Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  *  Generic process-grouping system.
0003  *
0004  *  Based originally on the cpuset system, extracted by Paul Menage
0005  *  Copyright (C) 2006 Google, Inc
0006  *
0007  *  Notifications support
0008  *  Copyright (C) 2009 Nokia Corporation
0009  *  Author: Kirill A. Shutemov
0010  *
0011  *  Copyright notices from the original cpuset code:
0012  *  --------------------------------------------------
0013  *  Copyright (C) 2003 BULL SA.
0014  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
0015  *
0016  *  Portions derived from Patrick Mochel's sysfs code.
0017  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
0018  *
0019  *  2003-10-10 Written by Simon Derr.
0020  *  2003-10-22 Updates by Stephen Hemminger.
0021  *  2004 May-July Rework by Paul Jackson.
0022  *  ---------------------------------------------------
0023  *
0024  *  This file is subject to the terms and conditions of the GNU General Public
0025  *  License.  See the file COPYING in the main directory of the Linux
0026  *  distribution for more details.
0027  */
0028 
0029 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0030 
0031 #include "cgroup-internal.h"
0032 
0033 #include <linux/bpf-cgroup.h>
0034 #include <linux/cred.h>
0035 #include <linux/errno.h>
0036 #include <linux/init_task.h>
0037 #include <linux/kernel.h>
0038 #include <linux/magic.h>
0039 #include <linux/mutex.h>
0040 #include <linux/mount.h>
0041 #include <linux/pagemap.h>
0042 #include <linux/proc_fs.h>
0043 #include <linux/rcupdate.h>
0044 #include <linux/sched.h>
0045 #include <linux/sched/task.h>
0046 #include <linux/slab.h>
0047 #include <linux/spinlock.h>
0048 #include <linux/percpu-rwsem.h>
0049 #include <linux/string.h>
0050 #include <linux/hashtable.h>
0051 #include <linux/idr.h>
0052 #include <linux/kthread.h>
0053 #include <linux/atomic.h>
0054 #include <linux/cpuset.h>
0055 #include <linux/proc_ns.h>
0056 #include <linux/nsproxy.h>
0057 #include <linux/file.h>
0058 #include <linux/fs_parser.h>
0059 #include <linux/sched/cputime.h>
0060 #include <linux/psi.h>
0061 #include <net/sock.h>
0062 
0063 #define CREATE_TRACE_POINTS
0064 #include <trace/events/cgroup.h>
0065 
0066 #define CGROUP_FILE_NAME_MAX        (MAX_CGROUP_TYPE_NAMELEN +  \
0067                      MAX_CFTYPE_NAME + 2)
0068 /* let's not notify more than 100 times per second */
0069 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
0070 
0071 /*
0072  * To avoid confusing the compiler (and generating warnings) with code
0073  * that attempts to access what would be a 0-element array (i.e. sized
0074  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
0075  * constant expression can be added.
0076  */
0077 #define CGROUP_HAS_SUBSYS_CONFIG    (CGROUP_SUBSYS_COUNT > 0)
0078 
0079 /*
0080  * cgroup_mutex is the master lock.  Any modification to cgroup or its
0081  * hierarchy must be performed while holding it.
0082  *
0083  * css_set_lock protects task->cgroups pointer, the list of css_set
0084  * objects, and the chain of tasks off each css_set.
0085  *
0086  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
0087  * cgroup.h can use them for lockdep annotations.
0088  */
0089 DEFINE_MUTEX(cgroup_mutex);
0090 DEFINE_SPINLOCK(css_set_lock);
0091 
0092 #ifdef CONFIG_PROVE_RCU
0093 EXPORT_SYMBOL_GPL(cgroup_mutex);
0094 EXPORT_SYMBOL_GPL(css_set_lock);
0095 #endif
0096 
0097 DEFINE_SPINLOCK(trace_cgroup_path_lock);
0098 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
0099 static bool cgroup_debug __read_mostly;
0100 
0101 /*
0102  * Protects cgroup_idr and css_idr so that IDs can be released without
0103  * grabbing cgroup_mutex.
0104  */
0105 static DEFINE_SPINLOCK(cgroup_idr_lock);
0106 
0107 /*
0108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
0109  * against file removal/re-creation across css hiding.
0110  */
0111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
0112 
0113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
0114 
0115 #define cgroup_assert_mutex_or_rcu_locked()             \
0116     RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&           \
0117                !lockdep_is_held(&cgroup_mutex),     \
0118                "cgroup_mutex or RCU read lock required");
0119 
0120 /*
0121  * cgroup destruction makes heavy use of work items and there can be a lot
0122  * of concurrent destructions.  Use a separate workqueue so that cgroup
0123  * destruction work items don't end up filling up max_active of system_wq
0124  * which may lead to deadlock.
0125  */
0126 static struct workqueue_struct *cgroup_destroy_wq;
0127 
0128 /* generate an array of cgroup subsystem pointers */
0129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
0130 struct cgroup_subsys *cgroup_subsys[] = {
0131 #include <linux/cgroup_subsys.h>
0132 };
0133 #undef SUBSYS
0134 
0135 /* array of cgroup subsystem names */
0136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
0137 static const char *cgroup_subsys_name[] = {
0138 #include <linux/cgroup_subsys.h>
0139 };
0140 #undef SUBSYS
0141 
0142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
0143 #define SUBSYS(_x)                              \
0144     DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);         \
0145     DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);          \
0146     EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);          \
0147     EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
0148 #include <linux/cgroup_subsys.h>
0149 #undef SUBSYS
0150 
0151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
0152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
0153 #include <linux/cgroup_subsys.h>
0154 };
0155 #undef SUBSYS
0156 
0157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
0158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
0159 #include <linux/cgroup_subsys.h>
0160 };
0161 #undef SUBSYS
0162 
0163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
0164 
0165 /* the default hierarchy */
0166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
0167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
0168 
0169 /*
0170  * The default hierarchy always exists but is hidden until mounted for the
0171  * first time.  This is for backward compatibility.
0172  */
0173 static bool cgrp_dfl_visible;
0174 
0175 /* some controllers are not supported in the default hierarchy */
0176 static u16 cgrp_dfl_inhibit_ss_mask;
0177 
0178 /* some controllers are implicitly enabled on the default hierarchy */
0179 static u16 cgrp_dfl_implicit_ss_mask;
0180 
0181 /* some controllers can be threaded on the default hierarchy */
0182 static u16 cgrp_dfl_threaded_ss_mask;
0183 
0184 /* The list of hierarchy roots */
0185 LIST_HEAD(cgroup_roots);
0186 static int cgroup_root_count;
0187 
0188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
0189 static DEFINE_IDR(cgroup_hierarchy_idr);
0190 
0191 /*
0192  * Assign a monotonically increasing serial number to csses.  It guarantees
0193  * cgroups with bigger numbers are newer than those with smaller numbers.
0194  * Also, as csses are always appended to the parent's ->children list, it
0195  * guarantees that sibling csses are always sorted in the ascending serial
0196  * number order on the list.  Protected by cgroup_mutex.
0197  */
0198 static u64 css_serial_nr_next = 1;
0199 
0200 /*
0201  * These bitmasks identify subsystems with specific features to avoid
0202  * having to do iterative checks repeatedly.
0203  */
0204 static u16 have_fork_callback __read_mostly;
0205 static u16 have_exit_callback __read_mostly;
0206 static u16 have_release_callback __read_mostly;
0207 static u16 have_canfork_callback __read_mostly;
0208 
0209 /* cgroup namespace for init task */
0210 struct cgroup_namespace init_cgroup_ns = {
0211     .ns.count   = REFCOUNT_INIT(2),
0212     .user_ns    = &init_user_ns,
0213     .ns.ops     = &cgroupns_operations,
0214     .ns.inum    = PROC_CGROUP_INIT_INO,
0215     .root_cset  = &init_css_set,
0216 };
0217 
0218 static struct file_system_type cgroup2_fs_type;
0219 static struct cftype cgroup_base_files[];
0220 
0221 /* cgroup optional features */
0222 enum cgroup_opt_features {
0223 #ifdef CONFIG_PSI
0224     OPT_FEATURE_PRESSURE,
0225 #endif
0226     OPT_FEATURE_COUNT
0227 };
0228 
0229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
0230 #ifdef CONFIG_PSI
0231     "pressure",
0232 #endif
0233 };
0234 
0235 static u16 cgroup_feature_disable_mask __read_mostly;
0236 
0237 static int cgroup_apply_control(struct cgroup *cgrp);
0238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
0239 static void css_task_iter_skip(struct css_task_iter *it,
0240                    struct task_struct *task);
0241 static int cgroup_destroy_locked(struct cgroup *cgrp);
0242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
0243                           struct cgroup_subsys *ss);
0244 static void css_release(struct percpu_ref *ref);
0245 static void kill_css(struct cgroup_subsys_state *css);
0246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
0247                   struct cgroup *cgrp, struct cftype cfts[],
0248                   bool is_add);
0249 
0250 /**
0251  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
0252  * @ssid: subsys ID of interest
0253  *
0254  * cgroup_subsys_enabled() can only be used with literal subsys names which
0255  * is fine for individual subsystems but unsuitable for cgroup core.  This
0256  * is slower static_key_enabled() based test indexed by @ssid.
0257  */
0258 bool cgroup_ssid_enabled(int ssid)
0259 {
0260     if (!CGROUP_HAS_SUBSYS_CONFIG)
0261         return false;
0262 
0263     return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
0264 }
0265 
0266 /**
0267  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
0268  * @cgrp: the cgroup of interest
0269  *
0270  * The default hierarchy is the v2 interface of cgroup and this function
0271  * can be used to test whether a cgroup is on the default hierarchy for
0272  * cases where a subsystem should behave differently depending on the
0273  * interface version.
0274  *
0275  * List of changed behaviors:
0276  *
0277  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
0278  *   and "name" are disallowed.
0279  *
0280  * - When mounting an existing superblock, mount options should match.
0281  *
0282  * - rename(2) is disallowed.
0283  *
0284  * - "tasks" is removed.  Everything should be at process granularity.  Use
0285  *   "cgroup.procs" instead.
0286  *
0287  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
0288  *   recycled in-between reads.
0289  *
0290  * - "release_agent" and "notify_on_release" are removed.  Replacement
0291  *   notification mechanism will be implemented.
0292  *
0293  * - "cgroup.clone_children" is removed.
0294  *
0295  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
0296  *   and its descendants contain no task; otherwise, 1.  The file also
0297  *   generates kernfs notification which can be monitored through poll and
0298  *   [di]notify when the value of the file changes.
0299  *
0300  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
0301  *   take masks of ancestors with non-empty cpus/mems, instead of being
0302  *   moved to an ancestor.
0303  *
0304  * - cpuset: a task can be moved into an empty cpuset, and again it takes
0305  *   masks of ancestors.
0306  *
0307  * - blkcg: blk-throttle becomes properly hierarchical.
0308  *
0309  * - debug: disallowed on the default hierarchy.
0310  */
0311 bool cgroup_on_dfl(const struct cgroup *cgrp)
0312 {
0313     return cgrp->root == &cgrp_dfl_root;
0314 }
0315 
0316 /* IDR wrappers which synchronize using cgroup_idr_lock */
0317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
0318                 gfp_t gfp_mask)
0319 {
0320     int ret;
0321 
0322     idr_preload(gfp_mask);
0323     spin_lock_bh(&cgroup_idr_lock);
0324     ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
0325     spin_unlock_bh(&cgroup_idr_lock);
0326     idr_preload_end();
0327     return ret;
0328 }
0329 
0330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
0331 {
0332     void *ret;
0333 
0334     spin_lock_bh(&cgroup_idr_lock);
0335     ret = idr_replace(idr, ptr, id);
0336     spin_unlock_bh(&cgroup_idr_lock);
0337     return ret;
0338 }
0339 
0340 static void cgroup_idr_remove(struct idr *idr, int id)
0341 {
0342     spin_lock_bh(&cgroup_idr_lock);
0343     idr_remove(idr, id);
0344     spin_unlock_bh(&cgroup_idr_lock);
0345 }
0346 
0347 static bool cgroup_has_tasks(struct cgroup *cgrp)
0348 {
0349     return cgrp->nr_populated_csets;
0350 }
0351 
0352 bool cgroup_is_threaded(struct cgroup *cgrp)
0353 {
0354     return cgrp->dom_cgrp != cgrp;
0355 }
0356 
0357 /* can @cgrp host both domain and threaded children? */
0358 static bool cgroup_is_mixable(struct cgroup *cgrp)
0359 {
0360     /*
0361      * Root isn't under domain level resource control exempting it from
0362      * the no-internal-process constraint, so it can serve as a thread
0363      * root and a parent of resource domains at the same time.
0364      */
0365     return !cgroup_parent(cgrp);
0366 }
0367 
0368 /* can @cgrp become a thread root? Should always be true for a thread root */
0369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
0370 {
0371     /* mixables don't care */
0372     if (cgroup_is_mixable(cgrp))
0373         return true;
0374 
0375     /* domain roots can't be nested under threaded */
0376     if (cgroup_is_threaded(cgrp))
0377         return false;
0378 
0379     /* can only have either domain or threaded children */
0380     if (cgrp->nr_populated_domain_children)
0381         return false;
0382 
0383     /* and no domain controllers can be enabled */
0384     if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
0385         return false;
0386 
0387     return true;
0388 }
0389 
0390 /* is @cgrp root of a threaded subtree? */
0391 bool cgroup_is_thread_root(struct cgroup *cgrp)
0392 {
0393     /* thread root should be a domain */
0394     if (cgroup_is_threaded(cgrp))
0395         return false;
0396 
0397     /* a domain w/ threaded children is a thread root */
0398     if (cgrp->nr_threaded_children)
0399         return true;
0400 
0401     /*
0402      * A domain which has tasks and explicit threaded controllers
0403      * enabled is a thread root.
0404      */
0405     if (cgroup_has_tasks(cgrp) &&
0406         (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
0407         return true;
0408 
0409     return false;
0410 }
0411 
0412 /* a domain which isn't connected to the root w/o brekage can't be used */
0413 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
0414 {
0415     /* the cgroup itself can be a thread root */
0416     if (cgroup_is_threaded(cgrp))
0417         return false;
0418 
0419     /* but the ancestors can't be unless mixable */
0420     while ((cgrp = cgroup_parent(cgrp))) {
0421         if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
0422             return false;
0423         if (cgroup_is_threaded(cgrp))
0424             return false;
0425     }
0426 
0427     return true;
0428 }
0429 
0430 /* subsystems visibly enabled on a cgroup */
0431 static u16 cgroup_control(struct cgroup *cgrp)
0432 {
0433     struct cgroup *parent = cgroup_parent(cgrp);
0434     u16 root_ss_mask = cgrp->root->subsys_mask;
0435 
0436     if (parent) {
0437         u16 ss_mask = parent->subtree_control;
0438 
0439         /* threaded cgroups can only have threaded controllers */
0440         if (cgroup_is_threaded(cgrp))
0441             ss_mask &= cgrp_dfl_threaded_ss_mask;
0442         return ss_mask;
0443     }
0444 
0445     if (cgroup_on_dfl(cgrp))
0446         root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
0447                   cgrp_dfl_implicit_ss_mask);
0448     return root_ss_mask;
0449 }
0450 
0451 /* subsystems enabled on a cgroup */
0452 static u16 cgroup_ss_mask(struct cgroup *cgrp)
0453 {
0454     struct cgroup *parent = cgroup_parent(cgrp);
0455 
0456     if (parent) {
0457         u16 ss_mask = parent->subtree_ss_mask;
0458 
0459         /* threaded cgroups can only have threaded controllers */
0460         if (cgroup_is_threaded(cgrp))
0461             ss_mask &= cgrp_dfl_threaded_ss_mask;
0462         return ss_mask;
0463     }
0464 
0465     return cgrp->root->subsys_mask;
0466 }
0467 
0468 /**
0469  * cgroup_css - obtain a cgroup's css for the specified subsystem
0470  * @cgrp: the cgroup of interest
0471  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
0472  *
0473  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
0474  * function must be called either under cgroup_mutex or rcu_read_lock() and
0475  * the caller is responsible for pinning the returned css if it wants to
0476  * keep accessing it outside the said locks.  This function may return
0477  * %NULL if @cgrp doesn't have @subsys_id enabled.
0478  */
0479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
0480                           struct cgroup_subsys *ss)
0481 {
0482     if (CGROUP_HAS_SUBSYS_CONFIG && ss)
0483         return rcu_dereference_check(cgrp->subsys[ss->id],
0484                     lockdep_is_held(&cgroup_mutex));
0485     else
0486         return &cgrp->self;
0487 }
0488 
0489 /**
0490  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
0491  * @cgrp: the cgroup of interest
0492  * @ss: the subsystem of interest
0493  *
0494  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
0495  * or is offline, %NULL is returned.
0496  */
0497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
0498                              struct cgroup_subsys *ss)
0499 {
0500     struct cgroup_subsys_state *css;
0501 
0502     rcu_read_lock();
0503     css = cgroup_css(cgrp, ss);
0504     if (css && !css_tryget_online(css))
0505         css = NULL;
0506     rcu_read_unlock();
0507 
0508     return css;
0509 }
0510 
0511 /**
0512  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
0513  * @cgrp: the cgroup of interest
0514  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
0515  *
0516  * Similar to cgroup_css() but returns the effective css, which is defined
0517  * as the matching css of the nearest ancestor including self which has @ss
0518  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
0519  * function is guaranteed to return non-NULL css.
0520  */
0521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
0522                             struct cgroup_subsys *ss)
0523 {
0524     lockdep_assert_held(&cgroup_mutex);
0525 
0526     if (!ss)
0527         return &cgrp->self;
0528 
0529     /*
0530      * This function is used while updating css associations and thus
0531      * can't test the csses directly.  Test ss_mask.
0532      */
0533     while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
0534         cgrp = cgroup_parent(cgrp);
0535         if (!cgrp)
0536             return NULL;
0537     }
0538 
0539     return cgroup_css(cgrp, ss);
0540 }
0541 
0542 /**
0543  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
0544  * @cgrp: the cgroup of interest
0545  * @ss: the subsystem of interest
0546  *
0547  * Find and get the effective css of @cgrp for @ss.  The effective css is
0548  * defined as the matching css of the nearest ancestor including self which
0549  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
0550  * the root css is returned, so this function always returns a valid css.
0551  *
0552  * The returned css is not guaranteed to be online, and therefore it is the
0553  * callers responsibility to try get a reference for it.
0554  */
0555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
0556                      struct cgroup_subsys *ss)
0557 {
0558     struct cgroup_subsys_state *css;
0559 
0560     if (!CGROUP_HAS_SUBSYS_CONFIG)
0561         return NULL;
0562 
0563     do {
0564         css = cgroup_css(cgrp, ss);
0565 
0566         if (css)
0567             return css;
0568         cgrp = cgroup_parent(cgrp);
0569     } while (cgrp);
0570 
0571     return init_css_set.subsys[ss->id];
0572 }
0573 
0574 /**
0575  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
0576  * @cgrp: the cgroup of interest
0577  * @ss: the subsystem of interest
0578  *
0579  * Find and get the effective css of @cgrp for @ss.  The effective css is
0580  * defined as the matching css of the nearest ancestor including self which
0581  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
0582  * the root css is returned, so this function always returns a valid css.
0583  * The returned css must be put using css_put().
0584  */
0585 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
0586                          struct cgroup_subsys *ss)
0587 {
0588     struct cgroup_subsys_state *css;
0589 
0590     if (!CGROUP_HAS_SUBSYS_CONFIG)
0591         return NULL;
0592 
0593     rcu_read_lock();
0594 
0595     do {
0596         css = cgroup_css(cgrp, ss);
0597 
0598         if (css && css_tryget_online(css))
0599             goto out_unlock;
0600         cgrp = cgroup_parent(cgrp);
0601     } while (cgrp);
0602 
0603     css = init_css_set.subsys[ss->id];
0604     css_get(css);
0605 out_unlock:
0606     rcu_read_unlock();
0607     return css;
0608 }
0609 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
0610 
0611 static void cgroup_get_live(struct cgroup *cgrp)
0612 {
0613     WARN_ON_ONCE(cgroup_is_dead(cgrp));
0614     css_get(&cgrp->self);
0615 }
0616 
0617 /**
0618  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
0619  * is responsible for taking the css_set_lock.
0620  * @cgrp: the cgroup in question
0621  */
0622 int __cgroup_task_count(const struct cgroup *cgrp)
0623 {
0624     int count = 0;
0625     struct cgrp_cset_link *link;
0626 
0627     lockdep_assert_held(&css_set_lock);
0628 
0629     list_for_each_entry(link, &cgrp->cset_links, cset_link)
0630         count += link->cset->nr_tasks;
0631 
0632     return count;
0633 }
0634 
0635 /**
0636  * cgroup_task_count - count the number of tasks in a cgroup.
0637  * @cgrp: the cgroup in question
0638  */
0639 int cgroup_task_count(const struct cgroup *cgrp)
0640 {
0641     int count;
0642 
0643     spin_lock_irq(&css_set_lock);
0644     count = __cgroup_task_count(cgrp);
0645     spin_unlock_irq(&css_set_lock);
0646 
0647     return count;
0648 }
0649 
0650 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
0651 {
0652     struct cgroup *cgrp = of->kn->parent->priv;
0653     struct cftype *cft = of_cft(of);
0654 
0655     /*
0656      * This is open and unprotected implementation of cgroup_css().
0657      * seq_css() is only called from a kernfs file operation which has
0658      * an active reference on the file.  Because all the subsystem
0659      * files are drained before a css is disassociated with a cgroup,
0660      * the matching css from the cgroup's subsys table is guaranteed to
0661      * be and stay valid until the enclosing operation is complete.
0662      */
0663     if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
0664         return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
0665     else
0666         return &cgrp->self;
0667 }
0668 EXPORT_SYMBOL_GPL(of_css);
0669 
0670 /**
0671  * for_each_css - iterate all css's of a cgroup
0672  * @css: the iteration cursor
0673  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
0674  * @cgrp: the target cgroup to iterate css's of
0675  *
0676  * Should be called under cgroup_[tree_]mutex.
0677  */
0678 #define for_each_css(css, ssid, cgrp)                   \
0679     for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)    \
0680         if (!((css) = rcu_dereference_check(            \
0681                 (cgrp)->subsys[(ssid)],         \
0682                 lockdep_is_held(&cgroup_mutex)))) { }   \
0683         else
0684 
0685 /**
0686  * for_each_e_css - iterate all effective css's of a cgroup
0687  * @css: the iteration cursor
0688  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
0689  * @cgrp: the target cgroup to iterate css's of
0690  *
0691  * Should be called under cgroup_[tree_]mutex.
0692  */
0693 #define for_each_e_css(css, ssid, cgrp)                     \
0694     for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
0695         if (!((css) = cgroup_e_css_by_mask(cgrp,            \
0696                            cgroup_subsys[(ssid)]))) \
0697             ;                           \
0698         else
0699 
0700 /**
0701  * do_each_subsys_mask - filter for_each_subsys with a bitmask
0702  * @ss: the iteration cursor
0703  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
0704  * @ss_mask: the bitmask
0705  *
0706  * The block will only run for cases where the ssid-th bit (1 << ssid) of
0707  * @ss_mask is set.
0708  */
0709 #define do_each_subsys_mask(ss, ssid, ss_mask) do {         \
0710     unsigned long __ss_mask = (ss_mask);                \
0711     if (!CGROUP_HAS_SUBSYS_CONFIG) {                \
0712         (ssid) = 0;                     \
0713         break;                          \
0714     }                               \
0715     for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {   \
0716         (ss) = cgroup_subsys[ssid];             \
0717         {
0718 
0719 #define while_each_subsys_mask()                    \
0720         }                           \
0721     }                               \
0722 } while (false)
0723 
0724 /* iterate over child cgrps, lock should be held throughout iteration */
0725 #define cgroup_for_each_live_child(child, cgrp)             \
0726     list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
0727         if (({ lockdep_assert_held(&cgroup_mutex);      \
0728                cgroup_is_dead(child); }))           \
0729             ;                       \
0730         else
0731 
0732 /* walk live descendants in pre order */
0733 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)      \
0734     css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
0735         if (({ lockdep_assert_held(&cgroup_mutex);      \
0736                (dsct) = (d_css)->cgroup;            \
0737                cgroup_is_dead(dsct); }))            \
0738             ;                       \
0739         else
0740 
0741 /* walk live descendants in postorder */
0742 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)     \
0743     css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
0744         if (({ lockdep_assert_held(&cgroup_mutex);      \
0745                (dsct) = (d_css)->cgroup;            \
0746                cgroup_is_dead(dsct); }))            \
0747             ;                       \
0748         else
0749 
0750 /*
0751  * The default css_set - used by init and its children prior to any
0752  * hierarchies being mounted. It contains a pointer to the root state
0753  * for each subsystem. Also used to anchor the list of css_sets. Not
0754  * reference-counted, to improve performance when child cgroups
0755  * haven't been created.
0756  */
0757 struct css_set init_css_set = {
0758     .refcount       = REFCOUNT_INIT(1),
0759     .dom_cset       = &init_css_set,
0760     .tasks          = LIST_HEAD_INIT(init_css_set.tasks),
0761     .mg_tasks       = LIST_HEAD_INIT(init_css_set.mg_tasks),
0762     .dying_tasks        = LIST_HEAD_INIT(init_css_set.dying_tasks),
0763     .task_iters     = LIST_HEAD_INIT(init_css_set.task_iters),
0764     .threaded_csets     = LIST_HEAD_INIT(init_css_set.threaded_csets),
0765     .cgrp_links     = LIST_HEAD_INIT(init_css_set.cgrp_links),
0766     .mg_src_preload_node    = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
0767     .mg_dst_preload_node    = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
0768     .mg_node        = LIST_HEAD_INIT(init_css_set.mg_node),
0769 
0770     /*
0771      * The following field is re-initialized when this cset gets linked
0772      * in cgroup_init().  However, let's initialize the field
0773      * statically too so that the default cgroup can be accessed safely
0774      * early during boot.
0775      */
0776     .dfl_cgrp       = &cgrp_dfl_root.cgrp,
0777 };
0778 
0779 static int css_set_count    = 1;    /* 1 for init_css_set */
0780 
0781 static bool css_set_threaded(struct css_set *cset)
0782 {
0783     return cset->dom_cset != cset;
0784 }
0785 
0786 /**
0787  * css_set_populated - does a css_set contain any tasks?
0788  * @cset: target css_set
0789  *
0790  * css_set_populated() should be the same as !!cset->nr_tasks at steady
0791  * state. However, css_set_populated() can be called while a task is being
0792  * added to or removed from the linked list before the nr_tasks is
0793  * properly updated. Hence, we can't just look at ->nr_tasks here.
0794  */
0795 static bool css_set_populated(struct css_set *cset)
0796 {
0797     lockdep_assert_held(&css_set_lock);
0798 
0799     return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
0800 }
0801 
0802 /**
0803  * cgroup_update_populated - update the populated count of a cgroup
0804  * @cgrp: the target cgroup
0805  * @populated: inc or dec populated count
0806  *
0807  * One of the css_sets associated with @cgrp is either getting its first
0808  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
0809  * count is propagated towards root so that a given cgroup's
0810  * nr_populated_children is zero iff none of its descendants contain any
0811  * tasks.
0812  *
0813  * @cgrp's interface file "cgroup.populated" is zero if both
0814  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
0815  * 1 otherwise.  When the sum changes from or to zero, userland is notified
0816  * that the content of the interface file has changed.  This can be used to
0817  * detect when @cgrp and its descendants become populated or empty.
0818  */
0819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
0820 {
0821     struct cgroup *child = NULL;
0822     int adj = populated ? 1 : -1;
0823 
0824     lockdep_assert_held(&css_set_lock);
0825 
0826     do {
0827         bool was_populated = cgroup_is_populated(cgrp);
0828 
0829         if (!child) {
0830             cgrp->nr_populated_csets += adj;
0831         } else {
0832             if (cgroup_is_threaded(child))
0833                 cgrp->nr_populated_threaded_children += adj;
0834             else
0835                 cgrp->nr_populated_domain_children += adj;
0836         }
0837 
0838         if (was_populated == cgroup_is_populated(cgrp))
0839             break;
0840 
0841         cgroup1_check_for_release(cgrp);
0842         TRACE_CGROUP_PATH(notify_populated, cgrp,
0843                   cgroup_is_populated(cgrp));
0844         cgroup_file_notify(&cgrp->events_file);
0845 
0846         child = cgrp;
0847         cgrp = cgroup_parent(cgrp);
0848     } while (cgrp);
0849 }
0850 
0851 /**
0852  * css_set_update_populated - update populated state of a css_set
0853  * @cset: target css_set
0854  * @populated: whether @cset is populated or depopulated
0855  *
0856  * @cset is either getting the first task or losing the last.  Update the
0857  * populated counters of all associated cgroups accordingly.
0858  */
0859 static void css_set_update_populated(struct css_set *cset, bool populated)
0860 {
0861     struct cgrp_cset_link *link;
0862 
0863     lockdep_assert_held(&css_set_lock);
0864 
0865     list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
0866         cgroup_update_populated(link->cgrp, populated);
0867 }
0868 
0869 /*
0870  * @task is leaving, advance task iterators which are pointing to it so
0871  * that they can resume at the next position.  Advancing an iterator might
0872  * remove it from the list, use safe walk.  See css_task_iter_skip() for
0873  * details.
0874  */
0875 static void css_set_skip_task_iters(struct css_set *cset,
0876                     struct task_struct *task)
0877 {
0878     struct css_task_iter *it, *pos;
0879 
0880     list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
0881         css_task_iter_skip(it, task);
0882 }
0883 
0884 /**
0885  * css_set_move_task - move a task from one css_set to another
0886  * @task: task being moved
0887  * @from_cset: css_set @task currently belongs to (may be NULL)
0888  * @to_cset: new css_set @task is being moved to (may be NULL)
0889  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
0890  *
0891  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
0892  * css_set, @from_cset can be NULL.  If @task is being disassociated
0893  * instead of moved, @to_cset can be NULL.
0894  *
0895  * This function automatically handles populated counter updates and
0896  * css_task_iter adjustments but the caller is responsible for managing
0897  * @from_cset and @to_cset's reference counts.
0898  */
0899 static void css_set_move_task(struct task_struct *task,
0900                   struct css_set *from_cset, struct css_set *to_cset,
0901                   bool use_mg_tasks)
0902 {
0903     lockdep_assert_held(&css_set_lock);
0904 
0905     if (to_cset && !css_set_populated(to_cset))
0906         css_set_update_populated(to_cset, true);
0907 
0908     if (from_cset) {
0909         WARN_ON_ONCE(list_empty(&task->cg_list));
0910 
0911         css_set_skip_task_iters(from_cset, task);
0912         list_del_init(&task->cg_list);
0913         if (!css_set_populated(from_cset))
0914             css_set_update_populated(from_cset, false);
0915     } else {
0916         WARN_ON_ONCE(!list_empty(&task->cg_list));
0917     }
0918 
0919     if (to_cset) {
0920         /*
0921          * We are synchronized through cgroup_threadgroup_rwsem
0922          * against PF_EXITING setting such that we can't race
0923          * against cgroup_exit()/cgroup_free() dropping the css_set.
0924          */
0925         WARN_ON_ONCE(task->flags & PF_EXITING);
0926 
0927         cgroup_move_task(task, to_cset);
0928         list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
0929                                  &to_cset->tasks);
0930     }
0931 }
0932 
0933 /*
0934  * hash table for cgroup groups. This improves the performance to find
0935  * an existing css_set. This hash doesn't (currently) take into
0936  * account cgroups in empty hierarchies.
0937  */
0938 #define CSS_SET_HASH_BITS   7
0939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
0940 
0941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
0942 {
0943     unsigned long key = 0UL;
0944     struct cgroup_subsys *ss;
0945     int i;
0946 
0947     for_each_subsys(ss, i)
0948         key += (unsigned long)css[i];
0949     key = (key >> 16) ^ key;
0950 
0951     return key;
0952 }
0953 
0954 void put_css_set_locked(struct css_set *cset)
0955 {
0956     struct cgrp_cset_link *link, *tmp_link;
0957     struct cgroup_subsys *ss;
0958     int ssid;
0959 
0960     lockdep_assert_held(&css_set_lock);
0961 
0962     if (!refcount_dec_and_test(&cset->refcount))
0963         return;
0964 
0965     WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
0966 
0967     /* This css_set is dead. Unlink it and release cgroup and css refs */
0968     for_each_subsys(ss, ssid) {
0969         list_del(&cset->e_cset_node[ssid]);
0970         css_put(cset->subsys[ssid]);
0971     }
0972     hash_del(&cset->hlist);
0973     css_set_count--;
0974 
0975     list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
0976         list_del(&link->cset_link);
0977         list_del(&link->cgrp_link);
0978         if (cgroup_parent(link->cgrp))
0979             cgroup_put(link->cgrp);
0980         kfree(link);
0981     }
0982 
0983     if (css_set_threaded(cset)) {
0984         list_del(&cset->threaded_csets_node);
0985         put_css_set_locked(cset->dom_cset);
0986     }
0987 
0988     kfree_rcu(cset, rcu_head);
0989 }
0990 
0991 /**
0992  * compare_css_sets - helper function for find_existing_css_set().
0993  * @cset: candidate css_set being tested
0994  * @old_cset: existing css_set for a task
0995  * @new_cgrp: cgroup that's being entered by the task
0996  * @template: desired set of css pointers in css_set (pre-calculated)
0997  *
0998  * Returns true if "cset" matches "old_cset" except for the hierarchy
0999  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000  */
1001 static bool compare_css_sets(struct css_set *cset,
1002                  struct css_set *old_cset,
1003                  struct cgroup *new_cgrp,
1004                  struct cgroup_subsys_state *template[])
1005 {
1006     struct cgroup *new_dfl_cgrp;
1007     struct list_head *l1, *l2;
1008 
1009     /*
1010      * On the default hierarchy, there can be csets which are
1011      * associated with the same set of cgroups but different csses.
1012      * Let's first ensure that csses match.
1013      */
1014     if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015         return false;
1016 
1017 
1018     /* @cset's domain should match the default cgroup's */
1019     if (cgroup_on_dfl(new_cgrp))
1020         new_dfl_cgrp = new_cgrp;
1021     else
1022         new_dfl_cgrp = old_cset->dfl_cgrp;
1023 
1024     if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025         return false;
1026 
1027     /*
1028      * Compare cgroup pointers in order to distinguish between
1029      * different cgroups in hierarchies.  As different cgroups may
1030      * share the same effective css, this comparison is always
1031      * necessary.
1032      */
1033     l1 = &cset->cgrp_links;
1034     l2 = &old_cset->cgrp_links;
1035     while (1) {
1036         struct cgrp_cset_link *link1, *link2;
1037         struct cgroup *cgrp1, *cgrp2;
1038 
1039         l1 = l1->next;
1040         l2 = l2->next;
1041         /* See if we reached the end - both lists are equal length. */
1042         if (l1 == &cset->cgrp_links) {
1043             BUG_ON(l2 != &old_cset->cgrp_links);
1044             break;
1045         } else {
1046             BUG_ON(l2 == &old_cset->cgrp_links);
1047         }
1048         /* Locate the cgroups associated with these links. */
1049         link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050         link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051         cgrp1 = link1->cgrp;
1052         cgrp2 = link2->cgrp;
1053         /* Hierarchies should be linked in the same order. */
1054         BUG_ON(cgrp1->root != cgrp2->root);
1055 
1056         /*
1057          * If this hierarchy is the hierarchy of the cgroup
1058          * that's changing, then we need to check that this
1059          * css_set points to the new cgroup; if it's any other
1060          * hierarchy, then this css_set should point to the
1061          * same cgroup as the old css_set.
1062          */
1063         if (cgrp1->root == new_cgrp->root) {
1064             if (cgrp1 != new_cgrp)
1065                 return false;
1066         } else {
1067             if (cgrp1 != cgrp2)
1068                 return false;
1069         }
1070     }
1071     return true;
1072 }
1073 
1074 /**
1075  * find_existing_css_set - init css array and find the matching css_set
1076  * @old_cset: the css_set that we're using before the cgroup transition
1077  * @cgrp: the cgroup that we're moving into
1078  * @template: out param for the new set of csses, should be clear on entry
1079  */
1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081                     struct cgroup *cgrp,
1082                     struct cgroup_subsys_state *template[])
1083 {
1084     struct cgroup_root *root = cgrp->root;
1085     struct cgroup_subsys *ss;
1086     struct css_set *cset;
1087     unsigned long key;
1088     int i;
1089 
1090     /*
1091      * Build the set of subsystem state objects that we want to see in the
1092      * new css_set. While subsystems can change globally, the entries here
1093      * won't change, so no need for locking.
1094      */
1095     for_each_subsys(ss, i) {
1096         if (root->subsys_mask & (1UL << i)) {
1097             /*
1098              * @ss is in this hierarchy, so we want the
1099              * effective css from @cgrp.
1100              */
1101             template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102         } else {
1103             /*
1104              * @ss is not in this hierarchy, so we don't want
1105              * to change the css.
1106              */
1107             template[i] = old_cset->subsys[i];
1108         }
1109     }
1110 
1111     key = css_set_hash(template);
1112     hash_for_each_possible(css_set_table, cset, hlist, key) {
1113         if (!compare_css_sets(cset, old_cset, cgrp, template))
1114             continue;
1115 
1116         /* This css_set matches what we need */
1117         return cset;
1118     }
1119 
1120     /* No existing cgroup group matched */
1121     return NULL;
1122 }
1123 
1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126     struct cgrp_cset_link *link, *tmp_link;
1127 
1128     list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129         list_del(&link->cset_link);
1130         kfree(link);
1131     }
1132 }
1133 
1134 /**
1135  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136  * @count: the number of links to allocate
1137  * @tmp_links: list_head the allocated links are put on
1138  *
1139  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140  * through ->cset_link.  Returns 0 on success or -errno.
1141  */
1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144     struct cgrp_cset_link *link;
1145     int i;
1146 
1147     INIT_LIST_HEAD(tmp_links);
1148 
1149     for (i = 0; i < count; i++) {
1150         link = kzalloc(sizeof(*link), GFP_KERNEL);
1151         if (!link) {
1152             free_cgrp_cset_links(tmp_links);
1153             return -ENOMEM;
1154         }
1155         list_add(&link->cset_link, tmp_links);
1156     }
1157     return 0;
1158 }
1159 
1160 /**
1161  * link_css_set - a helper function to link a css_set to a cgroup
1162  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163  * @cset: the css_set to be linked
1164  * @cgrp: the destination cgroup
1165  */
1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167              struct cgroup *cgrp)
1168 {
1169     struct cgrp_cset_link *link;
1170 
1171     BUG_ON(list_empty(tmp_links));
1172 
1173     if (cgroup_on_dfl(cgrp))
1174         cset->dfl_cgrp = cgrp;
1175 
1176     link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177     link->cset = cset;
1178     link->cgrp = cgrp;
1179 
1180     /*
1181      * Always add links to the tail of the lists so that the lists are
1182      * in chronological order.
1183      */
1184     list_move_tail(&link->cset_link, &cgrp->cset_links);
1185     list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186 
1187     if (cgroup_parent(cgrp))
1188         cgroup_get_live(cgrp);
1189 }
1190 
1191 /**
1192  * find_css_set - return a new css_set with one cgroup updated
1193  * @old_cset: the baseline css_set
1194  * @cgrp: the cgroup to be updated
1195  *
1196  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197  * substituted into the appropriate hierarchy.
1198  */
1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200                     struct cgroup *cgrp)
1201 {
1202     struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203     struct css_set *cset;
1204     struct list_head tmp_links;
1205     struct cgrp_cset_link *link;
1206     struct cgroup_subsys *ss;
1207     unsigned long key;
1208     int ssid;
1209 
1210     lockdep_assert_held(&cgroup_mutex);
1211 
1212     /* First see if we already have a cgroup group that matches
1213      * the desired set */
1214     spin_lock_irq(&css_set_lock);
1215     cset = find_existing_css_set(old_cset, cgrp, template);
1216     if (cset)
1217         get_css_set(cset);
1218     spin_unlock_irq(&css_set_lock);
1219 
1220     if (cset)
1221         return cset;
1222 
1223     cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224     if (!cset)
1225         return NULL;
1226 
1227     /* Allocate all the cgrp_cset_link objects that we'll need */
1228     if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229         kfree(cset);
1230         return NULL;
1231     }
1232 
1233     refcount_set(&cset->refcount, 1);
1234     cset->dom_cset = cset;
1235     INIT_LIST_HEAD(&cset->tasks);
1236     INIT_LIST_HEAD(&cset->mg_tasks);
1237     INIT_LIST_HEAD(&cset->dying_tasks);
1238     INIT_LIST_HEAD(&cset->task_iters);
1239     INIT_LIST_HEAD(&cset->threaded_csets);
1240     INIT_HLIST_NODE(&cset->hlist);
1241     INIT_LIST_HEAD(&cset->cgrp_links);
1242     INIT_LIST_HEAD(&cset->mg_src_preload_node);
1243     INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1244     INIT_LIST_HEAD(&cset->mg_node);
1245 
1246     /* Copy the set of subsystem state objects generated in
1247      * find_existing_css_set() */
1248     memcpy(cset->subsys, template, sizeof(cset->subsys));
1249 
1250     spin_lock_irq(&css_set_lock);
1251     /* Add reference counts and links from the new css_set. */
1252     list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1253         struct cgroup *c = link->cgrp;
1254 
1255         if (c->root == cgrp->root)
1256             c = cgrp;
1257         link_css_set(&tmp_links, cset, c);
1258     }
1259 
1260     BUG_ON(!list_empty(&tmp_links));
1261 
1262     css_set_count++;
1263 
1264     /* Add @cset to the hash table */
1265     key = css_set_hash(cset->subsys);
1266     hash_add(css_set_table, &cset->hlist, key);
1267 
1268     for_each_subsys(ss, ssid) {
1269         struct cgroup_subsys_state *css = cset->subsys[ssid];
1270 
1271         list_add_tail(&cset->e_cset_node[ssid],
1272                   &css->cgroup->e_csets[ssid]);
1273         css_get(css);
1274     }
1275 
1276     spin_unlock_irq(&css_set_lock);
1277 
1278     /*
1279      * If @cset should be threaded, look up the matching dom_cset and
1280      * link them up.  We first fully initialize @cset then look for the
1281      * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1282      * to stay empty until we return.
1283      */
1284     if (cgroup_is_threaded(cset->dfl_cgrp)) {
1285         struct css_set *dcset;
1286 
1287         dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1288         if (!dcset) {
1289             put_css_set(cset);
1290             return NULL;
1291         }
1292 
1293         spin_lock_irq(&css_set_lock);
1294         cset->dom_cset = dcset;
1295         list_add_tail(&cset->threaded_csets_node,
1296                   &dcset->threaded_csets);
1297         spin_unlock_irq(&css_set_lock);
1298     }
1299 
1300     return cset;
1301 }
1302 
1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1304 {
1305     struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1306 
1307     return root_cgrp->root;
1308 }
1309 
1310 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1311 {
1312     bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1313 
1314     /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1315     if (favor && !favoring) {
1316         rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1317         root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1318     } else if (!favor && favoring) {
1319         rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1320         root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1321     }
1322 }
1323 
1324 static int cgroup_init_root_id(struct cgroup_root *root)
1325 {
1326     int id;
1327 
1328     lockdep_assert_held(&cgroup_mutex);
1329 
1330     id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1331     if (id < 0)
1332         return id;
1333 
1334     root->hierarchy_id = id;
1335     return 0;
1336 }
1337 
1338 static void cgroup_exit_root_id(struct cgroup_root *root)
1339 {
1340     lockdep_assert_held(&cgroup_mutex);
1341 
1342     idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1343 }
1344 
1345 void cgroup_free_root(struct cgroup_root *root)
1346 {
1347     kfree(root);
1348 }
1349 
1350 static void cgroup_destroy_root(struct cgroup_root *root)
1351 {
1352     struct cgroup *cgrp = &root->cgrp;
1353     struct cgrp_cset_link *link, *tmp_link;
1354 
1355     trace_cgroup_destroy_root(root);
1356 
1357     cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1358 
1359     BUG_ON(atomic_read(&root->nr_cgrps));
1360     BUG_ON(!list_empty(&cgrp->self.children));
1361 
1362     /* Rebind all subsystems back to the default hierarchy */
1363     WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1364 
1365     /*
1366      * Release all the links from cset_links to this hierarchy's
1367      * root cgroup
1368      */
1369     spin_lock_irq(&css_set_lock);
1370 
1371     list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1372         list_del(&link->cset_link);
1373         list_del(&link->cgrp_link);
1374         kfree(link);
1375     }
1376 
1377     spin_unlock_irq(&css_set_lock);
1378 
1379     if (!list_empty(&root->root_list)) {
1380         list_del(&root->root_list);
1381         cgroup_root_count--;
1382     }
1383 
1384     cgroup_favor_dynmods(root, false);
1385     cgroup_exit_root_id(root);
1386 
1387     mutex_unlock(&cgroup_mutex);
1388 
1389     cgroup_rstat_exit(cgrp);
1390     kernfs_destroy_root(root->kf_root);
1391     cgroup_free_root(root);
1392 }
1393 
1394 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1395                         struct cgroup_root *root)
1396 {
1397     struct cgroup *res_cgroup = NULL;
1398 
1399     if (cset == &init_css_set) {
1400         res_cgroup = &root->cgrp;
1401     } else if (root == &cgrp_dfl_root) {
1402         res_cgroup = cset->dfl_cgrp;
1403     } else {
1404         struct cgrp_cset_link *link;
1405 
1406         list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407             struct cgroup *c = link->cgrp;
1408 
1409             if (c->root == root) {
1410                 res_cgroup = c;
1411                 break;
1412             }
1413         }
1414     }
1415 
1416     return res_cgroup;
1417 }
1418 
1419 /*
1420  * look up cgroup associated with current task's cgroup namespace on the
1421  * specified hierarchy
1422  */
1423 static struct cgroup *
1424 current_cgns_cgroup_from_root(struct cgroup_root *root)
1425 {
1426     struct cgroup *res = NULL;
1427     struct css_set *cset;
1428 
1429     lockdep_assert_held(&css_set_lock);
1430 
1431     rcu_read_lock();
1432 
1433     cset = current->nsproxy->cgroup_ns->root_cset;
1434     res = __cset_cgroup_from_root(cset, root);
1435 
1436     rcu_read_unlock();
1437 
1438     BUG_ON(!res);
1439     return res;
1440 }
1441 
1442 /* look up cgroup associated with given css_set on the specified hierarchy */
1443 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1444                         struct cgroup_root *root)
1445 {
1446     struct cgroup *res = NULL;
1447 
1448     lockdep_assert_held(&cgroup_mutex);
1449     lockdep_assert_held(&css_set_lock);
1450 
1451     res = __cset_cgroup_from_root(cset, root);
1452 
1453     BUG_ON(!res);
1454     return res;
1455 }
1456 
1457 /*
1458  * Return the cgroup for "task" from the given hierarchy. Must be
1459  * called with cgroup_mutex and css_set_lock held.
1460  */
1461 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1462                      struct cgroup_root *root)
1463 {
1464     /*
1465      * No need to lock the task - since we hold css_set_lock the
1466      * task can't change groups.
1467      */
1468     return cset_cgroup_from_root(task_css_set(task), root);
1469 }
1470 
1471 /*
1472  * A task must hold cgroup_mutex to modify cgroups.
1473  *
1474  * Any task can increment and decrement the count field without lock.
1475  * So in general, code holding cgroup_mutex can't rely on the count
1476  * field not changing.  However, if the count goes to zero, then only
1477  * cgroup_attach_task() can increment it again.  Because a count of zero
1478  * means that no tasks are currently attached, therefore there is no
1479  * way a task attached to that cgroup can fork (the other way to
1480  * increment the count).  So code holding cgroup_mutex can safely
1481  * assume that if the count is zero, it will stay zero. Similarly, if
1482  * a task holds cgroup_mutex on a cgroup with zero count, it
1483  * knows that the cgroup won't be removed, as cgroup_rmdir()
1484  * needs that mutex.
1485  *
1486  * A cgroup can only be deleted if both its 'count' of using tasks
1487  * is zero, and its list of 'children' cgroups is empty.  Since all
1488  * tasks in the system use _some_ cgroup, and since there is always at
1489  * least one task in the system (init, pid == 1), therefore, root cgroup
1490  * always has either children cgroups and/or using tasks.  So we don't
1491  * need a special hack to ensure that root cgroup cannot be deleted.
1492  *
1493  * P.S.  One more locking exception.  RCU is used to guard the
1494  * update of a tasks cgroup pointer by cgroup_attach_task()
1495  */
1496 
1497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1498 
1499 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1500                   char *buf)
1501 {
1502     struct cgroup_subsys *ss = cft->ss;
1503 
1504     if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1505         !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1506         const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1507 
1508         snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1509              dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1510              cft->name);
1511     } else {
1512         strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1513     }
1514     return buf;
1515 }
1516 
1517 /**
1518  * cgroup_file_mode - deduce file mode of a control file
1519  * @cft: the control file in question
1520  *
1521  * S_IRUGO for read, S_IWUSR for write.
1522  */
1523 static umode_t cgroup_file_mode(const struct cftype *cft)
1524 {
1525     umode_t mode = 0;
1526 
1527     if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1528         mode |= S_IRUGO;
1529 
1530     if (cft->write_u64 || cft->write_s64 || cft->write) {
1531         if (cft->flags & CFTYPE_WORLD_WRITABLE)
1532             mode |= S_IWUGO;
1533         else
1534             mode |= S_IWUSR;
1535     }
1536 
1537     return mode;
1538 }
1539 
1540 /**
1541  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1542  * @subtree_control: the new subtree_control mask to consider
1543  * @this_ss_mask: available subsystems
1544  *
1545  * On the default hierarchy, a subsystem may request other subsystems to be
1546  * enabled together through its ->depends_on mask.  In such cases, more
1547  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1548  *
1549  * This function calculates which subsystems need to be enabled if
1550  * @subtree_control is to be applied while restricted to @this_ss_mask.
1551  */
1552 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1553 {
1554     u16 cur_ss_mask = subtree_control;
1555     struct cgroup_subsys *ss;
1556     int ssid;
1557 
1558     lockdep_assert_held(&cgroup_mutex);
1559 
1560     cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1561 
1562     while (true) {
1563         u16 new_ss_mask = cur_ss_mask;
1564 
1565         do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1566             new_ss_mask |= ss->depends_on;
1567         } while_each_subsys_mask();
1568 
1569         /*
1570          * Mask out subsystems which aren't available.  This can
1571          * happen only if some depended-upon subsystems were bound
1572          * to non-default hierarchies.
1573          */
1574         new_ss_mask &= this_ss_mask;
1575 
1576         if (new_ss_mask == cur_ss_mask)
1577             break;
1578         cur_ss_mask = new_ss_mask;
1579     }
1580 
1581     return cur_ss_mask;
1582 }
1583 
1584 /**
1585  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1586  * @kn: the kernfs_node being serviced
1587  *
1588  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1589  * the method finishes if locking succeeded.  Note that once this function
1590  * returns the cgroup returned by cgroup_kn_lock_live() may become
1591  * inaccessible any time.  If the caller intends to continue to access the
1592  * cgroup, it should pin it before invoking this function.
1593  */
1594 void cgroup_kn_unlock(struct kernfs_node *kn)
1595 {
1596     struct cgroup *cgrp;
1597 
1598     if (kernfs_type(kn) == KERNFS_DIR)
1599         cgrp = kn->priv;
1600     else
1601         cgrp = kn->parent->priv;
1602 
1603     mutex_unlock(&cgroup_mutex);
1604 
1605     kernfs_unbreak_active_protection(kn);
1606     cgroup_put(cgrp);
1607 }
1608 
1609 /**
1610  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1611  * @kn: the kernfs_node being serviced
1612  * @drain_offline: perform offline draining on the cgroup
1613  *
1614  * This helper is to be used by a cgroup kernfs method currently servicing
1615  * @kn.  It breaks the active protection, performs cgroup locking and
1616  * verifies that the associated cgroup is alive.  Returns the cgroup if
1617  * alive; otherwise, %NULL.  A successful return should be undone by a
1618  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1619  * cgroup is drained of offlining csses before return.
1620  *
1621  * Any cgroup kernfs method implementation which requires locking the
1622  * associated cgroup should use this helper.  It avoids nesting cgroup
1623  * locking under kernfs active protection and allows all kernfs operations
1624  * including self-removal.
1625  */
1626 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1627 {
1628     struct cgroup *cgrp;
1629 
1630     if (kernfs_type(kn) == KERNFS_DIR)
1631         cgrp = kn->priv;
1632     else
1633         cgrp = kn->parent->priv;
1634 
1635     /*
1636      * We're gonna grab cgroup_mutex which nests outside kernfs
1637      * active_ref.  cgroup liveliness check alone provides enough
1638      * protection against removal.  Ensure @cgrp stays accessible and
1639      * break the active_ref protection.
1640      */
1641     if (!cgroup_tryget(cgrp))
1642         return NULL;
1643     kernfs_break_active_protection(kn);
1644 
1645     if (drain_offline)
1646         cgroup_lock_and_drain_offline(cgrp);
1647     else
1648         mutex_lock(&cgroup_mutex);
1649 
1650     if (!cgroup_is_dead(cgrp))
1651         return cgrp;
1652 
1653     cgroup_kn_unlock(kn);
1654     return NULL;
1655 }
1656 
1657 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1658 {
1659     char name[CGROUP_FILE_NAME_MAX];
1660 
1661     lockdep_assert_held(&cgroup_mutex);
1662 
1663     if (cft->file_offset) {
1664         struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1665         struct cgroup_file *cfile = (void *)css + cft->file_offset;
1666 
1667         spin_lock_irq(&cgroup_file_kn_lock);
1668         cfile->kn = NULL;
1669         spin_unlock_irq(&cgroup_file_kn_lock);
1670 
1671         del_timer_sync(&cfile->notify_timer);
1672     }
1673 
1674     kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1675 }
1676 
1677 /**
1678  * css_clear_dir - remove subsys files in a cgroup directory
1679  * @css: target css
1680  */
1681 static void css_clear_dir(struct cgroup_subsys_state *css)
1682 {
1683     struct cgroup *cgrp = css->cgroup;
1684     struct cftype *cfts;
1685 
1686     if (!(css->flags & CSS_VISIBLE))
1687         return;
1688 
1689     css->flags &= ~CSS_VISIBLE;
1690 
1691     if (!css->ss) {
1692         if (cgroup_on_dfl(cgrp))
1693             cfts = cgroup_base_files;
1694         else
1695             cfts = cgroup1_base_files;
1696 
1697         cgroup_addrm_files(css, cgrp, cfts, false);
1698     } else {
1699         list_for_each_entry(cfts, &css->ss->cfts, node)
1700             cgroup_addrm_files(css, cgrp, cfts, false);
1701     }
1702 }
1703 
1704 /**
1705  * css_populate_dir - create subsys files in a cgroup directory
1706  * @css: target css
1707  *
1708  * On failure, no file is added.
1709  */
1710 static int css_populate_dir(struct cgroup_subsys_state *css)
1711 {
1712     struct cgroup *cgrp = css->cgroup;
1713     struct cftype *cfts, *failed_cfts;
1714     int ret;
1715 
1716     if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1717         return 0;
1718 
1719     if (!css->ss) {
1720         if (cgroup_on_dfl(cgrp))
1721             cfts = cgroup_base_files;
1722         else
1723             cfts = cgroup1_base_files;
1724 
1725         ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1726         if (ret < 0)
1727             return ret;
1728     } else {
1729         list_for_each_entry(cfts, &css->ss->cfts, node) {
1730             ret = cgroup_addrm_files(css, cgrp, cfts, true);
1731             if (ret < 0) {
1732                 failed_cfts = cfts;
1733                 goto err;
1734             }
1735         }
1736     }
1737 
1738     css->flags |= CSS_VISIBLE;
1739 
1740     return 0;
1741 err:
1742     list_for_each_entry(cfts, &css->ss->cfts, node) {
1743         if (cfts == failed_cfts)
1744             break;
1745         cgroup_addrm_files(css, cgrp, cfts, false);
1746     }
1747     return ret;
1748 }
1749 
1750 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1751 {
1752     struct cgroup *dcgrp = &dst_root->cgrp;
1753     struct cgroup_subsys *ss;
1754     int ssid, i, ret;
1755     u16 dfl_disable_ss_mask = 0;
1756 
1757     lockdep_assert_held(&cgroup_mutex);
1758 
1759     do_each_subsys_mask(ss, ssid, ss_mask) {
1760         /*
1761          * If @ss has non-root csses attached to it, can't move.
1762          * If @ss is an implicit controller, it is exempt from this
1763          * rule and can be stolen.
1764          */
1765         if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1766             !ss->implicit_on_dfl)
1767             return -EBUSY;
1768 
1769         /* can't move between two non-dummy roots either */
1770         if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1771             return -EBUSY;
1772 
1773         /*
1774          * Collect ssid's that need to be disabled from default
1775          * hierarchy.
1776          */
1777         if (ss->root == &cgrp_dfl_root)
1778             dfl_disable_ss_mask |= 1 << ssid;
1779 
1780     } while_each_subsys_mask();
1781 
1782     if (dfl_disable_ss_mask) {
1783         struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1784 
1785         /*
1786          * Controllers from default hierarchy that need to be rebound
1787          * are all disabled together in one go.
1788          */
1789         cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1790         WARN_ON(cgroup_apply_control(scgrp));
1791         cgroup_finalize_control(scgrp, 0);
1792     }
1793 
1794     do_each_subsys_mask(ss, ssid, ss_mask) {
1795         struct cgroup_root *src_root = ss->root;
1796         struct cgroup *scgrp = &src_root->cgrp;
1797         struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1798         struct css_set *cset;
1799 
1800         WARN_ON(!css || cgroup_css(dcgrp, ss));
1801 
1802         if (src_root != &cgrp_dfl_root) {
1803             /* disable from the source */
1804             src_root->subsys_mask &= ~(1 << ssid);
1805             WARN_ON(cgroup_apply_control(scgrp));
1806             cgroup_finalize_control(scgrp, 0);
1807         }
1808 
1809         /* rebind */
1810         RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1811         rcu_assign_pointer(dcgrp->subsys[ssid], css);
1812         ss->root = dst_root;
1813         css->cgroup = dcgrp;
1814 
1815         spin_lock_irq(&css_set_lock);
1816         hash_for_each(css_set_table, i, cset, hlist)
1817             list_move_tail(&cset->e_cset_node[ss->id],
1818                        &dcgrp->e_csets[ss->id]);
1819         spin_unlock_irq(&css_set_lock);
1820 
1821         if (ss->css_rstat_flush) {
1822             list_del_rcu(&css->rstat_css_node);
1823             synchronize_rcu();
1824             list_add_rcu(&css->rstat_css_node,
1825                      &dcgrp->rstat_css_list);
1826         }
1827 
1828         /* default hierarchy doesn't enable controllers by default */
1829         dst_root->subsys_mask |= 1 << ssid;
1830         if (dst_root == &cgrp_dfl_root) {
1831             static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1832         } else {
1833             dcgrp->subtree_control |= 1 << ssid;
1834             static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1835         }
1836 
1837         ret = cgroup_apply_control(dcgrp);
1838         if (ret)
1839             pr_warn("partial failure to rebind %s controller (err=%d)\n",
1840                 ss->name, ret);
1841 
1842         if (ss->bind)
1843             ss->bind(css);
1844     } while_each_subsys_mask();
1845 
1846     kernfs_activate(dcgrp->kn);
1847     return 0;
1848 }
1849 
1850 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1851              struct kernfs_root *kf_root)
1852 {
1853     int len = 0;
1854     char *buf = NULL;
1855     struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1856     struct cgroup *ns_cgroup;
1857 
1858     buf = kmalloc(PATH_MAX, GFP_KERNEL);
1859     if (!buf)
1860         return -ENOMEM;
1861 
1862     spin_lock_irq(&css_set_lock);
1863     ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1864     len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1865     spin_unlock_irq(&css_set_lock);
1866 
1867     if (len >= PATH_MAX)
1868         len = -ERANGE;
1869     else if (len > 0) {
1870         seq_escape(sf, buf, " \t\n\\");
1871         len = 0;
1872     }
1873     kfree(buf);
1874     return len;
1875 }
1876 
1877 enum cgroup2_param {
1878     Opt_nsdelegate,
1879     Opt_favordynmods,
1880     Opt_memory_localevents,
1881     Opt_memory_recursiveprot,
1882     nr__cgroup2_params
1883 };
1884 
1885 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1886     fsparam_flag("nsdelegate",      Opt_nsdelegate),
1887     fsparam_flag("favordynmods",        Opt_favordynmods),
1888     fsparam_flag("memory_localevents",  Opt_memory_localevents),
1889     fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1890     {}
1891 };
1892 
1893 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1894 {
1895     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1896     struct fs_parse_result result;
1897     int opt;
1898 
1899     opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1900     if (opt < 0)
1901         return opt;
1902 
1903     switch (opt) {
1904     case Opt_nsdelegate:
1905         ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1906         return 0;
1907     case Opt_favordynmods:
1908         ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1909         return 0;
1910     case Opt_memory_localevents:
1911         ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1912         return 0;
1913     case Opt_memory_recursiveprot:
1914         ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1915         return 0;
1916     }
1917     return -EINVAL;
1918 }
1919 
1920 static void apply_cgroup_root_flags(unsigned int root_flags)
1921 {
1922     if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1923         if (root_flags & CGRP_ROOT_NS_DELEGATE)
1924             cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1925         else
1926             cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1927 
1928         cgroup_favor_dynmods(&cgrp_dfl_root,
1929                      root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1930 
1931         if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1932             cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1933         else
1934             cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1935 
1936         if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1937             cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1938         else
1939             cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1940     }
1941 }
1942 
1943 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1944 {
1945     if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1946         seq_puts(seq, ",nsdelegate");
1947     if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1948         seq_puts(seq, ",favordynmods");
1949     if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1950         seq_puts(seq, ",memory_localevents");
1951     if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1952         seq_puts(seq, ",memory_recursiveprot");
1953     return 0;
1954 }
1955 
1956 static int cgroup_reconfigure(struct fs_context *fc)
1957 {
1958     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1959 
1960     apply_cgroup_root_flags(ctx->flags);
1961     return 0;
1962 }
1963 
1964 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1965 {
1966     struct cgroup_subsys *ss;
1967     int ssid;
1968 
1969     INIT_LIST_HEAD(&cgrp->self.sibling);
1970     INIT_LIST_HEAD(&cgrp->self.children);
1971     INIT_LIST_HEAD(&cgrp->cset_links);
1972     INIT_LIST_HEAD(&cgrp->pidlists);
1973     mutex_init(&cgrp->pidlist_mutex);
1974     cgrp->self.cgroup = cgrp;
1975     cgrp->self.flags |= CSS_ONLINE;
1976     cgrp->dom_cgrp = cgrp;
1977     cgrp->max_descendants = INT_MAX;
1978     cgrp->max_depth = INT_MAX;
1979     INIT_LIST_HEAD(&cgrp->rstat_css_list);
1980     prev_cputime_init(&cgrp->prev_cputime);
1981 
1982     for_each_subsys(ss, ssid)
1983         INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1984 
1985     init_waitqueue_head(&cgrp->offline_waitq);
1986     INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1987 }
1988 
1989 void init_cgroup_root(struct cgroup_fs_context *ctx)
1990 {
1991     struct cgroup_root *root = ctx->root;
1992     struct cgroup *cgrp = &root->cgrp;
1993 
1994     INIT_LIST_HEAD(&root->root_list);
1995     atomic_set(&root->nr_cgrps, 1);
1996     cgrp->root = root;
1997     init_cgroup_housekeeping(cgrp);
1998 
1999     /* DYNMODS must be modified through cgroup_favor_dynmods() */
2000     root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2001     if (ctx->release_agent)
2002         strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2003     if (ctx->name)
2004         strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2005     if (ctx->cpuset_clone_children)
2006         set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2007 }
2008 
2009 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2010 {
2011     LIST_HEAD(tmp_links);
2012     struct cgroup *root_cgrp = &root->cgrp;
2013     struct kernfs_syscall_ops *kf_sops;
2014     struct css_set *cset;
2015     int i, ret;
2016 
2017     lockdep_assert_held(&cgroup_mutex);
2018 
2019     ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2020                   0, GFP_KERNEL);
2021     if (ret)
2022         goto out;
2023 
2024     /*
2025      * We're accessing css_set_count without locking css_set_lock here,
2026      * but that's OK - it can only be increased by someone holding
2027      * cgroup_lock, and that's us.  Later rebinding may disable
2028      * controllers on the default hierarchy and thus create new csets,
2029      * which can't be more than the existing ones.  Allocate 2x.
2030      */
2031     ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2032     if (ret)
2033         goto cancel_ref;
2034 
2035     ret = cgroup_init_root_id(root);
2036     if (ret)
2037         goto cancel_ref;
2038 
2039     kf_sops = root == &cgrp_dfl_root ?
2040         &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2041 
2042     root->kf_root = kernfs_create_root(kf_sops,
2043                        KERNFS_ROOT_CREATE_DEACTIVATED |
2044                        KERNFS_ROOT_SUPPORT_EXPORTOP |
2045                        KERNFS_ROOT_SUPPORT_USER_XATTR,
2046                        root_cgrp);
2047     if (IS_ERR(root->kf_root)) {
2048         ret = PTR_ERR(root->kf_root);
2049         goto exit_root_id;
2050     }
2051     root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2052     WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2053     root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2054 
2055     ret = css_populate_dir(&root_cgrp->self);
2056     if (ret)
2057         goto destroy_root;
2058 
2059     ret = cgroup_rstat_init(root_cgrp);
2060     if (ret)
2061         goto destroy_root;
2062 
2063     ret = rebind_subsystems(root, ss_mask);
2064     if (ret)
2065         goto exit_stats;
2066 
2067     ret = cgroup_bpf_inherit(root_cgrp);
2068     WARN_ON_ONCE(ret);
2069 
2070     trace_cgroup_setup_root(root);
2071 
2072     /*
2073      * There must be no failure case after here, since rebinding takes
2074      * care of subsystems' refcounts, which are explicitly dropped in
2075      * the failure exit path.
2076      */
2077     list_add(&root->root_list, &cgroup_roots);
2078     cgroup_root_count++;
2079 
2080     /*
2081      * Link the root cgroup in this hierarchy into all the css_set
2082      * objects.
2083      */
2084     spin_lock_irq(&css_set_lock);
2085     hash_for_each(css_set_table, i, cset, hlist) {
2086         link_css_set(&tmp_links, cset, root_cgrp);
2087         if (css_set_populated(cset))
2088             cgroup_update_populated(root_cgrp, true);
2089     }
2090     spin_unlock_irq(&css_set_lock);
2091 
2092     BUG_ON(!list_empty(&root_cgrp->self.children));
2093     BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2094 
2095     ret = 0;
2096     goto out;
2097 
2098 exit_stats:
2099     cgroup_rstat_exit(root_cgrp);
2100 destroy_root:
2101     kernfs_destroy_root(root->kf_root);
2102     root->kf_root = NULL;
2103 exit_root_id:
2104     cgroup_exit_root_id(root);
2105 cancel_ref:
2106     percpu_ref_exit(&root_cgrp->self.refcnt);
2107 out:
2108     free_cgrp_cset_links(&tmp_links);
2109     return ret;
2110 }
2111 
2112 int cgroup_do_get_tree(struct fs_context *fc)
2113 {
2114     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2115     int ret;
2116 
2117     ctx->kfc.root = ctx->root->kf_root;
2118     if (fc->fs_type == &cgroup2_fs_type)
2119         ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2120     else
2121         ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2122     ret = kernfs_get_tree(fc);
2123 
2124     /*
2125      * In non-init cgroup namespace, instead of root cgroup's dentry,
2126      * we return the dentry corresponding to the cgroupns->root_cgrp.
2127      */
2128     if (!ret && ctx->ns != &init_cgroup_ns) {
2129         struct dentry *nsdentry;
2130         struct super_block *sb = fc->root->d_sb;
2131         struct cgroup *cgrp;
2132 
2133         mutex_lock(&cgroup_mutex);
2134         spin_lock_irq(&css_set_lock);
2135 
2136         cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2137 
2138         spin_unlock_irq(&css_set_lock);
2139         mutex_unlock(&cgroup_mutex);
2140 
2141         nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2142         dput(fc->root);
2143         if (IS_ERR(nsdentry)) {
2144             deactivate_locked_super(sb);
2145             ret = PTR_ERR(nsdentry);
2146             nsdentry = NULL;
2147         }
2148         fc->root = nsdentry;
2149     }
2150 
2151     if (!ctx->kfc.new_sb_created)
2152         cgroup_put(&ctx->root->cgrp);
2153 
2154     return ret;
2155 }
2156 
2157 /*
2158  * Destroy a cgroup filesystem context.
2159  */
2160 static void cgroup_fs_context_free(struct fs_context *fc)
2161 {
2162     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2163 
2164     kfree(ctx->name);
2165     kfree(ctx->release_agent);
2166     put_cgroup_ns(ctx->ns);
2167     kernfs_free_fs_context(fc);
2168     kfree(ctx);
2169 }
2170 
2171 static int cgroup_get_tree(struct fs_context *fc)
2172 {
2173     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2174     int ret;
2175 
2176     cgrp_dfl_visible = true;
2177     cgroup_get_live(&cgrp_dfl_root.cgrp);
2178     ctx->root = &cgrp_dfl_root;
2179 
2180     ret = cgroup_do_get_tree(fc);
2181     if (!ret)
2182         apply_cgroup_root_flags(ctx->flags);
2183     return ret;
2184 }
2185 
2186 static const struct fs_context_operations cgroup_fs_context_ops = {
2187     .free       = cgroup_fs_context_free,
2188     .parse_param    = cgroup2_parse_param,
2189     .get_tree   = cgroup_get_tree,
2190     .reconfigure    = cgroup_reconfigure,
2191 };
2192 
2193 static const struct fs_context_operations cgroup1_fs_context_ops = {
2194     .free       = cgroup_fs_context_free,
2195     .parse_param    = cgroup1_parse_param,
2196     .get_tree   = cgroup1_get_tree,
2197     .reconfigure    = cgroup1_reconfigure,
2198 };
2199 
2200 /*
2201  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2202  * we select the namespace we're going to use.
2203  */
2204 static int cgroup_init_fs_context(struct fs_context *fc)
2205 {
2206     struct cgroup_fs_context *ctx;
2207 
2208     ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2209     if (!ctx)
2210         return -ENOMEM;
2211 
2212     ctx->ns = current->nsproxy->cgroup_ns;
2213     get_cgroup_ns(ctx->ns);
2214     fc->fs_private = &ctx->kfc;
2215     if (fc->fs_type == &cgroup2_fs_type)
2216         fc->ops = &cgroup_fs_context_ops;
2217     else
2218         fc->ops = &cgroup1_fs_context_ops;
2219     put_user_ns(fc->user_ns);
2220     fc->user_ns = get_user_ns(ctx->ns->user_ns);
2221     fc->global = true;
2222 
2223 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2224     ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2225 #endif
2226     return 0;
2227 }
2228 
2229 static void cgroup_kill_sb(struct super_block *sb)
2230 {
2231     struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2232     struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2233 
2234     /*
2235      * If @root doesn't have any children, start killing it.
2236      * This prevents new mounts by disabling percpu_ref_tryget_live().
2237      *
2238      * And don't kill the default root.
2239      */
2240     if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2241         !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2242         cgroup_bpf_offline(&root->cgrp);
2243         percpu_ref_kill(&root->cgrp.self.refcnt);
2244     }
2245     cgroup_put(&root->cgrp);
2246     kernfs_kill_sb(sb);
2247 }
2248 
2249 struct file_system_type cgroup_fs_type = {
2250     .name           = "cgroup",
2251     .init_fs_context    = cgroup_init_fs_context,
2252     .parameters     = cgroup1_fs_parameters,
2253     .kill_sb        = cgroup_kill_sb,
2254     .fs_flags       = FS_USERNS_MOUNT,
2255 };
2256 
2257 static struct file_system_type cgroup2_fs_type = {
2258     .name           = "cgroup2",
2259     .init_fs_context    = cgroup_init_fs_context,
2260     .parameters     = cgroup2_fs_parameters,
2261     .kill_sb        = cgroup_kill_sb,
2262     .fs_flags       = FS_USERNS_MOUNT,
2263 };
2264 
2265 #ifdef CONFIG_CPUSETS
2266 static const struct fs_context_operations cpuset_fs_context_ops = {
2267     .get_tree   = cgroup1_get_tree,
2268     .free       = cgroup_fs_context_free,
2269 };
2270 
2271 /*
2272  * This is ugly, but preserves the userspace API for existing cpuset
2273  * users. If someone tries to mount the "cpuset" filesystem, we
2274  * silently switch it to mount "cgroup" instead
2275  */
2276 static int cpuset_init_fs_context(struct fs_context *fc)
2277 {
2278     char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2279     struct cgroup_fs_context *ctx;
2280     int err;
2281 
2282     err = cgroup_init_fs_context(fc);
2283     if (err) {
2284         kfree(agent);
2285         return err;
2286     }
2287 
2288     fc->ops = &cpuset_fs_context_ops;
2289 
2290     ctx = cgroup_fc2context(fc);
2291     ctx->subsys_mask = 1 << cpuset_cgrp_id;
2292     ctx->flags |= CGRP_ROOT_NOPREFIX;
2293     ctx->release_agent = agent;
2294 
2295     get_filesystem(&cgroup_fs_type);
2296     put_filesystem(fc->fs_type);
2297     fc->fs_type = &cgroup_fs_type;
2298 
2299     return 0;
2300 }
2301 
2302 static struct file_system_type cpuset_fs_type = {
2303     .name           = "cpuset",
2304     .init_fs_context    = cpuset_init_fs_context,
2305     .fs_flags       = FS_USERNS_MOUNT,
2306 };
2307 #endif
2308 
2309 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2310               struct cgroup_namespace *ns)
2311 {
2312     struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2313 
2314     return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2315 }
2316 
2317 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2318            struct cgroup_namespace *ns)
2319 {
2320     int ret;
2321 
2322     mutex_lock(&cgroup_mutex);
2323     spin_lock_irq(&css_set_lock);
2324 
2325     ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2326 
2327     spin_unlock_irq(&css_set_lock);
2328     mutex_unlock(&cgroup_mutex);
2329 
2330     return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2333 
2334 /**
2335  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2336  * @task: target task
2337  * @buf: the buffer to write the path into
2338  * @buflen: the length of the buffer
2339  *
2340  * Determine @task's cgroup on the first (the one with the lowest non-zero
2341  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2342  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2343  * cgroup controller callbacks.
2344  *
2345  * Return value is the same as kernfs_path().
2346  */
2347 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2348 {
2349     struct cgroup_root *root;
2350     struct cgroup *cgrp;
2351     int hierarchy_id = 1;
2352     int ret;
2353 
2354     mutex_lock(&cgroup_mutex);
2355     spin_lock_irq(&css_set_lock);
2356 
2357     root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2358 
2359     if (root) {
2360         cgrp = task_cgroup_from_root(task, root);
2361         ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2362     } else {
2363         /* if no hierarchy exists, everyone is in "/" */
2364         ret = strlcpy(buf, "/", buflen);
2365     }
2366 
2367     spin_unlock_irq(&css_set_lock);
2368     mutex_unlock(&cgroup_mutex);
2369     return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(task_cgroup_path);
2372 
2373 /**
2374  * cgroup_attach_lock - Lock for ->attach()
2375  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2376  *
2377  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2378  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2379  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2380  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2381  * lead to deadlocks.
2382  *
2383  * Bringing up a CPU may involve creating and destroying tasks which requires
2384  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2385  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2386  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2387  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2388  * the threadgroup_rwsem to be released to create new tasks. For more details:
2389  *
2390  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2391  *
2392  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2393  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2394  * CPU hotplug is disabled on entry.
2395  */
2396 static void cgroup_attach_lock(bool lock_threadgroup)
2397 {
2398     cpus_read_lock();
2399     if (lock_threadgroup)
2400         percpu_down_write(&cgroup_threadgroup_rwsem);
2401 }
2402 
2403 /**
2404  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2405  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2406  */
2407 static void cgroup_attach_unlock(bool lock_threadgroup)
2408 {
2409     if (lock_threadgroup)
2410         percpu_up_write(&cgroup_threadgroup_rwsem);
2411     cpus_read_unlock();
2412 }
2413 
2414 /**
2415  * cgroup_migrate_add_task - add a migration target task to a migration context
2416  * @task: target task
2417  * @mgctx: target migration context
2418  *
2419  * Add @task, which is a migration target, to @mgctx->tset.  This function
2420  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2421  * should have been added as a migration source and @task->cg_list will be
2422  * moved from the css_set's tasks list to mg_tasks one.
2423  */
2424 static void cgroup_migrate_add_task(struct task_struct *task,
2425                     struct cgroup_mgctx *mgctx)
2426 {
2427     struct css_set *cset;
2428 
2429     lockdep_assert_held(&css_set_lock);
2430 
2431     /* @task either already exited or can't exit until the end */
2432     if (task->flags & PF_EXITING)
2433         return;
2434 
2435     /* cgroup_threadgroup_rwsem protects racing against forks */
2436     WARN_ON_ONCE(list_empty(&task->cg_list));
2437 
2438     cset = task_css_set(task);
2439     if (!cset->mg_src_cgrp)
2440         return;
2441 
2442     mgctx->tset.nr_tasks++;
2443 
2444     list_move_tail(&task->cg_list, &cset->mg_tasks);
2445     if (list_empty(&cset->mg_node))
2446         list_add_tail(&cset->mg_node,
2447                   &mgctx->tset.src_csets);
2448     if (list_empty(&cset->mg_dst_cset->mg_node))
2449         list_add_tail(&cset->mg_dst_cset->mg_node,
2450                   &mgctx->tset.dst_csets);
2451 }
2452 
2453 /**
2454  * cgroup_taskset_first - reset taskset and return the first task
2455  * @tset: taskset of interest
2456  * @dst_cssp: output variable for the destination css
2457  *
2458  * @tset iteration is initialized and the first task is returned.
2459  */
2460 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2461                      struct cgroup_subsys_state **dst_cssp)
2462 {
2463     tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2464     tset->cur_task = NULL;
2465 
2466     return cgroup_taskset_next(tset, dst_cssp);
2467 }
2468 
2469 /**
2470  * cgroup_taskset_next - iterate to the next task in taskset
2471  * @tset: taskset of interest
2472  * @dst_cssp: output variable for the destination css
2473  *
2474  * Return the next task in @tset.  Iteration must have been initialized
2475  * with cgroup_taskset_first().
2476  */
2477 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2478                     struct cgroup_subsys_state **dst_cssp)
2479 {
2480     struct css_set *cset = tset->cur_cset;
2481     struct task_struct *task = tset->cur_task;
2482 
2483     while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2484         if (!task)
2485             task = list_first_entry(&cset->mg_tasks,
2486                         struct task_struct, cg_list);
2487         else
2488             task = list_next_entry(task, cg_list);
2489 
2490         if (&task->cg_list != &cset->mg_tasks) {
2491             tset->cur_cset = cset;
2492             tset->cur_task = task;
2493 
2494             /*
2495              * This function may be called both before and
2496              * after cgroup_taskset_migrate().  The two cases
2497              * can be distinguished by looking at whether @cset
2498              * has its ->mg_dst_cset set.
2499              */
2500             if (cset->mg_dst_cset)
2501                 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2502             else
2503                 *dst_cssp = cset->subsys[tset->ssid];
2504 
2505             return task;
2506         }
2507 
2508         cset = list_next_entry(cset, mg_node);
2509         task = NULL;
2510     }
2511 
2512     return NULL;
2513 }
2514 
2515 /**
2516  * cgroup_migrate_execute - migrate a taskset
2517  * @mgctx: migration context
2518  *
2519  * Migrate tasks in @mgctx as setup by migration preparation functions.
2520  * This function fails iff one of the ->can_attach callbacks fails and
2521  * guarantees that either all or none of the tasks in @mgctx are migrated.
2522  * @mgctx is consumed regardless of success.
2523  */
2524 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2525 {
2526     struct cgroup_taskset *tset = &mgctx->tset;
2527     struct cgroup_subsys *ss;
2528     struct task_struct *task, *tmp_task;
2529     struct css_set *cset, *tmp_cset;
2530     int ssid, failed_ssid, ret;
2531 
2532     /* check that we can legitimately attach to the cgroup */
2533     if (tset->nr_tasks) {
2534         do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2535             if (ss->can_attach) {
2536                 tset->ssid = ssid;
2537                 ret = ss->can_attach(tset);
2538                 if (ret) {
2539                     failed_ssid = ssid;
2540                     goto out_cancel_attach;
2541                 }
2542             }
2543         } while_each_subsys_mask();
2544     }
2545 
2546     /*
2547      * Now that we're guaranteed success, proceed to move all tasks to
2548      * the new cgroup.  There are no failure cases after here, so this
2549      * is the commit point.
2550      */
2551     spin_lock_irq(&css_set_lock);
2552     list_for_each_entry(cset, &tset->src_csets, mg_node) {
2553         list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2554             struct css_set *from_cset = task_css_set(task);
2555             struct css_set *to_cset = cset->mg_dst_cset;
2556 
2557             get_css_set(to_cset);
2558             to_cset->nr_tasks++;
2559             css_set_move_task(task, from_cset, to_cset, true);
2560             from_cset->nr_tasks--;
2561             /*
2562              * If the source or destination cgroup is frozen,
2563              * the task might require to change its state.
2564              */
2565             cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2566                             to_cset->dfl_cgrp);
2567             put_css_set_locked(from_cset);
2568 
2569         }
2570     }
2571     spin_unlock_irq(&css_set_lock);
2572 
2573     /*
2574      * Migration is committed, all target tasks are now on dst_csets.
2575      * Nothing is sensitive to fork() after this point.  Notify
2576      * controllers that migration is complete.
2577      */
2578     tset->csets = &tset->dst_csets;
2579 
2580     if (tset->nr_tasks) {
2581         do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2582             if (ss->attach) {
2583                 tset->ssid = ssid;
2584                 ss->attach(tset);
2585             }
2586         } while_each_subsys_mask();
2587     }
2588 
2589     ret = 0;
2590     goto out_release_tset;
2591 
2592 out_cancel_attach:
2593     if (tset->nr_tasks) {
2594         do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595             if (ssid == failed_ssid)
2596                 break;
2597             if (ss->cancel_attach) {
2598                 tset->ssid = ssid;
2599                 ss->cancel_attach(tset);
2600             }
2601         } while_each_subsys_mask();
2602     }
2603 out_release_tset:
2604     spin_lock_irq(&css_set_lock);
2605     list_splice_init(&tset->dst_csets, &tset->src_csets);
2606     list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2607         list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2608         list_del_init(&cset->mg_node);
2609     }
2610     spin_unlock_irq(&css_set_lock);
2611 
2612     /*
2613      * Re-initialize the cgroup_taskset structure in case it is reused
2614      * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2615      * iteration.
2616      */
2617     tset->nr_tasks = 0;
2618     tset->csets    = &tset->src_csets;
2619     return ret;
2620 }
2621 
2622 /**
2623  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2624  * @dst_cgrp: destination cgroup to test
2625  *
2626  * On the default hierarchy, except for the mixable, (possible) thread root
2627  * and threaded cgroups, subtree_control must be zero for migration
2628  * destination cgroups with tasks so that child cgroups don't compete
2629  * against tasks.
2630  */
2631 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2632 {
2633     /* v1 doesn't have any restriction */
2634     if (!cgroup_on_dfl(dst_cgrp))
2635         return 0;
2636 
2637     /* verify @dst_cgrp can host resources */
2638     if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2639         return -EOPNOTSUPP;
2640 
2641     /*
2642      * If @dst_cgrp is already or can become a thread root or is
2643      * threaded, it doesn't matter.
2644      */
2645     if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2646         return 0;
2647 
2648     /* apply no-internal-process constraint */
2649     if (dst_cgrp->subtree_control)
2650         return -EBUSY;
2651 
2652     return 0;
2653 }
2654 
2655 /**
2656  * cgroup_migrate_finish - cleanup after attach
2657  * @mgctx: migration context
2658  *
2659  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2660  * those functions for details.
2661  */
2662 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2663 {
2664     struct css_set *cset, *tmp_cset;
2665 
2666     lockdep_assert_held(&cgroup_mutex);
2667 
2668     spin_lock_irq(&css_set_lock);
2669 
2670     list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2671                  mg_src_preload_node) {
2672         cset->mg_src_cgrp = NULL;
2673         cset->mg_dst_cgrp = NULL;
2674         cset->mg_dst_cset = NULL;
2675         list_del_init(&cset->mg_src_preload_node);
2676         put_css_set_locked(cset);
2677     }
2678 
2679     list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2680                  mg_dst_preload_node) {
2681         cset->mg_src_cgrp = NULL;
2682         cset->mg_dst_cgrp = NULL;
2683         cset->mg_dst_cset = NULL;
2684         list_del_init(&cset->mg_dst_preload_node);
2685         put_css_set_locked(cset);
2686     }
2687 
2688     spin_unlock_irq(&css_set_lock);
2689 }
2690 
2691 /**
2692  * cgroup_migrate_add_src - add a migration source css_set
2693  * @src_cset: the source css_set to add
2694  * @dst_cgrp: the destination cgroup
2695  * @mgctx: migration context
2696  *
2697  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2698  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2699  * up by cgroup_migrate_finish().
2700  *
2701  * This function may be called without holding cgroup_threadgroup_rwsem
2702  * even if the target is a process.  Threads may be created and destroyed
2703  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2704  * into play and the preloaded css_sets are guaranteed to cover all
2705  * migrations.
2706  */
2707 void cgroup_migrate_add_src(struct css_set *src_cset,
2708                 struct cgroup *dst_cgrp,
2709                 struct cgroup_mgctx *mgctx)
2710 {
2711     struct cgroup *src_cgrp;
2712 
2713     lockdep_assert_held(&cgroup_mutex);
2714     lockdep_assert_held(&css_set_lock);
2715 
2716     /*
2717      * If ->dead, @src_set is associated with one or more dead cgroups
2718      * and doesn't contain any migratable tasks.  Ignore it early so
2719      * that the rest of migration path doesn't get confused by it.
2720      */
2721     if (src_cset->dead)
2722         return;
2723 
2724     if (!list_empty(&src_cset->mg_src_preload_node))
2725         return;
2726 
2727     src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2728 
2729     WARN_ON(src_cset->mg_src_cgrp);
2730     WARN_ON(src_cset->mg_dst_cgrp);
2731     WARN_ON(!list_empty(&src_cset->mg_tasks));
2732     WARN_ON(!list_empty(&src_cset->mg_node));
2733 
2734     src_cset->mg_src_cgrp = src_cgrp;
2735     src_cset->mg_dst_cgrp = dst_cgrp;
2736     get_css_set(src_cset);
2737     list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2738 }
2739 
2740 /**
2741  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2742  * @mgctx: migration context
2743  *
2744  * Tasks are about to be moved and all the source css_sets have been
2745  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2746  * pins all destination css_sets, links each to its source, and append them
2747  * to @mgctx->preloaded_dst_csets.
2748  *
2749  * This function must be called after cgroup_migrate_add_src() has been
2750  * called on each migration source css_set.  After migration is performed
2751  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2752  * @mgctx.
2753  */
2754 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2755 {
2756     struct css_set *src_cset, *tmp_cset;
2757 
2758     lockdep_assert_held(&cgroup_mutex);
2759 
2760     /* look up the dst cset for each src cset and link it to src */
2761     list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2762                  mg_src_preload_node) {
2763         struct css_set *dst_cset;
2764         struct cgroup_subsys *ss;
2765         int ssid;
2766 
2767         dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2768         if (!dst_cset)
2769             return -ENOMEM;
2770 
2771         WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2772 
2773         /*
2774          * If src cset equals dst, it's noop.  Drop the src.
2775          * cgroup_migrate() will skip the cset too.  Note that we
2776          * can't handle src == dst as some nodes are used by both.
2777          */
2778         if (src_cset == dst_cset) {
2779             src_cset->mg_src_cgrp = NULL;
2780             src_cset->mg_dst_cgrp = NULL;
2781             list_del_init(&src_cset->mg_src_preload_node);
2782             put_css_set(src_cset);
2783             put_css_set(dst_cset);
2784             continue;
2785         }
2786 
2787         src_cset->mg_dst_cset = dst_cset;
2788 
2789         if (list_empty(&dst_cset->mg_dst_preload_node))
2790             list_add_tail(&dst_cset->mg_dst_preload_node,
2791                       &mgctx->preloaded_dst_csets);
2792         else
2793             put_css_set(dst_cset);
2794 
2795         for_each_subsys(ss, ssid)
2796             if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2797                 mgctx->ss_mask |= 1 << ssid;
2798     }
2799 
2800     return 0;
2801 }
2802 
2803 /**
2804  * cgroup_migrate - migrate a process or task to a cgroup
2805  * @leader: the leader of the process or the task to migrate
2806  * @threadgroup: whether @leader points to the whole process or a single task
2807  * @mgctx: migration context
2808  *
2809  * Migrate a process or task denoted by @leader.  If migrating a process,
2810  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2811  * responsible for invoking cgroup_migrate_add_src() and
2812  * cgroup_migrate_prepare_dst() on the targets before invoking this
2813  * function and following up with cgroup_migrate_finish().
2814  *
2815  * As long as a controller's ->can_attach() doesn't fail, this function is
2816  * guaranteed to succeed.  This means that, excluding ->can_attach()
2817  * failure, when migrating multiple targets, the success or failure can be
2818  * decided for all targets by invoking group_migrate_prepare_dst() before
2819  * actually starting migrating.
2820  */
2821 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2822            struct cgroup_mgctx *mgctx)
2823 {
2824     struct task_struct *task;
2825 
2826     /*
2827      * Prevent freeing of tasks while we take a snapshot. Tasks that are
2828      * already PF_EXITING could be freed from underneath us unless we
2829      * take an rcu_read_lock.
2830      */
2831     spin_lock_irq(&css_set_lock);
2832     rcu_read_lock();
2833     task = leader;
2834     do {
2835         cgroup_migrate_add_task(task, mgctx);
2836         if (!threadgroup)
2837             break;
2838     } while_each_thread(leader, task);
2839     rcu_read_unlock();
2840     spin_unlock_irq(&css_set_lock);
2841 
2842     return cgroup_migrate_execute(mgctx);
2843 }
2844 
2845 /**
2846  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847  * @dst_cgrp: the cgroup to attach to
2848  * @leader: the task or the leader of the threadgroup to be attached
2849  * @threadgroup: attach the whole threadgroup?
2850  *
2851  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852  */
2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854                bool threadgroup)
2855 {
2856     DEFINE_CGROUP_MGCTX(mgctx);
2857     struct task_struct *task;
2858     int ret = 0;
2859 
2860     /* look up all src csets */
2861     spin_lock_irq(&css_set_lock);
2862     rcu_read_lock();
2863     task = leader;
2864     do {
2865         cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866         if (!threadgroup)
2867             break;
2868     } while_each_thread(leader, task);
2869     rcu_read_unlock();
2870     spin_unlock_irq(&css_set_lock);
2871 
2872     /* prepare dst csets and commit */
2873     ret = cgroup_migrate_prepare_dst(&mgctx);
2874     if (!ret)
2875         ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876 
2877     cgroup_migrate_finish(&mgctx);
2878 
2879     if (!ret)
2880         TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881 
2882     return ret;
2883 }
2884 
2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886                          bool *threadgroup_locked)
2887 {
2888     struct task_struct *tsk;
2889     pid_t pid;
2890 
2891     if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892         return ERR_PTR(-EINVAL);
2893 
2894     /*
2895      * If we migrate a single thread, we don't care about threadgroup
2896      * stability. If the thread is `current`, it won't exit(2) under our
2897      * hands or change PID through exec(2). We exclude
2898      * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2899      * callers by cgroup_mutex.
2900      * Therefore, we can skip the global lock.
2901      */
2902     lockdep_assert_held(&cgroup_mutex);
2903     *threadgroup_locked = pid || threadgroup;
2904     cgroup_attach_lock(*threadgroup_locked);
2905 
2906     rcu_read_lock();
2907     if (pid) {
2908         tsk = find_task_by_vpid(pid);
2909         if (!tsk) {
2910             tsk = ERR_PTR(-ESRCH);
2911             goto out_unlock_threadgroup;
2912         }
2913     } else {
2914         tsk = current;
2915     }
2916 
2917     if (threadgroup)
2918         tsk = tsk->group_leader;
2919 
2920     /*
2921      * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2922      * If userland migrates such a kthread to a non-root cgroup, it can
2923      * become trapped in a cpuset, or RT kthread may be born in a
2924      * cgroup with no rt_runtime allocated.  Just say no.
2925      */
2926     if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2927         tsk = ERR_PTR(-EINVAL);
2928         goto out_unlock_threadgroup;
2929     }
2930 
2931     get_task_struct(tsk);
2932     goto out_unlock_rcu;
2933 
2934 out_unlock_threadgroup:
2935     cgroup_attach_unlock(*threadgroup_locked);
2936     *threadgroup_locked = false;
2937 out_unlock_rcu:
2938     rcu_read_unlock();
2939     return tsk;
2940 }
2941 
2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2943 {
2944     struct cgroup_subsys *ss;
2945     int ssid;
2946 
2947     /* release reference from cgroup_procs_write_start() */
2948     put_task_struct(task);
2949 
2950     cgroup_attach_unlock(threadgroup_locked);
2951 
2952     for_each_subsys(ss, ssid)
2953         if (ss->post_attach)
2954             ss->post_attach();
2955 }
2956 
2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2958 {
2959     struct cgroup_subsys *ss;
2960     bool printed = false;
2961     int ssid;
2962 
2963     do_each_subsys_mask(ss, ssid, ss_mask) {
2964         if (printed)
2965             seq_putc(seq, ' ');
2966         seq_puts(seq, ss->name);
2967         printed = true;
2968     } while_each_subsys_mask();
2969     if (printed)
2970         seq_putc(seq, '\n');
2971 }
2972 
2973 /* show controllers which are enabled from the parent */
2974 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2975 {
2976     struct cgroup *cgrp = seq_css(seq)->cgroup;
2977 
2978     cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2979     return 0;
2980 }
2981 
2982 /* show controllers which are enabled for a given cgroup's children */
2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2984 {
2985     struct cgroup *cgrp = seq_css(seq)->cgroup;
2986 
2987     cgroup_print_ss_mask(seq, cgrp->subtree_control);
2988     return 0;
2989 }
2990 
2991 /**
2992  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2993  * @cgrp: root of the subtree to update csses for
2994  *
2995  * @cgrp's control masks have changed and its subtree's css associations
2996  * need to be updated accordingly.  This function looks up all css_sets
2997  * which are attached to the subtree, creates the matching updated css_sets
2998  * and migrates the tasks to the new ones.
2999  */
3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3001 {
3002     DEFINE_CGROUP_MGCTX(mgctx);
3003     struct cgroup_subsys_state *d_css;
3004     struct cgroup *dsct;
3005     struct css_set *src_cset;
3006     bool has_tasks;
3007     int ret;
3008 
3009     lockdep_assert_held(&cgroup_mutex);
3010 
3011     /* look up all csses currently attached to @cgrp's subtree */
3012     spin_lock_irq(&css_set_lock);
3013     cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3014         struct cgrp_cset_link *link;
3015 
3016         /*
3017          * As cgroup_update_dfl_csses() is only called by
3018          * cgroup_apply_control(). The csses associated with the
3019          * given cgrp will not be affected by changes made to
3020          * its subtree_control file. We can skip them.
3021          */
3022         if (dsct == cgrp)
3023             continue;
3024 
3025         list_for_each_entry(link, &dsct->cset_links, cset_link)
3026             cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3027     }
3028     spin_unlock_irq(&css_set_lock);
3029 
3030     /*
3031      * We need to write-lock threadgroup_rwsem while migrating tasks.
3032      * However, if there are no source csets for @cgrp, changing its
3033      * controllers isn't gonna produce any task migrations and the
3034      * write-locking can be skipped safely.
3035      */
3036     has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3037     cgroup_attach_lock(has_tasks);
3038 
3039     /* NULL dst indicates self on default hierarchy */
3040     ret = cgroup_migrate_prepare_dst(&mgctx);
3041     if (ret)
3042         goto out_finish;
3043 
3044     spin_lock_irq(&css_set_lock);
3045     list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3046                 mg_src_preload_node) {
3047         struct task_struct *task, *ntask;
3048 
3049         /* all tasks in src_csets need to be migrated */
3050         list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3051             cgroup_migrate_add_task(task, &mgctx);
3052     }
3053     spin_unlock_irq(&css_set_lock);
3054 
3055     ret = cgroup_migrate_execute(&mgctx);
3056 out_finish:
3057     cgroup_migrate_finish(&mgctx);
3058     cgroup_attach_unlock(has_tasks);
3059     return ret;
3060 }
3061 
3062 /**
3063  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3064  * @cgrp: root of the target subtree
3065  *
3066  * Because css offlining is asynchronous, userland may try to re-enable a
3067  * controller while the previous css is still around.  This function grabs
3068  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3069  */
3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3071     __acquires(&cgroup_mutex)
3072 {
3073     struct cgroup *dsct;
3074     struct cgroup_subsys_state *d_css;
3075     struct cgroup_subsys *ss;
3076     int ssid;
3077 
3078 restart:
3079     mutex_lock(&cgroup_mutex);
3080 
3081     cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3082         for_each_subsys(ss, ssid) {
3083             struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3084             DEFINE_WAIT(wait);
3085 
3086             if (!css || !percpu_ref_is_dying(&css->refcnt))
3087                 continue;
3088 
3089             cgroup_get_live(dsct);
3090             prepare_to_wait(&dsct->offline_waitq, &wait,
3091                     TASK_UNINTERRUPTIBLE);
3092 
3093             mutex_unlock(&cgroup_mutex);
3094             schedule();
3095             finish_wait(&dsct->offline_waitq, &wait);
3096 
3097             cgroup_put(dsct);
3098             goto restart;
3099         }
3100     }
3101 }
3102 
3103 /**
3104  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3105  * @cgrp: root of the target subtree
3106  *
3107  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3108  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3109  * itself.
3110  */
3111 static void cgroup_save_control(struct cgroup *cgrp)
3112 {
3113     struct cgroup *dsct;
3114     struct cgroup_subsys_state *d_css;
3115 
3116     cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117         dsct->old_subtree_control = dsct->subtree_control;
3118         dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3119         dsct->old_dom_cgrp = dsct->dom_cgrp;
3120     }
3121 }
3122 
3123 /**
3124  * cgroup_propagate_control - refresh control masks of a subtree
3125  * @cgrp: root of the target subtree
3126  *
3127  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3128  * ->subtree_control and propagate controller availability through the
3129  * subtree so that descendants don't have unavailable controllers enabled.
3130  */
3131 static void cgroup_propagate_control(struct cgroup *cgrp)
3132 {
3133     struct cgroup *dsct;
3134     struct cgroup_subsys_state *d_css;
3135 
3136     cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3137         dsct->subtree_control &= cgroup_control(dsct);
3138         dsct->subtree_ss_mask =
3139             cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3140                             cgroup_ss_mask(dsct));
3141     }
3142 }
3143 
3144 /**
3145  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3146  * @cgrp: root of the target subtree
3147  *
3148  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3149  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3150  * itself.
3151  */
3152 static void cgroup_restore_control(struct cgroup *cgrp)
3153 {
3154     struct cgroup *dsct;
3155     struct cgroup_subsys_state *d_css;
3156 
3157     cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3158         dsct->subtree_control = dsct->old_subtree_control;
3159         dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3160         dsct->dom_cgrp = dsct->old_dom_cgrp;
3161     }
3162 }
3163 
3164 static bool css_visible(struct cgroup_subsys_state *css)
3165 {
3166     struct cgroup_subsys *ss = css->ss;
3167     struct cgroup *cgrp = css->cgroup;
3168 
3169     if (cgroup_control(cgrp) & (1 << ss->id))
3170         return true;
3171     if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3172         return false;
3173     return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3174 }
3175 
3176 /**
3177  * cgroup_apply_control_enable - enable or show csses according to control
3178  * @cgrp: root of the target subtree
3179  *
3180  * Walk @cgrp's subtree and create new csses or make the existing ones
3181  * visible.  A css is created invisible if it's being implicitly enabled
3182  * through dependency.  An invisible css is made visible when the userland
3183  * explicitly enables it.
3184  *
3185  * Returns 0 on success, -errno on failure.  On failure, csses which have
3186  * been processed already aren't cleaned up.  The caller is responsible for
3187  * cleaning up with cgroup_apply_control_disable().
3188  */
3189 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3190 {
3191     struct cgroup *dsct;
3192     struct cgroup_subsys_state *d_css;
3193     struct cgroup_subsys *ss;
3194     int ssid, ret;
3195 
3196     cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3197         for_each_subsys(ss, ssid) {
3198             struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3199 
3200             if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3201                 continue;
3202 
3203             if (!css) {
3204                 css = css_create(dsct, ss);
3205                 if (IS_ERR(css))
3206                     return PTR_ERR(css);
3207             }
3208 
3209             WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210 
3211             if (css_visible(css)) {
3212                 ret = css_populate_dir(css);
3213                 if (ret)
3214                     return ret;
3215             }
3216         }
3217     }
3218 
3219     return 0;
3220 }
3221 
3222 /**
3223  * cgroup_apply_control_disable - kill or hide csses according to control
3224  * @cgrp: root of the target subtree
3225  *
3226  * Walk @cgrp's subtree and kill and hide csses so that they match
3227  * cgroup_ss_mask() and cgroup_visible_mask().
3228  *
3229  * A css is hidden when the userland requests it to be disabled while other
3230  * subsystems are still depending on it.  The css must not actively control
3231  * resources and be in the vanilla state if it's made visible again later.
3232  * Controllers which may be depended upon should provide ->css_reset() for
3233  * this purpose.
3234  */
3235 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3236 {
3237     struct cgroup *dsct;
3238     struct cgroup_subsys_state *d_css;
3239     struct cgroup_subsys *ss;
3240     int ssid;
3241 
3242     cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243         for_each_subsys(ss, ssid) {
3244             struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3245 
3246             if (!css)
3247                 continue;
3248 
3249             WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3250 
3251             if (css->parent &&
3252                 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3253                 kill_css(css);
3254             } else if (!css_visible(css)) {
3255                 css_clear_dir(css);
3256                 if (ss->css_reset)
3257                     ss->css_reset(css);
3258             }
3259         }
3260     }
3261 }
3262 
3263 /**
3264  * cgroup_apply_control - apply control mask updates to the subtree
3265  * @cgrp: root of the target subtree
3266  *
3267  * subsystems can be enabled and disabled in a subtree using the following
3268  * steps.
3269  *
3270  * 1. Call cgroup_save_control() to stash the current state.
3271  * 2. Update ->subtree_control masks in the subtree as desired.
3272  * 3. Call cgroup_apply_control() to apply the changes.
3273  * 4. Optionally perform other related operations.
3274  * 5. Call cgroup_finalize_control() to finish up.
3275  *
3276  * This function implements step 3 and propagates the mask changes
3277  * throughout @cgrp's subtree, updates csses accordingly and perform
3278  * process migrations.
3279  */
3280 static int cgroup_apply_control(struct cgroup *cgrp)
3281 {
3282     int ret;
3283 
3284     cgroup_propagate_control(cgrp);
3285 
3286     ret = cgroup_apply_control_enable(cgrp);
3287     if (ret)
3288         return ret;
3289 
3290     /*
3291      * At this point, cgroup_e_css_by_mask() results reflect the new csses
3292      * making the following cgroup_update_dfl_csses() properly update
3293      * css associations of all tasks in the subtree.
3294      */
3295     ret = cgroup_update_dfl_csses(cgrp);
3296     if (ret)
3297         return ret;
3298 
3299     return 0;
3300 }
3301 
3302 /**
3303  * cgroup_finalize_control - finalize control mask update
3304  * @cgrp: root of the target subtree
3305  * @ret: the result of the update
3306  *
3307  * Finalize control mask update.  See cgroup_apply_control() for more info.
3308  */
3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3310 {
3311     if (ret) {
3312         cgroup_restore_control(cgrp);
3313         cgroup_propagate_control(cgrp);
3314     }
3315 
3316     cgroup_apply_control_disable(cgrp);
3317 }
3318 
3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3320 {
3321     u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3322 
3323     /* if nothing is getting enabled, nothing to worry about */
3324     if (!enable)
3325         return 0;
3326 
3327     /* can @cgrp host any resources? */
3328     if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3329         return -EOPNOTSUPP;
3330 
3331     /* mixables don't care */
3332     if (cgroup_is_mixable(cgrp))
3333         return 0;
3334 
3335     if (domain_enable) {
3336         /* can't enable domain controllers inside a thread subtree */
3337         if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3338             return -EOPNOTSUPP;
3339     } else {
3340         /*
3341          * Threaded controllers can handle internal competitions
3342          * and are always allowed inside a (prospective) thread
3343          * subtree.
3344          */
3345         if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3346             return 0;
3347     }
3348 
3349     /*
3350      * Controllers can't be enabled for a cgroup with tasks to avoid
3351      * child cgroups competing against tasks.
3352      */
3353     if (cgroup_has_tasks(cgrp))
3354         return -EBUSY;
3355 
3356     return 0;
3357 }
3358 
3359 /* change the enabled child controllers for a cgroup in the default hierarchy */
3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3361                         char *buf, size_t nbytes,
3362                         loff_t off)
3363 {
3364     u16 enable = 0, disable = 0;
3365     struct cgroup *cgrp, *child;
3366     struct cgroup_subsys *ss;
3367     char *tok;
3368     int ssid, ret;
3369 
3370     /*
3371      * Parse input - space separated list of subsystem names prefixed
3372      * with either + or -.
3373      */
3374     buf = strstrip(buf);
3375     while ((tok = strsep(&buf, " "))) {
3376         if (tok[0] == '\0')
3377             continue;
3378         do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3379             if (!cgroup_ssid_enabled(ssid) ||
3380                 strcmp(tok + 1, ss->name))
3381                 continue;
3382 
3383             if (*tok == '+') {
3384                 enable |= 1 << ssid;
3385                 disable &= ~(1 << ssid);
3386             } else if (*tok == '-') {
3387                 disable |= 1 << ssid;
3388                 enable &= ~(1 << ssid);
3389             } else {
3390                 return -EINVAL;
3391             }
3392             break;
3393         } while_each_subsys_mask();
3394         if (ssid == CGROUP_SUBSYS_COUNT)
3395             return -EINVAL;
3396     }
3397 
3398     cgrp = cgroup_kn_lock_live(of->kn, true);
3399     if (!cgrp)
3400         return -ENODEV;
3401 
3402     for_each_subsys(ss, ssid) {
3403         if (enable & (1 << ssid)) {
3404             if (cgrp->subtree_control & (1 << ssid)) {
3405                 enable &= ~(1 << ssid);
3406                 continue;
3407             }
3408 
3409             if (!(cgroup_control(cgrp) & (1 << ssid))) {
3410                 ret = -ENOENT;
3411                 goto out_unlock;
3412             }
3413         } else if (disable & (1 << ssid)) {
3414             if (!(cgrp->subtree_control & (1 << ssid))) {
3415                 disable &= ~(1 << ssid);
3416                 continue;
3417             }
3418 
3419             /* a child has it enabled? */
3420             cgroup_for_each_live_child(child, cgrp) {
3421                 if (child->subtree_control & (1 << ssid)) {
3422                     ret = -EBUSY;
3423                     goto out_unlock;
3424                 }
3425             }
3426         }
3427     }
3428 
3429     if (!enable && !disable) {
3430         ret = 0;
3431         goto out_unlock;
3432     }
3433 
3434     ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3435     if (ret)
3436         goto out_unlock;
3437 
3438     /* save and update control masks and prepare csses */
3439     cgroup_save_control(cgrp);
3440 
3441     cgrp->subtree_control |= enable;
3442     cgrp->subtree_control &= ~disable;
3443 
3444     ret = cgroup_apply_control(cgrp);
3445     cgroup_finalize_control(cgrp, ret);
3446     if (ret)
3447         goto out_unlock;
3448 
3449     kernfs_activate(cgrp->kn);
3450 out_unlock:
3451     cgroup_kn_unlock(of->kn);
3452     return ret ?: nbytes;
3453 }
3454 
3455 /**
3456  * cgroup_enable_threaded - make @cgrp threaded
3457  * @cgrp: the target cgroup
3458  *
3459  * Called when "threaded" is written to the cgroup.type interface file and
3460  * tries to make @cgrp threaded and join the parent's resource domain.
3461  * This function is never called on the root cgroup as cgroup.type doesn't
3462  * exist on it.
3463  */
3464 static int cgroup_enable_threaded(struct cgroup *cgrp)
3465 {
3466     struct cgroup *parent = cgroup_parent(cgrp);
3467     struct cgroup *dom_cgrp = parent->dom_cgrp;
3468     struct cgroup *dsct;
3469     struct cgroup_subsys_state *d_css;
3470     int ret;
3471 
3472     lockdep_assert_held(&cgroup_mutex);
3473 
3474     /* noop if already threaded */
3475     if (cgroup_is_threaded(cgrp))
3476         return 0;
3477 
3478     /*
3479      * If @cgroup is populated or has domain controllers enabled, it
3480      * can't be switched.  While the below cgroup_can_be_thread_root()
3481      * test can catch the same conditions, that's only when @parent is
3482      * not mixable, so let's check it explicitly.
3483      */
3484     if (cgroup_is_populated(cgrp) ||
3485         cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3486         return -EOPNOTSUPP;
3487 
3488     /* we're joining the parent's domain, ensure its validity */
3489     if (!cgroup_is_valid_domain(dom_cgrp) ||
3490         !cgroup_can_be_thread_root(dom_cgrp))
3491         return -EOPNOTSUPP;
3492 
3493     /*
3494      * The following shouldn't cause actual migrations and should
3495      * always succeed.
3496      */
3497     cgroup_save_control(cgrp);
3498 
3499     cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3500         if (dsct == cgrp || cgroup_is_threaded(dsct))
3501             dsct->dom_cgrp = dom_cgrp;
3502 
3503     ret = cgroup_apply_control(cgrp);
3504     if (!ret)
3505         parent->nr_threaded_children++;
3506 
3507     cgroup_finalize_control(cgrp, ret);
3508     return ret;
3509 }
3510 
3511 static int cgroup_type_show(struct seq_file *seq, void *v)
3512 {
3513     struct cgroup *cgrp = seq_css(seq)->cgroup;
3514 
3515     if (cgroup_is_threaded(cgrp))
3516         seq_puts(seq, "threaded\n");
3517     else if (!cgroup_is_valid_domain(cgrp))
3518         seq_puts(seq, "domain invalid\n");
3519     else if (cgroup_is_thread_root(cgrp))
3520         seq_puts(seq, "domain threaded\n");
3521     else
3522         seq_puts(seq, "domain\n");
3523 
3524     return 0;
3525 }
3526 
3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3528                  size_t nbytes, loff_t off)
3529 {
3530     struct cgroup *cgrp;
3531     int ret;
3532 
3533     /* only switching to threaded mode is supported */
3534     if (strcmp(strstrip(buf), "threaded"))
3535         return -EINVAL;
3536 
3537     /* drain dying csses before we re-apply (threaded) subtree control */
3538     cgrp = cgroup_kn_lock_live(of->kn, true);
3539     if (!cgrp)
3540         return -ENOENT;
3541 
3542     /* threaded can only be enabled */
3543     ret = cgroup_enable_threaded(cgrp);
3544 
3545     cgroup_kn_unlock(of->kn);
3546     return ret ?: nbytes;
3547 }
3548 
3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3550 {
3551     struct cgroup *cgrp = seq_css(seq)->cgroup;
3552     int descendants = READ_ONCE(cgrp->max_descendants);
3553 
3554     if (descendants == INT_MAX)
3555         seq_puts(seq, "max\n");
3556     else
3557         seq_printf(seq, "%d\n", descendants);
3558 
3559     return 0;
3560 }
3561 
3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3563                        char *buf, size_t nbytes, loff_t off)
3564 {
3565     struct cgroup *cgrp;
3566     int descendants;
3567     ssize_t ret;
3568 
3569     buf = strstrip(buf);
3570     if (!strcmp(buf, "max")) {
3571         descendants = INT_MAX;
3572     } else {
3573         ret = kstrtoint(buf, 0, &descendants);
3574         if (ret)
3575             return ret;
3576     }
3577 
3578     if (descendants < 0)
3579         return -ERANGE;
3580 
3581     cgrp = cgroup_kn_lock_live(of->kn, false);
3582     if (!cgrp)
3583         return -ENOENT;
3584 
3585     cgrp->max_descendants = descendants;
3586 
3587     cgroup_kn_unlock(of->kn);
3588 
3589     return nbytes;
3590 }
3591 
3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3593 {
3594     struct cgroup *cgrp = seq_css(seq)->cgroup;
3595     int depth = READ_ONCE(cgrp->max_depth);
3596 
3597     if (depth == INT_MAX)
3598         seq_puts(seq, "max\n");
3599     else
3600         seq_printf(seq, "%d\n", depth);
3601 
3602     return 0;
3603 }
3604 
3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3606                       char *buf, size_t nbytes, loff_t off)
3607 {
3608     struct cgroup *cgrp;
3609     ssize_t ret;
3610     int depth;
3611 
3612     buf = strstrip(buf);
3613     if (!strcmp(buf, "max")) {
3614         depth = INT_MAX;
3615     } else {
3616         ret = kstrtoint(buf, 0, &depth);
3617         if (ret)
3618             return ret;
3619     }
3620 
3621     if (depth < 0)
3622         return -ERANGE;
3623 
3624     cgrp = cgroup_kn_lock_live(of->kn, false);
3625     if (!cgrp)
3626         return -ENOENT;
3627 
3628     cgrp->max_depth = depth;
3629 
3630     cgroup_kn_unlock(of->kn);
3631 
3632     return nbytes;
3633 }
3634 
3635 static int cgroup_events_show(struct seq_file *seq, void *v)
3636 {
3637     struct cgroup *cgrp = seq_css(seq)->cgroup;
3638 
3639     seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3640     seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3641 
3642     return 0;
3643 }
3644 
3645 static int cgroup_stat_show(struct seq_file *seq, void *v)
3646 {
3647     struct cgroup *cgroup = seq_css(seq)->cgroup;
3648 
3649     seq_printf(seq, "nr_descendants %d\n",
3650            cgroup->nr_descendants);
3651     seq_printf(seq, "nr_dying_descendants %d\n",
3652            cgroup->nr_dying_descendants);
3653 
3654     return 0;
3655 }
3656 
3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3658                          struct cgroup *cgrp, int ssid)
3659 {
3660     struct cgroup_subsys *ss = cgroup_subsys[ssid];
3661     struct cgroup_subsys_state *css;
3662     int ret;
3663 
3664     if (!ss->css_extra_stat_show)
3665         return 0;
3666 
3667     css = cgroup_tryget_css(cgrp, ss);
3668     if (!css)
3669         return 0;
3670 
3671     ret = ss->css_extra_stat_show(seq, css);
3672     css_put(css);
3673     return ret;
3674 }
3675 
3676 static int cpu_stat_show(struct seq_file *seq, void *v)
3677 {
3678     struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3679     int ret = 0;
3680 
3681     cgroup_base_stat_cputime_show(seq);
3682 #ifdef CONFIG_CGROUP_SCHED
3683     ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3684 #endif
3685     return ret;
3686 }
3687 
3688 #ifdef CONFIG_PSI
3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3690 {
3691     struct cgroup *cgrp = seq_css(seq)->cgroup;
3692     struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3693 
3694     return psi_show(seq, psi, PSI_IO);
3695 }
3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3697 {
3698     struct cgroup *cgrp = seq_css(seq)->cgroup;
3699     struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3700 
3701     return psi_show(seq, psi, PSI_MEM);
3702 }
3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3704 {
3705     struct cgroup *cgrp = seq_css(seq)->cgroup;
3706     struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3707 
3708     return psi_show(seq, psi, PSI_CPU);
3709 }
3710 
3711 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3712                       size_t nbytes, enum psi_res res)
3713 {
3714     struct cgroup_file_ctx *ctx = of->priv;
3715     struct psi_trigger *new;
3716     struct cgroup *cgrp;
3717     struct psi_group *psi;
3718 
3719     cgrp = cgroup_kn_lock_live(of->kn, false);
3720     if (!cgrp)
3721         return -ENODEV;
3722 
3723     cgroup_get(cgrp);
3724     cgroup_kn_unlock(of->kn);
3725 
3726     /* Allow only one trigger per file descriptor */
3727     if (ctx->psi.trigger) {
3728         cgroup_put(cgrp);
3729         return -EBUSY;
3730     }
3731 
3732     psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3733     new = psi_trigger_create(psi, buf, res);
3734     if (IS_ERR(new)) {
3735         cgroup_put(cgrp);
3736         return PTR_ERR(new);
3737     }
3738 
3739     smp_store_release(&ctx->psi.trigger, new);
3740     cgroup_put(cgrp);
3741 
3742     return nbytes;
3743 }
3744 
3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3746                       char *buf, size_t nbytes,
3747                       loff_t off)
3748 {
3749     return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3750 }
3751 
3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3753                       char *buf, size_t nbytes,
3754                       loff_t off)
3755 {
3756     return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3757 }
3758 
3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3760                       char *buf, size_t nbytes,
3761                       loff_t off)
3762 {
3763     return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3764 }
3765 
3766 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3767                       poll_table *pt)
3768 {
3769     struct cgroup_file_ctx *ctx = of->priv;
3770 
3771     return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3772 }
3773 
3774 static void cgroup_pressure_release(struct kernfs_open_file *of)
3775 {
3776     struct cgroup_file_ctx *ctx = of->priv;
3777 
3778     psi_trigger_destroy(ctx->psi.trigger);
3779 }
3780 
3781 bool cgroup_psi_enabled(void)
3782 {
3783     return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3784 }
3785 
3786 #else /* CONFIG_PSI */
3787 bool cgroup_psi_enabled(void)
3788 {
3789     return false;
3790 }
3791 
3792 #endif /* CONFIG_PSI */
3793 
3794 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3795 {
3796     struct cgroup *cgrp = seq_css(seq)->cgroup;
3797 
3798     seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3799 
3800     return 0;
3801 }
3802 
3803 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3804                    char *buf, size_t nbytes, loff_t off)
3805 {
3806     struct cgroup *cgrp;
3807     ssize_t ret;
3808     int freeze;
3809 
3810     ret = kstrtoint(strstrip(buf), 0, &freeze);
3811     if (ret)
3812         return ret;
3813 
3814     if (freeze < 0 || freeze > 1)
3815         return -ERANGE;
3816 
3817     cgrp = cgroup_kn_lock_live(of->kn, false);
3818     if (!cgrp)
3819         return -ENOENT;
3820 
3821     cgroup_freeze(cgrp, freeze);
3822 
3823     cgroup_kn_unlock(of->kn);
3824 
3825     return nbytes;
3826 }
3827 
3828 static void __cgroup_kill(struct cgroup *cgrp)
3829 {
3830     struct css_task_iter it;
3831     struct task_struct *task;
3832 
3833     lockdep_assert_held(&cgroup_mutex);
3834 
3835     spin_lock_irq(&css_set_lock);
3836     set_bit(CGRP_KILL, &cgrp->flags);
3837     spin_unlock_irq(&css_set_lock);
3838 
3839     css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3840     while ((task = css_task_iter_next(&it))) {
3841         /* Ignore kernel threads here. */
3842         if (task->flags & PF_KTHREAD)
3843             continue;
3844 
3845         /* Skip tasks that are already dying. */
3846         if (__fatal_signal_pending(task))
3847             continue;
3848 
3849         send_sig(SIGKILL, task, 0);
3850     }
3851     css_task_iter_end(&it);
3852 
3853     spin_lock_irq(&css_set_lock);
3854     clear_bit(CGRP_KILL, &cgrp->flags);
3855     spin_unlock_irq(&css_set_lock);
3856 }
3857 
3858 static void cgroup_kill(struct cgroup *cgrp)
3859 {
3860     struct cgroup_subsys_state *css;
3861     struct cgroup *dsct;
3862 
3863     lockdep_assert_held(&cgroup_mutex);
3864 
3865     cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3866         __cgroup_kill(dsct);
3867 }
3868 
3869 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3870                  size_t nbytes, loff_t off)
3871 {
3872     ssize_t ret = 0;
3873     int kill;
3874     struct cgroup *cgrp;
3875 
3876     ret = kstrtoint(strstrip(buf), 0, &kill);
3877     if (ret)
3878         return ret;
3879 
3880     if (kill != 1)
3881         return -ERANGE;
3882 
3883     cgrp = cgroup_kn_lock_live(of->kn, false);
3884     if (!cgrp)
3885         return -ENOENT;
3886 
3887     /*
3888      * Killing is a process directed operation, i.e. the whole thread-group
3889      * is taken down so act like we do for cgroup.procs and only make this
3890      * writable in non-threaded cgroups.
3891      */
3892     if (cgroup_is_threaded(cgrp))
3893         ret = -EOPNOTSUPP;
3894     else
3895         cgroup_kill(cgrp);
3896 
3897     cgroup_kn_unlock(of->kn);
3898 
3899     return ret ?: nbytes;
3900 }
3901 
3902 static int cgroup_file_open(struct kernfs_open_file *of)
3903 {
3904     struct cftype *cft = of_cft(of);
3905     struct cgroup_file_ctx *ctx;
3906     int ret;
3907 
3908     ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3909     if (!ctx)
3910         return -ENOMEM;
3911 
3912     ctx->ns = current->nsproxy->cgroup_ns;
3913     get_cgroup_ns(ctx->ns);
3914     of->priv = ctx;
3915 
3916     if (!cft->open)
3917         return 0;
3918 
3919     ret = cft->open(of);
3920     if (ret) {
3921         put_cgroup_ns(ctx->ns);
3922         kfree(ctx);
3923     }
3924     return ret;
3925 }
3926 
3927 static void cgroup_file_release(struct kernfs_open_file *of)
3928 {
3929     struct cftype *cft = of_cft(of);
3930     struct cgroup_file_ctx *ctx = of->priv;
3931 
3932     if (cft->release)
3933         cft->release(of);
3934     put_cgroup_ns(ctx->ns);
3935     kfree(ctx);
3936 }
3937 
3938 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3939                  size_t nbytes, loff_t off)
3940 {
3941     struct cgroup_file_ctx *ctx = of->priv;
3942     struct cgroup *cgrp = of->kn->parent->priv;
3943     struct cftype *cft = of_cft(of);
3944     struct cgroup_subsys_state *css;
3945     int ret;
3946 
3947     if (!nbytes)
3948         return 0;
3949 
3950     /*
3951      * If namespaces are delegation boundaries, disallow writes to
3952      * files in an non-init namespace root from inside the namespace
3953      * except for the files explicitly marked delegatable -
3954      * cgroup.procs and cgroup.subtree_control.
3955      */
3956     if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3957         !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3958         ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3959         return -EPERM;
3960 
3961     if (cft->write)
3962         return cft->write(of, buf, nbytes, off);
3963 
3964     /*
3965      * kernfs guarantees that a file isn't deleted with operations in
3966      * flight, which means that the matching css is and stays alive and
3967      * doesn't need to be pinned.  The RCU locking is not necessary
3968      * either.  It's just for the convenience of using cgroup_css().
3969      */
3970     rcu_read_lock();
3971     css = cgroup_css(cgrp, cft->ss);
3972     rcu_read_unlock();
3973 
3974     if (cft->write_u64) {
3975         unsigned long long v;
3976         ret = kstrtoull(buf, 0, &v);
3977         if (!ret)
3978             ret = cft->write_u64(css, cft, v);
3979     } else if (cft->write_s64) {
3980         long long v;
3981         ret = kstrtoll(buf, 0, &v);
3982         if (!ret)
3983             ret = cft->write_s64(css, cft, v);
3984     } else {
3985         ret = -EINVAL;
3986     }
3987 
3988     return ret ?: nbytes;
3989 }
3990 
3991 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3992 {
3993     struct cftype *cft = of_cft(of);
3994 
3995     if (cft->poll)
3996         return cft->poll(of, pt);
3997 
3998     return kernfs_generic_poll(of, pt);
3999 }
4000 
4001 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4002 {
4003     return seq_cft(seq)->seq_start(seq, ppos);
4004 }
4005 
4006 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4007 {
4008     return seq_cft(seq)->seq_next(seq, v, ppos);
4009 }
4010 
4011 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4012 {
4013     if (seq_cft(seq)->seq_stop)
4014         seq_cft(seq)->seq_stop(seq, v);
4015 }
4016 
4017 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4018 {
4019     struct cftype *cft = seq_cft(m);
4020     struct cgroup_subsys_state *css = seq_css(m);
4021 
4022     if (cft->seq_show)
4023         return cft->seq_show(m, arg);
4024 
4025     if (cft->read_u64)
4026         seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4027     else if (cft->read_s64)
4028         seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4029     else
4030         return -EINVAL;
4031     return 0;
4032 }
4033 
4034 static struct kernfs_ops cgroup_kf_single_ops = {
4035     .atomic_write_len   = PAGE_SIZE,
4036     .open           = cgroup_file_open,
4037     .release        = cgroup_file_release,
4038     .write          = cgroup_file_write,
4039     .poll           = cgroup_file_poll,
4040     .seq_show       = cgroup_seqfile_show,
4041 };
4042 
4043 static struct kernfs_ops cgroup_kf_ops = {
4044     .atomic_write_len   = PAGE_SIZE,
4045     .open           = cgroup_file_open,
4046     .release        = cgroup_file_release,
4047     .write          = cgroup_file_write,
4048     .poll           = cgroup_file_poll,
4049     .seq_start      = cgroup_seqfile_start,
4050     .seq_next       = cgroup_seqfile_next,
4051     .seq_stop       = cgroup_seqfile_stop,
4052     .seq_show       = cgroup_seqfile_show,
4053 };
4054 
4055 /* set uid and gid of cgroup dirs and files to that of the creator */
4056 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4057 {
4058     struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4059                    .ia_uid = current_fsuid(),
4060                    .ia_gid = current_fsgid(), };
4061 
4062     if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4063         gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4064         return 0;
4065 
4066     return kernfs_setattr(kn, &iattr);
4067 }
4068 
4069 static void cgroup_file_notify_timer(struct timer_list *timer)
4070 {
4071     cgroup_file_notify(container_of(timer, struct cgroup_file,
4072                     notify_timer));
4073 }
4074 
4075 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4076                struct cftype *cft)
4077 {
4078     char name[CGROUP_FILE_NAME_MAX];
4079     struct kernfs_node *kn;
4080     struct lock_class_key *key = NULL;
4081     int ret;
4082 
4083 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4084     key = &cft->lockdep_key;
4085 #endif
4086     kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4087                   cgroup_file_mode(cft),
4088                   GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4089                   0, cft->kf_ops, cft,
4090                   NULL, key);
4091     if (IS_ERR(kn))
4092         return PTR_ERR(kn);
4093 
4094     ret = cgroup_kn_set_ugid(kn);
4095     if (ret) {
4096         kernfs_remove(kn);
4097         return ret;
4098     }
4099 
4100     if (cft->file_offset) {
4101         struct cgroup_file *cfile = (void *)css + cft->file_offset;
4102 
4103         timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4104 
4105         spin_lock_irq(&cgroup_file_kn_lock);
4106         cfile->kn = kn;
4107         spin_unlock_irq(&cgroup_file_kn_lock);
4108     }
4109 
4110     return 0;
4111 }
4112 
4113 /**
4114  * cgroup_addrm_files - add or remove files to a cgroup directory
4115  * @css: the target css
4116  * @cgrp: the target cgroup (usually css->cgroup)
4117  * @cfts: array of cftypes to be added
4118  * @is_add: whether to add or remove
4119  *
4120  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4121  * For removals, this function never fails.
4122  */
4123 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4124                   struct cgroup *cgrp, struct cftype cfts[],
4125                   bool is_add)
4126 {
4127     struct cftype *cft, *cft_end = NULL;
4128     int ret = 0;
4129 
4130     lockdep_assert_held(&cgroup_mutex);
4131 
4132 restart:
4133     for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4134         /* does cft->flags tell us to skip this file on @cgrp? */
4135         if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4136             continue;
4137         if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4138             continue;
4139         if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4140             continue;
4141         if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4142             continue;
4143         if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4144             continue;
4145         if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4146             continue;
4147         if (is_add) {
4148             ret = cgroup_add_file(css, cgrp, cft);
4149             if (ret) {
4150                 pr_warn("%s: failed to add %s, err=%d\n",
4151                     __func__, cft->name, ret);
4152                 cft_end = cft;
4153                 is_add = false;
4154                 goto restart;
4155             }
4156         } else {
4157             cgroup_rm_file(cgrp, cft);
4158         }
4159     }
4160     return ret;
4161 }
4162 
4163 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4164 {
4165     struct cgroup_subsys *ss = cfts[0].ss;
4166     struct cgroup *root = &ss->root->cgrp;
4167     struct cgroup_subsys_state *css;
4168     int ret = 0;
4169 
4170     lockdep_assert_held(&cgroup_mutex);
4171 
4172     /* add/rm files for all cgroups created before */
4173     css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4174         struct cgroup *cgrp = css->cgroup;
4175 
4176         if (!(css->flags & CSS_VISIBLE))
4177             continue;
4178 
4179         ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4180         if (ret)
4181             break;
4182     }
4183 
4184     if (is_add && !ret)
4185         kernfs_activate(root->kn);
4186     return ret;
4187 }
4188 
4189 static void cgroup_exit_cftypes(struct cftype *cfts)
4190 {
4191     struct cftype *cft;
4192 
4193     for (cft = cfts; cft->name[0] != '\0'; cft++) {
4194         /* free copy for custom atomic_write_len, see init_cftypes() */
4195         if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4196             kfree(cft->kf_ops);
4197         cft->kf_ops = NULL;
4198         cft->ss = NULL;
4199 
4200         /* revert flags set by cgroup core while adding @cfts */
4201         cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4202     }
4203 }
4204 
4205 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206 {
4207     struct cftype *cft;
4208 
4209     for (cft = cfts; cft->name[0] != '\0'; cft++) {
4210         struct kernfs_ops *kf_ops;
4211 
4212         WARN_ON(cft->ss || cft->kf_ops);
4213 
4214         if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4215             continue;
4216 
4217         if (cft->seq_start)
4218             kf_ops = &cgroup_kf_ops;
4219         else
4220             kf_ops = &cgroup_kf_single_ops;
4221 
4222         /*
4223          * Ugh... if @cft wants a custom max_write_len, we need to
4224          * make a copy of kf_ops to set its atomic_write_len.
4225          */
4226         if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4227             kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4228             if (!kf_ops) {
4229                 cgroup_exit_cftypes(cfts);
4230                 return -ENOMEM;
4231             }
4232             kf_ops->atomic_write_len = cft->max_write_len;
4233         }
4234 
4235         cft->kf_ops = kf_ops;
4236         cft->ss = ss;
4237     }
4238 
4239     return 0;
4240 }
4241 
4242 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4243 {
4244     lockdep_assert_held(&cgroup_mutex);
4245 
4246     if (!cfts || !cfts[0].ss)
4247         return -ENOENT;
4248 
4249     list_del(&cfts->node);
4250     cgroup_apply_cftypes(cfts, false);
4251     cgroup_exit_cftypes(cfts);
4252     return 0;
4253 }
4254 
4255 /**
4256  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4257  * @cfts: zero-length name terminated array of cftypes
4258  *
4259  * Unregister @cfts.  Files described by @cfts are removed from all
4260  * existing cgroups and all future cgroups won't have them either.  This
4261  * function can be called anytime whether @cfts' subsys is attached or not.
4262  *
4263  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4264  * registered.
4265  */
4266 int cgroup_rm_cftypes(struct cftype *cfts)
4267 {
4268     int ret;
4269 
4270     mutex_lock(&cgroup_mutex);
4271     ret = cgroup_rm_cftypes_locked(cfts);
4272     mutex_unlock(&cgroup_mutex);
4273     return ret;
4274 }
4275 
4276 /**
4277  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4278  * @ss: target cgroup subsystem
4279  * @cfts: zero-length name terminated array of cftypes
4280  *
4281  * Register @cfts to @ss.  Files described by @cfts are created for all
4282  * existing cgroups to which @ss is attached and all future cgroups will
4283  * have them too.  This function can be called anytime whether @ss is
4284  * attached or not.
4285  *
4286  * Returns 0 on successful registration, -errno on failure.  Note that this
4287  * function currently returns 0 as long as @cfts registration is successful
4288  * even if some file creation attempts on existing cgroups fail.
4289  */
4290 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4291 {
4292     int ret;
4293 
4294     if (!cgroup_ssid_enabled(ss->id))
4295         return 0;
4296 
4297     if (!cfts || cfts[0].name[0] == '\0')
4298         return 0;
4299 
4300     ret = cgroup_init_cftypes(ss, cfts);
4301     if (ret)
4302         return ret;
4303 
4304     mutex_lock(&cgroup_mutex);
4305 
4306     list_add_tail(&cfts->node, &ss->cfts);
4307     ret = cgroup_apply_cftypes(cfts, true);
4308     if (ret)
4309         cgroup_rm_cftypes_locked(cfts);
4310 
4311     mutex_unlock(&cgroup_mutex);
4312     return ret;
4313 }
4314 
4315 /**
4316  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4317  * @ss: target cgroup subsystem
4318  * @cfts: zero-length name terminated array of cftypes
4319  *
4320  * Similar to cgroup_add_cftypes() but the added files are only used for
4321  * the default hierarchy.
4322  */
4323 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4324 {
4325     struct cftype *cft;
4326 
4327     for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4328         cft->flags |= __CFTYPE_ONLY_ON_DFL;
4329     return cgroup_add_cftypes(ss, cfts);
4330 }
4331 
4332 /**
4333  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4334  * @ss: target cgroup subsystem
4335  * @cfts: zero-length name terminated array of cftypes
4336  *
4337  * Similar to cgroup_add_cftypes() but the added files are only used for
4338  * the legacy hierarchies.
4339  */
4340 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341 {
4342     struct cftype *cft;
4343 
4344     for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345         cft->flags |= __CFTYPE_NOT_ON_DFL;
4346     return cgroup_add_cftypes(ss, cfts);
4347 }
4348 
4349 /**
4350  * cgroup_file_notify - generate a file modified event for a cgroup_file
4351  * @cfile: target cgroup_file
4352  *
4353  * @cfile must have been obtained by setting cftype->file_offset.
4354  */
4355 void cgroup_file_notify(struct cgroup_file *cfile)
4356 {
4357     unsigned long flags;
4358 
4359     spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4360     if (cfile->kn) {
4361         unsigned long last = cfile->notified_at;
4362         unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4363 
4364         if (time_in_range(jiffies, last, next)) {
4365             timer_reduce(&cfile->notify_timer, next);
4366         } else {
4367             kernfs_notify(cfile->kn);
4368             cfile->notified_at = jiffies;
4369         }
4370     }
4371     spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4372 }
4373 
4374 /**
4375  * css_next_child - find the next child of a given css
4376  * @pos: the current position (%NULL to initiate traversal)
4377  * @parent: css whose children to walk
4378  *
4379  * This function returns the next child of @parent and should be called
4380  * under either cgroup_mutex or RCU read lock.  The only requirement is
4381  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4382  * be returned regardless of their states.
4383  *
4384  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4385  * css which finished ->css_online() is guaranteed to be visible in the
4386  * future iterations and will stay visible until the last reference is put.
4387  * A css which hasn't finished ->css_online() or already finished
4388  * ->css_offline() may show up during traversal.  It's each subsystem's
4389  * responsibility to synchronize against on/offlining.
4390  */
4391 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4392                        struct cgroup_subsys_state *parent)
4393 {
4394     struct cgroup_subsys_state *next;
4395 
4396     cgroup_assert_mutex_or_rcu_locked();
4397 
4398     /*
4399      * @pos could already have been unlinked from the sibling list.
4400      * Once a cgroup is removed, its ->sibling.next is no longer
4401      * updated when its next sibling changes.  CSS_RELEASED is set when
4402      * @pos is taken off list, at which time its next pointer is valid,
4403      * and, as releases are serialized, the one pointed to by the next
4404      * pointer is guaranteed to not have started release yet.  This
4405      * implies that if we observe !CSS_RELEASED on @pos in this RCU
4406      * critical section, the one pointed to by its next pointer is
4407      * guaranteed to not have finished its RCU grace period even if we
4408      * have dropped rcu_read_lock() in-between iterations.
4409      *
4410      * If @pos has CSS_RELEASED set, its next pointer can't be
4411      * dereferenced; however, as each css is given a monotonically
4412      * increasing unique serial number and always appended to the
4413      * sibling list, the next one can be found by walking the parent's
4414      * children until the first css with higher serial number than
4415      * @pos's.  While this path can be slower, it happens iff iteration
4416      * races against release and the race window is very small.
4417      */
4418     if (!pos) {
4419         next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4420     } else if (likely(!(pos->flags & CSS_RELEASED))) {
4421         next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4422     } else {
4423         list_for_each_entry_rcu(next, &parent->children, sibling,
4424                     lockdep_is_held(&cgroup_mutex))
4425             if (next->serial_nr > pos->serial_nr)
4426                 break;
4427     }
4428 
4429     /*
4430      * @next, if not pointing to the head, can be dereferenced and is
4431      * the next sibling.
4432      */
4433     if (&next->sibling != &parent->children)
4434         return next;
4435     return NULL;
4436 }
4437 
4438 /**
4439  * css_next_descendant_pre - find the next descendant for pre-order walk
4440  * @pos: the current position (%NULL to initiate traversal)
4441  * @root: css whose descendants to walk
4442  *
4443  * To be used by css_for_each_descendant_pre().  Find the next descendant
4444  * to visit for pre-order traversal of @root's descendants.  @root is
4445  * included in the iteration and the first node to be visited.
4446  *
4447  * While this function requires cgroup_mutex or RCU read locking, it
4448  * doesn't require the whole traversal to be contained in a single critical
4449  * section.  This function will return the correct next descendant as long
4450  * as both @pos and @root are accessible and @pos is a descendant of @root.
4451  *
4452  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4453  * css which finished ->css_online() is guaranteed to be visible in the
4454  * future iterations and will stay visible until the last reference is put.
4455  * A css which hasn't finished ->css_online() or already finished
4456  * ->css_offline() may show up during traversal.  It's each subsystem's
4457  * responsibility to synchronize against on/offlining.
4458  */
4459 struct cgroup_subsys_state *
4460 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4461             struct cgroup_subsys_state *root)
4462 {
4463     struct cgroup_subsys_state *next;
4464 
4465     cgroup_assert_mutex_or_rcu_locked();
4466 
4467     /* if first iteration, visit @root */
4468     if (!pos)
4469         return root;
4470 
4471     /* visit the first child if exists */
4472     next = css_next_child(NULL, pos);
4473     if (next)
4474         return next;
4475 
4476     /* no child, visit my or the closest ancestor's next sibling */
4477     while (pos != root) {
4478         next = css_next_child(pos, pos->parent);
4479         if (next)
4480             return next;
4481         pos = pos->parent;
4482     }
4483 
4484     return NULL;
4485 }
4486 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4487 
4488 /**
4489  * css_rightmost_descendant - return the rightmost descendant of a css
4490  * @pos: css of interest
4491  *
4492  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4493  * is returned.  This can be used during pre-order traversal to skip
4494  * subtree of @pos.
4495  *
4496  * While this function requires cgroup_mutex or RCU read locking, it
4497  * doesn't require the whole traversal to be contained in a single critical
4498  * section.  This function will return the correct rightmost descendant as
4499  * long as @pos is accessible.
4500  */
4501 struct cgroup_subsys_state *
4502 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4503 {
4504     struct cgroup_subsys_state *last, *tmp;
4505 
4506     cgroup_assert_mutex_or_rcu_locked();
4507 
4508     do {
4509         last = pos;
4510         /* ->prev isn't RCU safe, walk ->next till the end */
4511         pos = NULL;
4512         css_for_each_child(tmp, last)
4513             pos = tmp;
4514     } while (pos);
4515 
4516     return last;
4517 }
4518 
4519 static struct cgroup_subsys_state *
4520 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4521 {
4522     struct cgroup_subsys_state *last;
4523 
4524     do {
4525         last = pos;
4526         pos = css_next_child(NULL, pos);
4527     } while (pos);
4528 
4529     return last;
4530 }
4531 
4532 /**
4533  * css_next_descendant_post - find the next descendant for post-order walk
4534  * @pos: the current position (%NULL to initiate traversal)
4535  * @root: css whose descendants to walk
4536  *
4537  * To be used by css_for_each_descendant_post().  Find the next descendant
4538  * to visit for post-order traversal of @root's descendants.  @root is
4539  * included in the iteration and the last node to be visited.
4540  *
4541  * While this function requires cgroup_mutex or RCU read locking, it
4542  * doesn't require the whole traversal to be contained in a single critical
4543  * section.  This function will return the correct next descendant as long
4544  * as both @pos and @cgroup are accessible and @pos is a descendant of
4545  * @cgroup.
4546  *
4547  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4548  * css which finished ->css_online() is guaranteed to be visible in the
4549  * future iterations and will stay visible until the last reference is put.
4550  * A css which hasn't finished ->css_online() or already finished
4551  * ->css_offline() may show up during traversal.  It's each subsystem's
4552  * responsibility to synchronize against on/offlining.
4553  */
4554 struct cgroup_subsys_state *
4555 css_next_descendant_post(struct cgroup_subsys_state *pos,
4556              struct cgroup_subsys_state *root)
4557 {
4558     struct cgroup_subsys_state *next;
4559 
4560     cgroup_assert_mutex_or_rcu_locked();
4561 
4562     /* if first iteration, visit leftmost descendant which may be @root */
4563     if (!pos)
4564         return css_leftmost_descendant(root);
4565 
4566     /* if we visited @root, we're done */
4567     if (pos == root)
4568         return NULL;
4569 
4570     /* if there's an unvisited sibling, visit its leftmost descendant */
4571     next = css_next_child(pos, pos->parent);
4572     if (next)
4573         return css_leftmost_descendant(next);
4574 
4575     /* no sibling left, visit parent */
4576     return pos->parent;
4577 }
4578 
4579 /**
4580  * css_has_online_children - does a css have online children
4581  * @css: the target css
4582  *
4583  * Returns %true if @css has any online children; otherwise, %false.  This
4584  * function can be called from any context but the caller is responsible
4585  * for synchronizing against on/offlining as necessary.
4586  */
4587 bool css_has_online_children(struct cgroup_subsys_state *css)
4588 {
4589     struct cgroup_subsys_state *child;
4590     bool ret = false;
4591 
4592     rcu_read_lock();
4593     css_for_each_child(child, css) {
4594         if (child->flags & CSS_ONLINE) {
4595             ret = true;
4596             break;
4597         }
4598     }
4599     rcu_read_unlock();
4600     return ret;
4601 }
4602 
4603 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4604 {
4605     struct list_head *l;
4606     struct cgrp_cset_link *link;
4607     struct css_set *cset;
4608 
4609     lockdep_assert_held(&css_set_lock);
4610 
4611     /* find the next threaded cset */
4612     if (it->tcset_pos) {
4613         l = it->tcset_pos->next;
4614 
4615         if (l != it->tcset_head) {
4616             it->tcset_pos = l;
4617             return container_of(l, struct css_set,
4618                         threaded_csets_node);
4619         }
4620 
4621         it->tcset_pos = NULL;
4622     }
4623 
4624     /* find the next cset */
4625     l = it->cset_pos;
4626     l = l->next;
4627     if (l == it->cset_head) {
4628         it->cset_pos = NULL;
4629         return NULL;
4630     }
4631 
4632     if (it->ss) {
4633         cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4634     } else {
4635         link = list_entry(l, struct cgrp_cset_link, cset_link);
4636         cset = link->cset;
4637     }
4638 
4639     it->cset_pos = l;
4640 
4641     /* initialize threaded css_set walking */
4642     if (it->flags & CSS_TASK_ITER_THREADED) {
4643         if (it->cur_dcset)
4644             put_css_set_locked(it->cur_dcset);
4645         it->cur_dcset = cset;
4646         get_css_set(cset);
4647 
4648         it->tcset_head = &cset->threaded_csets;
4649         it->tcset_pos = &cset->threaded_csets;
4650     }
4651 
4652     return cset;
4653 }
4654 
4655 /**
4656  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4657  * @it: the iterator to advance
4658  *
4659  * Advance @it to the next css_set to walk.
4660  */
4661 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4662 {
4663     struct css_set *cset;
4664 
4665     lockdep_assert_held(&css_set_lock);
4666 
4667     /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4668     while ((cset = css_task_iter_next_css_set(it))) {
4669         if (!list_empty(&cset->tasks)) {
4670             it->cur_tasks_head = &cset->tasks;
4671             break;
4672         } else if (!list_empty(&cset->mg_tasks)) {
4673             it->cur_tasks_head = &cset->mg_tasks;
4674             break;
4675         } else if (!list_empty(&cset->dying_tasks)) {
4676             it->cur_tasks_head = &cset->dying_tasks;
4677             break;
4678         }
4679     }
4680     if (!cset) {
4681         it->task_pos = NULL;
4682         return;
4683     }
4684     it->task_pos = it->cur_tasks_head->next;
4685 
4686     /*
4687      * We don't keep css_sets locked across iteration steps and thus
4688      * need to take steps to ensure that iteration can be resumed after
4689      * the lock is re-acquired.  Iteration is performed at two levels -
4690      * css_sets and tasks in them.
4691      *
4692      * Once created, a css_set never leaves its cgroup lists, so a
4693      * pinned css_set is guaranteed to stay put and we can resume
4694      * iteration afterwards.
4695      *
4696      * Tasks may leave @cset across iteration steps.  This is resolved
4697      * by registering each iterator with the css_set currently being
4698      * walked and making css_set_move_task() advance iterators whose
4699      * next task is leaving.
4700      */
4701     if (it->cur_cset) {
4702         list_del(&it->iters_node);
4703         put_css_set_locked(it->cur_cset);
4704     }
4705     get_css_set(cset);
4706     it->cur_cset = cset;
4707     list_add(&it->iters_node, &cset->task_iters);
4708 }
4709 
4710 static void css_task_iter_skip(struct css_task_iter *it,
4711                    struct task_struct *task)
4712 {
4713     lockdep_assert_held(&css_set_lock);
4714 
4715     if (it->task_pos == &task->cg_list) {
4716         it->task_pos = it->task_pos->next;
4717         it->flags |= CSS_TASK_ITER_SKIPPED;
4718     }
4719 }
4720 
4721 static void css_task_iter_advance(struct css_task_iter *it)
4722 {
4723     struct task_struct *task;
4724 
4725     lockdep_assert_held(&css_set_lock);
4726 repeat:
4727     if (it->task_pos) {
4728         /*
4729          * Advance iterator to find next entry. We go through cset
4730          * tasks, mg_tasks and dying_tasks, when consumed we move onto
4731          * the next cset.
4732          */
4733         if (it->flags & CSS_TASK_ITER_SKIPPED)
4734             it->flags &= ~CSS_TASK_ITER_SKIPPED;
4735         else
4736             it->task_pos = it->task_pos->next;
4737 
4738         if (it->task_pos == &it->cur_cset->tasks) {
4739             it->cur_tasks_head = &it->cur_cset->mg_tasks;
4740             it->task_pos = it->cur_tasks_head->next;
4741         }
4742         if (it->task_pos == &it->cur_cset->mg_tasks) {
4743             it->cur_tasks_head = &it->cur_cset->dying_tasks;
4744             it->task_pos = it->cur_tasks_head->next;
4745         }
4746         if (it->task_pos == &it->cur_cset->dying_tasks)
4747             css_task_iter_advance_css_set(it);
4748     } else {
4749         /* called from start, proceed to the first cset */
4750         css_task_iter_advance_css_set(it);
4751     }
4752 
4753     if (!it->task_pos)
4754         return;
4755 
4756     task = list_entry(it->task_pos, struct task_struct, cg_list);
4757 
4758     if (it->flags & CSS_TASK_ITER_PROCS) {
4759         /* if PROCS, skip over tasks which aren't group leaders */
4760         if (!thread_group_leader(task))
4761             goto repeat;
4762 
4763         /* and dying leaders w/o live member threads */
4764         if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4765             !atomic_read(&task->signal->live))
4766             goto repeat;
4767     } else {
4768         /* skip all dying ones */
4769         if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4770             goto repeat;
4771     }
4772 }
4773 
4774 /**
4775  * css_task_iter_start - initiate task iteration
4776  * @css: the css to walk tasks of
4777  * @flags: CSS_TASK_ITER_* flags
4778  * @it: the task iterator to use
4779  *
4780  * Initiate iteration through the tasks of @css.  The caller can call
4781  * css_task_iter_next() to walk through the tasks until the function
4782  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4783  * called.
4784  */
4785 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4786              struct css_task_iter *it)
4787 {
4788     memset(it, 0, sizeof(*it));
4789 
4790     spin_lock_irq(&css_set_lock);
4791 
4792     it->ss = css->ss;
4793     it->flags = flags;
4794 
4795     if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4796         it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4797     else
4798         it->cset_pos = &css->cgroup->cset_links;
4799 
4800     it->cset_head = it->cset_pos;
4801 
4802     css_task_iter_advance(it);
4803 
4804     spin_unlock_irq(&css_set_lock);
4805 }
4806 
4807 /**
4808  * css_task_iter_next - return the next task for the iterator
4809  * @it: the task iterator being iterated
4810  *
4811  * The "next" function for task iteration.  @it should have been
4812  * initialized via css_task_iter_start().  Returns NULL when the iteration
4813  * reaches the end.
4814  */
4815 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4816 {
4817     if (it->cur_task) {
4818         put_task_struct(it->cur_task);
4819         it->cur_task = NULL;
4820     }
4821 
4822     spin_lock_irq(&css_set_lock);
4823 
4824     /* @it may be half-advanced by skips, finish advancing */
4825     if (it->flags & CSS_TASK_ITER_SKIPPED)
4826         css_task_iter_advance(it);
4827 
4828     if (it->task_pos) {
4829         it->cur_task = list_entry(it->task_pos, struct task_struct,
4830                       cg_list);
4831         get_task_struct(it->cur_task);
4832         css_task_iter_advance(it);
4833     }
4834 
4835     spin_unlock_irq(&css_set_lock);
4836 
4837     return it->cur_task;
4838 }
4839 
4840 /**
4841  * css_task_iter_end - finish task iteration
4842  * @it: the task iterator to finish
4843  *
4844  * Finish task iteration started by css_task_iter_start().
4845  */
4846 void css_task_iter_end(struct css_task_iter *it)
4847 {
4848     if (it->cur_cset) {
4849         spin_lock_irq(&css_set_lock);
4850         list_del(&it->iters_node);
4851         put_css_set_locked(it->cur_cset);
4852         spin_unlock_irq(&css_set_lock);
4853     }
4854 
4855     if (it->cur_dcset)
4856         put_css_set(it->cur_dcset);
4857 
4858     if (it->cur_task)
4859         put_task_struct(it->cur_task);
4860 }
4861 
4862 static void cgroup_procs_release(struct kernfs_open_file *of)
4863 {
4864     struct cgroup_file_ctx *ctx = of->priv;
4865 
4866     if (ctx->procs.started)
4867         css_task_iter_end(&ctx->procs.iter);
4868 }
4869 
4870 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4871 {
4872     struct kernfs_open_file *of = s->private;
4873     struct cgroup_file_ctx *ctx = of->priv;
4874 
4875     if (pos)
4876         (*pos)++;
4877 
4878     return css_task_iter_next(&ctx->procs.iter);
4879 }
4880 
4881 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4882                   unsigned int iter_flags)
4883 {
4884     struct kernfs_open_file *of = s->private;
4885     struct cgroup *cgrp = seq_css(s)->cgroup;
4886     struct cgroup_file_ctx *ctx = of->priv;
4887     struct css_task_iter *it = &ctx->procs.iter;
4888 
4889     /*
4890      * When a seq_file is seeked, it's always traversed sequentially
4891      * from position 0, so we can simply keep iterating on !0 *pos.
4892      */
4893     if (!ctx->procs.started) {
4894         if (WARN_ON_ONCE((*pos)))
4895             return ERR_PTR(-EINVAL);
4896         css_task_iter_start(&cgrp->self, iter_flags, it);
4897         ctx->procs.started = true;
4898     } else if (!(*pos)) {
4899         css_task_iter_end(it);
4900         css_task_iter_start(&cgrp->self, iter_flags, it);
4901     } else
4902         return it->cur_task;
4903 
4904     return cgroup_procs_next(s, NULL, NULL);
4905 }
4906 
4907 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4908 {
4909     struct cgroup *cgrp = seq_css(s)->cgroup;
4910 
4911     /*
4912      * All processes of a threaded subtree belong to the domain cgroup
4913      * of the subtree.  Only threads can be distributed across the
4914      * subtree.  Reject reads on cgroup.procs in the subtree proper.
4915      * They're always empty anyway.
4916      */
4917     if (cgroup_is_threaded(cgrp))
4918         return ERR_PTR(-EOPNOTSUPP);
4919 
4920     return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4921                         CSS_TASK_ITER_THREADED);
4922 }
4923 
4924 static int cgroup_procs_show(struct seq_file *s, void *v)
4925 {
4926     seq_printf(s, "%d\n", task_pid_vnr(v));
4927     return 0;
4928 }
4929 
4930 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4931 {
4932     int ret;
4933     struct inode *inode;
4934 
4935     lockdep_assert_held(&cgroup_mutex);
4936 
4937     inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4938     if (!inode)
4939         return -ENOMEM;
4940 
4941     ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4942     iput(inode);
4943     return ret;
4944 }
4945 
4946 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4947                      struct cgroup *dst_cgrp,
4948                      struct super_block *sb,
4949                      struct cgroup_namespace *ns)
4950 {
4951     struct cgroup *com_cgrp = src_cgrp;
4952     int ret;
4953 
4954     lockdep_assert_held(&cgroup_mutex);
4955 
4956     /* find the common ancestor */
4957     while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4958         com_cgrp = cgroup_parent(com_cgrp);
4959 
4960     /* %current should be authorized to migrate to the common ancestor */
4961     ret = cgroup_may_write(com_cgrp, sb);
4962     if (ret)
4963         return ret;
4964 
4965     /*
4966      * If namespaces are delegation boundaries, %current must be able
4967      * to see both source and destination cgroups from its namespace.
4968      */
4969     if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4970         (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4971          !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4972         return -ENOENT;
4973 
4974     return 0;
4975 }
4976 
4977 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4978                      struct cgroup *dst_cgrp,
4979                      struct super_block *sb, bool threadgroup,
4980                      struct cgroup_namespace *ns)
4981 {
4982     int ret = 0;
4983 
4984     ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4985     if (ret)
4986         return ret;
4987 
4988     ret = cgroup_migrate_vet_dst(dst_cgrp);
4989     if (ret)
4990         return ret;
4991 
4992     if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4993         ret = -EOPNOTSUPP;
4994 
4995     return ret;
4996 }
4997 
4998 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4999                     bool threadgroup)
5000 {
5001     struct cgroup_file_ctx *ctx = of->priv;
5002     struct cgroup *src_cgrp, *dst_cgrp;
5003     struct task_struct *task;
5004     const struct cred *saved_cred;
5005     ssize_t ret;
5006     bool threadgroup_locked;
5007 
5008     dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5009     if (!dst_cgrp)
5010         return -ENODEV;
5011 
5012     task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5013     ret = PTR_ERR_OR_ZERO(task);
5014     if (ret)
5015         goto out_unlock;
5016 
5017     /* find the source cgroup */
5018     spin_lock_irq(&css_set_lock);
5019     src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5020     spin_unlock_irq(&css_set_lock);
5021 
5022     /*
5023      * Process and thread migrations follow same delegation rule. Check
5024      * permissions using the credentials from file open to protect against
5025      * inherited fd attacks.
5026      */
5027     saved_cred = override_creds(of->file->f_cred);
5028     ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5029                     of->file->f_path.dentry->d_sb,
5030                     threadgroup, ctx->ns);
5031     revert_creds(saved_cred);
5032     if (ret)
5033         goto out_finish;
5034 
5035     ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5036 
5037 out_finish:
5038     cgroup_procs_write_finish(task, threadgroup_locked);
5039 out_unlock:
5040     cgroup_kn_unlock(of->kn);
5041 
5042     return ret;
5043 }
5044 
5045 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5046                   char *buf, size_t nbytes, loff_t off)
5047 {
5048     return __cgroup_procs_write(of, buf, true) ?: nbytes;
5049 }
5050 
5051 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5052 {
5053     return __cgroup_procs_start(s, pos, 0);
5054 }
5055 
5056 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5057                     char *buf, size_t nbytes, loff_t off)
5058 {
5059     return __cgroup_procs_write(of, buf, false) ?: nbytes;
5060 }
5061 
5062 /* cgroup core interface files for the default hierarchy */
5063 static struct cftype cgroup_base_files[] = {
5064     {
5065         .name = "cgroup.type",
5066         .flags = CFTYPE_NOT_ON_ROOT,
5067         .seq_show = cgroup_type_show,
5068         .write = cgroup_type_write,
5069     },
5070     {
5071         .name = "cgroup.procs",
5072         .flags = CFTYPE_NS_DELEGATABLE,
5073         .file_offset = offsetof(struct cgroup, procs_file),
5074         .release = cgroup_procs_release,
5075         .seq_start = cgroup_procs_start,
5076         .seq_next = cgroup_procs_next,
5077         .seq_show = cgroup_procs_show,
5078         .write = cgroup_procs_write,
5079     },
5080     {
5081         .name = "cgroup.threads",
5082         .flags = CFTYPE_NS_DELEGATABLE,
5083         .release = cgroup_procs_release,
5084         .seq_start = cgroup_threads_start,
5085         .seq_next = cgroup_procs_next,
5086         .seq_show = cgroup_procs_show,
5087         .write = cgroup_threads_write,
5088     },
5089     {
5090         .name = "cgroup.controllers",
5091         .seq_show = cgroup_controllers_show,
5092     },
5093     {
5094         .name = "cgroup.subtree_control",
5095         .flags = CFTYPE_NS_DELEGATABLE,
5096         .seq_show = cgroup_subtree_control_show,
5097         .write = cgroup_subtree_control_write,
5098     },
5099     {
5100         .name = "cgroup.events",
5101         .flags = CFTYPE_NOT_ON_ROOT,
5102         .file_offset = offsetof(struct cgroup, events_file),
5103         .seq_show = cgroup_events_show,
5104     },
5105     {
5106         .name = "cgroup.max.descendants",
5107         .seq_show = cgroup_max_descendants_show,
5108         .write = cgroup_max_descendants_write,
5109     },
5110     {
5111         .name = "cgroup.max.depth",
5112         .seq_show = cgroup_max_depth_show,
5113         .write = cgroup_max_depth_write,
5114     },
5115     {
5116         .name = "cgroup.stat",
5117         .seq_show = cgroup_stat_show,
5118     },
5119     {
5120         .name = "cgroup.freeze",
5121         .flags = CFTYPE_NOT_ON_ROOT,
5122         .seq_show = cgroup_freeze_show,
5123         .write = cgroup_freeze_write,
5124     },
5125     {
5126         .name = "cgroup.kill",
5127         .flags = CFTYPE_NOT_ON_ROOT,
5128         .write = cgroup_kill_write,
5129     },
5130     {
5131         .name = "cpu.stat",
5132         .seq_show = cpu_stat_show,
5133     },
5134 #ifdef CONFIG_PSI
5135     {
5136         .name = "io.pressure",
5137         .flags = CFTYPE_PRESSURE,
5138         .seq_show = cgroup_io_pressure_show,
5139         .write = cgroup_io_pressure_write,
5140         .poll = cgroup_pressure_poll,
5141         .release = cgroup_pressure_release,
5142     },
5143     {
5144         .name = "memory.pressure",
5145         .flags = CFTYPE_PRESSURE,
5146         .seq_show = cgroup_memory_pressure_show,
5147         .write = cgroup_memory_pressure_write,
5148         .poll = cgroup_pressure_poll,
5149         .release = cgroup_pressure_release,
5150     },
5151     {
5152         .name = "cpu.pressure",
5153         .flags = CFTYPE_PRESSURE,
5154         .seq_show = cgroup_cpu_pressure_show,
5155         .write = cgroup_cpu_pressure_write,
5156         .poll = cgroup_pressure_poll,
5157         .release = cgroup_pressure_release,
5158     },
5159 #endif /* CONFIG_PSI */
5160     { } /* terminate */
5161 };
5162 
5163 /*
5164  * css destruction is four-stage process.
5165  *
5166  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5167  *    Implemented in kill_css().
5168  *
5169  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5170  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5171  *    offlined by invoking offline_css().  After offlining, the base ref is
5172  *    put.  Implemented in css_killed_work_fn().
5173  *
5174  * 3. When the percpu_ref reaches zero, the only possible remaining
5175  *    accessors are inside RCU read sections.  css_release() schedules the
5176  *    RCU callback.
5177  *
5178  * 4. After the grace period, the css can be freed.  Implemented in
5179  *    css_free_work_fn().
5180  *
5181  * It is actually hairier because both step 2 and 4 require process context
5182  * and thus involve punting to css->destroy_work adding two additional
5183  * steps to the already complex sequence.
5184  */
5185 static void css_free_rwork_fn(struct work_struct *work)
5186 {
5187     struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5188                 struct cgroup_subsys_state, destroy_rwork);
5189     struct cgroup_subsys *ss = css->ss;
5190     struct cgroup *cgrp = css->cgroup;
5191 
5192     percpu_ref_exit(&css->refcnt);
5193 
5194     if (ss) {
5195         /* css free path */
5196         struct cgroup_subsys_state *parent = css->parent;
5197         int id = css->id;
5198 
5199         ss->css_free(css);
5200         cgroup_idr_remove(&ss->css_idr, id);
5201         cgroup_put(cgrp);
5202 
5203         if (parent)
5204             css_put(parent);
5205     } else {
5206         /* cgroup free path */
5207         atomic_dec(&cgrp->root->nr_cgrps);
5208         cgroup1_pidlist_destroy_all(cgrp);
5209         cancel_work_sync(&cgrp->release_agent_work);
5210 
5211         if (cgroup_parent(cgrp)) {
5212             /*
5213              * We get a ref to the parent, and put the ref when
5214              * this cgroup is being freed, so it's guaranteed
5215              * that the parent won't be destroyed before its
5216              * children.
5217              */
5218             cgroup_put(cgroup_parent(cgrp));
5219             kernfs_put(cgrp->kn);
5220             psi_cgroup_free(cgrp);
5221             cgroup_rstat_exit(cgrp);
5222             kfree(cgrp);
5223         } else {
5224             /*
5225              * This is root cgroup's refcnt reaching zero,
5226              * which indicates that the root should be
5227              * released.
5228              */
5229             cgroup_destroy_root(cgrp->root);
5230         }
5231     }
5232 }
5233 
5234 static void css_release_work_fn(struct work_struct *work)
5235 {
5236     struct cgroup_subsys_state *css =
5237         container_of(work, struct cgroup_subsys_state, destroy_work);
5238     struct cgroup_subsys *ss = css->ss;
5239     struct cgroup *cgrp = css->cgroup;
5240 
5241     mutex_lock(&cgroup_mutex);
5242 
5243     css->flags |= CSS_RELEASED;
5244     list_del_rcu(&css->sibling);
5245 
5246     if (ss) {
5247         /* css release path */
5248         if (!list_empty(&css->rstat_css_node)) {
5249             cgroup_rstat_flush(cgrp);
5250             list_del_rcu(&css->rstat_css_node);
5251         }
5252 
5253         cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5254         if (ss->css_released)
5255             ss->css_released(css);
5256     } else {
5257         struct cgroup *tcgrp;
5258 
5259         /* cgroup release path */
5260         TRACE_CGROUP_PATH(release, cgrp);
5261 
5262         cgroup_rstat_flush(cgrp);
5263 
5264         spin_lock_irq(&css_set_lock);
5265         for (tcgrp = cgroup_parent(cgrp); tcgrp;
5266              tcgrp = cgroup_parent(tcgrp))
5267             tcgrp->nr_dying_descendants--;
5268         spin_unlock_irq(&css_set_lock);
5269 
5270         /*
5271          * There are two control paths which try to determine
5272          * cgroup from dentry without going through kernfs -
5273          * cgroupstats_build() and css_tryget_online_from_dir().
5274          * Those are supported by RCU protecting clearing of
5275          * cgrp->kn->priv backpointer.
5276          */
5277         if (cgrp->kn)
5278             RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5279                      NULL);
5280     }
5281 
5282     mutex_unlock(&cgroup_mutex);
5283 
5284     INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5285     queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5286 }
5287 
5288 static void css_release(struct percpu_ref *ref)
5289 {
5290     struct cgroup_subsys_state *css =
5291         container_of(ref, struct cgroup_subsys_state, refcnt);
5292 
5293     INIT_WORK(&css->destroy_work, css_release_work_fn);
5294     queue_work(cgroup_destroy_wq, &css->destroy_work);
5295 }
5296 
5297 static void init_and_link_css(struct cgroup_subsys_state *css,
5298                   struct cgroup_subsys *ss, struct cgroup *cgrp)
5299 {
5300     lockdep_assert_held(&cgroup_mutex);
5301 
5302     cgroup_get_live(cgrp);
5303 
5304     memset(css, 0, sizeof(*css));
5305     css->cgroup = cgrp;
5306     css->ss = ss;
5307     css->id = -1;
5308     INIT_LIST_HEAD(&css->sibling);
5309     INIT_LIST_HEAD(&css->children);
5310     INIT_LIST_HEAD(&css->rstat_css_node);
5311     css->serial_nr = css_serial_nr_next++;
5312     atomic_set(&css->online_cnt, 0);
5313 
5314     if (cgroup_parent(cgrp)) {
5315         css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5316         css_get(css->parent);
5317     }
5318 
5319     if (ss->css_rstat_flush)
5320         list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5321 
5322     BUG_ON(cgroup_css(cgrp, ss));
5323 }
5324 
5325 /* invoke ->css_online() on a new CSS and mark it online if successful */
5326 static int online_css(struct cgroup_subsys_state *css)
5327 {
5328     struct cgroup_subsys *ss = css->ss;
5329     int ret = 0;
5330 
5331     lockdep_assert_held(&cgroup_mutex);
5332 
5333     if (ss->css_online)
5334         ret = ss->css_online(css);
5335     if (!ret) {
5336         css->flags |= CSS_ONLINE;
5337         rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5338 
5339         atomic_inc(&css->online_cnt);
5340         if (css->parent)
5341             atomic_inc(&css->parent->online_cnt);
5342     }
5343     return ret;
5344 }
5345 
5346 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5347 static void offline_css(struct cgroup_subsys_state *css)
5348 {
5349     struct cgroup_subsys *ss = css->ss;
5350 
5351     lockdep_assert_held(&cgroup_mutex);
5352 
5353     if (!(css->flags & CSS_ONLINE))
5354         return;
5355 
5356     if (ss->css_offline)
5357         ss->css_offline(css);
5358 
5359     css->flags &= ~CSS_ONLINE;
5360     RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5361 
5362     wake_up_all(&css->cgroup->offline_waitq);
5363 }
5364 
5365 /**
5366  * css_create - create a cgroup_subsys_state
5367  * @cgrp: the cgroup new css will be associated with
5368  * @ss: the subsys of new css
5369  *
5370  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5371  * css is online and installed in @cgrp.  This function doesn't create the
5372  * interface files.  Returns 0 on success, -errno on failure.
5373  */
5374 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5375                           struct cgroup_subsys *ss)
5376 {
5377     struct cgroup *parent = cgroup_parent(cgrp);
5378     struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5379     struct cgroup_subsys_state *css;
5380     int err;
5381 
5382     lockdep_assert_held(&cgroup_mutex);
5383 
5384     css = ss->css_alloc(parent_css);
5385     if (!css)
5386         css = ERR_PTR(-ENOMEM);
5387     if (IS_ERR(css))
5388         return css;
5389 
5390     init_and_link_css(css, ss, cgrp);
5391 
5392     err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5393     if (err)
5394         goto err_free_css;
5395 
5396     err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5397     if (err < 0)
5398         goto err_free_css;
5399     css->id = err;
5400 
5401     /* @css is ready to be brought online now, make it visible */
5402     list_add_tail_rcu(&css->sibling, &parent_css->children);
5403     cgroup_idr_replace(&ss->css_idr, css, css->id);
5404 
5405     err = online_css(css);
5406     if (err)
5407         goto err_list_del;
5408 
5409     return css;
5410 
5411 err_list_del:
5412     list_del_rcu(&css->sibling);
5413 err_free_css:
5414     list_del_rcu(&css->rstat_css_node);
5415     INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5416     queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5417     return ERR_PTR(err);
5418 }
5419 
5420 /*
5421  * The returned cgroup is fully initialized including its control mask, but
5422  * it isn't associated with its kernfs_node and doesn't have the control
5423  * mask applied.
5424  */
5425 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5426                     umode_t mode)
5427 {
5428     struct cgroup_root *root = parent->root;
5429     struct cgroup *cgrp, *tcgrp;
5430     struct kernfs_node *kn;
5431     int level = parent->level + 1;
5432     int ret;
5433 
5434     /* allocate the cgroup and its ID, 0 is reserved for the root */
5435     cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5436                GFP_KERNEL);
5437     if (!cgrp)
5438         return ERR_PTR(-ENOMEM);
5439 
5440     ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5441     if (ret)
5442         goto out_free_cgrp;
5443 
5444     ret = cgroup_rstat_init(cgrp);
5445     if (ret)
5446         goto out_cancel_ref;
5447 
5448     /* create the directory */
5449     kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5450     if (IS_ERR(kn)) {
5451         ret = PTR_ERR(kn);
5452         goto out_stat_exit;
5453     }
5454     cgrp->kn = kn;
5455 
5456     init_cgroup_housekeeping(cgrp);
5457 
5458     cgrp->self.parent = &parent->self;
5459     cgrp->root = root;
5460     cgrp->level = level;
5461 
5462     ret = psi_cgroup_alloc(cgrp);
5463     if (ret)
5464         goto out_kernfs_remove;
5465 
5466     ret = cgroup_bpf_inherit(cgrp);
5467     if (ret)
5468         goto out_psi_free;
5469 
5470     /*
5471      * New cgroup inherits effective freeze counter, and
5472      * if the parent has to be frozen, the child has too.
5473      */
5474     cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5475     if (cgrp->freezer.e_freeze) {
5476         /*
5477          * Set the CGRP_FREEZE flag, so when a process will be
5478          * attached to the child cgroup, it will become frozen.
5479          * At this point the new cgroup is unpopulated, so we can
5480          * consider it frozen immediately.
5481          */
5482         set_bit(CGRP_FREEZE, &cgrp->flags);
5483         set_bit(CGRP_FROZEN, &cgrp->flags);
5484     }
5485 
5486     spin_lock_irq(&css_set_lock);
5487     for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5488         cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5489 
5490         if (tcgrp != cgrp) {
5491             tcgrp->nr_descendants++;
5492 
5493             /*
5494              * If the new cgroup is frozen, all ancestor cgroups
5495              * get a new frozen descendant, but their state can't
5496              * change because of this.
5497              */
5498             if (cgrp->freezer.e_freeze)
5499                 tcgrp->freezer.nr_frozen_descendants++;
5500         }
5501     }
5502     spin_unlock_irq(&css_set_lock);
5503 
5504     if (notify_on_release(parent))
5505         set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5506 
5507     if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5508         set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5509 
5510     cgrp->self.serial_nr = css_serial_nr_next++;
5511 
5512     /* allocation complete, commit to creation */
5513     list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5514     atomic_inc(&root->nr_cgrps);
5515     cgroup_get_live(parent);
5516 
5517     /*
5518      * On the default hierarchy, a child doesn't automatically inherit
5519      * subtree_control from the parent.  Each is configured manually.
5520      */
5521     if (!cgroup_on_dfl(cgrp))
5522         cgrp->subtree_control = cgroup_control(cgrp);
5523 
5524     cgroup_propagate_control(cgrp);
5525 
5526     return cgrp;
5527 
5528 out_psi_free:
5529     psi_cgroup_free(cgrp);
5530 out_kernfs_remove:
5531     kernfs_remove(cgrp->kn);
5532 out_stat_exit:
5533     cgroup_rstat_exit(cgrp);
5534 out_cancel_ref:
5535     percpu_ref_exit(&cgrp->self.refcnt);
5536 out_free_cgrp:
5537     kfree(cgrp);
5538     return ERR_PTR(ret);
5539 }
5540 
5541 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5542 {
5543     struct cgroup *cgroup;
5544     int ret = false;
5545     int level = 1;
5546 
5547     lockdep_assert_held(&cgroup_mutex);
5548 
5549     for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5550         if (cgroup->nr_descendants >= cgroup->max_descendants)
5551             goto fail;
5552 
5553         if (level > cgroup->max_depth)
5554             goto fail;
5555 
5556         level++;
5557     }
5558 
5559     ret = true;
5560 fail:
5561     return ret;
5562 }
5563 
5564 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5565 {
5566     struct cgroup *parent, *cgrp;
5567     int ret;
5568 
5569     /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5570     if (strchr(name, '\n'))
5571         return -EINVAL;
5572 
5573     parent = cgroup_kn_lock_live(parent_kn, false);
5574     if (!parent)
5575         return -ENODEV;
5576 
5577     if (!cgroup_check_hierarchy_limits(parent)) {
5578         ret = -EAGAIN;
5579         goto out_unlock;
5580     }
5581 
5582     cgrp = cgroup_create(parent, name, mode);
5583     if (IS_ERR(cgrp)) {
5584         ret = PTR_ERR(cgrp);
5585         goto out_unlock;
5586     }
5587 
5588     /*
5589      * This extra ref will be put in cgroup_free_fn() and guarantees
5590      * that @cgrp->kn is always accessible.
5591      */
5592     kernfs_get(cgrp->kn);
5593 
5594     ret = cgroup_kn_set_ugid(cgrp->kn);
5595     if (ret)
5596         goto out_destroy;
5597 
5598     ret = css_populate_dir(&cgrp->self);
5599     if (ret)
5600         goto out_destroy;
5601 
5602     ret = cgroup_apply_control_enable(cgrp);
5603     if (ret)
5604         goto out_destroy;
5605 
5606     TRACE_CGROUP_PATH(mkdir, cgrp);
5607 
5608     /* let's create and online css's */
5609     kernfs_activate(cgrp->kn);
5610 
5611     ret = 0;
5612     goto out_unlock;
5613 
5614 out_destroy:
5615     cgroup_destroy_locked(cgrp);
5616 out_unlock:
5617     cgroup_kn_unlock(parent_kn);
5618     return ret;
5619 }
5620 
5621 /*
5622  * This is called when the refcnt of a css is confirmed to be killed.
5623  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5624  * initiate destruction and put the css ref from kill_css().
5625  */
5626 static void css_killed_work_fn(struct work_struct *work)
5627 {
5628     struct cgroup_subsys_state *css =
5629         container_of(work, struct cgroup_subsys_state, destroy_work);
5630 
5631     mutex_lock(&cgroup_mutex);
5632 
5633     do {
5634         offline_css(css);
5635         css_put(css);
5636         /* @css can't go away while we're holding cgroup_mutex */
5637         css = css->parent;
5638     } while (css && atomic_dec_and_test(&css->online_cnt));
5639 
5640     mutex_unlock(&cgroup_mutex);
5641 }
5642 
5643 /* css kill confirmation processing requires process context, bounce */
5644 static void css_killed_ref_fn(struct percpu_ref *ref)
5645 {
5646     struct cgroup_subsys_state *css =
5647         container_of(ref, struct cgroup_subsys_state, refcnt);
5648 
5649     if (atomic_dec_and_test(&css->online_cnt)) {
5650         INIT_WORK(&css->destroy_work, css_killed_work_fn);
5651         queue_work(cgroup_destroy_wq, &css->destroy_work);
5652     }
5653 }
5654 
5655 /**
5656  * kill_css - destroy a css
5657  * @css: css to destroy
5658  *
5659  * This function initiates destruction of @css by removing cgroup interface
5660  * files and putting its base reference.  ->css_offline() will be invoked
5661  * asynchronously once css_tryget_online() is guaranteed to fail and when
5662  * the reference count reaches zero, @css will be released.
5663  */
5664 static void kill_css(struct cgroup_subsys_state *css)
5665 {
5666     lockdep_assert_held(&cgroup_mutex);
5667 
5668     if (css->flags & CSS_DYING)
5669         return;
5670 
5671     css->flags |= CSS_DYING;
5672 
5673     /*
5674      * This must happen before css is disassociated with its cgroup.
5675      * See seq_css() for details.
5676      */
5677     css_clear_dir(css);
5678 
5679     /*
5680      * Killing would put the base ref, but we need to keep it alive
5681      * until after ->css_offline().
5682      */
5683     css_get(css);
5684 
5685     /*
5686      * cgroup core guarantees that, by the time ->css_offline() is
5687      * invoked, no new css reference will be given out via
5688      * css_tryget_online().  We can't simply call percpu_ref_kill() and
5689      * proceed to offlining css's because percpu_ref_kill() doesn't
5690      * guarantee that the ref is seen as killed on all CPUs on return.
5691      *
5692      * Use percpu_ref_kill_and_confirm() to get notifications as each
5693      * css is confirmed to be seen as killed on all CPUs.
5694      */
5695     percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5696 }
5697 
5698 /**
5699  * cgroup_destroy_locked - the first stage of cgroup destruction
5700  * @cgrp: cgroup to be destroyed
5701  *
5702  * css's make use of percpu refcnts whose killing latency shouldn't be
5703  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5704  * guarantee that css_tryget_online() won't succeed by the time
5705  * ->css_offline() is invoked.  To satisfy all the requirements,
5706  * destruction is implemented in the following two steps.
5707  *
5708  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5709  *     userland visible parts and start killing the percpu refcnts of
5710  *     css's.  Set up so that the next stage will be kicked off once all
5711  *     the percpu refcnts are confirmed to be killed.
5712  *
5713  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5714  *     rest of destruction.  Once all cgroup references are gone, the
5715  *     cgroup is RCU-freed.
5716  *
5717  * This function implements s1.  After this step, @cgrp is gone as far as
5718  * the userland is concerned and a new cgroup with the same name may be
5719  * created.  As cgroup doesn't care about the names internally, this
5720  * doesn't cause any problem.
5721  */
5722 static int cgroup_destroy_locked(struct cgroup *cgrp)
5723     __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5724 {
5725     struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5726     struct cgroup_subsys_state *css;
5727     struct cgrp_cset_link *link;
5728     int ssid;
5729 
5730     lockdep_assert_held(&cgroup_mutex);
5731 
5732     /*
5733      * Only migration can raise populated from zero and we're already
5734      * holding cgroup_mutex.
5735      */
5736     if (cgroup_is_populated(cgrp))
5737         return -EBUSY;
5738 
5739     /*
5740      * Make sure there's no live children.  We can't test emptiness of
5741      * ->self.children as dead children linger on it while being
5742      * drained; otherwise, "rmdir parent/child parent" may fail.
5743      */
5744     if (css_has_online_children(&cgrp->self))
5745         return -EBUSY;
5746 
5747     /*
5748      * Mark @cgrp and the associated csets dead.  The former prevents
5749      * further task migration and child creation by disabling
5750      * cgroup_lock_live_group().  The latter makes the csets ignored by
5751      * the migration path.
5752      */
5753     cgrp->self.flags &= ~CSS_ONLINE;
5754 
5755     spin_lock_irq(&css_set_lock);
5756     list_for_each_entry(link, &cgrp->cset_links, cset_link)
5757         link->cset->dead = true;
5758     spin_unlock_irq(&css_set_lock);
5759 
5760     /* initiate massacre of all css's */
5761     for_each_css(css, ssid, cgrp)
5762         kill_css(css);
5763 
5764     /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5765     css_clear_dir(&cgrp->self);
5766     kernfs_remove(cgrp->kn);
5767 
5768     if (cgroup_is_threaded(cgrp))
5769         parent->nr_threaded_children--;
5770 
5771     spin_lock_irq(&css_set_lock);
5772     for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5773         tcgrp->nr_descendants--;
5774         tcgrp->nr_dying_descendants++;
5775         /*
5776          * If the dying cgroup is frozen, decrease frozen descendants
5777          * counters of ancestor cgroups.
5778          */
5779         if (test_bit(CGRP_FROZEN, &cgrp->flags))
5780             tcgrp->freezer.nr_frozen_descendants--;
5781     }
5782     spin_unlock_irq(&css_set_lock);
5783 
5784     cgroup1_check_for_release(parent);
5785 
5786     cgroup_bpf_offline(cgrp);
5787 
5788     /* put the base reference */
5789     percpu_ref_kill(&cgrp->self.refcnt);
5790 
5791     return 0;
5792 };
5793 
5794 int cgroup_rmdir(struct kernfs_node *kn)
5795 {
5796     struct cgroup *cgrp;
5797     int ret = 0;
5798 
5799     cgrp = cgroup_kn_lock_live(kn, false);
5800     if (!cgrp)
5801         return 0;
5802 
5803     ret = cgroup_destroy_locked(cgrp);
5804     if (!ret)
5805         TRACE_CGROUP_PATH(rmdir, cgrp);
5806 
5807     cgroup_kn_unlock(kn);
5808     return ret;
5809 }
5810 
5811 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5812     .show_options       = cgroup_show_options,
5813     .mkdir          = cgroup_mkdir,
5814     .rmdir          = cgroup_rmdir,
5815     .show_path      = cgroup_show_path,
5816 };
5817 
5818 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5819 {
5820     struct cgroup_subsys_state *css;
5821 
5822     pr_debug("Initializing cgroup subsys %s\n", ss->name);
5823 
5824     mutex_lock(&cgroup_mutex);
5825 
5826     idr_init(&ss->css_idr);
5827     INIT_LIST_HEAD(&ss->cfts);
5828 
5829     /* Create the root cgroup state for this subsystem */
5830     ss->root = &cgrp_dfl_root;
5831     css = ss->css_alloc(NULL);
5832     /* We don't handle early failures gracefully */
5833     BUG_ON(IS_ERR(css));
5834     init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5835 
5836     /*
5837      * Root csses are never destroyed and we can't initialize
5838      * percpu_ref during early init.  Disable refcnting.
5839      */
5840     css->flags |= CSS_NO_REF;
5841 
5842     if (early) {
5843         /* allocation can't be done safely during early init */
5844         css->id = 1;
5845     } else {
5846         css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5847         BUG_ON(css->id < 0);
5848     }
5849 
5850     /* Update the init_css_set to contain a subsys
5851      * pointer to this state - since the subsystem is
5852      * newly registered, all tasks and hence the
5853      * init_css_set is in the subsystem's root cgroup. */
5854     init_css_set.subsys[ss->id] = css;
5855 
5856     have_fork_callback |= (bool)ss->fork << ss->id;
5857     have_exit_callback |= (bool)ss->exit << ss->id;
5858     have_release_callback |= (bool)ss->release << ss->id;
5859     have_canfork_callback |= (bool)ss->can_fork << ss->id;
5860 
5861     /* At system boot, before all subsystems have been
5862      * registered, no tasks have been forked, so we don't
5863      * need to invoke fork callbacks here. */
5864     BUG_ON(!list_empty(&init_task.tasks));
5865 
5866     BUG_ON(online_css(css));
5867 
5868     mutex_unlock(&cgroup_mutex);
5869 }
5870 
5871 /**
5872  * cgroup_init_early - cgroup initialization at system boot
5873  *
5874  * Initialize cgroups at system boot, and initialize any
5875  * subsystems that request early init.
5876  */
5877 int __init cgroup_init_early(void)
5878 {
5879     static struct cgroup_fs_context __initdata ctx;
5880     struct cgroup_subsys *ss;
5881     int i;
5882 
5883     ctx.root = &cgrp_dfl_root;
5884     init_cgroup_root(&ctx);
5885     cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5886 
5887     RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5888 
5889     for_each_subsys(ss, i) {
5890         WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5891              "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5892              i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5893              ss->id, ss->name);
5894         WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5895              "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5896 
5897         ss->id = i;
5898         ss->name = cgroup_subsys_name[i];
5899         if (!ss->legacy_name)
5900             ss->legacy_name = cgroup_subsys_name[i];
5901 
5902         if (ss->early_init)
5903             cgroup_init_subsys(ss, true);
5904     }
5905     return 0;
5906 }
5907 
5908 /**
5909  * cgroup_init - cgroup initialization
5910  *
5911  * Register cgroup filesystem and /proc file, and initialize
5912  * any subsystems that didn't request early init.
5913  */
5914 int __init cgroup_init(void)
5915 {
5916     struct cgroup_subsys *ss;
5917     int ssid;
5918 
5919     BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5920     BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5921     BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5922 
5923     cgroup_rstat_boot();
5924 
5925     get_user_ns(init_cgroup_ns.user_ns);
5926 
5927     mutex_lock(&cgroup_mutex);
5928 
5929     /*
5930      * Add init_css_set to the hash table so that dfl_root can link to
5931      * it during init.
5932      */
5933     hash_add(css_set_table, &init_css_set.hlist,
5934          css_set_hash(init_css_set.subsys));
5935 
5936     BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5937 
5938     mutex_unlock(&cgroup_mutex);
5939 
5940     for_each_subsys(ss, ssid) {
5941         if (ss->early_init) {
5942             struct cgroup_subsys_state *css =
5943                 init_css_set.subsys[ss->id];
5944 
5945             css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5946                            GFP_KERNEL);
5947             BUG_ON(css->id < 0);
5948         } else {
5949             cgroup_init_subsys(ss, false);
5950         }
5951 
5952         list_add_tail(&init_css_set.e_cset_node[ssid],
5953                   &cgrp_dfl_root.cgrp.e_csets[ssid]);
5954 
5955         /*
5956          * Setting dfl_root subsys_mask needs to consider the
5957          * disabled flag and cftype registration needs kmalloc,
5958          * both of which aren't available during early_init.
5959          */
5960         if (!cgroup_ssid_enabled(ssid))
5961             continue;
5962 
5963         if (cgroup1_ssid_disabled(ssid))
5964             printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5965                    ss->name);
5966 
5967         cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5968 
5969         /* implicit controllers must be threaded too */
5970         WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5971 
5972         if (ss->implicit_on_dfl)
5973             cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5974         else if (!ss->dfl_cftypes)
5975             cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5976 
5977         if (ss->threaded)
5978             cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5979 
5980         if (ss->dfl_cftypes == ss->legacy_cftypes) {
5981             WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5982         } else {
5983             WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5984             WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5985         }
5986 
5987         if (ss->bind)
5988             ss->bind(init_css_set.subsys[ssid]);
5989 
5990         mutex_lock(&cgroup_mutex);
5991         css_populate_dir(init_css_set.subsys[ssid]);
5992         mutex_unlock(&cgroup_mutex);
5993     }
5994 
5995     /* init_css_set.subsys[] has been updated, re-hash */
5996     hash_del(&init_css_set.hlist);
5997     hash_add(css_set_table, &init_css_set.hlist,
5998          css_set_hash(init_css_set.subsys));
5999 
6000     WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6001     WARN_ON(register_filesystem(&cgroup_fs_type));
6002     WARN_ON(register_filesystem(&cgroup2_fs_type));
6003     WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6004 #ifdef CONFIG_CPUSETS
6005     WARN_ON(register_filesystem(&cpuset_fs_type));
6006 #endif
6007 
6008     return 0;
6009 }
6010 
6011 static int __init cgroup_wq_init(void)
6012 {
6013     /*
6014      * There isn't much point in executing destruction path in
6015      * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6016      * Use 1 for @max_active.
6017      *
6018      * We would prefer to do this in cgroup_init() above, but that
6019      * is called before init_workqueues(): so leave this until after.
6020      */
6021     cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6022     BUG_ON(!cgroup_destroy_wq);
6023     return 0;
6024 }
6025 core_initcall(cgroup_wq_init);
6026 
6027 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6028 {
6029     struct kernfs_node *kn;
6030 
6031     kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6032     if (!kn)
6033         return;
6034     kernfs_path(kn, buf, buflen);
6035     kernfs_put(kn);
6036 }
6037 
6038 /*
6039  * cgroup_get_from_id : get the cgroup associated with cgroup id
6040  * @id: cgroup id
6041  * On success return the cgrp, on failure return NULL
6042  */
6043 struct cgroup *cgroup_get_from_id(u64 id)
6044 {
6045     struct kernfs_node *kn;
6046     struct cgroup *cgrp = NULL;
6047 
6048     kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6049     if (!kn)
6050         goto out;
6051 
6052     if (kernfs_type(kn) != KERNFS_DIR)
6053         goto put;
6054 
6055     rcu_read_lock();
6056 
6057     cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6058     if (cgrp && !cgroup_tryget(cgrp))
6059         cgrp = NULL;
6060 
6061     rcu_read_unlock();
6062 put:
6063     kernfs_put(kn);
6064 out:
6065     return cgrp;
6066 }
6067 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6068 
6069 /*
6070  * proc_cgroup_show()
6071  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6072  *  - Used for /proc/<pid>/cgroup.
6073  */
6074 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6075              struct pid *pid, struct task_struct *tsk)
6076 {
6077     char *buf;
6078     int retval;
6079     struct cgroup_root *root;
6080 
6081     retval = -ENOMEM;
6082     buf = kmalloc(PATH_MAX, GFP_KERNEL);
6083     if (!buf)
6084         goto out;
6085 
6086     mutex_lock(&cgroup_mutex);
6087     spin_lock_irq(&css_set_lock);
6088 
6089     for_each_root(root) {
6090         struct cgroup_subsys *ss;
6091         struct cgroup *cgrp;
6092         int ssid, count = 0;
6093 
6094         if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6095             continue;
6096 
6097         seq_printf(m, "%d:", root->hierarchy_id);
6098         if (root != &cgrp_dfl_root)
6099             for_each_subsys(ss, ssid)
6100                 if (root->subsys_mask & (1 << ssid))
6101                     seq_printf(m, "%s%s", count++ ? "," : "",
6102                            ss->legacy_name);
6103         if (strlen(root->name))
6104             seq_printf(m, "%sname=%s", count ? "," : "",
6105                    root->name);
6106         seq_putc(m, ':');
6107 
6108         cgrp = task_cgroup_from_root(tsk, root);
6109 
6110         /*
6111          * On traditional hierarchies, all zombie tasks show up as
6112          * belonging to the root cgroup.  On the default hierarchy,
6113          * while a zombie doesn't show up in "cgroup.procs" and
6114          * thus can't be migrated, its /proc/PID/cgroup keeps
6115          * reporting the cgroup it belonged to before exiting.  If
6116          * the cgroup is removed before the zombie is reaped,
6117          * " (deleted)" is appended to the cgroup path.
6118          */
6119         if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6120             retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6121                         current->nsproxy->cgroup_ns);
6122             if (retval >= PATH_MAX)
6123                 retval = -ENAMETOOLONG;
6124             if (retval < 0)
6125                 goto out_unlock;
6126 
6127             seq_puts(m, buf);
6128         } else {
6129             seq_puts(m, "/");
6130         }
6131 
6132         if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6133             seq_puts(m, " (deleted)\n");
6134         else
6135             seq_putc(m, '\n');
6136     }
6137 
6138     retval = 0;
6139 out_unlock:
6140     spin_unlock_irq(&css_set_lock);
6141     mutex_unlock(&cgroup_mutex);
6142     kfree(buf);
6143 out:
6144     return retval;
6145 }
6146 
6147 /**
6148  * cgroup_fork - initialize cgroup related fields during copy_process()
6149  * @child: pointer to task_struct of forking parent process.
6150  *
6151  * A task is associated with the init_css_set until cgroup_post_fork()
6152  * attaches it to the target css_set.
6153  */
6154 void cgroup_fork(struct task_struct *child)
6155 {
6156     RCU_INIT_POINTER(child->cgroups, &init_css_set);
6157     INIT_LIST_HEAD(&child->cg_list);
6158 }
6159 
6160 static struct cgroup *cgroup_get_from_file(struct file *f)
6161 {
6162     struct cgroup_subsys_state *css;
6163     struct cgroup *cgrp;
6164 
6165     css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6166     if (IS_ERR(css))
6167         return ERR_CAST(css);
6168 
6169     cgrp = css->cgroup;
6170     if (!cgroup_on_dfl(cgrp)) {
6171         cgroup_put(cgrp);
6172         return ERR_PTR(-EBADF);
6173     }
6174 
6175     return cgrp;
6176 }
6177 
6178 /**
6179  * cgroup_css_set_fork - find or create a css_set for a child process
6180  * @kargs: the arguments passed to create the child process
6181  *
6182  * This functions finds or creates a new css_set which the child
6183  * process will be attached to in cgroup_post_fork(). By default,
6184  * the child process will be given the same css_set as its parent.
6185  *
6186  * If CLONE_INTO_CGROUP is specified this function will try to find an
6187  * existing css_set which includes the requested cgroup and if not create
6188  * a new css_set that the child will be attached to later. If this function
6189  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6190  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6191  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6192  * to the target cgroup.
6193  */
6194 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6195     __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6196 {
6197     int ret;
6198     struct cgroup *dst_cgrp = NULL;
6199     struct css_set *cset;
6200     struct super_block *sb;
6201     struct file *f;
6202 
6203     if (kargs->flags & CLONE_INTO_CGROUP)
6204         mutex_lock(&cgroup_mutex);
6205 
6206     cgroup_threadgroup_change_begin(current);
6207 
6208     spin_lock_irq(&css_set_lock);
6209     cset = task_css_set(current);
6210     get_css_set(cset);
6211     spin_unlock_irq(&css_set_lock);
6212 
6213     if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6214         kargs->cset = cset;
6215         return 0;
6216     }
6217 
6218     f = fget_raw(kargs->cgroup);
6219     if (!f) {
6220         ret = -EBADF;
6221         goto err;
6222     }
6223     sb = f->f_path.dentry->d_sb;
6224 
6225     dst_cgrp = cgroup_get_from_file(f);
6226     if (IS_ERR(dst_cgrp)) {
6227         ret = PTR_ERR(dst_cgrp);
6228         dst_cgrp = NULL;
6229         goto err;
6230     }
6231 
6232     if (cgroup_is_dead(dst_cgrp)) {
6233         ret = -ENODEV;
6234         goto err;
6235     }
6236 
6237     /*
6238      * Verify that we the target cgroup is writable for us. This is
6239      * usually done by the vfs layer but since we're not going through
6240      * the vfs layer here we need to do it "manually".
6241      */
6242     ret = cgroup_may_write(dst_cgrp, sb);
6243     if (ret)
6244         goto err;
6245 
6246     /*
6247      * Spawning a task directly into a cgroup works by passing a file
6248      * descriptor to the target cgroup directory. This can even be an O_PATH
6249      * file descriptor. But it can never be a cgroup.procs file descriptor.
6250      * This was done on purpose so spawning into a cgroup could be
6251      * conceptualized as an atomic
6252      *
6253      *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6254      *   write(fd, <child-pid>, ...);
6255      *
6256      * sequence, i.e. it's a shorthand for the caller opening and writing
6257      * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6258      * to always use the caller's credentials.
6259      */
6260     ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6261                     !(kargs->flags & CLONE_THREAD),
6262                     current->nsproxy->cgroup_ns);
6263     if (ret)
6264         goto err;
6265 
6266     kargs->cset = find_css_set(cset, dst_cgrp);
6267     if (!kargs->cset) {
6268         ret = -ENOMEM;
6269         goto err;
6270     }
6271 
6272     put_css_set(cset);
6273     fput(f);
6274     kargs->cgrp = dst_cgrp;
6275     return ret;
6276 
6277 err:
6278     cgroup_threadgroup_change_end(current);
6279     mutex_unlock(&cgroup_mutex);
6280     if (f)
6281         fput(f);
6282     if (dst_cgrp)
6283         cgroup_put(dst_cgrp);
6284     put_css_set(cset);
6285     if (kargs->cset)
6286         put_css_set(kargs->cset);
6287     return ret;
6288 }
6289 
6290 /**
6291  * cgroup_css_set_put_fork - drop references we took during fork
6292  * @kargs: the arguments passed to create the child process
6293  *
6294  * Drop references to the prepared css_set and target cgroup if
6295  * CLONE_INTO_CGROUP was requested.
6296  */
6297 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6298     __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6299 {
6300     cgroup_threadgroup_change_end(current);
6301 
6302     if (kargs->flags & CLONE_INTO_CGROUP) {
6303         struct cgroup *cgrp = kargs->cgrp;
6304         struct css_set *cset = kargs->cset;
6305 
6306         mutex_unlock(&cgroup_mutex);
6307 
6308         if (cset) {
6309             put_css_set(cset);
6310             kargs->cset = NULL;
6311         }
6312 
6313         if (cgrp) {
6314             cgroup_put(cgrp);
6315             kargs->cgrp = NULL;
6316         }
6317     }
6318 }
6319 
6320 /**
6321  * cgroup_can_fork - called on a new task before the process is exposed
6322  * @child: the child process
6323  * @kargs: the arguments passed to create the child process
6324  *
6325  * This prepares a new css_set for the child process which the child will
6326  * be attached to in cgroup_post_fork().
6327  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6328  * callback returns an error, the fork aborts with that error code. This
6329  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6330  */
6331 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6332 {
6333     struct cgroup_subsys *ss;
6334     int i, j, ret;
6335 
6336     ret = cgroup_css_set_fork(kargs);
6337     if (ret)
6338         return ret;
6339 
6340     do_each_subsys_mask(ss, i, have_canfork_callback) {
6341         ret = ss->can_fork(child, kargs->cset);
6342         if (ret)
6343             goto out_revert;
6344     } while_each_subsys_mask();
6345 
6346     return 0;
6347 
6348 out_revert:
6349     for_each_subsys(ss, j) {
6350         if (j >= i)
6351             break;
6352         if (ss->cancel_fork)
6353             ss->cancel_fork(child, kargs->cset);
6354     }
6355 
6356     cgroup_css_set_put_fork(kargs);
6357 
6358     return ret;
6359 }
6360 
6361 /**
6362  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6363  * @child: the child process
6364  * @kargs: the arguments passed to create the child process
6365  *
6366  * This calls the cancel_fork() callbacks if a fork failed *after*
6367  * cgroup_can_fork() succeeded and cleans up references we took to
6368  * prepare a new css_set for the child process in cgroup_can_fork().
6369  */
6370 void cgroup_cancel_fork(struct task_struct *child,
6371             struct kernel_clone_args *kargs)
6372 {
6373     struct cgroup_subsys *ss;
6374     int i;
6375 
6376     for_each_subsys(ss, i)
6377         if (ss->cancel_fork)
6378             ss->cancel_fork(child, kargs->cset);
6379 
6380     cgroup_css_set_put_fork(kargs);
6381 }
6382 
6383 /**
6384  * cgroup_post_fork - finalize cgroup setup for the child process
6385  * @child: the child process
6386  * @kargs: the arguments passed to create the child process
6387  *
6388  * Attach the child process to its css_set calling the subsystem fork()
6389  * callbacks.
6390  */
6391 void cgroup_post_fork(struct task_struct *child,
6392               struct kernel_clone_args *kargs)
6393     __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6394 {
6395     unsigned long cgrp_flags = 0;
6396     bool kill = false;
6397     struct cgroup_subsys *ss;
6398     struct css_set *cset;
6399     int i;
6400 
6401     cset = kargs->cset;
6402     kargs->cset = NULL;
6403 
6404     spin_lock_irq(&css_set_lock);
6405 
6406     /* init tasks are special, only link regular threads */
6407     if (likely(child->pid)) {
6408         if (kargs->cgrp)
6409             cgrp_flags = kargs->cgrp->flags;
6410         else
6411             cgrp_flags = cset->dfl_cgrp->flags;
6412 
6413         WARN_ON_ONCE(!list_empty(&child->cg_list));
6414         cset->nr_tasks++;
6415         css_set_move_task(child, NULL, cset, false);
6416     } else {
6417         put_css_set(cset);
6418         cset = NULL;
6419     }
6420 
6421     if (!(child->flags & PF_KTHREAD)) {
6422         if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6423             /*
6424              * If the cgroup has to be frozen, the new task has
6425              * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6426              * get the task into the frozen state.
6427              */
6428             spin_lock(&child->sighand->siglock);
6429             WARN_ON_ONCE(child->frozen);
6430             child->jobctl |= JOBCTL_TRAP_FREEZE;
6431             spin_unlock(&child->sighand->siglock);
6432 
6433             /*
6434              * Calling cgroup_update_frozen() isn't required here,
6435              * because it will be called anyway a bit later from
6436              * do_freezer_trap(). So we avoid cgroup's transient
6437              * switch from the frozen state and back.
6438              */
6439         }
6440 
6441         /*
6442          * If the cgroup is to be killed notice it now and take the
6443          * child down right after we finished preparing it for
6444          * userspace.
6445          */
6446         kill = test_bit(CGRP_KILL, &cgrp_flags);
6447     }
6448 
6449     spin_unlock_irq(&css_set_lock);
6450 
6451     /*
6452      * Call ss->fork().  This must happen after @child is linked on
6453      * css_set; otherwise, @child might change state between ->fork()
6454      * and addition to css_set.
6455      */
6456     do_each_subsys_mask(ss, i, have_fork_callback) {
6457         ss->fork(child);
6458     } while_each_subsys_mask();
6459 
6460     /* Make the new cset the root_cset of the new cgroup namespace. */
6461     if (kargs->flags & CLONE_NEWCGROUP) {
6462         struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6463 
6464         get_css_set(cset);
6465         child->nsproxy->cgroup_ns->root_cset = cset;
6466         put_css_set(rcset);
6467     }
6468 
6469     /* Cgroup has to be killed so take down child immediately. */
6470     if (unlikely(kill))
6471         do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6472 
6473     cgroup_css_set_put_fork(kargs);
6474 }
6475 
6476 /**
6477  * cgroup_exit - detach cgroup from exiting task
6478  * @tsk: pointer to task_struct of exiting process
6479  *
6480  * Description: Detach cgroup from @tsk.
6481  *
6482  */
6483 void cgroup_exit(struct task_struct *tsk)
6484 {
6485     struct cgroup_subsys *ss;
6486     struct css_set *cset;
6487     int i;
6488 
6489     spin_lock_irq(&css_set_lock);
6490 
6491     WARN_ON_ONCE(list_empty(&tsk->cg_list));
6492     cset = task_css_set(tsk);
6493     css_set_move_task(tsk, cset, NULL, false);
6494     list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6495     cset->nr_tasks--;
6496 
6497     WARN_ON_ONCE(cgroup_task_frozen(tsk));
6498     if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6499              test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6500         cgroup_update_frozen(task_dfl_cgroup(tsk));
6501 
6502     spin_unlock_irq(&css_set_lock);
6503 
6504     /* see cgroup_post_fork() for details */
6505     do_each_subsys_mask(ss, i, have_exit_callback) {
6506         ss->exit(tsk);
6507     } while_each_subsys_mask();
6508 }
6509 
6510 void cgroup_release(struct task_struct *task)
6511 {
6512     struct cgroup_subsys *ss;
6513     int ssid;
6514 
6515     do_each_subsys_mask(ss, ssid, have_release_callback) {
6516         ss->release(task);
6517     } while_each_subsys_mask();
6518 
6519     spin_lock_irq(&css_set_lock);
6520     css_set_skip_task_iters(task_css_set(task), task);
6521     list_del_init(&task->cg_list);
6522     spin_unlock_irq(&css_set_lock);
6523 }
6524 
6525 void cgroup_free(struct task_struct *task)
6526 {
6527     struct css_set *cset = task_css_set(task);
6528     put_css_set(cset);
6529 }
6530 
6531 static int __init cgroup_disable(char *str)
6532 {
6533     struct cgroup_subsys *ss;
6534     char *token;
6535     int i;
6536 
6537     while ((token = strsep(&str, ",")) != NULL) {
6538         if (!*token)
6539             continue;
6540 
6541         for_each_subsys(ss, i) {
6542             if (strcmp(token, ss->name) &&
6543                 strcmp(token, ss->legacy_name))
6544                 continue;
6545 
6546             static_branch_disable(cgroup_subsys_enabled_key[i]);
6547             pr_info("Disabling %s control group subsystem\n",
6548                 ss->name);
6549         }
6550 
6551         for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6552             if (strcmp(token, cgroup_opt_feature_names[i]))
6553                 continue;
6554             cgroup_feature_disable_mask |= 1 << i;
6555             pr_info("Disabling %s control group feature\n",
6556                 cgroup_opt_feature_names[i]);
6557             break;
6558         }
6559     }
6560     return 1;
6561 }
6562 __setup("cgroup_disable=", cgroup_disable);
6563 
6564 void __init __weak enable_debug_cgroup(void) { }
6565 
6566 static int __init enable_cgroup_debug(char *str)
6567 {
6568     cgroup_debug = true;
6569     enable_debug_cgroup();
6570     return 1;
6571 }
6572 __setup("cgroup_debug", enable_cgroup_debug);
6573 
6574 /**
6575  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6576  * @dentry: directory dentry of interest
6577  * @ss: subsystem of interest
6578  *
6579  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6580  * to get the corresponding css and return it.  If such css doesn't exist
6581  * or can't be pinned, an ERR_PTR value is returned.
6582  */
6583 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6584                                struct cgroup_subsys *ss)
6585 {
6586     struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6587     struct file_system_type *s_type = dentry->d_sb->s_type;
6588     struct cgroup_subsys_state *css = NULL;
6589     struct cgroup *cgrp;
6590 
6591     /* is @dentry a cgroup dir? */
6592     if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6593         !kn || kernfs_type(kn) != KERNFS_DIR)
6594         return ERR_PTR(-EBADF);
6595 
6596     rcu_read_lock();
6597 
6598     /*
6599      * This path doesn't originate from kernfs and @kn could already
6600      * have been or be removed at any point.  @kn->priv is RCU
6601      * protected for this access.  See css_release_work_fn() for details.
6602      */
6603     cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6604     if (cgrp)
6605         css = cgroup_css(cgrp, ss);
6606 
6607     if (!css || !css_tryget_online(css))
6608         css = ERR_PTR(-ENOENT);
6609 
6610     rcu_read_unlock();
6611     return css;
6612 }
6613 
6614 /**
6615  * css_from_id - lookup css by id
6616  * @id: the cgroup id
6617  * @ss: cgroup subsys to be looked into
6618  *
6619  * Returns the css if there's valid one with @id, otherwise returns NULL.
6620  * Should be called under rcu_read_lock().
6621  */
6622 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6623 {
6624     WARN_ON_ONCE(!rcu_read_lock_held());
6625     return idr_find(&ss->css_idr, id);
6626 }
6627 
6628 /**
6629  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6630  * @path: path on the default hierarchy
6631  *
6632  * Find the cgroup at @path on the default hierarchy, increment its
6633  * reference count and return it.  Returns pointer to the found cgroup on
6634  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6635  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6636  */
6637 struct cgroup *cgroup_get_from_path(const char *path)
6638 {
6639     struct kernfs_node *kn;
6640     struct cgroup *cgrp = ERR_PTR(-ENOENT);
6641 
6642     kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6643     if (!kn)
6644         goto out;
6645 
6646     if (kernfs_type(kn) != KERNFS_DIR) {
6647         cgrp = ERR_PTR(-ENOTDIR);
6648         goto out_kernfs;
6649     }
6650 
6651     rcu_read_lock();
6652 
6653     cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6654     if (!cgrp || !cgroup_tryget(cgrp))
6655         cgrp = ERR_PTR(-ENOENT);
6656 
6657     rcu_read_unlock();
6658 
6659 out_kernfs:
6660     kernfs_put(kn);
6661 out:
6662     return cgrp;
6663 }
6664 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6665 
6666 /**
6667  * cgroup_get_from_fd - get a cgroup pointer from a fd
6668  * @fd: fd obtained by open(cgroup2_dir)
6669  *
6670  * Find the cgroup from a fd which should be obtained
6671  * by opening a cgroup directory.  Returns a pointer to the
6672  * cgroup on success. ERR_PTR is returned if the cgroup
6673  * cannot be found.
6674  */
6675 struct cgroup *cgroup_get_from_fd(int fd)
6676 {
6677     struct cgroup *cgrp;
6678     struct file *f;
6679 
6680     f = fget_raw(fd);
6681     if (!f)
6682         return ERR_PTR(-EBADF);
6683 
6684     cgrp = cgroup_get_from_file(f);
6685     fput(f);
6686     return cgrp;
6687 }
6688 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6689 
6690 static u64 power_of_ten(int power)
6691 {
6692     u64 v = 1;
6693     while (power--)
6694         v *= 10;
6695     return v;
6696 }
6697 
6698 /**
6699  * cgroup_parse_float - parse a floating number
6700  * @input: input string
6701  * @dec_shift: number of decimal digits to shift
6702  * @v: output
6703  *
6704  * Parse a decimal floating point number in @input and store the result in
6705  * @v with decimal point right shifted @dec_shift times.  For example, if
6706  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6707  * Returns 0 on success, -errno otherwise.
6708  *
6709  * There's nothing cgroup specific about this function except that it's
6710  * currently the only user.
6711  */
6712 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6713 {
6714     s64 whole, frac = 0;
6715     int fstart = 0, fend = 0, flen;
6716 
6717     if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6718         return -EINVAL;
6719     if (frac < 0)
6720         return -EINVAL;
6721 
6722     flen = fend > fstart ? fend - fstart : 0;
6723     if (flen < dec_shift)
6724         frac *= power_of_ten(dec_shift - flen);
6725     else
6726         frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6727 
6728     *v = whole * power_of_ten(dec_shift) + frac;
6729     return 0;
6730 }
6731 
6732 /*
6733  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6734  * definition in cgroup-defs.h.
6735  */
6736 #ifdef CONFIG_SOCK_CGROUP_DATA
6737 
6738 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6739 {
6740     struct cgroup *cgroup;
6741 
6742     rcu_read_lock();
6743     /* Don't associate the sock with unrelated interrupted task's cgroup. */
6744     if (in_interrupt()) {
6745         cgroup = &cgrp_dfl_root.cgrp;
6746         cgroup_get(cgroup);
6747         goto out;
6748     }
6749 
6750     while (true) {
6751         struct css_set *cset;
6752 
6753         cset = task_css_set(current);
6754         if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6755             cgroup = cset->dfl_cgrp;
6756             break;
6757         }
6758         cpu_relax();
6759     }
6760 out:
6761     skcd->cgroup = cgroup;
6762     cgroup_bpf_get(cgroup);
6763     rcu_read_unlock();
6764 }
6765 
6766 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6767 {
6768     struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6769 
6770     /*
6771      * We might be cloning a socket which is left in an empty
6772      * cgroup and the cgroup might have already been rmdir'd.
6773      * Don't use cgroup_get_live().
6774      */
6775     cgroup_get(cgrp);
6776     cgroup_bpf_get(cgrp);
6777 }
6778 
6779 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6780 {
6781     struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6782 
6783     cgroup_bpf_put(cgrp);
6784     cgroup_put(cgrp);
6785 }
6786 
6787 #endif  /* CONFIG_SOCK_CGROUP_DATA */
6788 
6789 #ifdef CONFIG_SYSFS
6790 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6791                       ssize_t size, const char *prefix)
6792 {
6793     struct cftype *cft;
6794     ssize_t ret = 0;
6795 
6796     for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6797         if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6798             continue;
6799 
6800         if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6801             continue;
6802 
6803         if (prefix)
6804             ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6805 
6806         ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6807 
6808         if (WARN_ON(ret >= size))
6809             break;
6810     }
6811 
6812     return ret;
6813 }
6814 
6815 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6816                   char *buf)
6817 {
6818     struct cgroup_subsys *ss;
6819     int ssid;
6820     ssize_t ret = 0;
6821 
6822     ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6823                      NULL);
6824 
6825     for_each_subsys(ss, ssid)
6826         ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6827                           PAGE_SIZE - ret,
6828                           cgroup_subsys_name[ssid]);
6829 
6830     return ret;
6831 }
6832 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6833 
6834 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6835                  char *buf)
6836 {
6837     return snprintf(buf, PAGE_SIZE,
6838             "nsdelegate\n"
6839             "favordynmods\n"
6840             "memory_localevents\n"
6841             "memory_recursiveprot\n");
6842 }
6843 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6844 
6845 static struct attribute *cgroup_sysfs_attrs[] = {
6846     &cgroup_delegate_attr.attr,
6847     &cgroup_features_attr.attr,
6848     NULL,
6849 };
6850 
6851 static const struct attribute_group cgroup_sysfs_attr_group = {
6852     .attrs = cgroup_sysfs_attrs,
6853     .name = "cgroup",
6854 };
6855 
6856 static int __init cgroup_sysfs_init(void)
6857 {
6858     return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6859 }
6860 subsys_initcall(cgroup_sysfs_init);
6861 
6862 #endif /* CONFIG_SYSFS */