Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
0003  */
0004 #include <linux/bpf.h>
0005 #include <linux/btf.h>
0006 #include <linux/bpf-cgroup.h>
0007 #include <linux/rcupdate.h>
0008 #include <linux/random.h>
0009 #include <linux/smp.h>
0010 #include <linux/topology.h>
0011 #include <linux/ktime.h>
0012 #include <linux/sched.h>
0013 #include <linux/uidgid.h>
0014 #include <linux/filter.h>
0015 #include <linux/ctype.h>
0016 #include <linux/jiffies.h>
0017 #include <linux/pid_namespace.h>
0018 #include <linux/proc_ns.h>
0019 #include <linux/security.h>
0020 #include <linux/btf_ids.h>
0021 
0022 #include "../../lib/kstrtox.h"
0023 
0024 /* If kernel subsystem is allowing eBPF programs to call this function,
0025  * inside its own verifier_ops->get_func_proto() callback it should return
0026  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
0027  *
0028  * Different map implementations will rely on rcu in map methods
0029  * lookup/update/delete, therefore eBPF programs must run under rcu lock
0030  * if program is allowed to access maps, so check rcu_read_lock_held in
0031  * all three functions.
0032  */
0033 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
0034 {
0035     WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0036     return (unsigned long) map->ops->map_lookup_elem(map, key);
0037 }
0038 
0039 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
0040     .func       = bpf_map_lookup_elem,
0041     .gpl_only   = false,
0042     .pkt_access = true,
0043     .ret_type   = RET_PTR_TO_MAP_VALUE_OR_NULL,
0044     .arg1_type  = ARG_CONST_MAP_PTR,
0045     .arg2_type  = ARG_PTR_TO_MAP_KEY,
0046 };
0047 
0048 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
0049        void *, value, u64, flags)
0050 {
0051     WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0052     return map->ops->map_update_elem(map, key, value, flags);
0053 }
0054 
0055 const struct bpf_func_proto bpf_map_update_elem_proto = {
0056     .func       = bpf_map_update_elem,
0057     .gpl_only   = false,
0058     .pkt_access = true,
0059     .ret_type   = RET_INTEGER,
0060     .arg1_type  = ARG_CONST_MAP_PTR,
0061     .arg2_type  = ARG_PTR_TO_MAP_KEY,
0062     .arg3_type  = ARG_PTR_TO_MAP_VALUE,
0063     .arg4_type  = ARG_ANYTHING,
0064 };
0065 
0066 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
0067 {
0068     WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0069     return map->ops->map_delete_elem(map, key);
0070 }
0071 
0072 const struct bpf_func_proto bpf_map_delete_elem_proto = {
0073     .func       = bpf_map_delete_elem,
0074     .gpl_only   = false,
0075     .pkt_access = true,
0076     .ret_type   = RET_INTEGER,
0077     .arg1_type  = ARG_CONST_MAP_PTR,
0078     .arg2_type  = ARG_PTR_TO_MAP_KEY,
0079 };
0080 
0081 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
0082 {
0083     return map->ops->map_push_elem(map, value, flags);
0084 }
0085 
0086 const struct bpf_func_proto bpf_map_push_elem_proto = {
0087     .func       = bpf_map_push_elem,
0088     .gpl_only   = false,
0089     .pkt_access = true,
0090     .ret_type   = RET_INTEGER,
0091     .arg1_type  = ARG_CONST_MAP_PTR,
0092     .arg2_type  = ARG_PTR_TO_MAP_VALUE,
0093     .arg3_type  = ARG_ANYTHING,
0094 };
0095 
0096 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
0097 {
0098     return map->ops->map_pop_elem(map, value);
0099 }
0100 
0101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
0102     .func       = bpf_map_pop_elem,
0103     .gpl_only   = false,
0104     .ret_type   = RET_INTEGER,
0105     .arg1_type  = ARG_CONST_MAP_PTR,
0106     .arg2_type  = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
0107 };
0108 
0109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
0110 {
0111     return map->ops->map_peek_elem(map, value);
0112 }
0113 
0114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
0115     .func       = bpf_map_peek_elem,
0116     .gpl_only   = false,
0117     .ret_type   = RET_INTEGER,
0118     .arg1_type  = ARG_CONST_MAP_PTR,
0119     .arg2_type  = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
0120 };
0121 
0122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
0123 {
0124     WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0125     return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
0126 }
0127 
0128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
0129     .func       = bpf_map_lookup_percpu_elem,
0130     .gpl_only   = false,
0131     .pkt_access = true,
0132     .ret_type   = RET_PTR_TO_MAP_VALUE_OR_NULL,
0133     .arg1_type  = ARG_CONST_MAP_PTR,
0134     .arg2_type  = ARG_PTR_TO_MAP_KEY,
0135     .arg3_type  = ARG_ANYTHING,
0136 };
0137 
0138 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
0139     .func       = bpf_user_rnd_u32,
0140     .gpl_only   = false,
0141     .ret_type   = RET_INTEGER,
0142 };
0143 
0144 BPF_CALL_0(bpf_get_smp_processor_id)
0145 {
0146     return smp_processor_id();
0147 }
0148 
0149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
0150     .func       = bpf_get_smp_processor_id,
0151     .gpl_only   = false,
0152     .ret_type   = RET_INTEGER,
0153 };
0154 
0155 BPF_CALL_0(bpf_get_numa_node_id)
0156 {
0157     return numa_node_id();
0158 }
0159 
0160 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
0161     .func       = bpf_get_numa_node_id,
0162     .gpl_only   = false,
0163     .ret_type   = RET_INTEGER,
0164 };
0165 
0166 BPF_CALL_0(bpf_ktime_get_ns)
0167 {
0168     /* NMI safe access to clock monotonic */
0169     return ktime_get_mono_fast_ns();
0170 }
0171 
0172 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
0173     .func       = bpf_ktime_get_ns,
0174     .gpl_only   = false,
0175     .ret_type   = RET_INTEGER,
0176 };
0177 
0178 BPF_CALL_0(bpf_ktime_get_boot_ns)
0179 {
0180     /* NMI safe access to clock boottime */
0181     return ktime_get_boot_fast_ns();
0182 }
0183 
0184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
0185     .func       = bpf_ktime_get_boot_ns,
0186     .gpl_only   = false,
0187     .ret_type   = RET_INTEGER,
0188 };
0189 
0190 BPF_CALL_0(bpf_ktime_get_coarse_ns)
0191 {
0192     return ktime_get_coarse_ns();
0193 }
0194 
0195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
0196     .func       = bpf_ktime_get_coarse_ns,
0197     .gpl_only   = false,
0198     .ret_type   = RET_INTEGER,
0199 };
0200 
0201 BPF_CALL_0(bpf_get_current_pid_tgid)
0202 {
0203     struct task_struct *task = current;
0204 
0205     if (unlikely(!task))
0206         return -EINVAL;
0207 
0208     return (u64) task->tgid << 32 | task->pid;
0209 }
0210 
0211 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
0212     .func       = bpf_get_current_pid_tgid,
0213     .gpl_only   = false,
0214     .ret_type   = RET_INTEGER,
0215 };
0216 
0217 BPF_CALL_0(bpf_get_current_uid_gid)
0218 {
0219     struct task_struct *task = current;
0220     kuid_t uid;
0221     kgid_t gid;
0222 
0223     if (unlikely(!task))
0224         return -EINVAL;
0225 
0226     current_uid_gid(&uid, &gid);
0227     return (u64) from_kgid(&init_user_ns, gid) << 32 |
0228              from_kuid(&init_user_ns, uid);
0229 }
0230 
0231 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
0232     .func       = bpf_get_current_uid_gid,
0233     .gpl_only   = false,
0234     .ret_type   = RET_INTEGER,
0235 };
0236 
0237 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
0238 {
0239     struct task_struct *task = current;
0240 
0241     if (unlikely(!task))
0242         goto err_clear;
0243 
0244     /* Verifier guarantees that size > 0 */
0245     strscpy(buf, task->comm, size);
0246     return 0;
0247 err_clear:
0248     memset(buf, 0, size);
0249     return -EINVAL;
0250 }
0251 
0252 const struct bpf_func_proto bpf_get_current_comm_proto = {
0253     .func       = bpf_get_current_comm,
0254     .gpl_only   = false,
0255     .ret_type   = RET_INTEGER,
0256     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0257     .arg2_type  = ARG_CONST_SIZE,
0258 };
0259 
0260 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
0261 
0262 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
0263 {
0264     arch_spinlock_t *l = (void *)lock;
0265     union {
0266         __u32 val;
0267         arch_spinlock_t lock;
0268     } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
0269 
0270     compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
0271     BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
0272     BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
0273     arch_spin_lock(l);
0274 }
0275 
0276 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
0277 {
0278     arch_spinlock_t *l = (void *)lock;
0279 
0280     arch_spin_unlock(l);
0281 }
0282 
0283 #else
0284 
0285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
0286 {
0287     atomic_t *l = (void *)lock;
0288 
0289     BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
0290     do {
0291         atomic_cond_read_relaxed(l, !VAL);
0292     } while (atomic_xchg(l, 1));
0293 }
0294 
0295 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
0296 {
0297     atomic_t *l = (void *)lock;
0298 
0299     atomic_set_release(l, 0);
0300 }
0301 
0302 #endif
0303 
0304 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
0305 
0306 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
0307 {
0308     unsigned long flags;
0309 
0310     local_irq_save(flags);
0311     __bpf_spin_lock(lock);
0312     __this_cpu_write(irqsave_flags, flags);
0313 }
0314 
0315 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
0316 {
0317     __bpf_spin_lock_irqsave(lock);
0318     return 0;
0319 }
0320 
0321 const struct bpf_func_proto bpf_spin_lock_proto = {
0322     .func       = bpf_spin_lock,
0323     .gpl_only   = false,
0324     .ret_type   = RET_VOID,
0325     .arg1_type  = ARG_PTR_TO_SPIN_LOCK,
0326 };
0327 
0328 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
0329 {
0330     unsigned long flags;
0331 
0332     flags = __this_cpu_read(irqsave_flags);
0333     __bpf_spin_unlock(lock);
0334     local_irq_restore(flags);
0335 }
0336 
0337 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
0338 {
0339     __bpf_spin_unlock_irqrestore(lock);
0340     return 0;
0341 }
0342 
0343 const struct bpf_func_proto bpf_spin_unlock_proto = {
0344     .func       = bpf_spin_unlock,
0345     .gpl_only   = false,
0346     .ret_type   = RET_VOID,
0347     .arg1_type  = ARG_PTR_TO_SPIN_LOCK,
0348 };
0349 
0350 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
0351                bool lock_src)
0352 {
0353     struct bpf_spin_lock *lock;
0354 
0355     if (lock_src)
0356         lock = src + map->spin_lock_off;
0357     else
0358         lock = dst + map->spin_lock_off;
0359     preempt_disable();
0360     __bpf_spin_lock_irqsave(lock);
0361     copy_map_value(map, dst, src);
0362     __bpf_spin_unlock_irqrestore(lock);
0363     preempt_enable();
0364 }
0365 
0366 BPF_CALL_0(bpf_jiffies64)
0367 {
0368     return get_jiffies_64();
0369 }
0370 
0371 const struct bpf_func_proto bpf_jiffies64_proto = {
0372     .func       = bpf_jiffies64,
0373     .gpl_only   = false,
0374     .ret_type   = RET_INTEGER,
0375 };
0376 
0377 #ifdef CONFIG_CGROUPS
0378 BPF_CALL_0(bpf_get_current_cgroup_id)
0379 {
0380     struct cgroup *cgrp;
0381     u64 cgrp_id;
0382 
0383     rcu_read_lock();
0384     cgrp = task_dfl_cgroup(current);
0385     cgrp_id = cgroup_id(cgrp);
0386     rcu_read_unlock();
0387 
0388     return cgrp_id;
0389 }
0390 
0391 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
0392     .func       = bpf_get_current_cgroup_id,
0393     .gpl_only   = false,
0394     .ret_type   = RET_INTEGER,
0395 };
0396 
0397 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
0398 {
0399     struct cgroup *cgrp;
0400     struct cgroup *ancestor;
0401     u64 cgrp_id;
0402 
0403     rcu_read_lock();
0404     cgrp = task_dfl_cgroup(current);
0405     ancestor = cgroup_ancestor(cgrp, ancestor_level);
0406     cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
0407     rcu_read_unlock();
0408 
0409     return cgrp_id;
0410 }
0411 
0412 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
0413     .func       = bpf_get_current_ancestor_cgroup_id,
0414     .gpl_only   = false,
0415     .ret_type   = RET_INTEGER,
0416     .arg1_type  = ARG_ANYTHING,
0417 };
0418 
0419 #ifdef CONFIG_CGROUP_BPF
0420 
0421 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
0422 {
0423     /* flags argument is not used now,
0424      * but provides an ability to extend the API.
0425      * verifier checks that its value is correct.
0426      */
0427     enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
0428     struct bpf_cgroup_storage *storage;
0429     struct bpf_cg_run_ctx *ctx;
0430     void *ptr;
0431 
0432     /* get current cgroup storage from BPF run context */
0433     ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
0434     storage = ctx->prog_item->cgroup_storage[stype];
0435 
0436     if (stype == BPF_CGROUP_STORAGE_SHARED)
0437         ptr = &READ_ONCE(storage->buf)->data[0];
0438     else
0439         ptr = this_cpu_ptr(storage->percpu_buf);
0440 
0441     return (unsigned long)ptr;
0442 }
0443 
0444 const struct bpf_func_proto bpf_get_local_storage_proto = {
0445     .func       = bpf_get_local_storage,
0446     .gpl_only   = false,
0447     .ret_type   = RET_PTR_TO_MAP_VALUE,
0448     .arg1_type  = ARG_CONST_MAP_PTR,
0449     .arg2_type  = ARG_ANYTHING,
0450 };
0451 #endif
0452 
0453 #define BPF_STRTOX_BASE_MASK 0x1F
0454 
0455 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
0456               unsigned long long *res, bool *is_negative)
0457 {
0458     unsigned int base = flags & BPF_STRTOX_BASE_MASK;
0459     const char *cur_buf = buf;
0460     size_t cur_len = buf_len;
0461     unsigned int consumed;
0462     size_t val_len;
0463     char str[64];
0464 
0465     if (!buf || !buf_len || !res || !is_negative)
0466         return -EINVAL;
0467 
0468     if (base != 0 && base != 8 && base != 10 && base != 16)
0469         return -EINVAL;
0470 
0471     if (flags & ~BPF_STRTOX_BASE_MASK)
0472         return -EINVAL;
0473 
0474     while (cur_buf < buf + buf_len && isspace(*cur_buf))
0475         ++cur_buf;
0476 
0477     *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
0478     if (*is_negative)
0479         ++cur_buf;
0480 
0481     consumed = cur_buf - buf;
0482     cur_len -= consumed;
0483     if (!cur_len)
0484         return -EINVAL;
0485 
0486     cur_len = min(cur_len, sizeof(str) - 1);
0487     memcpy(str, cur_buf, cur_len);
0488     str[cur_len] = '\0';
0489     cur_buf = str;
0490 
0491     cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
0492     val_len = _parse_integer(cur_buf, base, res);
0493 
0494     if (val_len & KSTRTOX_OVERFLOW)
0495         return -ERANGE;
0496 
0497     if (val_len == 0)
0498         return -EINVAL;
0499 
0500     cur_buf += val_len;
0501     consumed += cur_buf - str;
0502 
0503     return consumed;
0504 }
0505 
0506 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
0507              long long *res)
0508 {
0509     unsigned long long _res;
0510     bool is_negative;
0511     int err;
0512 
0513     err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
0514     if (err < 0)
0515         return err;
0516     if (is_negative) {
0517         if ((long long)-_res > 0)
0518             return -ERANGE;
0519         *res = -_res;
0520     } else {
0521         if ((long long)_res < 0)
0522             return -ERANGE;
0523         *res = _res;
0524     }
0525     return err;
0526 }
0527 
0528 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
0529        long *, res)
0530 {
0531     long long _res;
0532     int err;
0533 
0534     err = __bpf_strtoll(buf, buf_len, flags, &_res);
0535     if (err < 0)
0536         return err;
0537     if (_res != (long)_res)
0538         return -ERANGE;
0539     *res = _res;
0540     return err;
0541 }
0542 
0543 const struct bpf_func_proto bpf_strtol_proto = {
0544     .func       = bpf_strtol,
0545     .gpl_only   = false,
0546     .ret_type   = RET_INTEGER,
0547     .arg1_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0548     .arg2_type  = ARG_CONST_SIZE,
0549     .arg3_type  = ARG_ANYTHING,
0550     .arg4_type  = ARG_PTR_TO_LONG,
0551 };
0552 
0553 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
0554        unsigned long *, res)
0555 {
0556     unsigned long long _res;
0557     bool is_negative;
0558     int err;
0559 
0560     err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
0561     if (err < 0)
0562         return err;
0563     if (is_negative)
0564         return -EINVAL;
0565     if (_res != (unsigned long)_res)
0566         return -ERANGE;
0567     *res = _res;
0568     return err;
0569 }
0570 
0571 const struct bpf_func_proto bpf_strtoul_proto = {
0572     .func       = bpf_strtoul,
0573     .gpl_only   = false,
0574     .ret_type   = RET_INTEGER,
0575     .arg1_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
0576     .arg2_type  = ARG_CONST_SIZE,
0577     .arg3_type  = ARG_ANYTHING,
0578     .arg4_type  = ARG_PTR_TO_LONG,
0579 };
0580 #endif
0581 
0582 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
0583 {
0584     return strncmp(s1, s2, s1_sz);
0585 }
0586 
0587 static const struct bpf_func_proto bpf_strncmp_proto = {
0588     .func       = bpf_strncmp,
0589     .gpl_only   = false,
0590     .ret_type   = RET_INTEGER,
0591     .arg1_type  = ARG_PTR_TO_MEM,
0592     .arg2_type  = ARG_CONST_SIZE,
0593     .arg3_type  = ARG_PTR_TO_CONST_STR,
0594 };
0595 
0596 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
0597        struct bpf_pidns_info *, nsdata, u32, size)
0598 {
0599     struct task_struct *task = current;
0600     struct pid_namespace *pidns;
0601     int err = -EINVAL;
0602 
0603     if (unlikely(size != sizeof(struct bpf_pidns_info)))
0604         goto clear;
0605 
0606     if (unlikely((u64)(dev_t)dev != dev))
0607         goto clear;
0608 
0609     if (unlikely(!task))
0610         goto clear;
0611 
0612     pidns = task_active_pid_ns(task);
0613     if (unlikely(!pidns)) {
0614         err = -ENOENT;
0615         goto clear;
0616     }
0617 
0618     if (!ns_match(&pidns->ns, (dev_t)dev, ino))
0619         goto clear;
0620 
0621     nsdata->pid = task_pid_nr_ns(task, pidns);
0622     nsdata->tgid = task_tgid_nr_ns(task, pidns);
0623     return 0;
0624 clear:
0625     memset((void *)nsdata, 0, (size_t) size);
0626     return err;
0627 }
0628 
0629 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
0630     .func       = bpf_get_ns_current_pid_tgid,
0631     .gpl_only   = false,
0632     .ret_type   = RET_INTEGER,
0633     .arg1_type  = ARG_ANYTHING,
0634     .arg2_type  = ARG_ANYTHING,
0635     .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
0636     .arg4_type      = ARG_CONST_SIZE,
0637 };
0638 
0639 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
0640     .func       = bpf_get_raw_cpu_id,
0641     .gpl_only   = false,
0642     .ret_type   = RET_INTEGER,
0643 };
0644 
0645 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
0646        u64, flags, void *, data, u64, size)
0647 {
0648     if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
0649         return -EINVAL;
0650 
0651     return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
0652 }
0653 
0654 const struct bpf_func_proto bpf_event_output_data_proto =  {
0655     .func       = bpf_event_output_data,
0656     .gpl_only       = true,
0657     .ret_type       = RET_INTEGER,
0658     .arg1_type      = ARG_PTR_TO_CTX,
0659     .arg2_type      = ARG_CONST_MAP_PTR,
0660     .arg3_type      = ARG_ANYTHING,
0661     .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
0662     .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
0663 };
0664 
0665 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
0666        const void __user *, user_ptr)
0667 {
0668     int ret = copy_from_user(dst, user_ptr, size);
0669 
0670     if (unlikely(ret)) {
0671         memset(dst, 0, size);
0672         ret = -EFAULT;
0673     }
0674 
0675     return ret;
0676 }
0677 
0678 const struct bpf_func_proto bpf_copy_from_user_proto = {
0679     .func       = bpf_copy_from_user,
0680     .gpl_only   = false,
0681     .ret_type   = RET_INTEGER,
0682     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0683     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0684     .arg3_type  = ARG_ANYTHING,
0685 };
0686 
0687 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
0688        const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
0689 {
0690     int ret;
0691 
0692     /* flags is not used yet */
0693     if (unlikely(flags))
0694         return -EINVAL;
0695 
0696     if (unlikely(!size))
0697         return 0;
0698 
0699     ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
0700     if (ret == size)
0701         return 0;
0702 
0703     memset(dst, 0, size);
0704     /* Return -EFAULT for partial read */
0705     return ret < 0 ? ret : -EFAULT;
0706 }
0707 
0708 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
0709     .func       = bpf_copy_from_user_task,
0710     .gpl_only   = true,
0711     .ret_type   = RET_INTEGER,
0712     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
0713     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
0714     .arg3_type  = ARG_ANYTHING,
0715     .arg4_type  = ARG_PTR_TO_BTF_ID,
0716     .arg4_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
0717     .arg5_type  = ARG_ANYTHING
0718 };
0719 
0720 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
0721 {
0722     if (cpu >= nr_cpu_ids)
0723         return (unsigned long)NULL;
0724 
0725     return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
0726 }
0727 
0728 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
0729     .func       = bpf_per_cpu_ptr,
0730     .gpl_only   = false,
0731     .ret_type   = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
0732     .arg1_type  = ARG_PTR_TO_PERCPU_BTF_ID,
0733     .arg2_type  = ARG_ANYTHING,
0734 };
0735 
0736 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
0737 {
0738     return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
0739 }
0740 
0741 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
0742     .func       = bpf_this_cpu_ptr,
0743     .gpl_only   = false,
0744     .ret_type   = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
0745     .arg1_type  = ARG_PTR_TO_PERCPU_BTF_ID,
0746 };
0747 
0748 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
0749         size_t bufsz)
0750 {
0751     void __user *user_ptr = (__force void __user *)unsafe_ptr;
0752 
0753     buf[0] = 0;
0754 
0755     switch (fmt_ptype) {
0756     case 's':
0757 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
0758         if ((unsigned long)unsafe_ptr < TASK_SIZE)
0759             return strncpy_from_user_nofault(buf, user_ptr, bufsz);
0760         fallthrough;
0761 #endif
0762     case 'k':
0763         return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
0764     case 'u':
0765         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
0766     }
0767 
0768     return -EINVAL;
0769 }
0770 
0771 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
0772  * arguments representation.
0773  */
0774 #define MAX_BPRINTF_BUF_LEN 512
0775 
0776 /* Support executing three nested bprintf helper calls on a given CPU */
0777 #define MAX_BPRINTF_NEST_LEVEL  3
0778 struct bpf_bprintf_buffers {
0779     char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
0780 };
0781 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
0782 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
0783 
0784 static int try_get_fmt_tmp_buf(char **tmp_buf)
0785 {
0786     struct bpf_bprintf_buffers *bufs;
0787     int nest_level;
0788 
0789     preempt_disable();
0790     nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
0791     if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
0792         this_cpu_dec(bpf_bprintf_nest_level);
0793         preempt_enable();
0794         return -EBUSY;
0795     }
0796     bufs = this_cpu_ptr(&bpf_bprintf_bufs);
0797     *tmp_buf = bufs->tmp_bufs[nest_level - 1];
0798 
0799     return 0;
0800 }
0801 
0802 void bpf_bprintf_cleanup(void)
0803 {
0804     if (this_cpu_read(bpf_bprintf_nest_level)) {
0805         this_cpu_dec(bpf_bprintf_nest_level);
0806         preempt_enable();
0807     }
0808 }
0809 
0810 /*
0811  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
0812  *
0813  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
0814  *
0815  * This can be used in two ways:
0816  * - Format string verification only: when bin_args is NULL
0817  * - Arguments preparation: in addition to the above verification, it writes in
0818  *   bin_args a binary representation of arguments usable by bstr_printf where
0819  *   pointers from BPF have been sanitized.
0820  *
0821  * In argument preparation mode, if 0 is returned, safe temporary buffers are
0822  * allocated and bpf_bprintf_cleanup should be called to free them after use.
0823  */
0824 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
0825             u32 **bin_args, u32 num_args)
0826 {
0827     char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
0828     size_t sizeof_cur_arg, sizeof_cur_ip;
0829     int err, i, num_spec = 0;
0830     u64 cur_arg;
0831     char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
0832 
0833     fmt_end = strnchr(fmt, fmt_size, 0);
0834     if (!fmt_end)
0835         return -EINVAL;
0836     fmt_size = fmt_end - fmt;
0837 
0838     if (bin_args) {
0839         if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
0840             return -EBUSY;
0841 
0842         tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
0843         *bin_args = (u32 *)tmp_buf;
0844     }
0845 
0846     for (i = 0; i < fmt_size; i++) {
0847         if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
0848             err = -EINVAL;
0849             goto out;
0850         }
0851 
0852         if (fmt[i] != '%')
0853             continue;
0854 
0855         if (fmt[i + 1] == '%') {
0856             i++;
0857             continue;
0858         }
0859 
0860         if (num_spec >= num_args) {
0861             err = -EINVAL;
0862             goto out;
0863         }
0864 
0865         /* The string is zero-terminated so if fmt[i] != 0, we can
0866          * always access fmt[i + 1], in the worst case it will be a 0
0867          */
0868         i++;
0869 
0870         /* skip optional "[0 +-][num]" width formatting field */
0871         while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
0872                fmt[i] == ' ')
0873             i++;
0874         if (fmt[i] >= '1' && fmt[i] <= '9') {
0875             i++;
0876             while (fmt[i] >= '0' && fmt[i] <= '9')
0877                 i++;
0878         }
0879 
0880         if (fmt[i] == 'p') {
0881             sizeof_cur_arg = sizeof(long);
0882 
0883             if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
0884                 fmt[i + 2] == 's') {
0885                 fmt_ptype = fmt[i + 1];
0886                 i += 2;
0887                 goto fmt_str;
0888             }
0889 
0890             if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
0891                 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
0892                 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
0893                 fmt[i + 1] == 'S') {
0894                 /* just kernel pointers */
0895                 if (tmp_buf)
0896                     cur_arg = raw_args[num_spec];
0897                 i++;
0898                 goto nocopy_fmt;
0899             }
0900 
0901             if (fmt[i + 1] == 'B') {
0902                 if (tmp_buf)  {
0903                     err = snprintf(tmp_buf,
0904                                (tmp_buf_end - tmp_buf),
0905                                "%pB",
0906                                (void *)(long)raw_args[num_spec]);
0907                     tmp_buf += (err + 1);
0908                 }
0909 
0910                 i++;
0911                 num_spec++;
0912                 continue;
0913             }
0914 
0915             /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
0916             if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
0917                 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
0918                 err = -EINVAL;
0919                 goto out;
0920             }
0921 
0922             i += 2;
0923             if (!tmp_buf)
0924                 goto nocopy_fmt;
0925 
0926             sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
0927             if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
0928                 err = -ENOSPC;
0929                 goto out;
0930             }
0931 
0932             unsafe_ptr = (char *)(long)raw_args[num_spec];
0933             err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
0934                                sizeof_cur_ip);
0935             if (err < 0)
0936                 memset(cur_ip, 0, sizeof_cur_ip);
0937 
0938             /* hack: bstr_printf expects IP addresses to be
0939              * pre-formatted as strings, ironically, the easiest way
0940              * to do that is to call snprintf.
0941              */
0942             ip_spec[2] = fmt[i - 1];
0943             ip_spec[3] = fmt[i];
0944             err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
0945                        ip_spec, &cur_ip);
0946 
0947             tmp_buf += err + 1;
0948             num_spec++;
0949 
0950             continue;
0951         } else if (fmt[i] == 's') {
0952             fmt_ptype = fmt[i];
0953 fmt_str:
0954             if (fmt[i + 1] != 0 &&
0955                 !isspace(fmt[i + 1]) &&
0956                 !ispunct(fmt[i + 1])) {
0957                 err = -EINVAL;
0958                 goto out;
0959             }
0960 
0961             if (!tmp_buf)
0962                 goto nocopy_fmt;
0963 
0964             if (tmp_buf_end == tmp_buf) {
0965                 err = -ENOSPC;
0966                 goto out;
0967             }
0968 
0969             unsafe_ptr = (char *)(long)raw_args[num_spec];
0970             err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
0971                             fmt_ptype,
0972                             tmp_buf_end - tmp_buf);
0973             if (err < 0) {
0974                 tmp_buf[0] = '\0';
0975                 err = 1;
0976             }
0977 
0978             tmp_buf += err;
0979             num_spec++;
0980 
0981             continue;
0982         } else if (fmt[i] == 'c') {
0983             if (!tmp_buf)
0984                 goto nocopy_fmt;
0985 
0986             if (tmp_buf_end == tmp_buf) {
0987                 err = -ENOSPC;
0988                 goto out;
0989             }
0990 
0991             *tmp_buf = raw_args[num_spec];
0992             tmp_buf++;
0993             num_spec++;
0994 
0995             continue;
0996         }
0997 
0998         sizeof_cur_arg = sizeof(int);
0999 
1000         if (fmt[i] == 'l') {
1001             sizeof_cur_arg = sizeof(long);
1002             i++;
1003         }
1004         if (fmt[i] == 'l') {
1005             sizeof_cur_arg = sizeof(long long);
1006             i++;
1007         }
1008 
1009         if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1010             fmt[i] != 'x' && fmt[i] != 'X') {
1011             err = -EINVAL;
1012             goto out;
1013         }
1014 
1015         if (tmp_buf)
1016             cur_arg = raw_args[num_spec];
1017 nocopy_fmt:
1018         if (tmp_buf) {
1019             tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1020             if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1021                 err = -ENOSPC;
1022                 goto out;
1023             }
1024 
1025             if (sizeof_cur_arg == 8) {
1026                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1027                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1028             } else {
1029                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1030             }
1031             tmp_buf += sizeof_cur_arg;
1032         }
1033         num_spec++;
1034     }
1035 
1036     err = 0;
1037 out:
1038     if (err)
1039         bpf_bprintf_cleanup();
1040     return err;
1041 }
1042 
1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1044        const void *, data, u32, data_len)
1045 {
1046     int err, num_args;
1047     u32 *bin_args;
1048 
1049     if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1050         (data_len && !data))
1051         return -EINVAL;
1052     num_args = data_len / 8;
1053 
1054     /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1055      * can safely give an unbounded size.
1056      */
1057     err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1058     if (err < 0)
1059         return err;
1060 
1061     err = bstr_printf(str, str_size, fmt, bin_args);
1062 
1063     bpf_bprintf_cleanup();
1064 
1065     return err + 1;
1066 }
1067 
1068 const struct bpf_func_proto bpf_snprintf_proto = {
1069     .func       = bpf_snprintf,
1070     .gpl_only   = true,
1071     .ret_type   = RET_INTEGER,
1072     .arg1_type  = ARG_PTR_TO_MEM_OR_NULL,
1073     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
1074     .arg3_type  = ARG_PTR_TO_CONST_STR,
1075     .arg4_type  = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1076     .arg5_type  = ARG_CONST_SIZE_OR_ZERO,
1077 };
1078 
1079 /* BPF map elements can contain 'struct bpf_timer'.
1080  * Such map owns all of its BPF timers.
1081  * 'struct bpf_timer' is allocated as part of map element allocation
1082  * and it's zero initialized.
1083  * That space is used to keep 'struct bpf_timer_kern'.
1084  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1085  * remembers 'struct bpf_map *' pointer it's part of.
1086  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1087  * bpf_timer_start() arms the timer.
1088  * If user space reference to a map goes to zero at this point
1089  * ops->map_release_uref callback is responsible for cancelling the timers,
1090  * freeing their memory, and decrementing prog's refcnts.
1091  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1092  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1093  * freeing the timers when inner map is replaced or deleted by user space.
1094  */
1095 struct bpf_hrtimer {
1096     struct hrtimer timer;
1097     struct bpf_map *map;
1098     struct bpf_prog *prog;
1099     void __rcu *callback_fn;
1100     void *value;
1101 };
1102 
1103 /* the actual struct hidden inside uapi struct bpf_timer */
1104 struct bpf_timer_kern {
1105     struct bpf_hrtimer *timer;
1106     /* bpf_spin_lock is used here instead of spinlock_t to make
1107      * sure that it always fits into space reserved by struct bpf_timer
1108      * regardless of LOCKDEP and spinlock debug flags.
1109      */
1110     struct bpf_spin_lock lock;
1111 } __attribute__((aligned(8)));
1112 
1113 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1114 
1115 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1116 {
1117     struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1118     struct bpf_map *map = t->map;
1119     void *value = t->value;
1120     bpf_callback_t callback_fn;
1121     void *key;
1122     u32 idx;
1123 
1124     BTF_TYPE_EMIT(struct bpf_timer);
1125     callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1126     if (!callback_fn)
1127         goto out;
1128 
1129     /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1130      * cannot be preempted by another bpf_timer_cb() on the same cpu.
1131      * Remember the timer this callback is servicing to prevent
1132      * deadlock if callback_fn() calls bpf_timer_cancel() or
1133      * bpf_map_delete_elem() on the same timer.
1134      */
1135     this_cpu_write(hrtimer_running, t);
1136     if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1137         struct bpf_array *array = container_of(map, struct bpf_array, map);
1138 
1139         /* compute the key */
1140         idx = ((char *)value - array->value) / array->elem_size;
1141         key = &idx;
1142     } else { /* hash or lru */
1143         key = value - round_up(map->key_size, 8);
1144     }
1145 
1146     callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1147     /* The verifier checked that return value is zero. */
1148 
1149     this_cpu_write(hrtimer_running, NULL);
1150 out:
1151     return HRTIMER_NORESTART;
1152 }
1153 
1154 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1155        u64, flags)
1156 {
1157     clockid_t clockid = flags & (MAX_CLOCKS - 1);
1158     struct bpf_hrtimer *t;
1159     int ret = 0;
1160 
1161     BUILD_BUG_ON(MAX_CLOCKS != 16);
1162     BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1163     BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1164 
1165     if (in_nmi())
1166         return -EOPNOTSUPP;
1167 
1168     if (flags >= MAX_CLOCKS ||
1169         /* similar to timerfd except _ALARM variants are not supported */
1170         (clockid != CLOCK_MONOTONIC &&
1171          clockid != CLOCK_REALTIME &&
1172          clockid != CLOCK_BOOTTIME))
1173         return -EINVAL;
1174     __bpf_spin_lock_irqsave(&timer->lock);
1175     t = timer->timer;
1176     if (t) {
1177         ret = -EBUSY;
1178         goto out;
1179     }
1180     if (!atomic64_read(&map->usercnt)) {
1181         /* maps with timers must be either held by user space
1182          * or pinned in bpffs.
1183          */
1184         ret = -EPERM;
1185         goto out;
1186     }
1187     /* allocate hrtimer via map_kmalloc to use memcg accounting */
1188     t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1189     if (!t) {
1190         ret = -ENOMEM;
1191         goto out;
1192     }
1193     t->value = (void *)timer - map->timer_off;
1194     t->map = map;
1195     t->prog = NULL;
1196     rcu_assign_pointer(t->callback_fn, NULL);
1197     hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1198     t->timer.function = bpf_timer_cb;
1199     timer->timer = t;
1200 out:
1201     __bpf_spin_unlock_irqrestore(&timer->lock);
1202     return ret;
1203 }
1204 
1205 static const struct bpf_func_proto bpf_timer_init_proto = {
1206     .func       = bpf_timer_init,
1207     .gpl_only   = true,
1208     .ret_type   = RET_INTEGER,
1209     .arg1_type  = ARG_PTR_TO_TIMER,
1210     .arg2_type  = ARG_CONST_MAP_PTR,
1211     .arg3_type  = ARG_ANYTHING,
1212 };
1213 
1214 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1215        struct bpf_prog_aux *, aux)
1216 {
1217     struct bpf_prog *prev, *prog = aux->prog;
1218     struct bpf_hrtimer *t;
1219     int ret = 0;
1220 
1221     if (in_nmi())
1222         return -EOPNOTSUPP;
1223     __bpf_spin_lock_irqsave(&timer->lock);
1224     t = timer->timer;
1225     if (!t) {
1226         ret = -EINVAL;
1227         goto out;
1228     }
1229     if (!atomic64_read(&t->map->usercnt)) {
1230         /* maps with timers must be either held by user space
1231          * or pinned in bpffs. Otherwise timer might still be
1232          * running even when bpf prog is detached and user space
1233          * is gone, since map_release_uref won't ever be called.
1234          */
1235         ret = -EPERM;
1236         goto out;
1237     }
1238     prev = t->prog;
1239     if (prev != prog) {
1240         /* Bump prog refcnt once. Every bpf_timer_set_callback()
1241          * can pick different callback_fn-s within the same prog.
1242          */
1243         prog = bpf_prog_inc_not_zero(prog);
1244         if (IS_ERR(prog)) {
1245             ret = PTR_ERR(prog);
1246             goto out;
1247         }
1248         if (prev)
1249             /* Drop prev prog refcnt when swapping with new prog */
1250             bpf_prog_put(prev);
1251         t->prog = prog;
1252     }
1253     rcu_assign_pointer(t->callback_fn, callback_fn);
1254 out:
1255     __bpf_spin_unlock_irqrestore(&timer->lock);
1256     return ret;
1257 }
1258 
1259 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1260     .func       = bpf_timer_set_callback,
1261     .gpl_only   = true,
1262     .ret_type   = RET_INTEGER,
1263     .arg1_type  = ARG_PTR_TO_TIMER,
1264     .arg2_type  = ARG_PTR_TO_FUNC,
1265 };
1266 
1267 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1268 {
1269     struct bpf_hrtimer *t;
1270     int ret = 0;
1271 
1272     if (in_nmi())
1273         return -EOPNOTSUPP;
1274     if (flags)
1275         return -EINVAL;
1276     __bpf_spin_lock_irqsave(&timer->lock);
1277     t = timer->timer;
1278     if (!t || !t->prog) {
1279         ret = -EINVAL;
1280         goto out;
1281     }
1282     hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1283 out:
1284     __bpf_spin_unlock_irqrestore(&timer->lock);
1285     return ret;
1286 }
1287 
1288 static const struct bpf_func_proto bpf_timer_start_proto = {
1289     .func       = bpf_timer_start,
1290     .gpl_only   = true,
1291     .ret_type   = RET_INTEGER,
1292     .arg1_type  = ARG_PTR_TO_TIMER,
1293     .arg2_type  = ARG_ANYTHING,
1294     .arg3_type  = ARG_ANYTHING,
1295 };
1296 
1297 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1298 {
1299     struct bpf_prog *prog = t->prog;
1300 
1301     if (prog) {
1302         bpf_prog_put(prog);
1303         t->prog = NULL;
1304         rcu_assign_pointer(t->callback_fn, NULL);
1305     }
1306 }
1307 
1308 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1309 {
1310     struct bpf_hrtimer *t;
1311     int ret = 0;
1312 
1313     if (in_nmi())
1314         return -EOPNOTSUPP;
1315     __bpf_spin_lock_irqsave(&timer->lock);
1316     t = timer->timer;
1317     if (!t) {
1318         ret = -EINVAL;
1319         goto out;
1320     }
1321     if (this_cpu_read(hrtimer_running) == t) {
1322         /* If bpf callback_fn is trying to bpf_timer_cancel()
1323          * its own timer the hrtimer_cancel() will deadlock
1324          * since it waits for callback_fn to finish
1325          */
1326         ret = -EDEADLK;
1327         goto out;
1328     }
1329     drop_prog_refcnt(t);
1330 out:
1331     __bpf_spin_unlock_irqrestore(&timer->lock);
1332     /* Cancel the timer and wait for associated callback to finish
1333      * if it was running.
1334      */
1335     ret = ret ?: hrtimer_cancel(&t->timer);
1336     return ret;
1337 }
1338 
1339 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1340     .func       = bpf_timer_cancel,
1341     .gpl_only   = true,
1342     .ret_type   = RET_INTEGER,
1343     .arg1_type  = ARG_PTR_TO_TIMER,
1344 };
1345 
1346 /* This function is called by map_delete/update_elem for individual element and
1347  * by ops->map_release_uref when the user space reference to a map reaches zero.
1348  */
1349 void bpf_timer_cancel_and_free(void *val)
1350 {
1351     struct bpf_timer_kern *timer = val;
1352     struct bpf_hrtimer *t;
1353 
1354     /* Performance optimization: read timer->timer without lock first. */
1355     if (!READ_ONCE(timer->timer))
1356         return;
1357 
1358     __bpf_spin_lock_irqsave(&timer->lock);
1359     /* re-read it under lock */
1360     t = timer->timer;
1361     if (!t)
1362         goto out;
1363     drop_prog_refcnt(t);
1364     /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1365      * this timer, since it won't be initialized.
1366      */
1367     timer->timer = NULL;
1368 out:
1369     __bpf_spin_unlock_irqrestore(&timer->lock);
1370     if (!t)
1371         return;
1372     /* Cancel the timer and wait for callback to complete if it was running.
1373      * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1374      * right after for both preallocated and non-preallocated maps.
1375      * The timer->timer = NULL was already done and no code path can
1376      * see address 't' anymore.
1377      *
1378      * Check that bpf_map_delete/update_elem() wasn't called from timer
1379      * callback_fn. In such case don't call hrtimer_cancel() (since it will
1380      * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1381      * return -1). Though callback_fn is still running on this cpu it's
1382      * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1383      * from 't'. The bpf subprog callback_fn won't be able to access 't',
1384      * since timer->timer = NULL was already done. The timer will be
1385      * effectively cancelled because bpf_timer_cb() will return
1386      * HRTIMER_NORESTART.
1387      */
1388     if (this_cpu_read(hrtimer_running) != t)
1389         hrtimer_cancel(&t->timer);
1390     kfree(t);
1391 }
1392 
1393 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1394 {
1395     unsigned long *kptr = map_value;
1396 
1397     return xchg(kptr, (unsigned long)ptr);
1398 }
1399 
1400 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1401  * helper is determined dynamically by the verifier.
1402  */
1403 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1404 
1405 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1406     .func         = bpf_kptr_xchg,
1407     .gpl_only     = false,
1408     .ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1409     .ret_btf_id   = BPF_PTR_POISON,
1410     .arg1_type    = ARG_PTR_TO_KPTR,
1411     .arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1412     .arg2_btf_id  = BPF_PTR_POISON,
1413 };
1414 
1415 /* Since the upper 8 bits of dynptr->size is reserved, the
1416  * maximum supported size is 2^24 - 1.
1417  */
1418 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1419 #define DYNPTR_TYPE_SHIFT   28
1420 #define DYNPTR_SIZE_MASK    0xFFFFFF
1421 #define DYNPTR_RDONLY_BIT   BIT(31)
1422 
1423 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1424 {
1425     return ptr->size & DYNPTR_RDONLY_BIT;
1426 }
1427 
1428 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1429 {
1430     ptr->size |= type << DYNPTR_TYPE_SHIFT;
1431 }
1432 
1433 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1434 {
1435     return ptr->size & DYNPTR_SIZE_MASK;
1436 }
1437 
1438 int bpf_dynptr_check_size(u32 size)
1439 {
1440     return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1441 }
1442 
1443 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1444              enum bpf_dynptr_type type, u32 offset, u32 size)
1445 {
1446     ptr->data = data;
1447     ptr->offset = offset;
1448     ptr->size = size;
1449     bpf_dynptr_set_type(ptr, type);
1450 }
1451 
1452 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1453 {
1454     memset(ptr, 0, sizeof(*ptr));
1455 }
1456 
1457 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1458 {
1459     u32 size = bpf_dynptr_get_size(ptr);
1460 
1461     if (len > size || offset > size - len)
1462         return -E2BIG;
1463 
1464     return 0;
1465 }
1466 
1467 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1468 {
1469     int err;
1470 
1471     err = bpf_dynptr_check_size(size);
1472     if (err)
1473         goto error;
1474 
1475     /* flags is currently unsupported */
1476     if (flags) {
1477         err = -EINVAL;
1478         goto error;
1479     }
1480 
1481     bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1482 
1483     return 0;
1484 
1485 error:
1486     bpf_dynptr_set_null(ptr);
1487     return err;
1488 }
1489 
1490 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1491     .func       = bpf_dynptr_from_mem,
1492     .gpl_only   = false,
1493     .ret_type   = RET_INTEGER,
1494     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
1495     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
1496     .arg3_type  = ARG_ANYTHING,
1497     .arg4_type  = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1498 };
1499 
1500 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1501        u32, offset, u64, flags)
1502 {
1503     int err;
1504 
1505     if (!src->data || flags)
1506         return -EINVAL;
1507 
1508     err = bpf_dynptr_check_off_len(src, offset, len);
1509     if (err)
1510         return err;
1511 
1512     memcpy(dst, src->data + src->offset + offset, len);
1513 
1514     return 0;
1515 }
1516 
1517 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1518     .func       = bpf_dynptr_read,
1519     .gpl_only   = false,
1520     .ret_type   = RET_INTEGER,
1521     .arg1_type  = ARG_PTR_TO_UNINIT_MEM,
1522     .arg2_type  = ARG_CONST_SIZE_OR_ZERO,
1523     .arg3_type  = ARG_PTR_TO_DYNPTR,
1524     .arg4_type  = ARG_ANYTHING,
1525     .arg5_type  = ARG_ANYTHING,
1526 };
1527 
1528 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1529        u32, len, u64, flags)
1530 {
1531     int err;
1532 
1533     if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1534         return -EINVAL;
1535 
1536     err = bpf_dynptr_check_off_len(dst, offset, len);
1537     if (err)
1538         return err;
1539 
1540     memcpy(dst->data + dst->offset + offset, src, len);
1541 
1542     return 0;
1543 }
1544 
1545 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1546     .func       = bpf_dynptr_write,
1547     .gpl_only   = false,
1548     .ret_type   = RET_INTEGER,
1549     .arg1_type  = ARG_PTR_TO_DYNPTR,
1550     .arg2_type  = ARG_ANYTHING,
1551     .arg3_type  = ARG_PTR_TO_MEM | MEM_RDONLY,
1552     .arg4_type  = ARG_CONST_SIZE_OR_ZERO,
1553     .arg5_type  = ARG_ANYTHING,
1554 };
1555 
1556 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1557 {
1558     int err;
1559 
1560     if (!ptr->data)
1561         return 0;
1562 
1563     err = bpf_dynptr_check_off_len(ptr, offset, len);
1564     if (err)
1565         return 0;
1566 
1567     if (bpf_dynptr_is_rdonly(ptr))
1568         return 0;
1569 
1570     return (unsigned long)(ptr->data + ptr->offset + offset);
1571 }
1572 
1573 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1574     .func       = bpf_dynptr_data,
1575     .gpl_only   = false,
1576     .ret_type   = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1577     .arg1_type  = ARG_PTR_TO_DYNPTR,
1578     .arg2_type  = ARG_ANYTHING,
1579     .arg3_type  = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1580 };
1581 
1582 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1583 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1584 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1585 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1586 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1587 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1588 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1589 
1590 const struct bpf_func_proto *
1591 bpf_base_func_proto(enum bpf_func_id func_id)
1592 {
1593     switch (func_id) {
1594     case BPF_FUNC_map_lookup_elem:
1595         return &bpf_map_lookup_elem_proto;
1596     case BPF_FUNC_map_update_elem:
1597         return &bpf_map_update_elem_proto;
1598     case BPF_FUNC_map_delete_elem:
1599         return &bpf_map_delete_elem_proto;
1600     case BPF_FUNC_map_push_elem:
1601         return &bpf_map_push_elem_proto;
1602     case BPF_FUNC_map_pop_elem:
1603         return &bpf_map_pop_elem_proto;
1604     case BPF_FUNC_map_peek_elem:
1605         return &bpf_map_peek_elem_proto;
1606     case BPF_FUNC_map_lookup_percpu_elem:
1607         return &bpf_map_lookup_percpu_elem_proto;
1608     case BPF_FUNC_get_prandom_u32:
1609         return &bpf_get_prandom_u32_proto;
1610     case BPF_FUNC_get_smp_processor_id:
1611         return &bpf_get_raw_smp_processor_id_proto;
1612     case BPF_FUNC_get_numa_node_id:
1613         return &bpf_get_numa_node_id_proto;
1614     case BPF_FUNC_tail_call:
1615         return &bpf_tail_call_proto;
1616     case BPF_FUNC_ktime_get_ns:
1617         return &bpf_ktime_get_ns_proto;
1618     case BPF_FUNC_ktime_get_boot_ns:
1619         return &bpf_ktime_get_boot_ns_proto;
1620     case BPF_FUNC_ringbuf_output:
1621         return &bpf_ringbuf_output_proto;
1622     case BPF_FUNC_ringbuf_reserve:
1623         return &bpf_ringbuf_reserve_proto;
1624     case BPF_FUNC_ringbuf_submit:
1625         return &bpf_ringbuf_submit_proto;
1626     case BPF_FUNC_ringbuf_discard:
1627         return &bpf_ringbuf_discard_proto;
1628     case BPF_FUNC_ringbuf_query:
1629         return &bpf_ringbuf_query_proto;
1630     case BPF_FUNC_for_each_map_elem:
1631         return &bpf_for_each_map_elem_proto;
1632     case BPF_FUNC_loop:
1633         return &bpf_loop_proto;
1634     case BPF_FUNC_strncmp:
1635         return &bpf_strncmp_proto;
1636     default:
1637         break;
1638     }
1639 
1640     if (!bpf_capable())
1641         return NULL;
1642 
1643     switch (func_id) {
1644     case BPF_FUNC_spin_lock:
1645         return &bpf_spin_lock_proto;
1646     case BPF_FUNC_spin_unlock:
1647         return &bpf_spin_unlock_proto;
1648     case BPF_FUNC_jiffies64:
1649         return &bpf_jiffies64_proto;
1650     case BPF_FUNC_per_cpu_ptr:
1651         return &bpf_per_cpu_ptr_proto;
1652     case BPF_FUNC_this_cpu_ptr:
1653         return &bpf_this_cpu_ptr_proto;
1654     case BPF_FUNC_timer_init:
1655         return &bpf_timer_init_proto;
1656     case BPF_FUNC_timer_set_callback:
1657         return &bpf_timer_set_callback_proto;
1658     case BPF_FUNC_timer_start:
1659         return &bpf_timer_start_proto;
1660     case BPF_FUNC_timer_cancel:
1661         return &bpf_timer_cancel_proto;
1662     case BPF_FUNC_kptr_xchg:
1663         return &bpf_kptr_xchg_proto;
1664     case BPF_FUNC_ringbuf_reserve_dynptr:
1665         return &bpf_ringbuf_reserve_dynptr_proto;
1666     case BPF_FUNC_ringbuf_submit_dynptr:
1667         return &bpf_ringbuf_submit_dynptr_proto;
1668     case BPF_FUNC_ringbuf_discard_dynptr:
1669         return &bpf_ringbuf_discard_dynptr_proto;
1670     case BPF_FUNC_dynptr_from_mem:
1671         return &bpf_dynptr_from_mem_proto;
1672     case BPF_FUNC_dynptr_read:
1673         return &bpf_dynptr_read_proto;
1674     case BPF_FUNC_dynptr_write:
1675         return &bpf_dynptr_write_proto;
1676     case BPF_FUNC_dynptr_data:
1677         return &bpf_dynptr_data_proto;
1678     default:
1679         break;
1680     }
1681 
1682     if (!perfmon_capable())
1683         return NULL;
1684 
1685     switch (func_id) {
1686     case BPF_FUNC_trace_printk:
1687         return bpf_get_trace_printk_proto();
1688     case BPF_FUNC_get_current_task:
1689         return &bpf_get_current_task_proto;
1690     case BPF_FUNC_get_current_task_btf:
1691         return &bpf_get_current_task_btf_proto;
1692     case BPF_FUNC_probe_read_user:
1693         return &bpf_probe_read_user_proto;
1694     case BPF_FUNC_probe_read_kernel:
1695         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1696                NULL : &bpf_probe_read_kernel_proto;
1697     case BPF_FUNC_probe_read_user_str:
1698         return &bpf_probe_read_user_str_proto;
1699     case BPF_FUNC_probe_read_kernel_str:
1700         return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1701                NULL : &bpf_probe_read_kernel_str_proto;
1702     case BPF_FUNC_snprintf_btf:
1703         return &bpf_snprintf_btf_proto;
1704     case BPF_FUNC_snprintf:
1705         return &bpf_snprintf_proto;
1706     case BPF_FUNC_task_pt_regs:
1707         return &bpf_task_pt_regs_proto;
1708     case BPF_FUNC_trace_vprintk:
1709         return bpf_get_trace_vprintk_proto();
1710     default:
1711         return NULL;
1712     }
1713 }