0001
0002
0003
0004
0005
0006 #include <linux/io.h>
0007 #include <linux/slab.h>
0008 #include <linux/kernel.h>
0009 #include <linux/module.h>
0010 #include <linux/dma-direct.h>
0011 #include <linux/dma-map-ops.h>
0012
0013 struct dma_coherent_mem {
0014 void *virt_base;
0015 dma_addr_t device_base;
0016 unsigned long pfn_base;
0017 int size;
0018 unsigned long *bitmap;
0019 spinlock_t spinlock;
0020 bool use_dev_dma_pfn_offset;
0021 };
0022
0023 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
0024 {
0025 if (dev && dev->dma_mem)
0026 return dev->dma_mem;
0027 return NULL;
0028 }
0029
0030 static inline dma_addr_t dma_get_device_base(struct device *dev,
0031 struct dma_coherent_mem * mem)
0032 {
0033 if (mem->use_dev_dma_pfn_offset)
0034 return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
0035 return mem->device_base;
0036 }
0037
0038 static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr,
0039 dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset)
0040 {
0041 struct dma_coherent_mem *dma_mem;
0042 int pages = size >> PAGE_SHIFT;
0043 void *mem_base;
0044
0045 if (!size)
0046 return ERR_PTR(-EINVAL);
0047
0048 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
0049 if (!mem_base)
0050 return ERR_PTR(-EINVAL);
0051
0052 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
0053 if (!dma_mem)
0054 goto out_unmap_membase;
0055 dma_mem->bitmap = bitmap_zalloc(pages, GFP_KERNEL);
0056 if (!dma_mem->bitmap)
0057 goto out_free_dma_mem;
0058
0059 dma_mem->virt_base = mem_base;
0060 dma_mem->device_base = device_addr;
0061 dma_mem->pfn_base = PFN_DOWN(phys_addr);
0062 dma_mem->size = pages;
0063 dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset;
0064 spin_lock_init(&dma_mem->spinlock);
0065
0066 return dma_mem;
0067
0068 out_free_dma_mem:
0069 kfree(dma_mem);
0070 out_unmap_membase:
0071 memunmap(mem_base);
0072 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n",
0073 &phys_addr, size / SZ_1M);
0074 return ERR_PTR(-ENOMEM);
0075 }
0076
0077 static void _dma_release_coherent_memory(struct dma_coherent_mem *mem)
0078 {
0079 if (!mem)
0080 return;
0081
0082 memunmap(mem->virt_base);
0083 bitmap_free(mem->bitmap);
0084 kfree(mem);
0085 }
0086
0087 static int dma_assign_coherent_memory(struct device *dev,
0088 struct dma_coherent_mem *mem)
0089 {
0090 if (!dev)
0091 return -ENODEV;
0092
0093 if (dev->dma_mem)
0094 return -EBUSY;
0095
0096 dev->dma_mem = mem;
0097 return 0;
0098 }
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
0118 dma_addr_t device_addr, size_t size)
0119 {
0120 struct dma_coherent_mem *mem;
0121 int ret;
0122
0123 mem = dma_init_coherent_memory(phys_addr, device_addr, size, false);
0124 if (IS_ERR(mem))
0125 return PTR_ERR(mem);
0126
0127 ret = dma_assign_coherent_memory(dev, mem);
0128 if (ret)
0129 _dma_release_coherent_memory(mem);
0130 return ret;
0131 }
0132
0133 void dma_release_coherent_memory(struct device *dev)
0134 {
0135 if (dev)
0136 _dma_release_coherent_memory(dev->dma_mem);
0137 }
0138
0139 static void *__dma_alloc_from_coherent(struct device *dev,
0140 struct dma_coherent_mem *mem,
0141 ssize_t size, dma_addr_t *dma_handle)
0142 {
0143 int order = get_order(size);
0144 unsigned long flags;
0145 int pageno;
0146 void *ret;
0147
0148 spin_lock_irqsave(&mem->spinlock, flags);
0149
0150 if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
0151 goto err;
0152
0153 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
0154 if (unlikely(pageno < 0))
0155 goto err;
0156
0157
0158
0159
0160 *dma_handle = dma_get_device_base(dev, mem) +
0161 ((dma_addr_t)pageno << PAGE_SHIFT);
0162 ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
0163 spin_unlock_irqrestore(&mem->spinlock, flags);
0164 memset(ret, 0, size);
0165 return ret;
0166 err:
0167 spin_unlock_irqrestore(&mem->spinlock, flags);
0168 return NULL;
0169 }
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
0186 dma_addr_t *dma_handle, void **ret)
0187 {
0188 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
0189
0190 if (!mem)
0191 return 0;
0192
0193 *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
0194 return 1;
0195 }
0196
0197 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
0198 int order, void *vaddr)
0199 {
0200 if (mem && vaddr >= mem->virt_base && vaddr <
0201 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
0202 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
0203 unsigned long flags;
0204
0205 spin_lock_irqsave(&mem->spinlock, flags);
0206 bitmap_release_region(mem->bitmap, page, order);
0207 spin_unlock_irqrestore(&mem->spinlock, flags);
0208 return 1;
0209 }
0210 return 0;
0211 }
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
0226 {
0227 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
0228
0229 return __dma_release_from_coherent(mem, order, vaddr);
0230 }
0231
0232 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
0233 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
0234 {
0235 if (mem && vaddr >= mem->virt_base && vaddr + size <=
0236 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
0237 unsigned long off = vma->vm_pgoff;
0238 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
0239 unsigned long user_count = vma_pages(vma);
0240 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
0241
0242 *ret = -ENXIO;
0243 if (off < count && user_count <= count - off) {
0244 unsigned long pfn = mem->pfn_base + start + off;
0245 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
0246 user_count << PAGE_SHIFT,
0247 vma->vm_page_prot);
0248 }
0249 return 1;
0250 }
0251 return 0;
0252 }
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
0270 void *vaddr, size_t size, int *ret)
0271 {
0272 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
0273
0274 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
0275 }
0276
0277 #ifdef CONFIG_DMA_GLOBAL_POOL
0278 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
0279
0280 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
0281 dma_addr_t *dma_handle)
0282 {
0283 if (!dma_coherent_default_memory)
0284 return NULL;
0285
0286 return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
0287 dma_handle);
0288 }
0289
0290 int dma_release_from_global_coherent(int order, void *vaddr)
0291 {
0292 if (!dma_coherent_default_memory)
0293 return 0;
0294
0295 return __dma_release_from_coherent(dma_coherent_default_memory, order,
0296 vaddr);
0297 }
0298
0299 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
0300 size_t size, int *ret)
0301 {
0302 if (!dma_coherent_default_memory)
0303 return 0;
0304
0305 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
0306 vaddr, size, ret);
0307 }
0308
0309 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
0310 {
0311 struct dma_coherent_mem *mem;
0312
0313 mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true);
0314 if (IS_ERR(mem))
0315 return PTR_ERR(mem);
0316 dma_coherent_default_memory = mem;
0317 pr_info("DMA: default coherent area is set\n");
0318 return 0;
0319 }
0320 #endif
0321
0322
0323
0324
0325 #ifdef CONFIG_OF_RESERVED_MEM
0326 #include <linux/of.h>
0327 #include <linux/of_fdt.h>
0328 #include <linux/of_reserved_mem.h>
0329
0330 #ifdef CONFIG_DMA_GLOBAL_POOL
0331 static struct reserved_mem *dma_reserved_default_memory __initdata;
0332 #endif
0333
0334 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
0335 {
0336 if (!rmem->priv) {
0337 struct dma_coherent_mem *mem;
0338
0339 mem = dma_init_coherent_memory(rmem->base, rmem->base,
0340 rmem->size, true);
0341 if (IS_ERR(mem))
0342 return PTR_ERR(mem);
0343 rmem->priv = mem;
0344 }
0345 dma_assign_coherent_memory(dev, rmem->priv);
0346 return 0;
0347 }
0348
0349 static void rmem_dma_device_release(struct reserved_mem *rmem,
0350 struct device *dev)
0351 {
0352 if (dev)
0353 dev->dma_mem = NULL;
0354 }
0355
0356 static const struct reserved_mem_ops rmem_dma_ops = {
0357 .device_init = rmem_dma_device_init,
0358 .device_release = rmem_dma_device_release,
0359 };
0360
0361 static int __init rmem_dma_setup(struct reserved_mem *rmem)
0362 {
0363 unsigned long node = rmem->fdt_node;
0364
0365 if (of_get_flat_dt_prop(node, "reusable", NULL))
0366 return -EINVAL;
0367
0368 #ifdef CONFIG_ARM
0369 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
0370 pr_err("Reserved memory: regions without no-map are not yet supported\n");
0371 return -EINVAL;
0372 }
0373 #endif
0374
0375 #ifdef CONFIG_DMA_GLOBAL_POOL
0376 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
0377 WARN(dma_reserved_default_memory,
0378 "Reserved memory: region for default DMA coherent area is redefined\n");
0379 dma_reserved_default_memory = rmem;
0380 }
0381 #endif
0382
0383 rmem->ops = &rmem_dma_ops;
0384 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
0385 &rmem->base, (unsigned long)rmem->size / SZ_1M);
0386 return 0;
0387 }
0388
0389 #ifdef CONFIG_DMA_GLOBAL_POOL
0390 static int __init dma_init_reserved_memory(void)
0391 {
0392 if (!dma_reserved_default_memory)
0393 return -ENOMEM;
0394 return dma_init_global_coherent(dma_reserved_default_memory->base,
0395 dma_reserved_default_memory->size);
0396 }
0397 core_initcall(dma_init_reserved_memory);
0398 #endif
0399
0400 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
0401 #endif