Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Linux Socket Filter - Kernel level socket filtering
0004  *
0005  * Based on the design of the Berkeley Packet Filter. The new
0006  * internal format has been designed by PLUMgrid:
0007  *
0008  *  Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
0009  *
0010  * Authors:
0011  *
0012  *  Jay Schulist <jschlst@samba.org>
0013  *  Alexei Starovoitov <ast@plumgrid.com>
0014  *  Daniel Borkmann <dborkman@redhat.com>
0015  *
0016  * Andi Kleen - Fix a few bad bugs and races.
0017  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
0018  */
0019 
0020 #include <uapi/linux/btf.h>
0021 #include <linux/filter.h>
0022 #include <linux/skbuff.h>
0023 #include <linux/vmalloc.h>
0024 #include <linux/random.h>
0025 #include <linux/moduleloader.h>
0026 #include <linux/bpf.h>
0027 #include <linux/btf.h>
0028 #include <linux/objtool.h>
0029 #include <linux/rbtree_latch.h>
0030 #include <linux/kallsyms.h>
0031 #include <linux/rcupdate.h>
0032 #include <linux/perf_event.h>
0033 #include <linux/extable.h>
0034 #include <linux/log2.h>
0035 #include <linux/bpf_verifier.h>
0036 #include <linux/nodemask.h>
0037 
0038 #include <asm/barrier.h>
0039 #include <asm/unaligned.h>
0040 
0041 /* Registers */
0042 #define BPF_R0  regs[BPF_REG_0]
0043 #define BPF_R1  regs[BPF_REG_1]
0044 #define BPF_R2  regs[BPF_REG_2]
0045 #define BPF_R3  regs[BPF_REG_3]
0046 #define BPF_R4  regs[BPF_REG_4]
0047 #define BPF_R5  regs[BPF_REG_5]
0048 #define BPF_R6  regs[BPF_REG_6]
0049 #define BPF_R7  regs[BPF_REG_7]
0050 #define BPF_R8  regs[BPF_REG_8]
0051 #define BPF_R9  regs[BPF_REG_9]
0052 #define BPF_R10 regs[BPF_REG_10]
0053 
0054 /* Named registers */
0055 #define DST regs[insn->dst_reg]
0056 #define SRC regs[insn->src_reg]
0057 #define FP  regs[BPF_REG_FP]
0058 #define AX  regs[BPF_REG_AX]
0059 #define ARG1    regs[BPF_REG_ARG1]
0060 #define CTX regs[BPF_REG_CTX]
0061 #define IMM insn->imm
0062 
0063 /* No hurry in this branch
0064  *
0065  * Exported for the bpf jit load helper.
0066  */
0067 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
0068 {
0069     u8 *ptr = NULL;
0070 
0071     if (k >= SKF_NET_OFF) {
0072         ptr = skb_network_header(skb) + k - SKF_NET_OFF;
0073     } else if (k >= SKF_LL_OFF) {
0074         if (unlikely(!skb_mac_header_was_set(skb)))
0075             return NULL;
0076         ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
0077     }
0078     if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
0079         return ptr;
0080 
0081     return NULL;
0082 }
0083 
0084 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
0085 {
0086     gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
0087     struct bpf_prog_aux *aux;
0088     struct bpf_prog *fp;
0089 
0090     size = round_up(size, PAGE_SIZE);
0091     fp = __vmalloc(size, gfp_flags);
0092     if (fp == NULL)
0093         return NULL;
0094 
0095     aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
0096     if (aux == NULL) {
0097         vfree(fp);
0098         return NULL;
0099     }
0100     fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
0101     if (!fp->active) {
0102         vfree(fp);
0103         kfree(aux);
0104         return NULL;
0105     }
0106 
0107     fp->pages = size / PAGE_SIZE;
0108     fp->aux = aux;
0109     fp->aux->prog = fp;
0110     fp->jit_requested = ebpf_jit_enabled();
0111     fp->blinding_requested = bpf_jit_blinding_enabled(fp);
0112 #ifdef CONFIG_CGROUP_BPF
0113     aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
0114 #endif
0115 
0116     INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
0117     mutex_init(&fp->aux->used_maps_mutex);
0118     mutex_init(&fp->aux->dst_mutex);
0119 
0120     return fp;
0121 }
0122 
0123 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
0124 {
0125     gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
0126     struct bpf_prog *prog;
0127     int cpu;
0128 
0129     prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
0130     if (!prog)
0131         return NULL;
0132 
0133     prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
0134     if (!prog->stats) {
0135         free_percpu(prog->active);
0136         kfree(prog->aux);
0137         vfree(prog);
0138         return NULL;
0139     }
0140 
0141     for_each_possible_cpu(cpu) {
0142         struct bpf_prog_stats *pstats;
0143 
0144         pstats = per_cpu_ptr(prog->stats, cpu);
0145         u64_stats_init(&pstats->syncp);
0146     }
0147     return prog;
0148 }
0149 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
0150 
0151 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
0152 {
0153     if (!prog->aux->nr_linfo || !prog->jit_requested)
0154         return 0;
0155 
0156     prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
0157                       sizeof(*prog->aux->jited_linfo),
0158                       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
0159     if (!prog->aux->jited_linfo)
0160         return -ENOMEM;
0161 
0162     return 0;
0163 }
0164 
0165 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
0166 {
0167     if (prog->aux->jited_linfo &&
0168         (!prog->jited || !prog->aux->jited_linfo[0])) {
0169         kvfree(prog->aux->jited_linfo);
0170         prog->aux->jited_linfo = NULL;
0171     }
0172 
0173     kfree(prog->aux->kfunc_tab);
0174     prog->aux->kfunc_tab = NULL;
0175 }
0176 
0177 /* The jit engine is responsible to provide an array
0178  * for insn_off to the jited_off mapping (insn_to_jit_off).
0179  *
0180  * The idx to this array is the insn_off.  Hence, the insn_off
0181  * here is relative to the prog itself instead of the main prog.
0182  * This array has one entry for each xlated bpf insn.
0183  *
0184  * jited_off is the byte off to the end of the jited insn.
0185  *
0186  * Hence, with
0187  * insn_start:
0188  *      The first bpf insn off of the prog.  The insn off
0189  *      here is relative to the main prog.
0190  *      e.g. if prog is a subprog, insn_start > 0
0191  * linfo_idx:
0192  *      The prog's idx to prog->aux->linfo and jited_linfo
0193  *
0194  * jited_linfo[linfo_idx] = prog->bpf_func
0195  *
0196  * For i > linfo_idx,
0197  *
0198  * jited_linfo[i] = prog->bpf_func +
0199  *  insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
0200  */
0201 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
0202                    const u32 *insn_to_jit_off)
0203 {
0204     u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
0205     const struct bpf_line_info *linfo;
0206     void **jited_linfo;
0207 
0208     if (!prog->aux->jited_linfo)
0209         /* Userspace did not provide linfo */
0210         return;
0211 
0212     linfo_idx = prog->aux->linfo_idx;
0213     linfo = &prog->aux->linfo[linfo_idx];
0214     insn_start = linfo[0].insn_off;
0215     insn_end = insn_start + prog->len;
0216 
0217     jited_linfo = &prog->aux->jited_linfo[linfo_idx];
0218     jited_linfo[0] = prog->bpf_func;
0219 
0220     nr_linfo = prog->aux->nr_linfo - linfo_idx;
0221 
0222     for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
0223         /* The verifier ensures that linfo[i].insn_off is
0224          * strictly increasing
0225          */
0226         jited_linfo[i] = prog->bpf_func +
0227             insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
0228 }
0229 
0230 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
0231                   gfp_t gfp_extra_flags)
0232 {
0233     gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
0234     struct bpf_prog *fp;
0235     u32 pages;
0236 
0237     size = round_up(size, PAGE_SIZE);
0238     pages = size / PAGE_SIZE;
0239     if (pages <= fp_old->pages)
0240         return fp_old;
0241 
0242     fp = __vmalloc(size, gfp_flags);
0243     if (fp) {
0244         memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
0245         fp->pages = pages;
0246         fp->aux->prog = fp;
0247 
0248         /* We keep fp->aux from fp_old around in the new
0249          * reallocated structure.
0250          */
0251         fp_old->aux = NULL;
0252         fp_old->stats = NULL;
0253         fp_old->active = NULL;
0254         __bpf_prog_free(fp_old);
0255     }
0256 
0257     return fp;
0258 }
0259 
0260 void __bpf_prog_free(struct bpf_prog *fp)
0261 {
0262     if (fp->aux) {
0263         mutex_destroy(&fp->aux->used_maps_mutex);
0264         mutex_destroy(&fp->aux->dst_mutex);
0265         kfree(fp->aux->poke_tab);
0266         kfree(fp->aux);
0267     }
0268     free_percpu(fp->stats);
0269     free_percpu(fp->active);
0270     vfree(fp);
0271 }
0272 
0273 int bpf_prog_calc_tag(struct bpf_prog *fp)
0274 {
0275     const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
0276     u32 raw_size = bpf_prog_tag_scratch_size(fp);
0277     u32 digest[SHA1_DIGEST_WORDS];
0278     u32 ws[SHA1_WORKSPACE_WORDS];
0279     u32 i, bsize, psize, blocks;
0280     struct bpf_insn *dst;
0281     bool was_ld_map;
0282     u8 *raw, *todo;
0283     __be32 *result;
0284     __be64 *bits;
0285 
0286     raw = vmalloc(raw_size);
0287     if (!raw)
0288         return -ENOMEM;
0289 
0290     sha1_init(digest);
0291     memset(ws, 0, sizeof(ws));
0292 
0293     /* We need to take out the map fd for the digest calculation
0294      * since they are unstable from user space side.
0295      */
0296     dst = (void *)raw;
0297     for (i = 0, was_ld_map = false; i < fp->len; i++) {
0298         dst[i] = fp->insnsi[i];
0299         if (!was_ld_map &&
0300             dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
0301             (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
0302              dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
0303             was_ld_map = true;
0304             dst[i].imm = 0;
0305         } else if (was_ld_map &&
0306                dst[i].code == 0 &&
0307                dst[i].dst_reg == 0 &&
0308                dst[i].src_reg == 0 &&
0309                dst[i].off == 0) {
0310             was_ld_map = false;
0311             dst[i].imm = 0;
0312         } else {
0313             was_ld_map = false;
0314         }
0315     }
0316 
0317     psize = bpf_prog_insn_size(fp);
0318     memset(&raw[psize], 0, raw_size - psize);
0319     raw[psize++] = 0x80;
0320 
0321     bsize  = round_up(psize, SHA1_BLOCK_SIZE);
0322     blocks = bsize / SHA1_BLOCK_SIZE;
0323     todo   = raw;
0324     if (bsize - psize >= sizeof(__be64)) {
0325         bits = (__be64 *)(todo + bsize - sizeof(__be64));
0326     } else {
0327         bits = (__be64 *)(todo + bsize + bits_offset);
0328         blocks++;
0329     }
0330     *bits = cpu_to_be64((psize - 1) << 3);
0331 
0332     while (blocks--) {
0333         sha1_transform(digest, todo, ws);
0334         todo += SHA1_BLOCK_SIZE;
0335     }
0336 
0337     result = (__force __be32 *)digest;
0338     for (i = 0; i < SHA1_DIGEST_WORDS; i++)
0339         result[i] = cpu_to_be32(digest[i]);
0340     memcpy(fp->tag, result, sizeof(fp->tag));
0341 
0342     vfree(raw);
0343     return 0;
0344 }
0345 
0346 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
0347                 s32 end_new, s32 curr, const bool probe_pass)
0348 {
0349     const s64 imm_min = S32_MIN, imm_max = S32_MAX;
0350     s32 delta = end_new - end_old;
0351     s64 imm = insn->imm;
0352 
0353     if (curr < pos && curr + imm + 1 >= end_old)
0354         imm += delta;
0355     else if (curr >= end_new && curr + imm + 1 < end_new)
0356         imm -= delta;
0357     if (imm < imm_min || imm > imm_max)
0358         return -ERANGE;
0359     if (!probe_pass)
0360         insn->imm = imm;
0361     return 0;
0362 }
0363 
0364 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
0365                 s32 end_new, s32 curr, const bool probe_pass)
0366 {
0367     const s32 off_min = S16_MIN, off_max = S16_MAX;
0368     s32 delta = end_new - end_old;
0369     s32 off = insn->off;
0370 
0371     if (curr < pos && curr + off + 1 >= end_old)
0372         off += delta;
0373     else if (curr >= end_new && curr + off + 1 < end_new)
0374         off -= delta;
0375     if (off < off_min || off > off_max)
0376         return -ERANGE;
0377     if (!probe_pass)
0378         insn->off = off;
0379     return 0;
0380 }
0381 
0382 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
0383                 s32 end_new, const bool probe_pass)
0384 {
0385     u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
0386     struct bpf_insn *insn = prog->insnsi;
0387     int ret = 0;
0388 
0389     for (i = 0; i < insn_cnt; i++, insn++) {
0390         u8 code;
0391 
0392         /* In the probing pass we still operate on the original,
0393          * unpatched image in order to check overflows before we
0394          * do any other adjustments. Therefore skip the patchlet.
0395          */
0396         if (probe_pass && i == pos) {
0397             i = end_new;
0398             insn = prog->insnsi + end_old;
0399         }
0400         if (bpf_pseudo_func(insn)) {
0401             ret = bpf_adj_delta_to_imm(insn, pos, end_old,
0402                            end_new, i, probe_pass);
0403             if (ret)
0404                 return ret;
0405             continue;
0406         }
0407         code = insn->code;
0408         if ((BPF_CLASS(code) != BPF_JMP &&
0409              BPF_CLASS(code) != BPF_JMP32) ||
0410             BPF_OP(code) == BPF_EXIT)
0411             continue;
0412         /* Adjust offset of jmps if we cross patch boundaries. */
0413         if (BPF_OP(code) == BPF_CALL) {
0414             if (insn->src_reg != BPF_PSEUDO_CALL)
0415                 continue;
0416             ret = bpf_adj_delta_to_imm(insn, pos, end_old,
0417                            end_new, i, probe_pass);
0418         } else {
0419             ret = bpf_adj_delta_to_off(insn, pos, end_old,
0420                            end_new, i, probe_pass);
0421         }
0422         if (ret)
0423             break;
0424     }
0425 
0426     return ret;
0427 }
0428 
0429 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
0430 {
0431     struct bpf_line_info *linfo;
0432     u32 i, nr_linfo;
0433 
0434     nr_linfo = prog->aux->nr_linfo;
0435     if (!nr_linfo || !delta)
0436         return;
0437 
0438     linfo = prog->aux->linfo;
0439 
0440     for (i = 0; i < nr_linfo; i++)
0441         if (off < linfo[i].insn_off)
0442             break;
0443 
0444     /* Push all off < linfo[i].insn_off by delta */
0445     for (; i < nr_linfo; i++)
0446         linfo[i].insn_off += delta;
0447 }
0448 
0449 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
0450                        const struct bpf_insn *patch, u32 len)
0451 {
0452     u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
0453     const u32 cnt_max = S16_MAX;
0454     struct bpf_prog *prog_adj;
0455     int err;
0456 
0457     /* Since our patchlet doesn't expand the image, we're done. */
0458     if (insn_delta == 0) {
0459         memcpy(prog->insnsi + off, patch, sizeof(*patch));
0460         return prog;
0461     }
0462 
0463     insn_adj_cnt = prog->len + insn_delta;
0464 
0465     /* Reject anything that would potentially let the insn->off
0466      * target overflow when we have excessive program expansions.
0467      * We need to probe here before we do any reallocation where
0468      * we afterwards may not fail anymore.
0469      */
0470     if (insn_adj_cnt > cnt_max &&
0471         (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
0472         return ERR_PTR(err);
0473 
0474     /* Several new instructions need to be inserted. Make room
0475      * for them. Likely, there's no need for a new allocation as
0476      * last page could have large enough tailroom.
0477      */
0478     prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
0479                     GFP_USER);
0480     if (!prog_adj)
0481         return ERR_PTR(-ENOMEM);
0482 
0483     prog_adj->len = insn_adj_cnt;
0484 
0485     /* Patching happens in 3 steps:
0486      *
0487      * 1) Move over tail of insnsi from next instruction onwards,
0488      *    so we can patch the single target insn with one or more
0489      *    new ones (patching is always from 1 to n insns, n > 0).
0490      * 2) Inject new instructions at the target location.
0491      * 3) Adjust branch offsets if necessary.
0492      */
0493     insn_rest = insn_adj_cnt - off - len;
0494 
0495     memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
0496         sizeof(*patch) * insn_rest);
0497     memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
0498 
0499     /* We are guaranteed to not fail at this point, otherwise
0500      * the ship has sailed to reverse to the original state. An
0501      * overflow cannot happen at this point.
0502      */
0503     BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
0504 
0505     bpf_adj_linfo(prog_adj, off, insn_delta);
0506 
0507     return prog_adj;
0508 }
0509 
0510 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
0511 {
0512     /* Branch offsets can't overflow when program is shrinking, no need
0513      * to call bpf_adj_branches(..., true) here
0514      */
0515     memmove(prog->insnsi + off, prog->insnsi + off + cnt,
0516         sizeof(struct bpf_insn) * (prog->len - off - cnt));
0517     prog->len -= cnt;
0518 
0519     return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
0520 }
0521 
0522 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
0523 {
0524     int i;
0525 
0526     for (i = 0; i < fp->aux->func_cnt; i++)
0527         bpf_prog_kallsyms_del(fp->aux->func[i]);
0528 }
0529 
0530 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
0531 {
0532     bpf_prog_kallsyms_del_subprogs(fp);
0533     bpf_prog_kallsyms_del(fp);
0534 }
0535 
0536 #ifdef CONFIG_BPF_JIT
0537 /* All BPF JIT sysctl knobs here. */
0538 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
0539 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
0540 int bpf_jit_harden   __read_mostly;
0541 long bpf_jit_limit   __read_mostly;
0542 long bpf_jit_limit_max __read_mostly;
0543 
0544 static void
0545 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
0546 {
0547     WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
0548 
0549     prog->aux->ksym.start = (unsigned long) prog->bpf_func;
0550     prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
0551 }
0552 
0553 static void
0554 bpf_prog_ksym_set_name(struct bpf_prog *prog)
0555 {
0556     char *sym = prog->aux->ksym.name;
0557     const char *end = sym + KSYM_NAME_LEN;
0558     const struct btf_type *type;
0559     const char *func_name;
0560 
0561     BUILD_BUG_ON(sizeof("bpf_prog_") +
0562              sizeof(prog->tag) * 2 +
0563              /* name has been null terminated.
0564               * We should need +1 for the '_' preceding
0565               * the name.  However, the null character
0566               * is double counted between the name and the
0567               * sizeof("bpf_prog_") above, so we omit
0568               * the +1 here.
0569               */
0570              sizeof(prog->aux->name) > KSYM_NAME_LEN);
0571 
0572     sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
0573     sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
0574 
0575     /* prog->aux->name will be ignored if full btf name is available */
0576     if (prog->aux->func_info_cnt) {
0577         type = btf_type_by_id(prog->aux->btf,
0578                       prog->aux->func_info[prog->aux->func_idx].type_id);
0579         func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
0580         snprintf(sym, (size_t)(end - sym), "_%s", func_name);
0581         return;
0582     }
0583 
0584     if (prog->aux->name[0])
0585         snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
0586     else
0587         *sym = 0;
0588 }
0589 
0590 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
0591 {
0592     return container_of(n, struct bpf_ksym, tnode)->start;
0593 }
0594 
0595 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
0596                       struct latch_tree_node *b)
0597 {
0598     return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
0599 }
0600 
0601 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
0602 {
0603     unsigned long val = (unsigned long)key;
0604     const struct bpf_ksym *ksym;
0605 
0606     ksym = container_of(n, struct bpf_ksym, tnode);
0607 
0608     if (val < ksym->start)
0609         return -1;
0610     if (val >= ksym->end)
0611         return  1;
0612 
0613     return 0;
0614 }
0615 
0616 static const struct latch_tree_ops bpf_tree_ops = {
0617     .less   = bpf_tree_less,
0618     .comp   = bpf_tree_comp,
0619 };
0620 
0621 static DEFINE_SPINLOCK(bpf_lock);
0622 static LIST_HEAD(bpf_kallsyms);
0623 static struct latch_tree_root bpf_tree __cacheline_aligned;
0624 
0625 void bpf_ksym_add(struct bpf_ksym *ksym)
0626 {
0627     spin_lock_bh(&bpf_lock);
0628     WARN_ON_ONCE(!list_empty(&ksym->lnode));
0629     list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
0630     latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
0631     spin_unlock_bh(&bpf_lock);
0632 }
0633 
0634 static void __bpf_ksym_del(struct bpf_ksym *ksym)
0635 {
0636     if (list_empty(&ksym->lnode))
0637         return;
0638 
0639     latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
0640     list_del_rcu(&ksym->lnode);
0641 }
0642 
0643 void bpf_ksym_del(struct bpf_ksym *ksym)
0644 {
0645     spin_lock_bh(&bpf_lock);
0646     __bpf_ksym_del(ksym);
0647     spin_unlock_bh(&bpf_lock);
0648 }
0649 
0650 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
0651 {
0652     return fp->jited && !bpf_prog_was_classic(fp);
0653 }
0654 
0655 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
0656 {
0657     if (!bpf_prog_kallsyms_candidate(fp) ||
0658         !bpf_capable())
0659         return;
0660 
0661     bpf_prog_ksym_set_addr(fp);
0662     bpf_prog_ksym_set_name(fp);
0663     fp->aux->ksym.prog = true;
0664 
0665     bpf_ksym_add(&fp->aux->ksym);
0666 }
0667 
0668 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
0669 {
0670     if (!bpf_prog_kallsyms_candidate(fp))
0671         return;
0672 
0673     bpf_ksym_del(&fp->aux->ksym);
0674 }
0675 
0676 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
0677 {
0678     struct latch_tree_node *n;
0679 
0680     n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
0681     return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
0682 }
0683 
0684 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
0685                  unsigned long *off, char *sym)
0686 {
0687     struct bpf_ksym *ksym;
0688     char *ret = NULL;
0689 
0690     rcu_read_lock();
0691     ksym = bpf_ksym_find(addr);
0692     if (ksym) {
0693         unsigned long symbol_start = ksym->start;
0694         unsigned long symbol_end = ksym->end;
0695 
0696         strncpy(sym, ksym->name, KSYM_NAME_LEN);
0697 
0698         ret = sym;
0699         if (size)
0700             *size = symbol_end - symbol_start;
0701         if (off)
0702             *off  = addr - symbol_start;
0703     }
0704     rcu_read_unlock();
0705 
0706     return ret;
0707 }
0708 
0709 bool is_bpf_text_address(unsigned long addr)
0710 {
0711     bool ret;
0712 
0713     rcu_read_lock();
0714     ret = bpf_ksym_find(addr) != NULL;
0715     rcu_read_unlock();
0716 
0717     return ret;
0718 }
0719 
0720 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
0721 {
0722     struct bpf_ksym *ksym = bpf_ksym_find(addr);
0723 
0724     return ksym && ksym->prog ?
0725            container_of(ksym, struct bpf_prog_aux, ksym)->prog :
0726            NULL;
0727 }
0728 
0729 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
0730 {
0731     const struct exception_table_entry *e = NULL;
0732     struct bpf_prog *prog;
0733 
0734     rcu_read_lock();
0735     prog = bpf_prog_ksym_find(addr);
0736     if (!prog)
0737         goto out;
0738     if (!prog->aux->num_exentries)
0739         goto out;
0740 
0741     e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
0742 out:
0743     rcu_read_unlock();
0744     return e;
0745 }
0746 
0747 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
0748             char *sym)
0749 {
0750     struct bpf_ksym *ksym;
0751     unsigned int it = 0;
0752     int ret = -ERANGE;
0753 
0754     if (!bpf_jit_kallsyms_enabled())
0755         return ret;
0756 
0757     rcu_read_lock();
0758     list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
0759         if (it++ != symnum)
0760             continue;
0761 
0762         strncpy(sym, ksym->name, KSYM_NAME_LEN);
0763 
0764         *value = ksym->start;
0765         *type  = BPF_SYM_ELF_TYPE;
0766 
0767         ret = 0;
0768         break;
0769     }
0770     rcu_read_unlock();
0771 
0772     return ret;
0773 }
0774 
0775 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
0776                 struct bpf_jit_poke_descriptor *poke)
0777 {
0778     struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
0779     static const u32 poke_tab_max = 1024;
0780     u32 slot = prog->aux->size_poke_tab;
0781     u32 size = slot + 1;
0782 
0783     if (size > poke_tab_max)
0784         return -ENOSPC;
0785     if (poke->tailcall_target || poke->tailcall_target_stable ||
0786         poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
0787         return -EINVAL;
0788 
0789     switch (poke->reason) {
0790     case BPF_POKE_REASON_TAIL_CALL:
0791         if (!poke->tail_call.map)
0792             return -EINVAL;
0793         break;
0794     default:
0795         return -EINVAL;
0796     }
0797 
0798     tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
0799     if (!tab)
0800         return -ENOMEM;
0801 
0802     memcpy(&tab[slot], poke, sizeof(*poke));
0803     prog->aux->size_poke_tab = size;
0804     prog->aux->poke_tab = tab;
0805 
0806     return slot;
0807 }
0808 
0809 /*
0810  * BPF program pack allocator.
0811  *
0812  * Most BPF programs are pretty small. Allocating a hole page for each
0813  * program is sometime a waste. Many small bpf program also adds pressure
0814  * to instruction TLB. To solve this issue, we introduce a BPF program pack
0815  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
0816  * to host BPF programs.
0817  */
0818 #define BPF_PROG_CHUNK_SHIFT    6
0819 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
0820 #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
0821 
0822 struct bpf_prog_pack {
0823     struct list_head list;
0824     void *ptr;
0825     unsigned long bitmap[];
0826 };
0827 
0828 #define BPF_PROG_SIZE_TO_NBITS(size)    (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
0829 
0830 static DEFINE_MUTEX(pack_mutex);
0831 static LIST_HEAD(pack_list);
0832 
0833 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
0834  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
0835  */
0836 #ifdef PMD_SIZE
0837 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
0838 #else
0839 #define BPF_PROG_PACK_SIZE PAGE_SIZE
0840 #endif
0841 
0842 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
0843 
0844 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
0845 {
0846     struct bpf_prog_pack *pack;
0847 
0848     pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
0849                GFP_KERNEL);
0850     if (!pack)
0851         return NULL;
0852     pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
0853     if (!pack->ptr) {
0854         kfree(pack);
0855         return NULL;
0856     }
0857     bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
0858     bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
0859     list_add_tail(&pack->list, &pack_list);
0860 
0861     set_vm_flush_reset_perms(pack->ptr);
0862     set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
0863     set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
0864     return pack;
0865 }
0866 
0867 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
0868 {
0869     unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
0870     struct bpf_prog_pack *pack;
0871     unsigned long pos;
0872     void *ptr = NULL;
0873 
0874     mutex_lock(&pack_mutex);
0875     if (size > BPF_PROG_PACK_SIZE) {
0876         size = round_up(size, PAGE_SIZE);
0877         ptr = module_alloc(size);
0878         if (ptr) {
0879             bpf_fill_ill_insns(ptr, size);
0880             set_vm_flush_reset_perms(ptr);
0881             set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
0882             set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
0883         }
0884         goto out;
0885     }
0886     list_for_each_entry(pack, &pack_list, list) {
0887         pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
0888                          nbits, 0);
0889         if (pos < BPF_PROG_CHUNK_COUNT)
0890             goto found_free_area;
0891     }
0892 
0893     pack = alloc_new_pack(bpf_fill_ill_insns);
0894     if (!pack)
0895         goto out;
0896 
0897     pos = 0;
0898 
0899 found_free_area:
0900     bitmap_set(pack->bitmap, pos, nbits);
0901     ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
0902 
0903 out:
0904     mutex_unlock(&pack_mutex);
0905     return ptr;
0906 }
0907 
0908 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
0909 {
0910     struct bpf_prog_pack *pack = NULL, *tmp;
0911     unsigned int nbits;
0912     unsigned long pos;
0913 
0914     mutex_lock(&pack_mutex);
0915     if (hdr->size > BPF_PROG_PACK_SIZE) {
0916         module_memfree(hdr);
0917         goto out;
0918     }
0919 
0920     list_for_each_entry(tmp, &pack_list, list) {
0921         if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
0922             pack = tmp;
0923             break;
0924         }
0925     }
0926 
0927     if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
0928         goto out;
0929 
0930     nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
0931     pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
0932 
0933     WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
0934           "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
0935 
0936     bitmap_clear(pack->bitmap, pos, nbits);
0937     if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
0938                        BPF_PROG_CHUNK_COUNT, 0) == 0) {
0939         list_del(&pack->list);
0940         module_memfree(pack->ptr);
0941         kfree(pack);
0942     }
0943 out:
0944     mutex_unlock(&pack_mutex);
0945 }
0946 
0947 static atomic_long_t bpf_jit_current;
0948 
0949 /* Can be overridden by an arch's JIT compiler if it has a custom,
0950  * dedicated BPF backend memory area, or if neither of the two
0951  * below apply.
0952  */
0953 u64 __weak bpf_jit_alloc_exec_limit(void)
0954 {
0955 #if defined(MODULES_VADDR)
0956     return MODULES_END - MODULES_VADDR;
0957 #else
0958     return VMALLOC_END - VMALLOC_START;
0959 #endif
0960 }
0961 
0962 static int __init bpf_jit_charge_init(void)
0963 {
0964     /* Only used as heuristic here to derive limit. */
0965     bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
0966     bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
0967                         PAGE_SIZE), LONG_MAX);
0968     return 0;
0969 }
0970 pure_initcall(bpf_jit_charge_init);
0971 
0972 int bpf_jit_charge_modmem(u32 size)
0973 {
0974     if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
0975         if (!bpf_capable()) {
0976             atomic_long_sub(size, &bpf_jit_current);
0977             return -EPERM;
0978         }
0979     }
0980 
0981     return 0;
0982 }
0983 
0984 void bpf_jit_uncharge_modmem(u32 size)
0985 {
0986     atomic_long_sub(size, &bpf_jit_current);
0987 }
0988 
0989 void *__weak bpf_jit_alloc_exec(unsigned long size)
0990 {
0991     return module_alloc(size);
0992 }
0993 
0994 void __weak bpf_jit_free_exec(void *addr)
0995 {
0996     module_memfree(addr);
0997 }
0998 
0999 struct bpf_binary_header *
1000 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1001              unsigned int alignment,
1002              bpf_jit_fill_hole_t bpf_fill_ill_insns)
1003 {
1004     struct bpf_binary_header *hdr;
1005     u32 size, hole, start;
1006 
1007     WARN_ON_ONCE(!is_power_of_2(alignment) ||
1008              alignment > BPF_IMAGE_ALIGNMENT);
1009 
1010     /* Most of BPF filters are really small, but if some of them
1011      * fill a page, allow at least 128 extra bytes to insert a
1012      * random section of illegal instructions.
1013      */
1014     size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1015 
1016     if (bpf_jit_charge_modmem(size))
1017         return NULL;
1018     hdr = bpf_jit_alloc_exec(size);
1019     if (!hdr) {
1020         bpf_jit_uncharge_modmem(size);
1021         return NULL;
1022     }
1023 
1024     /* Fill space with illegal/arch-dep instructions. */
1025     bpf_fill_ill_insns(hdr, size);
1026 
1027     hdr->size = size;
1028     hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1029              PAGE_SIZE - sizeof(*hdr));
1030     start = (get_random_int() % hole) & ~(alignment - 1);
1031 
1032     /* Leave a random number of instructions before BPF code. */
1033     *image_ptr = &hdr->image[start];
1034 
1035     return hdr;
1036 }
1037 
1038 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1039 {
1040     u32 size = hdr->size;
1041 
1042     bpf_jit_free_exec(hdr);
1043     bpf_jit_uncharge_modmem(size);
1044 }
1045 
1046 /* Allocate jit binary from bpf_prog_pack allocator.
1047  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1048  * to the memory. To solve this problem, a RW buffer is also allocated at
1049  * as the same time. The JIT engine should calculate offsets based on the
1050  * RO memory address, but write JITed program to the RW buffer. Once the
1051  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1052  * the JITed program to the RO memory.
1053  */
1054 struct bpf_binary_header *
1055 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1056               unsigned int alignment,
1057               struct bpf_binary_header **rw_header,
1058               u8 **rw_image,
1059               bpf_jit_fill_hole_t bpf_fill_ill_insns)
1060 {
1061     struct bpf_binary_header *ro_header;
1062     u32 size, hole, start;
1063 
1064     WARN_ON_ONCE(!is_power_of_2(alignment) ||
1065              alignment > BPF_IMAGE_ALIGNMENT);
1066 
1067     /* add 16 bytes for a random section of illegal instructions */
1068     size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1069 
1070     if (bpf_jit_charge_modmem(size))
1071         return NULL;
1072     ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1073     if (!ro_header) {
1074         bpf_jit_uncharge_modmem(size);
1075         return NULL;
1076     }
1077 
1078     *rw_header = kvmalloc(size, GFP_KERNEL);
1079     if (!*rw_header) {
1080         bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1081         bpf_prog_pack_free(ro_header);
1082         bpf_jit_uncharge_modmem(size);
1083         return NULL;
1084     }
1085 
1086     /* Fill space with illegal/arch-dep instructions. */
1087     bpf_fill_ill_insns(*rw_header, size);
1088     (*rw_header)->size = size;
1089 
1090     hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1091              BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1092     start = (get_random_int() % hole) & ~(alignment - 1);
1093 
1094     *image_ptr = &ro_header->image[start];
1095     *rw_image = &(*rw_header)->image[start];
1096 
1097     return ro_header;
1098 }
1099 
1100 /* Copy JITed text from rw_header to its final location, the ro_header. */
1101 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1102                  struct bpf_binary_header *ro_header,
1103                  struct bpf_binary_header *rw_header)
1104 {
1105     void *ptr;
1106 
1107     ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1108 
1109     kvfree(rw_header);
1110 
1111     if (IS_ERR(ptr)) {
1112         bpf_prog_pack_free(ro_header);
1113         return PTR_ERR(ptr);
1114     }
1115     return 0;
1116 }
1117 
1118 /* bpf_jit_binary_pack_free is called in two different scenarios:
1119  *   1) when the program is freed after;
1120  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1121  * For case 2), we need to free both the RO memory and the RW buffer.
1122  *
1123  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1124  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1125  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1126  * bpf_arch_text_copy (when jit fails).
1127  */
1128 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1129                   struct bpf_binary_header *rw_header)
1130 {
1131     u32 size = ro_header->size;
1132 
1133     bpf_prog_pack_free(ro_header);
1134     kvfree(rw_header);
1135     bpf_jit_uncharge_modmem(size);
1136 }
1137 
1138 struct bpf_binary_header *
1139 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1140 {
1141     unsigned long real_start = (unsigned long)fp->bpf_func;
1142     unsigned long addr;
1143 
1144     addr = real_start & BPF_PROG_CHUNK_MASK;
1145     return (void *)addr;
1146 }
1147 
1148 static inline struct bpf_binary_header *
1149 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1150 {
1151     unsigned long real_start = (unsigned long)fp->bpf_func;
1152     unsigned long addr;
1153 
1154     addr = real_start & PAGE_MASK;
1155     return (void *)addr;
1156 }
1157 
1158 /* This symbol is only overridden by archs that have different
1159  * requirements than the usual eBPF JITs, f.e. when they only
1160  * implement cBPF JIT, do not set images read-only, etc.
1161  */
1162 void __weak bpf_jit_free(struct bpf_prog *fp)
1163 {
1164     if (fp->jited) {
1165         struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1166 
1167         bpf_jit_binary_free(hdr);
1168         WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1169     }
1170 
1171     bpf_prog_unlock_free(fp);
1172 }
1173 
1174 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1175               const struct bpf_insn *insn, bool extra_pass,
1176               u64 *func_addr, bool *func_addr_fixed)
1177 {
1178     s16 off = insn->off;
1179     s32 imm = insn->imm;
1180     u8 *addr;
1181 
1182     *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1183     if (!*func_addr_fixed) {
1184         /* Place-holder address till the last pass has collected
1185          * all addresses for JITed subprograms in which case we
1186          * can pick them up from prog->aux.
1187          */
1188         if (!extra_pass)
1189             addr = NULL;
1190         else if (prog->aux->func &&
1191              off >= 0 && off < prog->aux->func_cnt)
1192             addr = (u8 *)prog->aux->func[off]->bpf_func;
1193         else
1194             return -EINVAL;
1195     } else {
1196         /* Address of a BPF helper call. Since part of the core
1197          * kernel, it's always at a fixed location. __bpf_call_base
1198          * and the helper with imm relative to it are both in core
1199          * kernel.
1200          */
1201         addr = (u8 *)__bpf_call_base + imm;
1202     }
1203 
1204     *func_addr = (unsigned long)addr;
1205     return 0;
1206 }
1207 
1208 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1209                   const struct bpf_insn *aux,
1210                   struct bpf_insn *to_buff,
1211                   bool emit_zext)
1212 {
1213     struct bpf_insn *to = to_buff;
1214     u32 imm_rnd = get_random_int();
1215     s16 off;
1216 
1217     BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1218     BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1219 
1220     /* Constraints on AX register:
1221      *
1222      * AX register is inaccessible from user space. It is mapped in
1223      * all JITs, and used here for constant blinding rewrites. It is
1224      * typically "stateless" meaning its contents are only valid within
1225      * the executed instruction, but not across several instructions.
1226      * There are a few exceptions however which are further detailed
1227      * below.
1228      *
1229      * Constant blinding is only used by JITs, not in the interpreter.
1230      * The interpreter uses AX in some occasions as a local temporary
1231      * register e.g. in DIV or MOD instructions.
1232      *
1233      * In restricted circumstances, the verifier can also use the AX
1234      * register for rewrites as long as they do not interfere with
1235      * the above cases!
1236      */
1237     if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1238         goto out;
1239 
1240     if (from->imm == 0 &&
1241         (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1242          from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1243         *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1244         goto out;
1245     }
1246 
1247     switch (from->code) {
1248     case BPF_ALU | BPF_ADD | BPF_K:
1249     case BPF_ALU | BPF_SUB | BPF_K:
1250     case BPF_ALU | BPF_AND | BPF_K:
1251     case BPF_ALU | BPF_OR  | BPF_K:
1252     case BPF_ALU | BPF_XOR | BPF_K:
1253     case BPF_ALU | BPF_MUL | BPF_K:
1254     case BPF_ALU | BPF_MOV | BPF_K:
1255     case BPF_ALU | BPF_DIV | BPF_K:
1256     case BPF_ALU | BPF_MOD | BPF_K:
1257         *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1258         *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1259         *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1260         break;
1261 
1262     case BPF_ALU64 | BPF_ADD | BPF_K:
1263     case BPF_ALU64 | BPF_SUB | BPF_K:
1264     case BPF_ALU64 | BPF_AND | BPF_K:
1265     case BPF_ALU64 | BPF_OR  | BPF_K:
1266     case BPF_ALU64 | BPF_XOR | BPF_K:
1267     case BPF_ALU64 | BPF_MUL | BPF_K:
1268     case BPF_ALU64 | BPF_MOV | BPF_K:
1269     case BPF_ALU64 | BPF_DIV | BPF_K:
1270     case BPF_ALU64 | BPF_MOD | BPF_K:
1271         *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1272         *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1273         *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1274         break;
1275 
1276     case BPF_JMP | BPF_JEQ  | BPF_K:
1277     case BPF_JMP | BPF_JNE  | BPF_K:
1278     case BPF_JMP | BPF_JGT  | BPF_K:
1279     case BPF_JMP | BPF_JLT  | BPF_K:
1280     case BPF_JMP | BPF_JGE  | BPF_K:
1281     case BPF_JMP | BPF_JLE  | BPF_K:
1282     case BPF_JMP | BPF_JSGT | BPF_K:
1283     case BPF_JMP | BPF_JSLT | BPF_K:
1284     case BPF_JMP | BPF_JSGE | BPF_K:
1285     case BPF_JMP | BPF_JSLE | BPF_K:
1286     case BPF_JMP | BPF_JSET | BPF_K:
1287         /* Accommodate for extra offset in case of a backjump. */
1288         off = from->off;
1289         if (off < 0)
1290             off -= 2;
1291         *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1292         *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1293         *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1294         break;
1295 
1296     case BPF_JMP32 | BPF_JEQ  | BPF_K:
1297     case BPF_JMP32 | BPF_JNE  | BPF_K:
1298     case BPF_JMP32 | BPF_JGT  | BPF_K:
1299     case BPF_JMP32 | BPF_JLT  | BPF_K:
1300     case BPF_JMP32 | BPF_JGE  | BPF_K:
1301     case BPF_JMP32 | BPF_JLE  | BPF_K:
1302     case BPF_JMP32 | BPF_JSGT | BPF_K:
1303     case BPF_JMP32 | BPF_JSLT | BPF_K:
1304     case BPF_JMP32 | BPF_JSGE | BPF_K:
1305     case BPF_JMP32 | BPF_JSLE | BPF_K:
1306     case BPF_JMP32 | BPF_JSET | BPF_K:
1307         /* Accommodate for extra offset in case of a backjump. */
1308         off = from->off;
1309         if (off < 0)
1310             off -= 2;
1311         *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1312         *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1313         *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1314                       off);
1315         break;
1316 
1317     case BPF_LD | BPF_IMM | BPF_DW:
1318         *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1319         *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1320         *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1321         *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1322         break;
1323     case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1324         *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1325         *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326         if (emit_zext)
1327             *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1328         *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1329         break;
1330 
1331     case BPF_ST | BPF_MEM | BPF_DW:
1332     case BPF_ST | BPF_MEM | BPF_W:
1333     case BPF_ST | BPF_MEM | BPF_H:
1334     case BPF_ST | BPF_MEM | BPF_B:
1335         *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1336         *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1337         *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1338         break;
1339     }
1340 out:
1341     return to - to_buff;
1342 }
1343 
1344 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1345                           gfp_t gfp_extra_flags)
1346 {
1347     gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1348     struct bpf_prog *fp;
1349 
1350     fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1351     if (fp != NULL) {
1352         /* aux->prog still points to the fp_other one, so
1353          * when promoting the clone to the real program,
1354          * this still needs to be adapted.
1355          */
1356         memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1357     }
1358 
1359     return fp;
1360 }
1361 
1362 static void bpf_prog_clone_free(struct bpf_prog *fp)
1363 {
1364     /* aux was stolen by the other clone, so we cannot free
1365      * it from this path! It will be freed eventually by the
1366      * other program on release.
1367      *
1368      * At this point, we don't need a deferred release since
1369      * clone is guaranteed to not be locked.
1370      */
1371     fp->aux = NULL;
1372     fp->stats = NULL;
1373     fp->active = NULL;
1374     __bpf_prog_free(fp);
1375 }
1376 
1377 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1378 {
1379     /* We have to repoint aux->prog to self, as we don't
1380      * know whether fp here is the clone or the original.
1381      */
1382     fp->aux->prog = fp;
1383     bpf_prog_clone_free(fp_other);
1384 }
1385 
1386 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1387 {
1388     struct bpf_insn insn_buff[16], aux[2];
1389     struct bpf_prog *clone, *tmp;
1390     int insn_delta, insn_cnt;
1391     struct bpf_insn *insn;
1392     int i, rewritten;
1393 
1394     if (!prog->blinding_requested || prog->blinded)
1395         return prog;
1396 
1397     clone = bpf_prog_clone_create(prog, GFP_USER);
1398     if (!clone)
1399         return ERR_PTR(-ENOMEM);
1400 
1401     insn_cnt = clone->len;
1402     insn = clone->insnsi;
1403 
1404     for (i = 0; i < insn_cnt; i++, insn++) {
1405         if (bpf_pseudo_func(insn)) {
1406             /* ld_imm64 with an address of bpf subprog is not
1407              * a user controlled constant. Don't randomize it,
1408              * since it will conflict with jit_subprogs() logic.
1409              */
1410             insn++;
1411             i++;
1412             continue;
1413         }
1414 
1415         /* We temporarily need to hold the original ld64 insn
1416          * so that we can still access the first part in the
1417          * second blinding run.
1418          */
1419         if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1420             insn[1].code == 0)
1421             memcpy(aux, insn, sizeof(aux));
1422 
1423         rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1424                         clone->aux->verifier_zext);
1425         if (!rewritten)
1426             continue;
1427 
1428         tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1429         if (IS_ERR(tmp)) {
1430             /* Patching may have repointed aux->prog during
1431              * realloc from the original one, so we need to
1432              * fix it up here on error.
1433              */
1434             bpf_jit_prog_release_other(prog, clone);
1435             return tmp;
1436         }
1437 
1438         clone = tmp;
1439         insn_delta = rewritten - 1;
1440 
1441         /* Walk new program and skip insns we just inserted. */
1442         insn = clone->insnsi + i + insn_delta;
1443         insn_cnt += insn_delta;
1444         i        += insn_delta;
1445     }
1446 
1447     clone->blinded = 1;
1448     return clone;
1449 }
1450 #endif /* CONFIG_BPF_JIT */
1451 
1452 /* Base function for offset calculation. Needs to go into .text section,
1453  * therefore keeping it non-static as well; will also be used by JITs
1454  * anyway later on, so do not let the compiler omit it. This also needs
1455  * to go into kallsyms for correlation from e.g. bpftool, so naming
1456  * must not change.
1457  */
1458 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1459 {
1460     return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(__bpf_call_base);
1463 
1464 /* All UAPI available opcodes. */
1465 #define BPF_INSN_MAP(INSN_2, INSN_3)        \
1466     /* 32 bit ALU operations. */        \
1467     /*   Register based. */         \
1468     INSN_3(ALU, ADD,  X),           \
1469     INSN_3(ALU, SUB,  X),           \
1470     INSN_3(ALU, AND,  X),           \
1471     INSN_3(ALU, OR,   X),           \
1472     INSN_3(ALU, LSH,  X),           \
1473     INSN_3(ALU, RSH,  X),           \
1474     INSN_3(ALU, XOR,  X),           \
1475     INSN_3(ALU, MUL,  X),           \
1476     INSN_3(ALU, MOV,  X),           \
1477     INSN_3(ALU, ARSH, X),           \
1478     INSN_3(ALU, DIV,  X),           \
1479     INSN_3(ALU, MOD,  X),           \
1480     INSN_2(ALU, NEG),           \
1481     INSN_3(ALU, END, TO_BE),        \
1482     INSN_3(ALU, END, TO_LE),        \
1483     /*   Immediate based. */        \
1484     INSN_3(ALU, ADD,  K),           \
1485     INSN_3(ALU, SUB,  K),           \
1486     INSN_3(ALU, AND,  K),           \
1487     INSN_3(ALU, OR,   K),           \
1488     INSN_3(ALU, LSH,  K),           \
1489     INSN_3(ALU, RSH,  K),           \
1490     INSN_3(ALU, XOR,  K),           \
1491     INSN_3(ALU, MUL,  K),           \
1492     INSN_3(ALU, MOV,  K),           \
1493     INSN_3(ALU, ARSH, K),           \
1494     INSN_3(ALU, DIV,  K),           \
1495     INSN_3(ALU, MOD,  K),           \
1496     /* 64 bit ALU operations. */        \
1497     /*   Register based. */         \
1498     INSN_3(ALU64, ADD,  X),         \
1499     INSN_3(ALU64, SUB,  X),         \
1500     INSN_3(ALU64, AND,  X),         \
1501     INSN_3(ALU64, OR,   X),         \
1502     INSN_3(ALU64, LSH,  X),         \
1503     INSN_3(ALU64, RSH,  X),         \
1504     INSN_3(ALU64, XOR,  X),         \
1505     INSN_3(ALU64, MUL,  X),         \
1506     INSN_3(ALU64, MOV,  X),         \
1507     INSN_3(ALU64, ARSH, X),         \
1508     INSN_3(ALU64, DIV,  X),         \
1509     INSN_3(ALU64, MOD,  X),         \
1510     INSN_2(ALU64, NEG),         \
1511     /*   Immediate based. */        \
1512     INSN_3(ALU64, ADD,  K),         \
1513     INSN_3(ALU64, SUB,  K),         \
1514     INSN_3(ALU64, AND,  K),         \
1515     INSN_3(ALU64, OR,   K),         \
1516     INSN_3(ALU64, LSH,  K),         \
1517     INSN_3(ALU64, RSH,  K),         \
1518     INSN_3(ALU64, XOR,  K),         \
1519     INSN_3(ALU64, MUL,  K),         \
1520     INSN_3(ALU64, MOV,  K),         \
1521     INSN_3(ALU64, ARSH, K),         \
1522     INSN_3(ALU64, DIV,  K),         \
1523     INSN_3(ALU64, MOD,  K),         \
1524     /* Call instruction. */         \
1525     INSN_2(JMP, CALL),          \
1526     /* Exit instruction. */         \
1527     INSN_2(JMP, EXIT),          \
1528     /* 32-bit Jump instructions. */     \
1529     /*   Register based. */         \
1530     INSN_3(JMP32, JEQ,  X),         \
1531     INSN_3(JMP32, JNE,  X),         \
1532     INSN_3(JMP32, JGT,  X),         \
1533     INSN_3(JMP32, JLT,  X),         \
1534     INSN_3(JMP32, JGE,  X),         \
1535     INSN_3(JMP32, JLE,  X),         \
1536     INSN_3(JMP32, JSGT, X),         \
1537     INSN_3(JMP32, JSLT, X),         \
1538     INSN_3(JMP32, JSGE, X),         \
1539     INSN_3(JMP32, JSLE, X),         \
1540     INSN_3(JMP32, JSET, X),         \
1541     /*   Immediate based. */        \
1542     INSN_3(JMP32, JEQ,  K),         \
1543     INSN_3(JMP32, JNE,  K),         \
1544     INSN_3(JMP32, JGT,  K),         \
1545     INSN_3(JMP32, JLT,  K),         \
1546     INSN_3(JMP32, JGE,  K),         \
1547     INSN_3(JMP32, JLE,  K),         \
1548     INSN_3(JMP32, JSGT, K),         \
1549     INSN_3(JMP32, JSLT, K),         \
1550     INSN_3(JMP32, JSGE, K),         \
1551     INSN_3(JMP32, JSLE, K),         \
1552     INSN_3(JMP32, JSET, K),         \
1553     /* Jump instructions. */        \
1554     /*   Register based. */         \
1555     INSN_3(JMP, JEQ,  X),           \
1556     INSN_3(JMP, JNE,  X),           \
1557     INSN_3(JMP, JGT,  X),           \
1558     INSN_3(JMP, JLT,  X),           \
1559     INSN_3(JMP, JGE,  X),           \
1560     INSN_3(JMP, JLE,  X),           \
1561     INSN_3(JMP, JSGT, X),           \
1562     INSN_3(JMP, JSLT, X),           \
1563     INSN_3(JMP, JSGE, X),           \
1564     INSN_3(JMP, JSLE, X),           \
1565     INSN_3(JMP, JSET, X),           \
1566     /*   Immediate based. */        \
1567     INSN_3(JMP, JEQ,  K),           \
1568     INSN_3(JMP, JNE,  K),           \
1569     INSN_3(JMP, JGT,  K),           \
1570     INSN_3(JMP, JLT,  K),           \
1571     INSN_3(JMP, JGE,  K),           \
1572     INSN_3(JMP, JLE,  K),           \
1573     INSN_3(JMP, JSGT, K),           \
1574     INSN_3(JMP, JSLT, K),           \
1575     INSN_3(JMP, JSGE, K),           \
1576     INSN_3(JMP, JSLE, K),           \
1577     INSN_3(JMP, JSET, K),           \
1578     INSN_2(JMP, JA),            \
1579     /* Store instructions. */       \
1580     /*   Register based. */         \
1581     INSN_3(STX, MEM,  B),           \
1582     INSN_3(STX, MEM,  H),           \
1583     INSN_3(STX, MEM,  W),           \
1584     INSN_3(STX, MEM,  DW),          \
1585     INSN_3(STX, ATOMIC, W),         \
1586     INSN_3(STX, ATOMIC, DW),        \
1587     /*   Immediate based. */        \
1588     INSN_3(ST, MEM, B),         \
1589     INSN_3(ST, MEM, H),         \
1590     INSN_3(ST, MEM, W),         \
1591     INSN_3(ST, MEM, DW),            \
1592     /* Load instructions. */        \
1593     /*   Register based. */         \
1594     INSN_3(LDX, MEM, B),            \
1595     INSN_3(LDX, MEM, H),            \
1596     INSN_3(LDX, MEM, W),            \
1597     INSN_3(LDX, MEM, DW),           \
1598     /*   Immediate based. */        \
1599     INSN_3(LD, IMM, DW)
1600 
1601 bool bpf_opcode_in_insntable(u8 code)
1602 {
1603 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1604 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1605     static const bool public_insntable[256] = {
1606         [0 ... 255] = false,
1607         /* Now overwrite non-defaults ... */
1608         BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1609         /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1610         [BPF_LD | BPF_ABS | BPF_B] = true,
1611         [BPF_LD | BPF_ABS | BPF_H] = true,
1612         [BPF_LD | BPF_ABS | BPF_W] = true,
1613         [BPF_LD | BPF_IND | BPF_B] = true,
1614         [BPF_LD | BPF_IND | BPF_H] = true,
1615         [BPF_LD | BPF_IND | BPF_W] = true,
1616     };
1617 #undef BPF_INSN_3_TBL
1618 #undef BPF_INSN_2_TBL
1619     return public_insntable[code];
1620 }
1621 
1622 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1623 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1624 {
1625     memset(dst, 0, size);
1626     return -EFAULT;
1627 }
1628 
1629 /**
1630  *  ___bpf_prog_run - run eBPF program on a given context
1631  *  @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1632  *  @insn: is the array of eBPF instructions
1633  *
1634  * Decode and execute eBPF instructions.
1635  *
1636  * Return: whatever value is in %BPF_R0 at program exit
1637  */
1638 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1639 {
1640 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1641 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1642     static const void * const jumptable[256] __annotate_jump_table = {
1643         [0 ... 255] = &&default_label,
1644         /* Now overwrite non-defaults ... */
1645         BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1646         /* Non-UAPI available opcodes. */
1647         [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1648         [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1649         [BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1650         [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1651         [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1652         [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1653         [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1654     };
1655 #undef BPF_INSN_3_LBL
1656 #undef BPF_INSN_2_LBL
1657     u32 tail_call_cnt = 0;
1658 
1659 #define CONT     ({ insn++; goto select_insn; })
1660 #define CONT_JMP ({ insn++; goto select_insn; })
1661 
1662 select_insn:
1663     goto *jumptable[insn->code];
1664 
1665     /* Explicitly mask the register-based shift amounts with 63 or 31
1666      * to avoid undefined behavior. Normally this won't affect the
1667      * generated code, for example, in case of native 64 bit archs such
1668      * as x86-64 or arm64, the compiler is optimizing the AND away for
1669      * the interpreter. In case of JITs, each of the JIT backends compiles
1670      * the BPF shift operations to machine instructions which produce
1671      * implementation-defined results in such a case; the resulting
1672      * contents of the register may be arbitrary, but program behaviour
1673      * as a whole remains defined. In other words, in case of JIT backends,
1674      * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1675      */
1676     /* ALU (shifts) */
1677 #define SHT(OPCODE, OP)                 \
1678     ALU64_##OPCODE##_X:             \
1679         DST = DST OP (SRC & 63);        \
1680         CONT;                   \
1681     ALU_##OPCODE##_X:               \
1682         DST = (u32) DST OP ((u32) SRC & 31);    \
1683         CONT;                   \
1684     ALU64_##OPCODE##_K:             \
1685         DST = DST OP IMM;           \
1686         CONT;                   \
1687     ALU_##OPCODE##_K:               \
1688         DST = (u32) DST OP (u32) IMM;       \
1689         CONT;
1690     /* ALU (rest) */
1691 #define ALU(OPCODE, OP)                 \
1692     ALU64_##OPCODE##_X:             \
1693         DST = DST OP SRC;           \
1694         CONT;                   \
1695     ALU_##OPCODE##_X:               \
1696         DST = (u32) DST OP (u32) SRC;       \
1697         CONT;                   \
1698     ALU64_##OPCODE##_K:             \
1699         DST = DST OP IMM;           \
1700         CONT;                   \
1701     ALU_##OPCODE##_K:               \
1702         DST = (u32) DST OP (u32) IMM;       \
1703         CONT;
1704     ALU(ADD,  +)
1705     ALU(SUB,  -)
1706     ALU(AND,  &)
1707     ALU(OR,   |)
1708     ALU(XOR,  ^)
1709     ALU(MUL,  *)
1710     SHT(LSH, <<)
1711     SHT(RSH, >>)
1712 #undef SHT
1713 #undef ALU
1714     ALU_NEG:
1715         DST = (u32) -DST;
1716         CONT;
1717     ALU64_NEG:
1718         DST = -DST;
1719         CONT;
1720     ALU_MOV_X:
1721         DST = (u32) SRC;
1722         CONT;
1723     ALU_MOV_K:
1724         DST = (u32) IMM;
1725         CONT;
1726     ALU64_MOV_X:
1727         DST = SRC;
1728         CONT;
1729     ALU64_MOV_K:
1730         DST = IMM;
1731         CONT;
1732     LD_IMM_DW:
1733         DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1734         insn++;
1735         CONT;
1736     ALU_ARSH_X:
1737         DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1738         CONT;
1739     ALU_ARSH_K:
1740         DST = (u64) (u32) (((s32) DST) >> IMM);
1741         CONT;
1742     ALU64_ARSH_X:
1743         (*(s64 *) &DST) >>= (SRC & 63);
1744         CONT;
1745     ALU64_ARSH_K:
1746         (*(s64 *) &DST) >>= IMM;
1747         CONT;
1748     ALU64_MOD_X:
1749         div64_u64_rem(DST, SRC, &AX);
1750         DST = AX;
1751         CONT;
1752     ALU_MOD_X:
1753         AX = (u32) DST;
1754         DST = do_div(AX, (u32) SRC);
1755         CONT;
1756     ALU64_MOD_K:
1757         div64_u64_rem(DST, IMM, &AX);
1758         DST = AX;
1759         CONT;
1760     ALU_MOD_K:
1761         AX = (u32) DST;
1762         DST = do_div(AX, (u32) IMM);
1763         CONT;
1764     ALU64_DIV_X:
1765         DST = div64_u64(DST, SRC);
1766         CONT;
1767     ALU_DIV_X:
1768         AX = (u32) DST;
1769         do_div(AX, (u32) SRC);
1770         DST = (u32) AX;
1771         CONT;
1772     ALU64_DIV_K:
1773         DST = div64_u64(DST, IMM);
1774         CONT;
1775     ALU_DIV_K:
1776         AX = (u32) DST;
1777         do_div(AX, (u32) IMM);
1778         DST = (u32) AX;
1779         CONT;
1780     ALU_END_TO_BE:
1781         switch (IMM) {
1782         case 16:
1783             DST = (__force u16) cpu_to_be16(DST);
1784             break;
1785         case 32:
1786             DST = (__force u32) cpu_to_be32(DST);
1787             break;
1788         case 64:
1789             DST = (__force u64) cpu_to_be64(DST);
1790             break;
1791         }
1792         CONT;
1793     ALU_END_TO_LE:
1794         switch (IMM) {
1795         case 16:
1796             DST = (__force u16) cpu_to_le16(DST);
1797             break;
1798         case 32:
1799             DST = (__force u32) cpu_to_le32(DST);
1800             break;
1801         case 64:
1802             DST = (__force u64) cpu_to_le64(DST);
1803             break;
1804         }
1805         CONT;
1806 
1807     /* CALL */
1808     JMP_CALL:
1809         /* Function call scratches BPF_R1-BPF_R5 registers,
1810          * preserves BPF_R6-BPF_R9, and stores return value
1811          * into BPF_R0.
1812          */
1813         BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1814                                BPF_R4, BPF_R5);
1815         CONT;
1816 
1817     JMP_CALL_ARGS:
1818         BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1819                                 BPF_R3, BPF_R4,
1820                                 BPF_R5,
1821                                 insn + insn->off + 1);
1822         CONT;
1823 
1824     JMP_TAIL_CALL: {
1825         struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1826         struct bpf_array *array = container_of(map, struct bpf_array, map);
1827         struct bpf_prog *prog;
1828         u32 index = BPF_R3;
1829 
1830         if (unlikely(index >= array->map.max_entries))
1831             goto out;
1832 
1833         if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1834             goto out;
1835 
1836         tail_call_cnt++;
1837 
1838         prog = READ_ONCE(array->ptrs[index]);
1839         if (!prog)
1840             goto out;
1841 
1842         /* ARG1 at this point is guaranteed to point to CTX from
1843          * the verifier side due to the fact that the tail call is
1844          * handled like a helper, that is, bpf_tail_call_proto,
1845          * where arg1_type is ARG_PTR_TO_CTX.
1846          */
1847         insn = prog->insnsi;
1848         goto select_insn;
1849 out:
1850         CONT;
1851     }
1852     JMP_JA:
1853         insn += insn->off;
1854         CONT;
1855     JMP_EXIT:
1856         return BPF_R0;
1857     /* JMP */
1858 #define COND_JMP(SIGN, OPCODE, CMP_OP)              \
1859     JMP_##OPCODE##_X:                   \
1860         if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1861             insn += insn->off;          \
1862             CONT_JMP;               \
1863         }                       \
1864         CONT;                       \
1865     JMP32_##OPCODE##_X:                 \
1866         if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1867             insn += insn->off;          \
1868             CONT_JMP;               \
1869         }                       \
1870         CONT;                       \
1871     JMP_##OPCODE##_K:                   \
1872         if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1873             insn += insn->off;          \
1874             CONT_JMP;               \
1875         }                       \
1876         CONT;                       \
1877     JMP32_##OPCODE##_K:                 \
1878         if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1879             insn += insn->off;          \
1880             CONT_JMP;               \
1881         }                       \
1882         CONT;
1883     COND_JMP(u, JEQ, ==)
1884     COND_JMP(u, JNE, !=)
1885     COND_JMP(u, JGT, >)
1886     COND_JMP(u, JLT, <)
1887     COND_JMP(u, JGE, >=)
1888     COND_JMP(u, JLE, <=)
1889     COND_JMP(u, JSET, &)
1890     COND_JMP(s, JSGT, >)
1891     COND_JMP(s, JSLT, <)
1892     COND_JMP(s, JSGE, >=)
1893     COND_JMP(s, JSLE, <=)
1894 #undef COND_JMP
1895     /* ST, STX and LDX*/
1896     ST_NOSPEC:
1897         /* Speculation barrier for mitigating Speculative Store Bypass.
1898          * In case of arm64, we rely on the firmware mitigation as
1899          * controlled via the ssbd kernel parameter. Whenever the
1900          * mitigation is enabled, it works for all of the kernel code
1901          * with no need to provide any additional instructions here.
1902          * In case of x86, we use 'lfence' insn for mitigation. We
1903          * reuse preexisting logic from Spectre v1 mitigation that
1904          * happens to produce the required code on x86 for v4 as well.
1905          */
1906 #ifdef CONFIG_X86
1907         barrier_nospec();
1908 #endif
1909         CONT;
1910 #define LDST(SIZEOP, SIZE)                      \
1911     STX_MEM_##SIZEOP:                       \
1912         *(SIZE *)(unsigned long) (DST + insn->off) = SRC;   \
1913         CONT;                           \
1914     ST_MEM_##SIZEOP:                        \
1915         *(SIZE *)(unsigned long) (DST + insn->off) = IMM;   \
1916         CONT;                           \
1917     LDX_MEM_##SIZEOP:                       \
1918         DST = *(SIZE *)(unsigned long) (SRC + insn->off);   \
1919         CONT;                           \
1920     LDX_PROBE_MEM_##SIZEOP:                     \
1921         bpf_probe_read_kernel(&DST, sizeof(SIZE),       \
1922                       (const void *)(long) (SRC + insn->off));  \
1923         DST = *((SIZE *)&DST);                  \
1924         CONT;
1925 
1926     LDST(B,   u8)
1927     LDST(H,  u16)
1928     LDST(W,  u32)
1929     LDST(DW, u64)
1930 #undef LDST
1931 
1932 #define ATOMIC_ALU_OP(BOP, KOP)                     \
1933         case BOP:                       \
1934             if (BPF_SIZE(insn->code) == BPF_W)      \
1935                 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1936                          (DST + insn->off));    \
1937             else                        \
1938                 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1939                            (DST + insn->off));  \
1940             break;                      \
1941         case BOP | BPF_FETCH:                   \
1942             if (BPF_SIZE(insn->code) == BPF_W)      \
1943                 SRC = (u32) atomic_fetch_##KOP(     \
1944                     (u32) SRC,          \
1945                     (atomic_t *)(unsigned long) (DST + insn->off)); \
1946             else                        \
1947                 SRC = (u64) atomic64_fetch_##KOP(   \
1948                     (u64) SRC,          \
1949                     (atomic64_t *)(unsigned long) (DST + insn->off)); \
1950             break;
1951 
1952     STX_ATOMIC_DW:
1953     STX_ATOMIC_W:
1954         switch (IMM) {
1955         ATOMIC_ALU_OP(BPF_ADD, add)
1956         ATOMIC_ALU_OP(BPF_AND, and)
1957         ATOMIC_ALU_OP(BPF_OR, or)
1958         ATOMIC_ALU_OP(BPF_XOR, xor)
1959 #undef ATOMIC_ALU_OP
1960 
1961         case BPF_XCHG:
1962             if (BPF_SIZE(insn->code) == BPF_W)
1963                 SRC = (u32) atomic_xchg(
1964                     (atomic_t *)(unsigned long) (DST + insn->off),
1965                     (u32) SRC);
1966             else
1967                 SRC = (u64) atomic64_xchg(
1968                     (atomic64_t *)(unsigned long) (DST + insn->off),
1969                     (u64) SRC);
1970             break;
1971         case BPF_CMPXCHG:
1972             if (BPF_SIZE(insn->code) == BPF_W)
1973                 BPF_R0 = (u32) atomic_cmpxchg(
1974                     (atomic_t *)(unsigned long) (DST + insn->off),
1975                     (u32) BPF_R0, (u32) SRC);
1976             else
1977                 BPF_R0 = (u64) atomic64_cmpxchg(
1978                     (atomic64_t *)(unsigned long) (DST + insn->off),
1979                     (u64) BPF_R0, (u64) SRC);
1980             break;
1981 
1982         default:
1983             goto default_label;
1984         }
1985         CONT;
1986 
1987     default_label:
1988         /* If we ever reach this, we have a bug somewhere. Die hard here
1989          * instead of just returning 0; we could be somewhere in a subprog,
1990          * so execution could continue otherwise which we do /not/ want.
1991          *
1992          * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1993          */
1994         pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1995             insn->code, insn->imm);
1996         BUG_ON(1);
1997         return 0;
1998 }
1999 
2000 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2001 #define DEFINE_BPF_PROG_RUN(stack_size) \
2002 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2003 { \
2004     u64 stack[stack_size / sizeof(u64)]; \
2005     u64 regs[MAX_BPF_EXT_REG]; \
2006 \
2007     FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2008     ARG1 = (u64) (unsigned long) ctx; \
2009     return ___bpf_prog_run(regs, insn); \
2010 }
2011 
2012 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2013 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2014 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2015                       const struct bpf_insn *insn) \
2016 { \
2017     u64 stack[stack_size / sizeof(u64)]; \
2018     u64 regs[MAX_BPF_EXT_REG]; \
2019 \
2020     FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2021     BPF_R1 = r1; \
2022     BPF_R2 = r2; \
2023     BPF_R3 = r3; \
2024     BPF_R4 = r4; \
2025     BPF_R5 = r5; \
2026     return ___bpf_prog_run(regs, insn); \
2027 }
2028 
2029 #define EVAL1(FN, X) FN(X)
2030 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2031 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2032 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2033 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2034 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2035 
2036 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2037 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2038 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2039 
2040 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2041 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2042 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2043 
2044 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2045 
2046 static unsigned int (*interpreters[])(const void *ctx,
2047                       const struct bpf_insn *insn) = {
2048 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2049 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2050 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2051 };
2052 #undef PROG_NAME_LIST
2053 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2054 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2055                   const struct bpf_insn *insn) = {
2056 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2057 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2058 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2059 };
2060 #undef PROG_NAME_LIST
2061 
2062 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2063 {
2064     stack_depth = max_t(u32, stack_depth, 1);
2065     insn->off = (s16) insn->imm;
2066     insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2067         __bpf_call_base_args;
2068     insn->code = BPF_JMP | BPF_CALL_ARGS;
2069 }
2070 
2071 #else
2072 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2073                      const struct bpf_insn *insn)
2074 {
2075     /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2076      * is not working properly, so warn about it!
2077      */
2078     WARN_ON_ONCE(1);
2079     return 0;
2080 }
2081 #endif
2082 
2083 bool bpf_prog_map_compatible(struct bpf_map *map,
2084                  const struct bpf_prog *fp)
2085 {
2086     bool ret;
2087 
2088     if (fp->kprobe_override)
2089         return false;
2090 
2091     spin_lock(&map->owner.lock);
2092     if (!map->owner.type) {
2093         /* There's no owner yet where we could check for
2094          * compatibility.
2095          */
2096         map->owner.type  = fp->type;
2097         map->owner.jited = fp->jited;
2098         map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2099         ret = true;
2100     } else {
2101         ret = map->owner.type  == fp->type &&
2102               map->owner.jited == fp->jited &&
2103               map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2104     }
2105     spin_unlock(&map->owner.lock);
2106 
2107     return ret;
2108 }
2109 
2110 static int bpf_check_tail_call(const struct bpf_prog *fp)
2111 {
2112     struct bpf_prog_aux *aux = fp->aux;
2113     int i, ret = 0;
2114 
2115     mutex_lock(&aux->used_maps_mutex);
2116     for (i = 0; i < aux->used_map_cnt; i++) {
2117         struct bpf_map *map = aux->used_maps[i];
2118 
2119         if (!map_type_contains_progs(map))
2120             continue;
2121 
2122         if (!bpf_prog_map_compatible(map, fp)) {
2123             ret = -EINVAL;
2124             goto out;
2125         }
2126     }
2127 
2128 out:
2129     mutex_unlock(&aux->used_maps_mutex);
2130     return ret;
2131 }
2132 
2133 static void bpf_prog_select_func(struct bpf_prog *fp)
2134 {
2135 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2136     u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2137 
2138     fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2139 #else
2140     fp->bpf_func = __bpf_prog_ret0_warn;
2141 #endif
2142 }
2143 
2144 /**
2145  *  bpf_prog_select_runtime - select exec runtime for BPF program
2146  *  @fp: bpf_prog populated with BPF program
2147  *  @err: pointer to error variable
2148  *
2149  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2150  * The BPF program will be executed via bpf_prog_run() function.
2151  *
2152  * Return: the &fp argument along with &err set to 0 for success or
2153  * a negative errno code on failure
2154  */
2155 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2156 {
2157     /* In case of BPF to BPF calls, verifier did all the prep
2158      * work with regards to JITing, etc.
2159      */
2160     bool jit_needed = false;
2161 
2162     if (fp->bpf_func)
2163         goto finalize;
2164 
2165     if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2166         bpf_prog_has_kfunc_call(fp))
2167         jit_needed = true;
2168 
2169     bpf_prog_select_func(fp);
2170 
2171     /* eBPF JITs can rewrite the program in case constant
2172      * blinding is active. However, in case of error during
2173      * blinding, bpf_int_jit_compile() must always return a
2174      * valid program, which in this case would simply not
2175      * be JITed, but falls back to the interpreter.
2176      */
2177     if (!bpf_prog_is_dev_bound(fp->aux)) {
2178         *err = bpf_prog_alloc_jited_linfo(fp);
2179         if (*err)
2180             return fp;
2181 
2182         fp = bpf_int_jit_compile(fp);
2183         bpf_prog_jit_attempt_done(fp);
2184         if (!fp->jited && jit_needed) {
2185             *err = -ENOTSUPP;
2186             return fp;
2187         }
2188     } else {
2189         *err = bpf_prog_offload_compile(fp);
2190         if (*err)
2191             return fp;
2192     }
2193 
2194 finalize:
2195     bpf_prog_lock_ro(fp);
2196 
2197     /* The tail call compatibility check can only be done at
2198      * this late stage as we need to determine, if we deal
2199      * with JITed or non JITed program concatenations and not
2200      * all eBPF JITs might immediately support all features.
2201      */
2202     *err = bpf_check_tail_call(fp);
2203 
2204     return fp;
2205 }
2206 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2207 
2208 static unsigned int __bpf_prog_ret1(const void *ctx,
2209                     const struct bpf_insn *insn)
2210 {
2211     return 1;
2212 }
2213 
2214 static struct bpf_prog_dummy {
2215     struct bpf_prog prog;
2216 } dummy_bpf_prog = {
2217     .prog = {
2218         .bpf_func = __bpf_prog_ret1,
2219     },
2220 };
2221 
2222 struct bpf_empty_prog_array bpf_empty_prog_array = {
2223     .null_prog = NULL,
2224 };
2225 EXPORT_SYMBOL(bpf_empty_prog_array);
2226 
2227 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2228 {
2229     if (prog_cnt)
2230         return kzalloc(sizeof(struct bpf_prog_array) +
2231                    sizeof(struct bpf_prog_array_item) *
2232                    (prog_cnt + 1),
2233                    flags);
2234 
2235     return &bpf_empty_prog_array.hdr;
2236 }
2237 
2238 void bpf_prog_array_free(struct bpf_prog_array *progs)
2239 {
2240     if (!progs || progs == &bpf_empty_prog_array.hdr)
2241         return;
2242     kfree_rcu(progs, rcu);
2243 }
2244 
2245 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2246 {
2247     struct bpf_prog_array *progs;
2248 
2249     progs = container_of(rcu, struct bpf_prog_array, rcu);
2250     kfree_rcu(progs, rcu);
2251 }
2252 
2253 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2254 {
2255     if (!progs || progs == &bpf_empty_prog_array.hdr)
2256         return;
2257     call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2258 }
2259 
2260 int bpf_prog_array_length(struct bpf_prog_array *array)
2261 {
2262     struct bpf_prog_array_item *item;
2263     u32 cnt = 0;
2264 
2265     for (item = array->items; item->prog; item++)
2266         if (item->prog != &dummy_bpf_prog.prog)
2267             cnt++;
2268     return cnt;
2269 }
2270 
2271 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2272 {
2273     struct bpf_prog_array_item *item;
2274 
2275     for (item = array->items; item->prog; item++)
2276         if (item->prog != &dummy_bpf_prog.prog)
2277             return false;
2278     return true;
2279 }
2280 
2281 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2282                      u32 *prog_ids,
2283                      u32 request_cnt)
2284 {
2285     struct bpf_prog_array_item *item;
2286     int i = 0;
2287 
2288     for (item = array->items; item->prog; item++) {
2289         if (item->prog == &dummy_bpf_prog.prog)
2290             continue;
2291         prog_ids[i] = item->prog->aux->id;
2292         if (++i == request_cnt) {
2293             item++;
2294             break;
2295         }
2296     }
2297 
2298     return !!(item->prog);
2299 }
2300 
2301 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2302                 __u32 __user *prog_ids, u32 cnt)
2303 {
2304     unsigned long err = 0;
2305     bool nospc;
2306     u32 *ids;
2307 
2308     /* users of this function are doing:
2309      * cnt = bpf_prog_array_length();
2310      * if (cnt > 0)
2311      *     bpf_prog_array_copy_to_user(..., cnt);
2312      * so below kcalloc doesn't need extra cnt > 0 check.
2313      */
2314     ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2315     if (!ids)
2316         return -ENOMEM;
2317     nospc = bpf_prog_array_copy_core(array, ids, cnt);
2318     err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2319     kfree(ids);
2320     if (err)
2321         return -EFAULT;
2322     if (nospc)
2323         return -ENOSPC;
2324     return 0;
2325 }
2326 
2327 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2328                 struct bpf_prog *old_prog)
2329 {
2330     struct bpf_prog_array_item *item;
2331 
2332     for (item = array->items; item->prog; item++)
2333         if (item->prog == old_prog) {
2334             WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2335             break;
2336         }
2337 }
2338 
2339 /**
2340  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2341  *                                   index into the program array with
2342  *                                   a dummy no-op program.
2343  * @array: a bpf_prog_array
2344  * @index: the index of the program to replace
2345  *
2346  * Skips over dummy programs, by not counting them, when calculating
2347  * the position of the program to replace.
2348  *
2349  * Return:
2350  * * 0      - Success
2351  * * -EINVAL    - Invalid index value. Must be a non-negative integer.
2352  * * -ENOENT    - Index out of range
2353  */
2354 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2355 {
2356     return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2357 }
2358 
2359 /**
2360  * bpf_prog_array_update_at() - Updates the program at the given index
2361  *                              into the program array.
2362  * @array: a bpf_prog_array
2363  * @index: the index of the program to update
2364  * @prog: the program to insert into the array
2365  *
2366  * Skips over dummy programs, by not counting them, when calculating
2367  * the position of the program to update.
2368  *
2369  * Return:
2370  * * 0      - Success
2371  * * -EINVAL    - Invalid index value. Must be a non-negative integer.
2372  * * -ENOENT    - Index out of range
2373  */
2374 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2375                  struct bpf_prog *prog)
2376 {
2377     struct bpf_prog_array_item *item;
2378 
2379     if (unlikely(index < 0))
2380         return -EINVAL;
2381 
2382     for (item = array->items; item->prog; item++) {
2383         if (item->prog == &dummy_bpf_prog.prog)
2384             continue;
2385         if (!index) {
2386             WRITE_ONCE(item->prog, prog);
2387             return 0;
2388         }
2389         index--;
2390     }
2391     return -ENOENT;
2392 }
2393 
2394 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2395             struct bpf_prog *exclude_prog,
2396             struct bpf_prog *include_prog,
2397             u64 bpf_cookie,
2398             struct bpf_prog_array **new_array)
2399 {
2400     int new_prog_cnt, carry_prog_cnt = 0;
2401     struct bpf_prog_array_item *existing, *new;
2402     struct bpf_prog_array *array;
2403     bool found_exclude = false;
2404 
2405     /* Figure out how many existing progs we need to carry over to
2406      * the new array.
2407      */
2408     if (old_array) {
2409         existing = old_array->items;
2410         for (; existing->prog; existing++) {
2411             if (existing->prog == exclude_prog) {
2412                 found_exclude = true;
2413                 continue;
2414             }
2415             if (existing->prog != &dummy_bpf_prog.prog)
2416                 carry_prog_cnt++;
2417             if (existing->prog == include_prog)
2418                 return -EEXIST;
2419         }
2420     }
2421 
2422     if (exclude_prog && !found_exclude)
2423         return -ENOENT;
2424 
2425     /* How many progs (not NULL) will be in the new array? */
2426     new_prog_cnt = carry_prog_cnt;
2427     if (include_prog)
2428         new_prog_cnt += 1;
2429 
2430     /* Do we have any prog (not NULL) in the new array? */
2431     if (!new_prog_cnt) {
2432         *new_array = NULL;
2433         return 0;
2434     }
2435 
2436     /* +1 as the end of prog_array is marked with NULL */
2437     array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2438     if (!array)
2439         return -ENOMEM;
2440     new = array->items;
2441 
2442     /* Fill in the new prog array */
2443     if (carry_prog_cnt) {
2444         existing = old_array->items;
2445         for (; existing->prog; existing++) {
2446             if (existing->prog == exclude_prog ||
2447                 existing->prog == &dummy_bpf_prog.prog)
2448                 continue;
2449 
2450             new->prog = existing->prog;
2451             new->bpf_cookie = existing->bpf_cookie;
2452             new++;
2453         }
2454     }
2455     if (include_prog) {
2456         new->prog = include_prog;
2457         new->bpf_cookie = bpf_cookie;
2458         new++;
2459     }
2460     new->prog = NULL;
2461     *new_array = array;
2462     return 0;
2463 }
2464 
2465 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2466                  u32 *prog_ids, u32 request_cnt,
2467                  u32 *prog_cnt)
2468 {
2469     u32 cnt = 0;
2470 
2471     if (array)
2472         cnt = bpf_prog_array_length(array);
2473 
2474     *prog_cnt = cnt;
2475 
2476     /* return early if user requested only program count or nothing to copy */
2477     if (!request_cnt || !cnt)
2478         return 0;
2479 
2480     /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2481     return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2482                                      : 0;
2483 }
2484 
2485 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2486               struct bpf_map **used_maps, u32 len)
2487 {
2488     struct bpf_map *map;
2489     u32 i;
2490 
2491     for (i = 0; i < len; i++) {
2492         map = used_maps[i];
2493         if (map->ops->map_poke_untrack)
2494             map->ops->map_poke_untrack(map, aux);
2495         bpf_map_put(map);
2496     }
2497 }
2498 
2499 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2500 {
2501     __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2502     kfree(aux->used_maps);
2503 }
2504 
2505 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2506               struct btf_mod_pair *used_btfs, u32 len)
2507 {
2508 #ifdef CONFIG_BPF_SYSCALL
2509     struct btf_mod_pair *btf_mod;
2510     u32 i;
2511 
2512     for (i = 0; i < len; i++) {
2513         btf_mod = &used_btfs[i];
2514         if (btf_mod->module)
2515             module_put(btf_mod->module);
2516         btf_put(btf_mod->btf);
2517     }
2518 #endif
2519 }
2520 
2521 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2522 {
2523     __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2524     kfree(aux->used_btfs);
2525 }
2526 
2527 static void bpf_prog_free_deferred(struct work_struct *work)
2528 {
2529     struct bpf_prog_aux *aux;
2530     int i;
2531 
2532     aux = container_of(work, struct bpf_prog_aux, work);
2533 #ifdef CONFIG_BPF_SYSCALL
2534     bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2535 #endif
2536 #ifdef CONFIG_CGROUP_BPF
2537     if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2538         bpf_cgroup_atype_put(aux->cgroup_atype);
2539 #endif
2540     bpf_free_used_maps(aux);
2541     bpf_free_used_btfs(aux);
2542     if (bpf_prog_is_dev_bound(aux))
2543         bpf_prog_offload_destroy(aux->prog);
2544 #ifdef CONFIG_PERF_EVENTS
2545     if (aux->prog->has_callchain_buf)
2546         put_callchain_buffers();
2547 #endif
2548     if (aux->dst_trampoline)
2549         bpf_trampoline_put(aux->dst_trampoline);
2550     for (i = 0; i < aux->func_cnt; i++) {
2551         /* We can just unlink the subprog poke descriptor table as
2552          * it was originally linked to the main program and is also
2553          * released along with it.
2554          */
2555         aux->func[i]->aux->poke_tab = NULL;
2556         bpf_jit_free(aux->func[i]);
2557     }
2558     if (aux->func_cnt) {
2559         kfree(aux->func);
2560         bpf_prog_unlock_free(aux->prog);
2561     } else {
2562         bpf_jit_free(aux->prog);
2563     }
2564 }
2565 
2566 void bpf_prog_free(struct bpf_prog *fp)
2567 {
2568     struct bpf_prog_aux *aux = fp->aux;
2569 
2570     if (aux->dst_prog)
2571         bpf_prog_put(aux->dst_prog);
2572     INIT_WORK(&aux->work, bpf_prog_free_deferred);
2573     schedule_work(&aux->work);
2574 }
2575 EXPORT_SYMBOL_GPL(bpf_prog_free);
2576 
2577 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2578 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2579 
2580 void bpf_user_rnd_init_once(void)
2581 {
2582     prandom_init_once(&bpf_user_rnd_state);
2583 }
2584 
2585 BPF_CALL_0(bpf_user_rnd_u32)
2586 {
2587     /* Should someone ever have the rather unwise idea to use some
2588      * of the registers passed into this function, then note that
2589      * this function is called from native eBPF and classic-to-eBPF
2590      * transformations. Register assignments from both sides are
2591      * different, f.e. classic always sets fn(ctx, A, X) here.
2592      */
2593     struct rnd_state *state;
2594     u32 res;
2595 
2596     state = &get_cpu_var(bpf_user_rnd_state);
2597     res = prandom_u32_state(state);
2598     put_cpu_var(bpf_user_rnd_state);
2599 
2600     return res;
2601 }
2602 
2603 BPF_CALL_0(bpf_get_raw_cpu_id)
2604 {
2605     return raw_smp_processor_id();
2606 }
2607 
2608 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2609 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2610 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2611 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2612 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2613 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2614 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2615 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2616 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2617 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2618 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2619 
2620 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2621 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2622 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2623 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2624 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2625 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2626 
2627 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2628 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2629 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2630 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2631 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2632 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2633 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2634 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2635 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2636 const struct bpf_func_proto bpf_set_retval_proto __weak;
2637 const struct bpf_func_proto bpf_get_retval_proto __weak;
2638 
2639 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2640 {
2641     return NULL;
2642 }
2643 
2644 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2645 {
2646     return NULL;
2647 }
2648 
2649 u64 __weak
2650 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2651          void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2652 {
2653     return -ENOTSUPP;
2654 }
2655 EXPORT_SYMBOL_GPL(bpf_event_output);
2656 
2657 /* Always built-in helper functions. */
2658 const struct bpf_func_proto bpf_tail_call_proto = {
2659     .func       = NULL,
2660     .gpl_only   = false,
2661     .ret_type   = RET_VOID,
2662     .arg1_type  = ARG_PTR_TO_CTX,
2663     .arg2_type  = ARG_CONST_MAP_PTR,
2664     .arg3_type  = ARG_ANYTHING,
2665 };
2666 
2667 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2668  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2669  * eBPF and implicitly also cBPF can get JITed!
2670  */
2671 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2672 {
2673     return prog;
2674 }
2675 
2676 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2677  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2678  */
2679 void __weak bpf_jit_compile(struct bpf_prog *prog)
2680 {
2681 }
2682 
2683 bool __weak bpf_helper_changes_pkt_data(void *func)
2684 {
2685     return false;
2686 }
2687 
2688 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2689  * analysis code and wants explicit zero extension inserted by verifier.
2690  * Otherwise, return FALSE.
2691  *
2692  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2693  * you don't override this. JITs that don't want these extra insns can detect
2694  * them using insn_is_zext.
2695  */
2696 bool __weak bpf_jit_needs_zext(void)
2697 {
2698     return false;
2699 }
2700 
2701 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2702 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2703 {
2704     return false;
2705 }
2706 
2707 bool __weak bpf_jit_supports_kfunc_call(void)
2708 {
2709     return false;
2710 }
2711 
2712 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2713  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2714  */
2715 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2716              int len)
2717 {
2718     return -EFAULT;
2719 }
2720 
2721 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2722                   void *addr1, void *addr2)
2723 {
2724     return -ENOTSUPP;
2725 }
2726 
2727 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2728 {
2729     return ERR_PTR(-ENOTSUPP);
2730 }
2731 
2732 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2733 {
2734     return -ENOTSUPP;
2735 }
2736 
2737 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2738 EXPORT_SYMBOL(bpf_stats_enabled_key);
2739 
2740 /* All definitions of tracepoints related to BPF. */
2741 #define CREATE_TRACE_POINTS
2742 #include <linux/bpf_trace.h>
2743 
2744 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2745 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);