Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 #include "cgroup-internal.h"
0003 
0004 #include <linux/ctype.h>
0005 #include <linux/kmod.h>
0006 #include <linux/sort.h>
0007 #include <linux/delay.h>
0008 #include <linux/mm.h>
0009 #include <linux/sched/signal.h>
0010 #include <linux/sched/task.h>
0011 #include <linux/magic.h>
0012 #include <linux/slab.h>
0013 #include <linux/vmalloc.h>
0014 #include <linux/delayacct.h>
0015 #include <linux/pid_namespace.h>
0016 #include <linux/cgroupstats.h>
0017 #include <linux/fs_parser.h>
0018 
0019 #include <trace/events/cgroup.h>
0020 
0021 /*
0022  * pidlists linger the following amount before being destroyed.  The goal
0023  * is avoiding frequent destruction in the middle of consecutive read calls
0024  * Expiring in the middle is a performance problem not a correctness one.
0025  * 1 sec should be enough.
0026  */
0027 #define CGROUP_PIDLIST_DESTROY_DELAY    HZ
0028 
0029 /* Controllers blocked by the commandline in v1 */
0030 static u16 cgroup_no_v1_mask;
0031 
0032 /* disable named v1 mounts */
0033 static bool cgroup_no_v1_named;
0034 
0035 /*
0036  * pidlist destructions need to be flushed on cgroup destruction.  Use a
0037  * separate workqueue as flush domain.
0038  */
0039 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
0040 
0041 /* protects cgroup_subsys->release_agent_path */
0042 static DEFINE_SPINLOCK(release_agent_path_lock);
0043 
0044 bool cgroup1_ssid_disabled(int ssid)
0045 {
0046     return cgroup_no_v1_mask & (1 << ssid);
0047 }
0048 
0049 /**
0050  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
0051  * @from: attach to all cgroups of a given task
0052  * @tsk: the task to be attached
0053  *
0054  * Return: %0 on success or a negative errno code on failure
0055  */
0056 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
0057 {
0058     struct cgroup_root *root;
0059     int retval = 0;
0060 
0061     mutex_lock(&cgroup_mutex);
0062     cpus_read_lock();
0063     percpu_down_write(&cgroup_threadgroup_rwsem);
0064     for_each_root(root) {
0065         struct cgroup *from_cgrp;
0066 
0067         spin_lock_irq(&css_set_lock);
0068         from_cgrp = task_cgroup_from_root(from, root);
0069         spin_unlock_irq(&css_set_lock);
0070 
0071         retval = cgroup_attach_task(from_cgrp, tsk, false);
0072         if (retval)
0073             break;
0074     }
0075     percpu_up_write(&cgroup_threadgroup_rwsem);
0076     cpus_read_unlock();
0077     mutex_unlock(&cgroup_mutex);
0078 
0079     return retval;
0080 }
0081 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
0082 
0083 /**
0084  * cgroup_transfer_tasks - move tasks from one cgroup to another
0085  * @to: cgroup to which the tasks will be moved
0086  * @from: cgroup in which the tasks currently reside
0087  *
0088  * Locking rules between cgroup_post_fork() and the migration path
0089  * guarantee that, if a task is forking while being migrated, the new child
0090  * is guaranteed to be either visible in the source cgroup after the
0091  * parent's migration is complete or put into the target cgroup.  No task
0092  * can slip out of migration through forking.
0093  *
0094  * Return: %0 on success or a negative errno code on failure
0095  */
0096 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
0097 {
0098     DEFINE_CGROUP_MGCTX(mgctx);
0099     struct cgrp_cset_link *link;
0100     struct css_task_iter it;
0101     struct task_struct *task;
0102     int ret;
0103 
0104     if (cgroup_on_dfl(to))
0105         return -EINVAL;
0106 
0107     ret = cgroup_migrate_vet_dst(to);
0108     if (ret)
0109         return ret;
0110 
0111     mutex_lock(&cgroup_mutex);
0112 
0113     percpu_down_write(&cgroup_threadgroup_rwsem);
0114 
0115     /* all tasks in @from are being moved, all csets are source */
0116     spin_lock_irq(&css_set_lock);
0117     list_for_each_entry(link, &from->cset_links, cset_link)
0118         cgroup_migrate_add_src(link->cset, to, &mgctx);
0119     spin_unlock_irq(&css_set_lock);
0120 
0121     ret = cgroup_migrate_prepare_dst(&mgctx);
0122     if (ret)
0123         goto out_err;
0124 
0125     /*
0126      * Migrate tasks one-by-one until @from is empty.  This fails iff
0127      * ->can_attach() fails.
0128      */
0129     do {
0130         css_task_iter_start(&from->self, 0, &it);
0131 
0132         do {
0133             task = css_task_iter_next(&it);
0134         } while (task && (task->flags & PF_EXITING));
0135 
0136         if (task)
0137             get_task_struct(task);
0138         css_task_iter_end(&it);
0139 
0140         if (task) {
0141             ret = cgroup_migrate(task, false, &mgctx);
0142             if (!ret)
0143                 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
0144             put_task_struct(task);
0145         }
0146     } while (task && !ret);
0147 out_err:
0148     cgroup_migrate_finish(&mgctx);
0149     percpu_up_write(&cgroup_threadgroup_rwsem);
0150     mutex_unlock(&cgroup_mutex);
0151     return ret;
0152 }
0153 
0154 /*
0155  * Stuff for reading the 'tasks'/'procs' files.
0156  *
0157  * Reading this file can return large amounts of data if a cgroup has
0158  * *lots* of attached tasks. So it may need several calls to read(),
0159  * but we cannot guarantee that the information we produce is correct
0160  * unless we produce it entirely atomically.
0161  *
0162  */
0163 
0164 /* which pidlist file are we talking about? */
0165 enum cgroup_filetype {
0166     CGROUP_FILE_PROCS,
0167     CGROUP_FILE_TASKS,
0168 };
0169 
0170 /*
0171  * A pidlist is a list of pids that virtually represents the contents of one
0172  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
0173  * a pair (one each for procs, tasks) for each pid namespace that's relevant
0174  * to the cgroup.
0175  */
0176 struct cgroup_pidlist {
0177     /*
0178      * used to find which pidlist is wanted. doesn't change as long as
0179      * this particular list stays in the list.
0180     */
0181     struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
0182     /* array of xids */
0183     pid_t *list;
0184     /* how many elements the above list has */
0185     int length;
0186     /* each of these stored in a list by its cgroup */
0187     struct list_head links;
0188     /* pointer to the cgroup we belong to, for list removal purposes */
0189     struct cgroup *owner;
0190     /* for delayed destruction */
0191     struct delayed_work destroy_dwork;
0192 };
0193 
0194 /*
0195  * Used to destroy all pidlists lingering waiting for destroy timer.  None
0196  * should be left afterwards.
0197  */
0198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
0199 {
0200     struct cgroup_pidlist *l, *tmp_l;
0201 
0202     mutex_lock(&cgrp->pidlist_mutex);
0203     list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
0204         mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
0205     mutex_unlock(&cgrp->pidlist_mutex);
0206 
0207     flush_workqueue(cgroup_pidlist_destroy_wq);
0208     BUG_ON(!list_empty(&cgrp->pidlists));
0209 }
0210 
0211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
0212 {
0213     struct delayed_work *dwork = to_delayed_work(work);
0214     struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
0215                         destroy_dwork);
0216     struct cgroup_pidlist *tofree = NULL;
0217 
0218     mutex_lock(&l->owner->pidlist_mutex);
0219 
0220     /*
0221      * Destroy iff we didn't get queued again.  The state won't change
0222      * as destroy_dwork can only be queued while locked.
0223      */
0224     if (!delayed_work_pending(dwork)) {
0225         list_del(&l->links);
0226         kvfree(l->list);
0227         put_pid_ns(l->key.ns);
0228         tofree = l;
0229     }
0230 
0231     mutex_unlock(&l->owner->pidlist_mutex);
0232     kfree(tofree);
0233 }
0234 
0235 /*
0236  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
0237  * Returns the number of unique elements.
0238  */
0239 static int pidlist_uniq(pid_t *list, int length)
0240 {
0241     int src, dest = 1;
0242 
0243     /*
0244      * we presume the 0th element is unique, so i starts at 1. trivial
0245      * edge cases first; no work needs to be done for either
0246      */
0247     if (length == 0 || length == 1)
0248         return length;
0249     /* src and dest walk down the list; dest counts unique elements */
0250     for (src = 1; src < length; src++) {
0251         /* find next unique element */
0252         while (list[src] == list[src-1]) {
0253             src++;
0254             if (src == length)
0255                 goto after;
0256         }
0257         /* dest always points to where the next unique element goes */
0258         list[dest] = list[src];
0259         dest++;
0260     }
0261 after:
0262     return dest;
0263 }
0264 
0265 /*
0266  * The two pid files - task and cgroup.procs - guaranteed that the result
0267  * is sorted, which forced this whole pidlist fiasco.  As pid order is
0268  * different per namespace, each namespace needs differently sorted list,
0269  * making it impossible to use, for example, single rbtree of member tasks
0270  * sorted by task pointer.  As pidlists can be fairly large, allocating one
0271  * per open file is dangerous, so cgroup had to implement shared pool of
0272  * pidlists keyed by cgroup and namespace.
0273  */
0274 static int cmppid(const void *a, const void *b)
0275 {
0276     return *(pid_t *)a - *(pid_t *)b;
0277 }
0278 
0279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
0280                           enum cgroup_filetype type)
0281 {
0282     struct cgroup_pidlist *l;
0283     /* don't need task_nsproxy() if we're looking at ourself */
0284     struct pid_namespace *ns = task_active_pid_ns(current);
0285 
0286     lockdep_assert_held(&cgrp->pidlist_mutex);
0287 
0288     list_for_each_entry(l, &cgrp->pidlists, links)
0289         if (l->key.type == type && l->key.ns == ns)
0290             return l;
0291     return NULL;
0292 }
0293 
0294 /*
0295  * find the appropriate pidlist for our purpose (given procs vs tasks)
0296  * returns with the lock on that pidlist already held, and takes care
0297  * of the use count, or returns NULL with no locks held if we're out of
0298  * memory.
0299  */
0300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
0301                         enum cgroup_filetype type)
0302 {
0303     struct cgroup_pidlist *l;
0304 
0305     lockdep_assert_held(&cgrp->pidlist_mutex);
0306 
0307     l = cgroup_pidlist_find(cgrp, type);
0308     if (l)
0309         return l;
0310 
0311     /* entry not found; create a new one */
0312     l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
0313     if (!l)
0314         return l;
0315 
0316     INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
0317     l->key.type = type;
0318     /* don't need task_nsproxy() if we're looking at ourself */
0319     l->key.ns = get_pid_ns(task_active_pid_ns(current));
0320     l->owner = cgrp;
0321     list_add(&l->links, &cgrp->pidlists);
0322     return l;
0323 }
0324 
0325 /*
0326  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
0327  */
0328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
0329                   struct cgroup_pidlist **lp)
0330 {
0331     pid_t *array;
0332     int length;
0333     int pid, n = 0; /* used for populating the array */
0334     struct css_task_iter it;
0335     struct task_struct *tsk;
0336     struct cgroup_pidlist *l;
0337 
0338     lockdep_assert_held(&cgrp->pidlist_mutex);
0339 
0340     /*
0341      * If cgroup gets more users after we read count, we won't have
0342      * enough space - tough.  This race is indistinguishable to the
0343      * caller from the case that the additional cgroup users didn't
0344      * show up until sometime later on.
0345      */
0346     length = cgroup_task_count(cgrp);
0347     array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
0348     if (!array)
0349         return -ENOMEM;
0350     /* now, populate the array */
0351     css_task_iter_start(&cgrp->self, 0, &it);
0352     while ((tsk = css_task_iter_next(&it))) {
0353         if (unlikely(n == length))
0354             break;
0355         /* get tgid or pid for procs or tasks file respectively */
0356         if (type == CGROUP_FILE_PROCS)
0357             pid = task_tgid_vnr(tsk);
0358         else
0359             pid = task_pid_vnr(tsk);
0360         if (pid > 0) /* make sure to only use valid results */
0361             array[n++] = pid;
0362     }
0363     css_task_iter_end(&it);
0364     length = n;
0365     /* now sort & (if procs) strip out duplicates */
0366     sort(array, length, sizeof(pid_t), cmppid, NULL);
0367     if (type == CGROUP_FILE_PROCS)
0368         length = pidlist_uniq(array, length);
0369 
0370     l = cgroup_pidlist_find_create(cgrp, type);
0371     if (!l) {
0372         kvfree(array);
0373         return -ENOMEM;
0374     }
0375 
0376     /* store array, freeing old if necessary */
0377     kvfree(l->list);
0378     l->list = array;
0379     l->length = length;
0380     *lp = l;
0381     return 0;
0382 }
0383 
0384 /*
0385  * seq_file methods for the tasks/procs files. The seq_file position is the
0386  * next pid to display; the seq_file iterator is a pointer to the pid
0387  * in the cgroup->l->list array.
0388  */
0389 
0390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
0391 {
0392     /*
0393      * Initially we receive a position value that corresponds to
0394      * one more than the last pid shown (or 0 on the first call or
0395      * after a seek to the start). Use a binary-search to find the
0396      * next pid to display, if any
0397      */
0398     struct kernfs_open_file *of = s->private;
0399     struct cgroup_file_ctx *ctx = of->priv;
0400     struct cgroup *cgrp = seq_css(s)->cgroup;
0401     struct cgroup_pidlist *l;
0402     enum cgroup_filetype type = seq_cft(s)->private;
0403     int index = 0, pid = *pos;
0404     int *iter, ret;
0405 
0406     mutex_lock(&cgrp->pidlist_mutex);
0407 
0408     /*
0409      * !NULL @ctx->procs1.pidlist indicates that this isn't the first
0410      * start() after open. If the matching pidlist is around, we can use
0411      * that. Look for it. Note that @ctx->procs1.pidlist can't be used
0412      * directly. It could already have been destroyed.
0413      */
0414     if (ctx->procs1.pidlist)
0415         ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
0416 
0417     /*
0418      * Either this is the first start() after open or the matching
0419      * pidlist has been destroyed inbetween.  Create a new one.
0420      */
0421     if (!ctx->procs1.pidlist) {
0422         ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
0423         if (ret)
0424             return ERR_PTR(ret);
0425     }
0426     l = ctx->procs1.pidlist;
0427 
0428     if (pid) {
0429         int end = l->length;
0430 
0431         while (index < end) {
0432             int mid = (index + end) / 2;
0433             if (l->list[mid] == pid) {
0434                 index = mid;
0435                 break;
0436             } else if (l->list[mid] <= pid)
0437                 index = mid + 1;
0438             else
0439                 end = mid;
0440         }
0441     }
0442     /* If we're off the end of the array, we're done */
0443     if (index >= l->length)
0444         return NULL;
0445     /* Update the abstract position to be the actual pid that we found */
0446     iter = l->list + index;
0447     *pos = *iter;
0448     return iter;
0449 }
0450 
0451 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
0452 {
0453     struct kernfs_open_file *of = s->private;
0454     struct cgroup_file_ctx *ctx = of->priv;
0455     struct cgroup_pidlist *l = ctx->procs1.pidlist;
0456 
0457     if (l)
0458         mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
0459                  CGROUP_PIDLIST_DESTROY_DELAY);
0460     mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
0461 }
0462 
0463 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
0464 {
0465     struct kernfs_open_file *of = s->private;
0466     struct cgroup_file_ctx *ctx = of->priv;
0467     struct cgroup_pidlist *l = ctx->procs1.pidlist;
0468     pid_t *p = v;
0469     pid_t *end = l->list + l->length;
0470     /*
0471      * Advance to the next pid in the array. If this goes off the
0472      * end, we're done
0473      */
0474     p++;
0475     if (p >= end) {
0476         (*pos)++;
0477         return NULL;
0478     } else {
0479         *pos = *p;
0480         return p;
0481     }
0482 }
0483 
0484 static int cgroup_pidlist_show(struct seq_file *s, void *v)
0485 {
0486     seq_printf(s, "%d\n", *(int *)v);
0487 
0488     return 0;
0489 }
0490 
0491 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
0492                      char *buf, size_t nbytes, loff_t off,
0493                      bool threadgroup)
0494 {
0495     struct cgroup *cgrp;
0496     struct task_struct *task;
0497     const struct cred *cred, *tcred;
0498     ssize_t ret;
0499     bool locked;
0500 
0501     cgrp = cgroup_kn_lock_live(of->kn, false);
0502     if (!cgrp)
0503         return -ENODEV;
0504 
0505     task = cgroup_procs_write_start(buf, threadgroup, &locked);
0506     ret = PTR_ERR_OR_ZERO(task);
0507     if (ret)
0508         goto out_unlock;
0509 
0510     /*
0511      * Even if we're attaching all tasks in the thread group, we only need
0512      * to check permissions on one of them. Check permissions using the
0513      * credentials from file open to protect against inherited fd attacks.
0514      */
0515     cred = of->file->f_cred;
0516     tcred = get_task_cred(task);
0517     if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
0518         !uid_eq(cred->euid, tcred->uid) &&
0519         !uid_eq(cred->euid, tcred->suid))
0520         ret = -EACCES;
0521     put_cred(tcred);
0522     if (ret)
0523         goto out_finish;
0524 
0525     ret = cgroup_attach_task(cgrp, task, threadgroup);
0526 
0527 out_finish:
0528     cgroup_procs_write_finish(task, locked);
0529 out_unlock:
0530     cgroup_kn_unlock(of->kn);
0531 
0532     return ret ?: nbytes;
0533 }
0534 
0535 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
0536                    char *buf, size_t nbytes, loff_t off)
0537 {
0538     return __cgroup1_procs_write(of, buf, nbytes, off, true);
0539 }
0540 
0541 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
0542                    char *buf, size_t nbytes, loff_t off)
0543 {
0544     return __cgroup1_procs_write(of, buf, nbytes, off, false);
0545 }
0546 
0547 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
0548                       char *buf, size_t nbytes, loff_t off)
0549 {
0550     struct cgroup *cgrp;
0551     struct cgroup_file_ctx *ctx;
0552 
0553     BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
0554 
0555     /*
0556      * Release agent gets called with all capabilities,
0557      * require capabilities to set release agent.
0558      */
0559     ctx = of->priv;
0560     if ((ctx->ns->user_ns != &init_user_ns) ||
0561         !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
0562         return -EPERM;
0563 
0564     cgrp = cgroup_kn_lock_live(of->kn, false);
0565     if (!cgrp)
0566         return -ENODEV;
0567     spin_lock(&release_agent_path_lock);
0568     strlcpy(cgrp->root->release_agent_path, strstrip(buf),
0569         sizeof(cgrp->root->release_agent_path));
0570     spin_unlock(&release_agent_path_lock);
0571     cgroup_kn_unlock(of->kn);
0572     return nbytes;
0573 }
0574 
0575 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
0576 {
0577     struct cgroup *cgrp = seq_css(seq)->cgroup;
0578 
0579     spin_lock(&release_agent_path_lock);
0580     seq_puts(seq, cgrp->root->release_agent_path);
0581     spin_unlock(&release_agent_path_lock);
0582     seq_putc(seq, '\n');
0583     return 0;
0584 }
0585 
0586 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
0587 {
0588     seq_puts(seq, "0\n");
0589     return 0;
0590 }
0591 
0592 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
0593                      struct cftype *cft)
0594 {
0595     return notify_on_release(css->cgroup);
0596 }
0597 
0598 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
0599                       struct cftype *cft, u64 val)
0600 {
0601     if (val)
0602         set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
0603     else
0604         clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
0605     return 0;
0606 }
0607 
0608 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
0609                       struct cftype *cft)
0610 {
0611     return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
0612 }
0613 
0614 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
0615                        struct cftype *cft, u64 val)
0616 {
0617     if (val)
0618         set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
0619     else
0620         clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
0621     return 0;
0622 }
0623 
0624 /* cgroup core interface files for the legacy hierarchies */
0625 struct cftype cgroup1_base_files[] = {
0626     {
0627         .name = "cgroup.procs",
0628         .seq_start = cgroup_pidlist_start,
0629         .seq_next = cgroup_pidlist_next,
0630         .seq_stop = cgroup_pidlist_stop,
0631         .seq_show = cgroup_pidlist_show,
0632         .private = CGROUP_FILE_PROCS,
0633         .write = cgroup1_procs_write,
0634     },
0635     {
0636         .name = "cgroup.clone_children",
0637         .read_u64 = cgroup_clone_children_read,
0638         .write_u64 = cgroup_clone_children_write,
0639     },
0640     {
0641         .name = "cgroup.sane_behavior",
0642         .flags = CFTYPE_ONLY_ON_ROOT,
0643         .seq_show = cgroup_sane_behavior_show,
0644     },
0645     {
0646         .name = "tasks",
0647         .seq_start = cgroup_pidlist_start,
0648         .seq_next = cgroup_pidlist_next,
0649         .seq_stop = cgroup_pidlist_stop,
0650         .seq_show = cgroup_pidlist_show,
0651         .private = CGROUP_FILE_TASKS,
0652         .write = cgroup1_tasks_write,
0653     },
0654     {
0655         .name = "notify_on_release",
0656         .read_u64 = cgroup_read_notify_on_release,
0657         .write_u64 = cgroup_write_notify_on_release,
0658     },
0659     {
0660         .name = "release_agent",
0661         .flags = CFTYPE_ONLY_ON_ROOT,
0662         .seq_show = cgroup_release_agent_show,
0663         .write = cgroup_release_agent_write,
0664         .max_write_len = PATH_MAX - 1,
0665     },
0666     { } /* terminate */
0667 };
0668 
0669 /* Display information about each subsystem and each hierarchy */
0670 int proc_cgroupstats_show(struct seq_file *m, void *v)
0671 {
0672     struct cgroup_subsys *ss;
0673     int i;
0674 
0675     seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
0676     /*
0677      * Grab the subsystems state racily. No need to add avenue to
0678      * cgroup_mutex contention.
0679      */
0680 
0681     for_each_subsys(ss, i)
0682         seq_printf(m, "%s\t%d\t%d\t%d\n",
0683                ss->legacy_name, ss->root->hierarchy_id,
0684                atomic_read(&ss->root->nr_cgrps),
0685                cgroup_ssid_enabled(i));
0686 
0687     return 0;
0688 }
0689 
0690 /**
0691  * cgroupstats_build - build and fill cgroupstats
0692  * @stats: cgroupstats to fill information into
0693  * @dentry: A dentry entry belonging to the cgroup for which stats have
0694  * been requested.
0695  *
0696  * Build and fill cgroupstats so that taskstats can export it to user
0697  * space.
0698  *
0699  * Return: %0 on success or a negative errno code on failure
0700  */
0701 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
0702 {
0703     struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
0704     struct cgroup *cgrp;
0705     struct css_task_iter it;
0706     struct task_struct *tsk;
0707 
0708     /* it should be kernfs_node belonging to cgroupfs and is a directory */
0709     if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
0710         kernfs_type(kn) != KERNFS_DIR)
0711         return -EINVAL;
0712 
0713     /*
0714      * We aren't being called from kernfs and there's no guarantee on
0715      * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
0716      * @kn->priv is RCU safe.  Let's do the RCU dancing.
0717      */
0718     rcu_read_lock();
0719     cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
0720     if (!cgrp || !cgroup_tryget(cgrp)) {
0721         rcu_read_unlock();
0722         return -ENOENT;
0723     }
0724     rcu_read_unlock();
0725 
0726     css_task_iter_start(&cgrp->self, 0, &it);
0727     while ((tsk = css_task_iter_next(&it))) {
0728         switch (READ_ONCE(tsk->__state)) {
0729         case TASK_RUNNING:
0730             stats->nr_running++;
0731             break;
0732         case TASK_INTERRUPTIBLE:
0733             stats->nr_sleeping++;
0734             break;
0735         case TASK_UNINTERRUPTIBLE:
0736             stats->nr_uninterruptible++;
0737             break;
0738         case TASK_STOPPED:
0739             stats->nr_stopped++;
0740             break;
0741         default:
0742             if (tsk->in_iowait)
0743                 stats->nr_io_wait++;
0744             break;
0745         }
0746     }
0747     css_task_iter_end(&it);
0748 
0749     cgroup_put(cgrp);
0750     return 0;
0751 }
0752 
0753 void cgroup1_check_for_release(struct cgroup *cgrp)
0754 {
0755     if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
0756         !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
0757         schedule_work(&cgrp->release_agent_work);
0758 }
0759 
0760 /*
0761  * Notify userspace when a cgroup is released, by running the
0762  * configured release agent with the name of the cgroup (path
0763  * relative to the root of cgroup file system) as the argument.
0764  *
0765  * Most likely, this user command will try to rmdir this cgroup.
0766  *
0767  * This races with the possibility that some other task will be
0768  * attached to this cgroup before it is removed, or that some other
0769  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
0770  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
0771  * unused, and this cgroup will be reprieved from its death sentence,
0772  * to continue to serve a useful existence.  Next time it's released,
0773  * we will get notified again, if it still has 'notify_on_release' set.
0774  *
0775  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
0776  * means only wait until the task is successfully execve()'d.  The
0777  * separate release agent task is forked by call_usermodehelper(),
0778  * then control in this thread returns here, without waiting for the
0779  * release agent task.  We don't bother to wait because the caller of
0780  * this routine has no use for the exit status of the release agent
0781  * task, so no sense holding our caller up for that.
0782  */
0783 void cgroup1_release_agent(struct work_struct *work)
0784 {
0785     struct cgroup *cgrp =
0786         container_of(work, struct cgroup, release_agent_work);
0787     char *pathbuf, *agentbuf;
0788     char *argv[3], *envp[3];
0789     int ret;
0790 
0791     /* snoop agent path and exit early if empty */
0792     if (!cgrp->root->release_agent_path[0])
0793         return;
0794 
0795     /* prepare argument buffers */
0796     pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
0797     agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
0798     if (!pathbuf || !agentbuf)
0799         goto out_free;
0800 
0801     spin_lock(&release_agent_path_lock);
0802     strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
0803     spin_unlock(&release_agent_path_lock);
0804     if (!agentbuf[0])
0805         goto out_free;
0806 
0807     ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
0808     if (ret < 0 || ret >= PATH_MAX)
0809         goto out_free;
0810 
0811     argv[0] = agentbuf;
0812     argv[1] = pathbuf;
0813     argv[2] = NULL;
0814 
0815     /* minimal command environment */
0816     envp[0] = "HOME=/";
0817     envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
0818     envp[2] = NULL;
0819 
0820     call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
0821 out_free:
0822     kfree(agentbuf);
0823     kfree(pathbuf);
0824 }
0825 
0826 /*
0827  * cgroup_rename - Only allow simple rename of directories in place.
0828  */
0829 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
0830               const char *new_name_str)
0831 {
0832     struct cgroup *cgrp = kn->priv;
0833     int ret;
0834 
0835     /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
0836     if (strchr(new_name_str, '\n'))
0837         return -EINVAL;
0838 
0839     if (kernfs_type(kn) != KERNFS_DIR)
0840         return -ENOTDIR;
0841     if (kn->parent != new_parent)
0842         return -EIO;
0843 
0844     /*
0845      * We're gonna grab cgroup_mutex which nests outside kernfs
0846      * active_ref.  kernfs_rename() doesn't require active_ref
0847      * protection.  Break them before grabbing cgroup_mutex.
0848      */
0849     kernfs_break_active_protection(new_parent);
0850     kernfs_break_active_protection(kn);
0851 
0852     mutex_lock(&cgroup_mutex);
0853 
0854     ret = kernfs_rename(kn, new_parent, new_name_str);
0855     if (!ret)
0856         TRACE_CGROUP_PATH(rename, cgrp);
0857 
0858     mutex_unlock(&cgroup_mutex);
0859 
0860     kernfs_unbreak_active_protection(kn);
0861     kernfs_unbreak_active_protection(new_parent);
0862     return ret;
0863 }
0864 
0865 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
0866 {
0867     struct cgroup_root *root = cgroup_root_from_kf(kf_root);
0868     struct cgroup_subsys *ss;
0869     int ssid;
0870 
0871     for_each_subsys(ss, ssid)
0872         if (root->subsys_mask & (1 << ssid))
0873             seq_show_option(seq, ss->legacy_name, NULL);
0874     if (root->flags & CGRP_ROOT_NOPREFIX)
0875         seq_puts(seq, ",noprefix");
0876     if (root->flags & CGRP_ROOT_XATTR)
0877         seq_puts(seq, ",xattr");
0878     if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
0879         seq_puts(seq, ",cpuset_v2_mode");
0880     if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
0881         seq_puts(seq, ",favordynmods");
0882 
0883     spin_lock(&release_agent_path_lock);
0884     if (strlen(root->release_agent_path))
0885         seq_show_option(seq, "release_agent",
0886                 root->release_agent_path);
0887     spin_unlock(&release_agent_path_lock);
0888 
0889     if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
0890         seq_puts(seq, ",clone_children");
0891     if (strlen(root->name))
0892         seq_show_option(seq, "name", root->name);
0893     return 0;
0894 }
0895 
0896 enum cgroup1_param {
0897     Opt_all,
0898     Opt_clone_children,
0899     Opt_cpuset_v2_mode,
0900     Opt_name,
0901     Opt_none,
0902     Opt_noprefix,
0903     Opt_release_agent,
0904     Opt_xattr,
0905     Opt_favordynmods,
0906     Opt_nofavordynmods,
0907 };
0908 
0909 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
0910     fsparam_flag  ("all",       Opt_all),
0911     fsparam_flag  ("clone_children", Opt_clone_children),
0912     fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
0913     fsparam_string("name",      Opt_name),
0914     fsparam_flag  ("none",      Opt_none),
0915     fsparam_flag  ("noprefix",  Opt_noprefix),
0916     fsparam_string("release_agent", Opt_release_agent),
0917     fsparam_flag  ("xattr",     Opt_xattr),
0918     fsparam_flag  ("favordynmods",  Opt_favordynmods),
0919     fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
0920     {}
0921 };
0922 
0923 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
0924 {
0925     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
0926     struct cgroup_subsys *ss;
0927     struct fs_parse_result result;
0928     int opt, i;
0929 
0930     opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
0931     if (opt == -ENOPARAM) {
0932         int ret;
0933 
0934         ret = vfs_parse_fs_param_source(fc, param);
0935         if (ret != -ENOPARAM)
0936             return ret;
0937         for_each_subsys(ss, i) {
0938             if (strcmp(param->key, ss->legacy_name))
0939                 continue;
0940             if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
0941                 return invalfc(fc, "Disabled controller '%s'",
0942                            param->key);
0943             ctx->subsys_mask |= (1 << i);
0944             return 0;
0945         }
0946         return invalfc(fc, "Unknown subsys name '%s'", param->key);
0947     }
0948     if (opt < 0)
0949         return opt;
0950 
0951     switch (opt) {
0952     case Opt_none:
0953         /* Explicitly have no subsystems */
0954         ctx->none = true;
0955         break;
0956     case Opt_all:
0957         ctx->all_ss = true;
0958         break;
0959     case Opt_noprefix:
0960         ctx->flags |= CGRP_ROOT_NOPREFIX;
0961         break;
0962     case Opt_clone_children:
0963         ctx->cpuset_clone_children = true;
0964         break;
0965     case Opt_cpuset_v2_mode:
0966         ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
0967         break;
0968     case Opt_xattr:
0969         ctx->flags |= CGRP_ROOT_XATTR;
0970         break;
0971     case Opt_favordynmods:
0972         ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
0973         break;
0974     case Opt_nofavordynmods:
0975         ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
0976         break;
0977     case Opt_release_agent:
0978         /* Specifying two release agents is forbidden */
0979         if (ctx->release_agent)
0980             return invalfc(fc, "release_agent respecified");
0981         /*
0982          * Release agent gets called with all capabilities,
0983          * require capabilities to set release agent.
0984          */
0985         if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
0986             return invalfc(fc, "Setting release_agent not allowed");
0987         ctx->release_agent = param->string;
0988         param->string = NULL;
0989         break;
0990     case Opt_name:
0991         /* blocked by boot param? */
0992         if (cgroup_no_v1_named)
0993             return -ENOENT;
0994         /* Can't specify an empty name */
0995         if (!param->size)
0996             return invalfc(fc, "Empty name");
0997         if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
0998             return invalfc(fc, "Name too long");
0999         /* Must match [\w.-]+ */
1000         for (i = 0; i < param->size; i++) {
1001             char c = param->string[i];
1002             if (isalnum(c))
1003                 continue;
1004             if ((c == '.') || (c == '-') || (c == '_'))
1005                 continue;
1006             return invalfc(fc, "Invalid name");
1007         }
1008         /* Specifying two names is forbidden */
1009         if (ctx->name)
1010             return invalfc(fc, "name respecified");
1011         ctx->name = param->string;
1012         param->string = NULL;
1013         break;
1014     }
1015     return 0;
1016 }
1017 
1018 static int check_cgroupfs_options(struct fs_context *fc)
1019 {
1020     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1021     u16 mask = U16_MAX;
1022     u16 enabled = 0;
1023     struct cgroup_subsys *ss;
1024     int i;
1025 
1026 #ifdef CONFIG_CPUSETS
1027     mask = ~((u16)1 << cpuset_cgrp_id);
1028 #endif
1029     for_each_subsys(ss, i)
1030         if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1031             enabled |= 1 << i;
1032 
1033     ctx->subsys_mask &= enabled;
1034 
1035     /*
1036      * In absence of 'none', 'name=' and subsystem name options,
1037      * let's default to 'all'.
1038      */
1039     if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1040         ctx->all_ss = true;
1041 
1042     if (ctx->all_ss) {
1043         /* Mutually exclusive option 'all' + subsystem name */
1044         if (ctx->subsys_mask)
1045             return invalfc(fc, "subsys name conflicts with all");
1046         /* 'all' => select all the subsystems */
1047         ctx->subsys_mask = enabled;
1048     }
1049 
1050     /*
1051      * We either have to specify by name or by subsystems. (So all
1052      * empty hierarchies must have a name).
1053      */
1054     if (!ctx->subsys_mask && !ctx->name)
1055         return invalfc(fc, "Need name or subsystem set");
1056 
1057     /*
1058      * Option noprefix was introduced just for backward compatibility
1059      * with the old cpuset, so we allow noprefix only if mounting just
1060      * the cpuset subsystem.
1061      */
1062     if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1063         return invalfc(fc, "noprefix used incorrectly");
1064 
1065     /* Can't specify "none" and some subsystems */
1066     if (ctx->subsys_mask && ctx->none)
1067         return invalfc(fc, "none used incorrectly");
1068 
1069     return 0;
1070 }
1071 
1072 int cgroup1_reconfigure(struct fs_context *fc)
1073 {
1074     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1075     struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1076     struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1077     int ret = 0;
1078     u16 added_mask, removed_mask;
1079 
1080     cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1081 
1082     /* See what subsystems are wanted */
1083     ret = check_cgroupfs_options(fc);
1084     if (ret)
1085         goto out_unlock;
1086 
1087     if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1088         pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1089             task_tgid_nr(current), current->comm);
1090 
1091     added_mask = ctx->subsys_mask & ~root->subsys_mask;
1092     removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1093 
1094     /* Don't allow flags or name to change at remount */
1095     if ((ctx->flags ^ root->flags) ||
1096         (ctx->name && strcmp(ctx->name, root->name))) {
1097         errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1098                ctx->flags, ctx->name ?: "", root->flags, root->name);
1099         ret = -EINVAL;
1100         goto out_unlock;
1101     }
1102 
1103     /* remounting is not allowed for populated hierarchies */
1104     if (!list_empty(&root->cgrp.self.children)) {
1105         ret = -EBUSY;
1106         goto out_unlock;
1107     }
1108 
1109     ret = rebind_subsystems(root, added_mask);
1110     if (ret)
1111         goto out_unlock;
1112 
1113     WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1114 
1115     if (ctx->release_agent) {
1116         spin_lock(&release_agent_path_lock);
1117         strcpy(root->release_agent_path, ctx->release_agent);
1118         spin_unlock(&release_agent_path_lock);
1119     }
1120 
1121     trace_cgroup_remount(root);
1122 
1123  out_unlock:
1124     mutex_unlock(&cgroup_mutex);
1125     return ret;
1126 }
1127 
1128 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1129     .rename         = cgroup1_rename,
1130     .show_options       = cgroup1_show_options,
1131     .mkdir          = cgroup_mkdir,
1132     .rmdir          = cgroup_rmdir,
1133     .show_path      = cgroup_show_path,
1134 };
1135 
1136 /*
1137  * The guts of cgroup1 mount - find or create cgroup_root to use.
1138  * Called with cgroup_mutex held; returns 0 on success, -E... on
1139  * error and positive - in case when the candidate is busy dying.
1140  * On success it stashes a reference to cgroup_root into given
1141  * cgroup_fs_context; that reference is *NOT* counting towards the
1142  * cgroup_root refcount.
1143  */
1144 static int cgroup1_root_to_use(struct fs_context *fc)
1145 {
1146     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1147     struct cgroup_root *root;
1148     struct cgroup_subsys *ss;
1149     int i, ret;
1150 
1151     /* First find the desired set of subsystems */
1152     ret = check_cgroupfs_options(fc);
1153     if (ret)
1154         return ret;
1155 
1156     /*
1157      * Destruction of cgroup root is asynchronous, so subsystems may
1158      * still be dying after the previous unmount.  Let's drain the
1159      * dying subsystems.  We just need to ensure that the ones
1160      * unmounted previously finish dying and don't care about new ones
1161      * starting.  Testing ref liveliness is good enough.
1162      */
1163     for_each_subsys(ss, i) {
1164         if (!(ctx->subsys_mask & (1 << i)) ||
1165             ss->root == &cgrp_dfl_root)
1166             continue;
1167 
1168         if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1169             return 1;   /* restart */
1170         cgroup_put(&ss->root->cgrp);
1171     }
1172 
1173     for_each_root(root) {
1174         bool name_match = false;
1175 
1176         if (root == &cgrp_dfl_root)
1177             continue;
1178 
1179         /*
1180          * If we asked for a name then it must match.  Also, if
1181          * name matches but sybsys_mask doesn't, we should fail.
1182          * Remember whether name matched.
1183          */
1184         if (ctx->name) {
1185             if (strcmp(ctx->name, root->name))
1186                 continue;
1187             name_match = true;
1188         }
1189 
1190         /*
1191          * If we asked for subsystems (or explicitly for no
1192          * subsystems) then they must match.
1193          */
1194         if ((ctx->subsys_mask || ctx->none) &&
1195             (ctx->subsys_mask != root->subsys_mask)) {
1196             if (!name_match)
1197                 continue;
1198             return -EBUSY;
1199         }
1200 
1201         if (root->flags ^ ctx->flags)
1202             pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1203 
1204         ctx->root = root;
1205         return 0;
1206     }
1207 
1208     /*
1209      * No such thing, create a new one.  name= matching without subsys
1210      * specification is allowed for already existing hierarchies but we
1211      * can't create new one without subsys specification.
1212      */
1213     if (!ctx->subsys_mask && !ctx->none)
1214         return invalfc(fc, "No subsys list or none specified");
1215 
1216     /* Hierarchies may only be created in the initial cgroup namespace. */
1217     if (ctx->ns != &init_cgroup_ns)
1218         return -EPERM;
1219 
1220     root = kzalloc(sizeof(*root), GFP_KERNEL);
1221     if (!root)
1222         return -ENOMEM;
1223 
1224     ctx->root = root;
1225     init_cgroup_root(ctx);
1226 
1227     ret = cgroup_setup_root(root, ctx->subsys_mask);
1228     if (!ret)
1229         cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1230     else
1231         cgroup_free_root(root);
1232 
1233     return ret;
1234 }
1235 
1236 int cgroup1_get_tree(struct fs_context *fc)
1237 {
1238     struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1239     int ret;
1240 
1241     /* Check if the caller has permission to mount. */
1242     if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1243         return -EPERM;
1244 
1245     cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1246 
1247     ret = cgroup1_root_to_use(fc);
1248     if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1249         ret = 1;    /* restart */
1250 
1251     mutex_unlock(&cgroup_mutex);
1252 
1253     if (!ret)
1254         ret = cgroup_do_get_tree(fc);
1255 
1256     if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1257         fc_drop_locked(fc);
1258         ret = 1;
1259     }
1260 
1261     if (unlikely(ret > 0)) {
1262         msleep(10);
1263         return restart_syscall();
1264     }
1265     return ret;
1266 }
1267 
1268 static int __init cgroup1_wq_init(void)
1269 {
1270     /*
1271      * Used to destroy pidlists and separate to serve as flush domain.
1272      * Cap @max_active to 1 too.
1273      */
1274     cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1275                             0, 1);
1276     BUG_ON(!cgroup_pidlist_destroy_wq);
1277     return 0;
1278 }
1279 core_initcall(cgroup1_wq_init);
1280 
1281 static int __init cgroup_no_v1(char *str)
1282 {
1283     struct cgroup_subsys *ss;
1284     char *token;
1285     int i;
1286 
1287     while ((token = strsep(&str, ",")) != NULL) {
1288         if (!*token)
1289             continue;
1290 
1291         if (!strcmp(token, "all")) {
1292             cgroup_no_v1_mask = U16_MAX;
1293             continue;
1294         }
1295 
1296         if (!strcmp(token, "named")) {
1297             cgroup_no_v1_named = true;
1298             continue;
1299         }
1300 
1301         for_each_subsys(ss, i) {
1302             if (strcmp(token, ss->name) &&
1303                 strcmp(token, ss->legacy_name))
1304                 continue;
1305 
1306             cgroup_no_v1_mask |= 1 << i;
1307         }
1308     }
1309     return 1;
1310 }
1311 __setup("cgroup_no_v1=", cgroup_no_v1);