0001
0002
0003
0004 #include <linux/bpf.h>
0005 #include <linux/btf.h>
0006 #include <linux/bpf-cgroup.h>
0007 #include <linux/rcupdate.h>
0008 #include <linux/random.h>
0009 #include <linux/smp.h>
0010 #include <linux/topology.h>
0011 #include <linux/ktime.h>
0012 #include <linux/sched.h>
0013 #include <linux/uidgid.h>
0014 #include <linux/filter.h>
0015 #include <linux/ctype.h>
0016 #include <linux/jiffies.h>
0017 #include <linux/pid_namespace.h>
0018 #include <linux/proc_ns.h>
0019 #include <linux/security.h>
0020 #include <linux/btf_ids.h>
0021
0022 #include "../../lib/kstrtox.h"
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
0034 {
0035 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0036 return (unsigned long) map->ops->map_lookup_elem(map, key);
0037 }
0038
0039 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
0040 .func = bpf_map_lookup_elem,
0041 .gpl_only = false,
0042 .pkt_access = true,
0043 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
0044 .arg1_type = ARG_CONST_MAP_PTR,
0045 .arg2_type = ARG_PTR_TO_MAP_KEY,
0046 };
0047
0048 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
0049 void *, value, u64, flags)
0050 {
0051 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0052 return map->ops->map_update_elem(map, key, value, flags);
0053 }
0054
0055 const struct bpf_func_proto bpf_map_update_elem_proto = {
0056 .func = bpf_map_update_elem,
0057 .gpl_only = false,
0058 .pkt_access = true,
0059 .ret_type = RET_INTEGER,
0060 .arg1_type = ARG_CONST_MAP_PTR,
0061 .arg2_type = ARG_PTR_TO_MAP_KEY,
0062 .arg3_type = ARG_PTR_TO_MAP_VALUE,
0063 .arg4_type = ARG_ANYTHING,
0064 };
0065
0066 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
0067 {
0068 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0069 return map->ops->map_delete_elem(map, key);
0070 }
0071
0072 const struct bpf_func_proto bpf_map_delete_elem_proto = {
0073 .func = bpf_map_delete_elem,
0074 .gpl_only = false,
0075 .pkt_access = true,
0076 .ret_type = RET_INTEGER,
0077 .arg1_type = ARG_CONST_MAP_PTR,
0078 .arg2_type = ARG_PTR_TO_MAP_KEY,
0079 };
0080
0081 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
0082 {
0083 return map->ops->map_push_elem(map, value, flags);
0084 }
0085
0086 const struct bpf_func_proto bpf_map_push_elem_proto = {
0087 .func = bpf_map_push_elem,
0088 .gpl_only = false,
0089 .pkt_access = true,
0090 .ret_type = RET_INTEGER,
0091 .arg1_type = ARG_CONST_MAP_PTR,
0092 .arg2_type = ARG_PTR_TO_MAP_VALUE,
0093 .arg3_type = ARG_ANYTHING,
0094 };
0095
0096 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
0097 {
0098 return map->ops->map_pop_elem(map, value);
0099 }
0100
0101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
0102 .func = bpf_map_pop_elem,
0103 .gpl_only = false,
0104 .ret_type = RET_INTEGER,
0105 .arg1_type = ARG_CONST_MAP_PTR,
0106 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
0107 };
0108
0109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
0110 {
0111 return map->ops->map_peek_elem(map, value);
0112 }
0113
0114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
0115 .func = bpf_map_peek_elem,
0116 .gpl_only = false,
0117 .ret_type = RET_INTEGER,
0118 .arg1_type = ARG_CONST_MAP_PTR,
0119 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
0120 };
0121
0122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
0123 {
0124 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
0125 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
0126 }
0127
0128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
0129 .func = bpf_map_lookup_percpu_elem,
0130 .gpl_only = false,
0131 .pkt_access = true,
0132 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
0133 .arg1_type = ARG_CONST_MAP_PTR,
0134 .arg2_type = ARG_PTR_TO_MAP_KEY,
0135 .arg3_type = ARG_ANYTHING,
0136 };
0137
0138 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
0139 .func = bpf_user_rnd_u32,
0140 .gpl_only = false,
0141 .ret_type = RET_INTEGER,
0142 };
0143
0144 BPF_CALL_0(bpf_get_smp_processor_id)
0145 {
0146 return smp_processor_id();
0147 }
0148
0149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
0150 .func = bpf_get_smp_processor_id,
0151 .gpl_only = false,
0152 .ret_type = RET_INTEGER,
0153 };
0154
0155 BPF_CALL_0(bpf_get_numa_node_id)
0156 {
0157 return numa_node_id();
0158 }
0159
0160 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
0161 .func = bpf_get_numa_node_id,
0162 .gpl_only = false,
0163 .ret_type = RET_INTEGER,
0164 };
0165
0166 BPF_CALL_0(bpf_ktime_get_ns)
0167 {
0168
0169 return ktime_get_mono_fast_ns();
0170 }
0171
0172 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
0173 .func = bpf_ktime_get_ns,
0174 .gpl_only = false,
0175 .ret_type = RET_INTEGER,
0176 };
0177
0178 BPF_CALL_0(bpf_ktime_get_boot_ns)
0179 {
0180
0181 return ktime_get_boot_fast_ns();
0182 }
0183
0184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
0185 .func = bpf_ktime_get_boot_ns,
0186 .gpl_only = false,
0187 .ret_type = RET_INTEGER,
0188 };
0189
0190 BPF_CALL_0(bpf_ktime_get_coarse_ns)
0191 {
0192 return ktime_get_coarse_ns();
0193 }
0194
0195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
0196 .func = bpf_ktime_get_coarse_ns,
0197 .gpl_only = false,
0198 .ret_type = RET_INTEGER,
0199 };
0200
0201 BPF_CALL_0(bpf_get_current_pid_tgid)
0202 {
0203 struct task_struct *task = current;
0204
0205 if (unlikely(!task))
0206 return -EINVAL;
0207
0208 return (u64) task->tgid << 32 | task->pid;
0209 }
0210
0211 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
0212 .func = bpf_get_current_pid_tgid,
0213 .gpl_only = false,
0214 .ret_type = RET_INTEGER,
0215 };
0216
0217 BPF_CALL_0(bpf_get_current_uid_gid)
0218 {
0219 struct task_struct *task = current;
0220 kuid_t uid;
0221 kgid_t gid;
0222
0223 if (unlikely(!task))
0224 return -EINVAL;
0225
0226 current_uid_gid(&uid, &gid);
0227 return (u64) from_kgid(&init_user_ns, gid) << 32 |
0228 from_kuid(&init_user_ns, uid);
0229 }
0230
0231 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
0232 .func = bpf_get_current_uid_gid,
0233 .gpl_only = false,
0234 .ret_type = RET_INTEGER,
0235 };
0236
0237 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
0238 {
0239 struct task_struct *task = current;
0240
0241 if (unlikely(!task))
0242 goto err_clear;
0243
0244
0245 strscpy(buf, task->comm, size);
0246 return 0;
0247 err_clear:
0248 memset(buf, 0, size);
0249 return -EINVAL;
0250 }
0251
0252 const struct bpf_func_proto bpf_get_current_comm_proto = {
0253 .func = bpf_get_current_comm,
0254 .gpl_only = false,
0255 .ret_type = RET_INTEGER,
0256 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
0257 .arg2_type = ARG_CONST_SIZE,
0258 };
0259
0260 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
0261
0262 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
0263 {
0264 arch_spinlock_t *l = (void *)lock;
0265 union {
0266 __u32 val;
0267 arch_spinlock_t lock;
0268 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
0269
0270 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
0271 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
0272 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
0273 arch_spin_lock(l);
0274 }
0275
0276 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
0277 {
0278 arch_spinlock_t *l = (void *)lock;
0279
0280 arch_spin_unlock(l);
0281 }
0282
0283 #else
0284
0285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
0286 {
0287 atomic_t *l = (void *)lock;
0288
0289 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
0290 do {
0291 atomic_cond_read_relaxed(l, !VAL);
0292 } while (atomic_xchg(l, 1));
0293 }
0294
0295 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
0296 {
0297 atomic_t *l = (void *)lock;
0298
0299 atomic_set_release(l, 0);
0300 }
0301
0302 #endif
0303
0304 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
0305
0306 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
0307 {
0308 unsigned long flags;
0309
0310 local_irq_save(flags);
0311 __bpf_spin_lock(lock);
0312 __this_cpu_write(irqsave_flags, flags);
0313 }
0314
0315 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
0316 {
0317 __bpf_spin_lock_irqsave(lock);
0318 return 0;
0319 }
0320
0321 const struct bpf_func_proto bpf_spin_lock_proto = {
0322 .func = bpf_spin_lock,
0323 .gpl_only = false,
0324 .ret_type = RET_VOID,
0325 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
0326 };
0327
0328 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
0329 {
0330 unsigned long flags;
0331
0332 flags = __this_cpu_read(irqsave_flags);
0333 __bpf_spin_unlock(lock);
0334 local_irq_restore(flags);
0335 }
0336
0337 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
0338 {
0339 __bpf_spin_unlock_irqrestore(lock);
0340 return 0;
0341 }
0342
0343 const struct bpf_func_proto bpf_spin_unlock_proto = {
0344 .func = bpf_spin_unlock,
0345 .gpl_only = false,
0346 .ret_type = RET_VOID,
0347 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
0348 };
0349
0350 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
0351 bool lock_src)
0352 {
0353 struct bpf_spin_lock *lock;
0354
0355 if (lock_src)
0356 lock = src + map->spin_lock_off;
0357 else
0358 lock = dst + map->spin_lock_off;
0359 preempt_disable();
0360 __bpf_spin_lock_irqsave(lock);
0361 copy_map_value(map, dst, src);
0362 __bpf_spin_unlock_irqrestore(lock);
0363 preempt_enable();
0364 }
0365
0366 BPF_CALL_0(bpf_jiffies64)
0367 {
0368 return get_jiffies_64();
0369 }
0370
0371 const struct bpf_func_proto bpf_jiffies64_proto = {
0372 .func = bpf_jiffies64,
0373 .gpl_only = false,
0374 .ret_type = RET_INTEGER,
0375 };
0376
0377 #ifdef CONFIG_CGROUPS
0378 BPF_CALL_0(bpf_get_current_cgroup_id)
0379 {
0380 struct cgroup *cgrp;
0381 u64 cgrp_id;
0382
0383 rcu_read_lock();
0384 cgrp = task_dfl_cgroup(current);
0385 cgrp_id = cgroup_id(cgrp);
0386 rcu_read_unlock();
0387
0388 return cgrp_id;
0389 }
0390
0391 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
0392 .func = bpf_get_current_cgroup_id,
0393 .gpl_only = false,
0394 .ret_type = RET_INTEGER,
0395 };
0396
0397 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
0398 {
0399 struct cgroup *cgrp;
0400 struct cgroup *ancestor;
0401 u64 cgrp_id;
0402
0403 rcu_read_lock();
0404 cgrp = task_dfl_cgroup(current);
0405 ancestor = cgroup_ancestor(cgrp, ancestor_level);
0406 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
0407 rcu_read_unlock();
0408
0409 return cgrp_id;
0410 }
0411
0412 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
0413 .func = bpf_get_current_ancestor_cgroup_id,
0414 .gpl_only = false,
0415 .ret_type = RET_INTEGER,
0416 .arg1_type = ARG_ANYTHING,
0417 };
0418
0419 #ifdef CONFIG_CGROUP_BPF
0420
0421 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
0422 {
0423
0424
0425
0426
0427 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
0428 struct bpf_cgroup_storage *storage;
0429 struct bpf_cg_run_ctx *ctx;
0430 void *ptr;
0431
0432
0433 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
0434 storage = ctx->prog_item->cgroup_storage[stype];
0435
0436 if (stype == BPF_CGROUP_STORAGE_SHARED)
0437 ptr = &READ_ONCE(storage->buf)->data[0];
0438 else
0439 ptr = this_cpu_ptr(storage->percpu_buf);
0440
0441 return (unsigned long)ptr;
0442 }
0443
0444 const struct bpf_func_proto bpf_get_local_storage_proto = {
0445 .func = bpf_get_local_storage,
0446 .gpl_only = false,
0447 .ret_type = RET_PTR_TO_MAP_VALUE,
0448 .arg1_type = ARG_CONST_MAP_PTR,
0449 .arg2_type = ARG_ANYTHING,
0450 };
0451 #endif
0452
0453 #define BPF_STRTOX_BASE_MASK 0x1F
0454
0455 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
0456 unsigned long long *res, bool *is_negative)
0457 {
0458 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
0459 const char *cur_buf = buf;
0460 size_t cur_len = buf_len;
0461 unsigned int consumed;
0462 size_t val_len;
0463 char str[64];
0464
0465 if (!buf || !buf_len || !res || !is_negative)
0466 return -EINVAL;
0467
0468 if (base != 0 && base != 8 && base != 10 && base != 16)
0469 return -EINVAL;
0470
0471 if (flags & ~BPF_STRTOX_BASE_MASK)
0472 return -EINVAL;
0473
0474 while (cur_buf < buf + buf_len && isspace(*cur_buf))
0475 ++cur_buf;
0476
0477 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
0478 if (*is_negative)
0479 ++cur_buf;
0480
0481 consumed = cur_buf - buf;
0482 cur_len -= consumed;
0483 if (!cur_len)
0484 return -EINVAL;
0485
0486 cur_len = min(cur_len, sizeof(str) - 1);
0487 memcpy(str, cur_buf, cur_len);
0488 str[cur_len] = '\0';
0489 cur_buf = str;
0490
0491 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
0492 val_len = _parse_integer(cur_buf, base, res);
0493
0494 if (val_len & KSTRTOX_OVERFLOW)
0495 return -ERANGE;
0496
0497 if (val_len == 0)
0498 return -EINVAL;
0499
0500 cur_buf += val_len;
0501 consumed += cur_buf - str;
0502
0503 return consumed;
0504 }
0505
0506 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
0507 long long *res)
0508 {
0509 unsigned long long _res;
0510 bool is_negative;
0511 int err;
0512
0513 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
0514 if (err < 0)
0515 return err;
0516 if (is_negative) {
0517 if ((long long)-_res > 0)
0518 return -ERANGE;
0519 *res = -_res;
0520 } else {
0521 if ((long long)_res < 0)
0522 return -ERANGE;
0523 *res = _res;
0524 }
0525 return err;
0526 }
0527
0528 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
0529 long *, res)
0530 {
0531 long long _res;
0532 int err;
0533
0534 err = __bpf_strtoll(buf, buf_len, flags, &_res);
0535 if (err < 0)
0536 return err;
0537 if (_res != (long)_res)
0538 return -ERANGE;
0539 *res = _res;
0540 return err;
0541 }
0542
0543 const struct bpf_func_proto bpf_strtol_proto = {
0544 .func = bpf_strtol,
0545 .gpl_only = false,
0546 .ret_type = RET_INTEGER,
0547 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
0548 .arg2_type = ARG_CONST_SIZE,
0549 .arg3_type = ARG_ANYTHING,
0550 .arg4_type = ARG_PTR_TO_LONG,
0551 };
0552
0553 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
0554 unsigned long *, res)
0555 {
0556 unsigned long long _res;
0557 bool is_negative;
0558 int err;
0559
0560 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
0561 if (err < 0)
0562 return err;
0563 if (is_negative)
0564 return -EINVAL;
0565 if (_res != (unsigned long)_res)
0566 return -ERANGE;
0567 *res = _res;
0568 return err;
0569 }
0570
0571 const struct bpf_func_proto bpf_strtoul_proto = {
0572 .func = bpf_strtoul,
0573 .gpl_only = false,
0574 .ret_type = RET_INTEGER,
0575 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
0576 .arg2_type = ARG_CONST_SIZE,
0577 .arg3_type = ARG_ANYTHING,
0578 .arg4_type = ARG_PTR_TO_LONG,
0579 };
0580 #endif
0581
0582 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
0583 {
0584 return strncmp(s1, s2, s1_sz);
0585 }
0586
0587 static const struct bpf_func_proto bpf_strncmp_proto = {
0588 .func = bpf_strncmp,
0589 .gpl_only = false,
0590 .ret_type = RET_INTEGER,
0591 .arg1_type = ARG_PTR_TO_MEM,
0592 .arg2_type = ARG_CONST_SIZE,
0593 .arg3_type = ARG_PTR_TO_CONST_STR,
0594 };
0595
0596 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
0597 struct bpf_pidns_info *, nsdata, u32, size)
0598 {
0599 struct task_struct *task = current;
0600 struct pid_namespace *pidns;
0601 int err = -EINVAL;
0602
0603 if (unlikely(size != sizeof(struct bpf_pidns_info)))
0604 goto clear;
0605
0606 if (unlikely((u64)(dev_t)dev != dev))
0607 goto clear;
0608
0609 if (unlikely(!task))
0610 goto clear;
0611
0612 pidns = task_active_pid_ns(task);
0613 if (unlikely(!pidns)) {
0614 err = -ENOENT;
0615 goto clear;
0616 }
0617
0618 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
0619 goto clear;
0620
0621 nsdata->pid = task_pid_nr_ns(task, pidns);
0622 nsdata->tgid = task_tgid_nr_ns(task, pidns);
0623 return 0;
0624 clear:
0625 memset((void *)nsdata, 0, (size_t) size);
0626 return err;
0627 }
0628
0629 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
0630 .func = bpf_get_ns_current_pid_tgid,
0631 .gpl_only = false,
0632 .ret_type = RET_INTEGER,
0633 .arg1_type = ARG_ANYTHING,
0634 .arg2_type = ARG_ANYTHING,
0635 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
0636 .arg4_type = ARG_CONST_SIZE,
0637 };
0638
0639 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
0640 .func = bpf_get_raw_cpu_id,
0641 .gpl_only = false,
0642 .ret_type = RET_INTEGER,
0643 };
0644
0645 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
0646 u64, flags, void *, data, u64, size)
0647 {
0648 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
0649 return -EINVAL;
0650
0651 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
0652 }
0653
0654 const struct bpf_func_proto bpf_event_output_data_proto = {
0655 .func = bpf_event_output_data,
0656 .gpl_only = true,
0657 .ret_type = RET_INTEGER,
0658 .arg1_type = ARG_PTR_TO_CTX,
0659 .arg2_type = ARG_CONST_MAP_PTR,
0660 .arg3_type = ARG_ANYTHING,
0661 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
0662 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
0663 };
0664
0665 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
0666 const void __user *, user_ptr)
0667 {
0668 int ret = copy_from_user(dst, user_ptr, size);
0669
0670 if (unlikely(ret)) {
0671 memset(dst, 0, size);
0672 ret = -EFAULT;
0673 }
0674
0675 return ret;
0676 }
0677
0678 const struct bpf_func_proto bpf_copy_from_user_proto = {
0679 .func = bpf_copy_from_user,
0680 .gpl_only = false,
0681 .ret_type = RET_INTEGER,
0682 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
0683 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
0684 .arg3_type = ARG_ANYTHING,
0685 };
0686
0687 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
0688 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
0689 {
0690 int ret;
0691
0692
0693 if (unlikely(flags))
0694 return -EINVAL;
0695
0696 if (unlikely(!size))
0697 return 0;
0698
0699 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
0700 if (ret == size)
0701 return 0;
0702
0703 memset(dst, 0, size);
0704
0705 return ret < 0 ? ret : -EFAULT;
0706 }
0707
0708 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
0709 .func = bpf_copy_from_user_task,
0710 .gpl_only = true,
0711 .ret_type = RET_INTEGER,
0712 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
0713 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
0714 .arg3_type = ARG_ANYTHING,
0715 .arg4_type = ARG_PTR_TO_BTF_ID,
0716 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
0717 .arg5_type = ARG_ANYTHING
0718 };
0719
0720 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
0721 {
0722 if (cpu >= nr_cpu_ids)
0723 return (unsigned long)NULL;
0724
0725 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
0726 }
0727
0728 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
0729 .func = bpf_per_cpu_ptr,
0730 .gpl_only = false,
0731 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
0732 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
0733 .arg2_type = ARG_ANYTHING,
0734 };
0735
0736 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
0737 {
0738 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
0739 }
0740
0741 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
0742 .func = bpf_this_cpu_ptr,
0743 .gpl_only = false,
0744 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
0745 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
0746 };
0747
0748 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
0749 size_t bufsz)
0750 {
0751 void __user *user_ptr = (__force void __user *)unsafe_ptr;
0752
0753 buf[0] = 0;
0754
0755 switch (fmt_ptype) {
0756 case 's':
0757 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
0758 if ((unsigned long)unsafe_ptr < TASK_SIZE)
0759 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
0760 fallthrough;
0761 #endif
0762 case 'k':
0763 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
0764 case 'u':
0765 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
0766 }
0767
0768 return -EINVAL;
0769 }
0770
0771
0772
0773
0774 #define MAX_BPRINTF_BUF_LEN 512
0775
0776
0777 #define MAX_BPRINTF_NEST_LEVEL 3
0778 struct bpf_bprintf_buffers {
0779 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
0780 };
0781 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
0782 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
0783
0784 static int try_get_fmt_tmp_buf(char **tmp_buf)
0785 {
0786 struct bpf_bprintf_buffers *bufs;
0787 int nest_level;
0788
0789 preempt_disable();
0790 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
0791 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
0792 this_cpu_dec(bpf_bprintf_nest_level);
0793 preempt_enable();
0794 return -EBUSY;
0795 }
0796 bufs = this_cpu_ptr(&bpf_bprintf_bufs);
0797 *tmp_buf = bufs->tmp_bufs[nest_level - 1];
0798
0799 return 0;
0800 }
0801
0802 void bpf_bprintf_cleanup(void)
0803 {
0804 if (this_cpu_read(bpf_bprintf_nest_level)) {
0805 this_cpu_dec(bpf_bprintf_nest_level);
0806 preempt_enable();
0807 }
0808 }
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
0825 u32 **bin_args, u32 num_args)
0826 {
0827 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
0828 size_t sizeof_cur_arg, sizeof_cur_ip;
0829 int err, i, num_spec = 0;
0830 u64 cur_arg;
0831 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
0832
0833 fmt_end = strnchr(fmt, fmt_size, 0);
0834 if (!fmt_end)
0835 return -EINVAL;
0836 fmt_size = fmt_end - fmt;
0837
0838 if (bin_args) {
0839 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
0840 return -EBUSY;
0841
0842 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
0843 *bin_args = (u32 *)tmp_buf;
0844 }
0845
0846 for (i = 0; i < fmt_size; i++) {
0847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
0848 err = -EINVAL;
0849 goto out;
0850 }
0851
0852 if (fmt[i] != '%')
0853 continue;
0854
0855 if (fmt[i + 1] == '%') {
0856 i++;
0857 continue;
0858 }
0859
0860 if (num_spec >= num_args) {
0861 err = -EINVAL;
0862 goto out;
0863 }
0864
0865
0866
0867
0868 i++;
0869
0870
0871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
0872 fmt[i] == ' ')
0873 i++;
0874 if (fmt[i] >= '1' && fmt[i] <= '9') {
0875 i++;
0876 while (fmt[i] >= '0' && fmt[i] <= '9')
0877 i++;
0878 }
0879
0880 if (fmt[i] == 'p') {
0881 sizeof_cur_arg = sizeof(long);
0882
0883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
0884 fmt[i + 2] == 's') {
0885 fmt_ptype = fmt[i + 1];
0886 i += 2;
0887 goto fmt_str;
0888 }
0889
0890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
0891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
0892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
0893 fmt[i + 1] == 'S') {
0894
0895 if (tmp_buf)
0896 cur_arg = raw_args[num_spec];
0897 i++;
0898 goto nocopy_fmt;
0899 }
0900
0901 if (fmt[i + 1] == 'B') {
0902 if (tmp_buf) {
0903 err = snprintf(tmp_buf,
0904 (tmp_buf_end - tmp_buf),
0905 "%pB",
0906 (void *)(long)raw_args[num_spec]);
0907 tmp_buf += (err + 1);
0908 }
0909
0910 i++;
0911 num_spec++;
0912 continue;
0913 }
0914
0915
0916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
0917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
0918 err = -EINVAL;
0919 goto out;
0920 }
0921
0922 i += 2;
0923 if (!tmp_buf)
0924 goto nocopy_fmt;
0925
0926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
0927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
0928 err = -ENOSPC;
0929 goto out;
0930 }
0931
0932 unsafe_ptr = (char *)(long)raw_args[num_spec];
0933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
0934 sizeof_cur_ip);
0935 if (err < 0)
0936 memset(cur_ip, 0, sizeof_cur_ip);
0937
0938
0939
0940
0941
0942 ip_spec[2] = fmt[i - 1];
0943 ip_spec[3] = fmt[i];
0944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
0945 ip_spec, &cur_ip);
0946
0947 tmp_buf += err + 1;
0948 num_spec++;
0949
0950 continue;
0951 } else if (fmt[i] == 's') {
0952 fmt_ptype = fmt[i];
0953 fmt_str:
0954 if (fmt[i + 1] != 0 &&
0955 !isspace(fmt[i + 1]) &&
0956 !ispunct(fmt[i + 1])) {
0957 err = -EINVAL;
0958 goto out;
0959 }
0960
0961 if (!tmp_buf)
0962 goto nocopy_fmt;
0963
0964 if (tmp_buf_end == tmp_buf) {
0965 err = -ENOSPC;
0966 goto out;
0967 }
0968
0969 unsafe_ptr = (char *)(long)raw_args[num_spec];
0970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
0971 fmt_ptype,
0972 tmp_buf_end - tmp_buf);
0973 if (err < 0) {
0974 tmp_buf[0] = '\0';
0975 err = 1;
0976 }
0977
0978 tmp_buf += err;
0979 num_spec++;
0980
0981 continue;
0982 } else if (fmt[i] == 'c') {
0983 if (!tmp_buf)
0984 goto nocopy_fmt;
0985
0986 if (tmp_buf_end == tmp_buf) {
0987 err = -ENOSPC;
0988 goto out;
0989 }
0990
0991 *tmp_buf = raw_args[num_spec];
0992 tmp_buf++;
0993 num_spec++;
0994
0995 continue;
0996 }
0997
0998 sizeof_cur_arg = sizeof(int);
0999
1000 if (fmt[i] == 'l') {
1001 sizeof_cur_arg = sizeof(long);
1002 i++;
1003 }
1004 if (fmt[i] == 'l') {
1005 sizeof_cur_arg = sizeof(long long);
1006 i++;
1007 }
1008
1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1010 fmt[i] != 'x' && fmt[i] != 'X') {
1011 err = -EINVAL;
1012 goto out;
1013 }
1014
1015 if (tmp_buf)
1016 cur_arg = raw_args[num_spec];
1017 nocopy_fmt:
1018 if (tmp_buf) {
1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1021 err = -ENOSPC;
1022 goto out;
1023 }
1024
1025 if (sizeof_cur_arg == 8) {
1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1028 } else {
1029 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1030 }
1031 tmp_buf += sizeof_cur_arg;
1032 }
1033 num_spec++;
1034 }
1035
1036 err = 0;
1037 out:
1038 if (err)
1039 bpf_bprintf_cleanup();
1040 return err;
1041 }
1042
1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1044 const void *, data, u32, data_len)
1045 {
1046 int err, num_args;
1047 u32 *bin_args;
1048
1049 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1050 (data_len && !data))
1051 return -EINVAL;
1052 num_args = data_len / 8;
1053
1054
1055
1056
1057 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1058 if (err < 0)
1059 return err;
1060
1061 err = bstr_printf(str, str_size, fmt, bin_args);
1062
1063 bpf_bprintf_cleanup();
1064
1065 return err + 1;
1066 }
1067
1068 const struct bpf_func_proto bpf_snprintf_proto = {
1069 .func = bpf_snprintf,
1070 .gpl_only = true,
1071 .ret_type = RET_INTEGER,
1072 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1073 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1074 .arg3_type = ARG_PTR_TO_CONST_STR,
1075 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1076 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1077 };
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095 struct bpf_hrtimer {
1096 struct hrtimer timer;
1097 struct bpf_map *map;
1098 struct bpf_prog *prog;
1099 void __rcu *callback_fn;
1100 void *value;
1101 };
1102
1103
1104 struct bpf_timer_kern {
1105 struct bpf_hrtimer *timer;
1106
1107
1108
1109
1110 struct bpf_spin_lock lock;
1111 } __attribute__((aligned(8)));
1112
1113 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1114
1115 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1116 {
1117 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1118 struct bpf_map *map = t->map;
1119 void *value = t->value;
1120 bpf_callback_t callback_fn;
1121 void *key;
1122 u32 idx;
1123
1124 BTF_TYPE_EMIT(struct bpf_timer);
1125 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1126 if (!callback_fn)
1127 goto out;
1128
1129
1130
1131
1132
1133
1134
1135 this_cpu_write(hrtimer_running, t);
1136 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1137 struct bpf_array *array = container_of(map, struct bpf_array, map);
1138
1139
1140 idx = ((char *)value - array->value) / array->elem_size;
1141 key = &idx;
1142 } else {
1143 key = value - round_up(map->key_size, 8);
1144 }
1145
1146 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1147
1148
1149 this_cpu_write(hrtimer_running, NULL);
1150 out:
1151 return HRTIMER_NORESTART;
1152 }
1153
1154 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1155 u64, flags)
1156 {
1157 clockid_t clockid = flags & (MAX_CLOCKS - 1);
1158 struct bpf_hrtimer *t;
1159 int ret = 0;
1160
1161 BUILD_BUG_ON(MAX_CLOCKS != 16);
1162 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1163 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1164
1165 if (in_nmi())
1166 return -EOPNOTSUPP;
1167
1168 if (flags >= MAX_CLOCKS ||
1169
1170 (clockid != CLOCK_MONOTONIC &&
1171 clockid != CLOCK_REALTIME &&
1172 clockid != CLOCK_BOOTTIME))
1173 return -EINVAL;
1174 __bpf_spin_lock_irqsave(&timer->lock);
1175 t = timer->timer;
1176 if (t) {
1177 ret = -EBUSY;
1178 goto out;
1179 }
1180 if (!atomic64_read(&map->usercnt)) {
1181
1182
1183
1184 ret = -EPERM;
1185 goto out;
1186 }
1187
1188 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1189 if (!t) {
1190 ret = -ENOMEM;
1191 goto out;
1192 }
1193 t->value = (void *)timer - map->timer_off;
1194 t->map = map;
1195 t->prog = NULL;
1196 rcu_assign_pointer(t->callback_fn, NULL);
1197 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1198 t->timer.function = bpf_timer_cb;
1199 timer->timer = t;
1200 out:
1201 __bpf_spin_unlock_irqrestore(&timer->lock);
1202 return ret;
1203 }
1204
1205 static const struct bpf_func_proto bpf_timer_init_proto = {
1206 .func = bpf_timer_init,
1207 .gpl_only = true,
1208 .ret_type = RET_INTEGER,
1209 .arg1_type = ARG_PTR_TO_TIMER,
1210 .arg2_type = ARG_CONST_MAP_PTR,
1211 .arg3_type = ARG_ANYTHING,
1212 };
1213
1214 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1215 struct bpf_prog_aux *, aux)
1216 {
1217 struct bpf_prog *prev, *prog = aux->prog;
1218 struct bpf_hrtimer *t;
1219 int ret = 0;
1220
1221 if (in_nmi())
1222 return -EOPNOTSUPP;
1223 __bpf_spin_lock_irqsave(&timer->lock);
1224 t = timer->timer;
1225 if (!t) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229 if (!atomic64_read(&t->map->usercnt)) {
1230
1231
1232
1233
1234
1235 ret = -EPERM;
1236 goto out;
1237 }
1238 prev = t->prog;
1239 if (prev != prog) {
1240
1241
1242
1243 prog = bpf_prog_inc_not_zero(prog);
1244 if (IS_ERR(prog)) {
1245 ret = PTR_ERR(prog);
1246 goto out;
1247 }
1248 if (prev)
1249
1250 bpf_prog_put(prev);
1251 t->prog = prog;
1252 }
1253 rcu_assign_pointer(t->callback_fn, callback_fn);
1254 out:
1255 __bpf_spin_unlock_irqrestore(&timer->lock);
1256 return ret;
1257 }
1258
1259 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1260 .func = bpf_timer_set_callback,
1261 .gpl_only = true,
1262 .ret_type = RET_INTEGER,
1263 .arg1_type = ARG_PTR_TO_TIMER,
1264 .arg2_type = ARG_PTR_TO_FUNC,
1265 };
1266
1267 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1268 {
1269 struct bpf_hrtimer *t;
1270 int ret = 0;
1271
1272 if (in_nmi())
1273 return -EOPNOTSUPP;
1274 if (flags)
1275 return -EINVAL;
1276 __bpf_spin_lock_irqsave(&timer->lock);
1277 t = timer->timer;
1278 if (!t || !t->prog) {
1279 ret = -EINVAL;
1280 goto out;
1281 }
1282 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1283 out:
1284 __bpf_spin_unlock_irqrestore(&timer->lock);
1285 return ret;
1286 }
1287
1288 static const struct bpf_func_proto bpf_timer_start_proto = {
1289 .func = bpf_timer_start,
1290 .gpl_only = true,
1291 .ret_type = RET_INTEGER,
1292 .arg1_type = ARG_PTR_TO_TIMER,
1293 .arg2_type = ARG_ANYTHING,
1294 .arg3_type = ARG_ANYTHING,
1295 };
1296
1297 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1298 {
1299 struct bpf_prog *prog = t->prog;
1300
1301 if (prog) {
1302 bpf_prog_put(prog);
1303 t->prog = NULL;
1304 rcu_assign_pointer(t->callback_fn, NULL);
1305 }
1306 }
1307
1308 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1309 {
1310 struct bpf_hrtimer *t;
1311 int ret = 0;
1312
1313 if (in_nmi())
1314 return -EOPNOTSUPP;
1315 __bpf_spin_lock_irqsave(&timer->lock);
1316 t = timer->timer;
1317 if (!t) {
1318 ret = -EINVAL;
1319 goto out;
1320 }
1321 if (this_cpu_read(hrtimer_running) == t) {
1322
1323
1324
1325
1326 ret = -EDEADLK;
1327 goto out;
1328 }
1329 drop_prog_refcnt(t);
1330 out:
1331 __bpf_spin_unlock_irqrestore(&timer->lock);
1332
1333
1334
1335 ret = ret ?: hrtimer_cancel(&t->timer);
1336 return ret;
1337 }
1338
1339 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1340 .func = bpf_timer_cancel,
1341 .gpl_only = true,
1342 .ret_type = RET_INTEGER,
1343 .arg1_type = ARG_PTR_TO_TIMER,
1344 };
1345
1346
1347
1348
1349 void bpf_timer_cancel_and_free(void *val)
1350 {
1351 struct bpf_timer_kern *timer = val;
1352 struct bpf_hrtimer *t;
1353
1354
1355 if (!READ_ONCE(timer->timer))
1356 return;
1357
1358 __bpf_spin_lock_irqsave(&timer->lock);
1359
1360 t = timer->timer;
1361 if (!t)
1362 goto out;
1363 drop_prog_refcnt(t);
1364
1365
1366
1367 timer->timer = NULL;
1368 out:
1369 __bpf_spin_unlock_irqrestore(&timer->lock);
1370 if (!t)
1371 return;
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388 if (this_cpu_read(hrtimer_running) != t)
1389 hrtimer_cancel(&t->timer);
1390 kfree(t);
1391 }
1392
1393 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1394 {
1395 unsigned long *kptr = map_value;
1396
1397 return xchg(kptr, (unsigned long)ptr);
1398 }
1399
1400
1401
1402
1403 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1404
1405 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1406 .func = bpf_kptr_xchg,
1407 .gpl_only = false,
1408 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1409 .ret_btf_id = BPF_PTR_POISON,
1410 .arg1_type = ARG_PTR_TO_KPTR,
1411 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1412 .arg2_btf_id = BPF_PTR_POISON,
1413 };
1414
1415
1416
1417
1418 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1419 #define DYNPTR_TYPE_SHIFT 28
1420 #define DYNPTR_SIZE_MASK 0xFFFFFF
1421 #define DYNPTR_RDONLY_BIT BIT(31)
1422
1423 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1424 {
1425 return ptr->size & DYNPTR_RDONLY_BIT;
1426 }
1427
1428 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1429 {
1430 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1431 }
1432
1433 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1434 {
1435 return ptr->size & DYNPTR_SIZE_MASK;
1436 }
1437
1438 int bpf_dynptr_check_size(u32 size)
1439 {
1440 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1441 }
1442
1443 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1444 enum bpf_dynptr_type type, u32 offset, u32 size)
1445 {
1446 ptr->data = data;
1447 ptr->offset = offset;
1448 ptr->size = size;
1449 bpf_dynptr_set_type(ptr, type);
1450 }
1451
1452 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1453 {
1454 memset(ptr, 0, sizeof(*ptr));
1455 }
1456
1457 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1458 {
1459 u32 size = bpf_dynptr_get_size(ptr);
1460
1461 if (len > size || offset > size - len)
1462 return -E2BIG;
1463
1464 return 0;
1465 }
1466
1467 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1468 {
1469 int err;
1470
1471 err = bpf_dynptr_check_size(size);
1472 if (err)
1473 goto error;
1474
1475
1476 if (flags) {
1477 err = -EINVAL;
1478 goto error;
1479 }
1480
1481 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1482
1483 return 0;
1484
1485 error:
1486 bpf_dynptr_set_null(ptr);
1487 return err;
1488 }
1489
1490 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1491 .func = bpf_dynptr_from_mem,
1492 .gpl_only = false,
1493 .ret_type = RET_INTEGER,
1494 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1495 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1496 .arg3_type = ARG_ANYTHING,
1497 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1498 };
1499
1500 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1501 u32, offset, u64, flags)
1502 {
1503 int err;
1504
1505 if (!src->data || flags)
1506 return -EINVAL;
1507
1508 err = bpf_dynptr_check_off_len(src, offset, len);
1509 if (err)
1510 return err;
1511
1512 memcpy(dst, src->data + src->offset + offset, len);
1513
1514 return 0;
1515 }
1516
1517 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1518 .func = bpf_dynptr_read,
1519 .gpl_only = false,
1520 .ret_type = RET_INTEGER,
1521 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1522 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1523 .arg3_type = ARG_PTR_TO_DYNPTR,
1524 .arg4_type = ARG_ANYTHING,
1525 .arg5_type = ARG_ANYTHING,
1526 };
1527
1528 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1529 u32, len, u64, flags)
1530 {
1531 int err;
1532
1533 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1534 return -EINVAL;
1535
1536 err = bpf_dynptr_check_off_len(dst, offset, len);
1537 if (err)
1538 return err;
1539
1540 memcpy(dst->data + dst->offset + offset, src, len);
1541
1542 return 0;
1543 }
1544
1545 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1546 .func = bpf_dynptr_write,
1547 .gpl_only = false,
1548 .ret_type = RET_INTEGER,
1549 .arg1_type = ARG_PTR_TO_DYNPTR,
1550 .arg2_type = ARG_ANYTHING,
1551 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1552 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1553 .arg5_type = ARG_ANYTHING,
1554 };
1555
1556 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1557 {
1558 int err;
1559
1560 if (!ptr->data)
1561 return 0;
1562
1563 err = bpf_dynptr_check_off_len(ptr, offset, len);
1564 if (err)
1565 return 0;
1566
1567 if (bpf_dynptr_is_rdonly(ptr))
1568 return 0;
1569
1570 return (unsigned long)(ptr->data + ptr->offset + offset);
1571 }
1572
1573 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1574 .func = bpf_dynptr_data,
1575 .gpl_only = false,
1576 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1577 .arg1_type = ARG_PTR_TO_DYNPTR,
1578 .arg2_type = ARG_ANYTHING,
1579 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1580 };
1581
1582 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1583 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1584 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1585 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1586 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1587 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1588 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1589
1590 const struct bpf_func_proto *
1591 bpf_base_func_proto(enum bpf_func_id func_id)
1592 {
1593 switch (func_id) {
1594 case BPF_FUNC_map_lookup_elem:
1595 return &bpf_map_lookup_elem_proto;
1596 case BPF_FUNC_map_update_elem:
1597 return &bpf_map_update_elem_proto;
1598 case BPF_FUNC_map_delete_elem:
1599 return &bpf_map_delete_elem_proto;
1600 case BPF_FUNC_map_push_elem:
1601 return &bpf_map_push_elem_proto;
1602 case BPF_FUNC_map_pop_elem:
1603 return &bpf_map_pop_elem_proto;
1604 case BPF_FUNC_map_peek_elem:
1605 return &bpf_map_peek_elem_proto;
1606 case BPF_FUNC_map_lookup_percpu_elem:
1607 return &bpf_map_lookup_percpu_elem_proto;
1608 case BPF_FUNC_get_prandom_u32:
1609 return &bpf_get_prandom_u32_proto;
1610 case BPF_FUNC_get_smp_processor_id:
1611 return &bpf_get_raw_smp_processor_id_proto;
1612 case BPF_FUNC_get_numa_node_id:
1613 return &bpf_get_numa_node_id_proto;
1614 case BPF_FUNC_tail_call:
1615 return &bpf_tail_call_proto;
1616 case BPF_FUNC_ktime_get_ns:
1617 return &bpf_ktime_get_ns_proto;
1618 case BPF_FUNC_ktime_get_boot_ns:
1619 return &bpf_ktime_get_boot_ns_proto;
1620 case BPF_FUNC_ringbuf_output:
1621 return &bpf_ringbuf_output_proto;
1622 case BPF_FUNC_ringbuf_reserve:
1623 return &bpf_ringbuf_reserve_proto;
1624 case BPF_FUNC_ringbuf_submit:
1625 return &bpf_ringbuf_submit_proto;
1626 case BPF_FUNC_ringbuf_discard:
1627 return &bpf_ringbuf_discard_proto;
1628 case BPF_FUNC_ringbuf_query:
1629 return &bpf_ringbuf_query_proto;
1630 case BPF_FUNC_for_each_map_elem:
1631 return &bpf_for_each_map_elem_proto;
1632 case BPF_FUNC_loop:
1633 return &bpf_loop_proto;
1634 case BPF_FUNC_strncmp:
1635 return &bpf_strncmp_proto;
1636 default:
1637 break;
1638 }
1639
1640 if (!bpf_capable())
1641 return NULL;
1642
1643 switch (func_id) {
1644 case BPF_FUNC_spin_lock:
1645 return &bpf_spin_lock_proto;
1646 case BPF_FUNC_spin_unlock:
1647 return &bpf_spin_unlock_proto;
1648 case BPF_FUNC_jiffies64:
1649 return &bpf_jiffies64_proto;
1650 case BPF_FUNC_per_cpu_ptr:
1651 return &bpf_per_cpu_ptr_proto;
1652 case BPF_FUNC_this_cpu_ptr:
1653 return &bpf_this_cpu_ptr_proto;
1654 case BPF_FUNC_timer_init:
1655 return &bpf_timer_init_proto;
1656 case BPF_FUNC_timer_set_callback:
1657 return &bpf_timer_set_callback_proto;
1658 case BPF_FUNC_timer_start:
1659 return &bpf_timer_start_proto;
1660 case BPF_FUNC_timer_cancel:
1661 return &bpf_timer_cancel_proto;
1662 case BPF_FUNC_kptr_xchg:
1663 return &bpf_kptr_xchg_proto;
1664 case BPF_FUNC_ringbuf_reserve_dynptr:
1665 return &bpf_ringbuf_reserve_dynptr_proto;
1666 case BPF_FUNC_ringbuf_submit_dynptr:
1667 return &bpf_ringbuf_submit_dynptr_proto;
1668 case BPF_FUNC_ringbuf_discard_dynptr:
1669 return &bpf_ringbuf_discard_dynptr_proto;
1670 case BPF_FUNC_dynptr_from_mem:
1671 return &bpf_dynptr_from_mem_proto;
1672 case BPF_FUNC_dynptr_read:
1673 return &bpf_dynptr_read_proto;
1674 case BPF_FUNC_dynptr_write:
1675 return &bpf_dynptr_write_proto;
1676 case BPF_FUNC_dynptr_data:
1677 return &bpf_dynptr_data_proto;
1678 default:
1679 break;
1680 }
1681
1682 if (!perfmon_capable())
1683 return NULL;
1684
1685 switch (func_id) {
1686 case BPF_FUNC_trace_printk:
1687 return bpf_get_trace_printk_proto();
1688 case BPF_FUNC_get_current_task:
1689 return &bpf_get_current_task_proto;
1690 case BPF_FUNC_get_current_task_btf:
1691 return &bpf_get_current_task_btf_proto;
1692 case BPF_FUNC_probe_read_user:
1693 return &bpf_probe_read_user_proto;
1694 case BPF_FUNC_probe_read_kernel:
1695 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1696 NULL : &bpf_probe_read_kernel_proto;
1697 case BPF_FUNC_probe_read_user_str:
1698 return &bpf_probe_read_user_str_proto;
1699 case BPF_FUNC_probe_read_kernel_str:
1700 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1701 NULL : &bpf_probe_read_kernel_str_proto;
1702 case BPF_FUNC_snprintf_btf:
1703 return &bpf_snprintf_btf_proto;
1704 case BPF_FUNC_snprintf:
1705 return &bpf_snprintf_proto;
1706 case BPF_FUNC_task_pt_regs:
1707 return &bpf_task_pt_regs_proto;
1708 case BPF_FUNC_trace_vprintk:
1709 return bpf_get_trace_vprintk_proto();
1710 default:
1711 return NULL;
1712 }
1713 }