568 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
0569 return ret;
0570 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
0571 return ret;
0572
0573 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
0574 return -ENXIO;
0575 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
0576 user_count << PAGE_SHIFT, vma->vm_page_prot);
0577 }
0578
0579 int dma_direct_supported(struct device *dev, u64 mask)
0580 {
0581 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
0582
0583
0584
0585
0586
0587
0588
0589 if (mask >= DMA_BIT_MASK(32))
0590 return 1;
0591
0592
0593
0594
0595
0596
0597 if (IS_ENABLED(CONFIG_ZONE_DMA))
0598 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
0599 return mask >= phys_to_dma_unencrypted(dev, min_mask);
0600 }
0601
0602 size_t dma_direct_max_mapping_size(struct device *dev)
0603 {
0604
0605 if (is_swiotlb_active(dev) &&
0606 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
0607 return swiotlb_max_mapping_size(dev);
0608 return SIZE_MAX;
0609 }
0610
0611 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
0612 {
0613 return !dev_is_dma_coherent(dev) ||
0614 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
0615 }
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
0634 dma_addr_t dma_start, u64 size)
0635 {
0636 struct bus_dma_region *map;
0637 u64 offset = (u64)cpu_start - (u64)dma_start;
0638
0639 if (dev->dma_range_map) {
0640 dev_err(dev, "attempt to add DMA range to existing map\n");
0641 return -EINVAL;
0642 }
0643
0644 if (!offset)
0645 return 0;
0646
0647 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
0648 if (!map)
0649 return -ENOMEM;
0650 map[0].cpu_start = cpu_start;
0651 map[0].dma_start = dma_start;
0652 map[0].offset = offset;
0653 map[0].size = size;
0654 dev->dma_range_map = map;
0655 return 0;
0656 }