Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* auditsc.c -- System-call auditing support
0003  * Handles all system-call specific auditing features.
0004  *
0005  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
0006  * Copyright 2005 Hewlett-Packard Development Company, L.P.
0007  * Copyright (C) 2005, 2006 IBM Corporation
0008  * All Rights Reserved.
0009  *
0010  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
0011  *
0012  * Many of the ideas implemented here are from Stephen C. Tweedie,
0013  * especially the idea of avoiding a copy by using getname.
0014  *
0015  * The method for actual interception of syscall entry and exit (not in
0016  * this file -- see entry.S) is based on a GPL'd patch written by
0017  * okir@suse.de and Copyright 2003 SuSE Linux AG.
0018  *
0019  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
0020  * 2006.
0021  *
0022  * The support of additional filter rules compares (>, <, >=, <=) was
0023  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
0024  *
0025  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
0026  * filesystem information.
0027  *
0028  * Subject and object context labeling support added by <danjones@us.ibm.com>
0029  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
0030  */
0031 
0032 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0033 
0034 #include <linux/init.h>
0035 #include <asm/types.h>
0036 #include <linux/atomic.h>
0037 #include <linux/fs.h>
0038 #include <linux/namei.h>
0039 #include <linux/mm.h>
0040 #include <linux/export.h>
0041 #include <linux/slab.h>
0042 #include <linux/mount.h>
0043 #include <linux/socket.h>
0044 #include <linux/mqueue.h>
0045 #include <linux/audit.h>
0046 #include <linux/personality.h>
0047 #include <linux/time.h>
0048 #include <linux/netlink.h>
0049 #include <linux/compiler.h>
0050 #include <asm/unistd.h>
0051 #include <linux/security.h>
0052 #include <linux/list.h>
0053 #include <linux/binfmts.h>
0054 #include <linux/highmem.h>
0055 #include <linux/syscalls.h>
0056 #include <asm/syscall.h>
0057 #include <linux/capability.h>
0058 #include <linux/fs_struct.h>
0059 #include <linux/compat.h>
0060 #include <linux/ctype.h>
0061 #include <linux/string.h>
0062 #include <linux/uaccess.h>
0063 #include <linux/fsnotify_backend.h>
0064 #include <uapi/linux/limits.h>
0065 #include <uapi/linux/netfilter/nf_tables.h>
0066 #include <uapi/linux/openat2.h> // struct open_how
0067 
0068 #include "audit.h"
0069 
0070 /* flags stating the success for a syscall */
0071 #define AUDITSC_INVALID 0
0072 #define AUDITSC_SUCCESS 1
0073 #define AUDITSC_FAILURE 2
0074 
0075 /* no execve audit message should be longer than this (userspace limits),
0076  * see the note near the top of audit_log_execve_info() about this value */
0077 #define MAX_EXECVE_AUDIT_LEN 7500
0078 
0079 /* max length to print of cmdline/proctitle value during audit */
0080 #define MAX_PROCTITLE_AUDIT_LEN 128
0081 
0082 /* number of audit rules */
0083 int audit_n_rules;
0084 
0085 /* determines whether we collect data for signals sent */
0086 int audit_signals;
0087 
0088 struct audit_aux_data {
0089     struct audit_aux_data   *next;
0090     int         type;
0091 };
0092 
0093 /* Number of target pids per aux struct. */
0094 #define AUDIT_AUX_PIDS  16
0095 
0096 struct audit_aux_data_pids {
0097     struct audit_aux_data   d;
0098     pid_t           target_pid[AUDIT_AUX_PIDS];
0099     kuid_t          target_auid[AUDIT_AUX_PIDS];
0100     kuid_t          target_uid[AUDIT_AUX_PIDS];
0101     unsigned int        target_sessionid[AUDIT_AUX_PIDS];
0102     u32         target_sid[AUDIT_AUX_PIDS];
0103     char            target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
0104     int         pid_count;
0105 };
0106 
0107 struct audit_aux_data_bprm_fcaps {
0108     struct audit_aux_data   d;
0109     struct audit_cap_data   fcap;
0110     unsigned int        fcap_ver;
0111     struct audit_cap_data   old_pcap;
0112     struct audit_cap_data   new_pcap;
0113 };
0114 
0115 struct audit_tree_refs {
0116     struct audit_tree_refs *next;
0117     struct audit_chunk *c[31];
0118 };
0119 
0120 struct audit_nfcfgop_tab {
0121     enum audit_nfcfgop  op;
0122     const char      *s;
0123 };
0124 
0125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
0126     { AUDIT_XT_OP_REGISTER,         "xt_register"          },
0127     { AUDIT_XT_OP_REPLACE,          "xt_replace"           },
0128     { AUDIT_XT_OP_UNREGISTER,       "xt_unregister"        },
0129     { AUDIT_NFT_OP_TABLE_REGISTER,      "nft_register_table"       },
0130     { AUDIT_NFT_OP_TABLE_UNREGISTER,    "nft_unregister_table"     },
0131     { AUDIT_NFT_OP_CHAIN_REGISTER,      "nft_register_chain"       },
0132     { AUDIT_NFT_OP_CHAIN_UNREGISTER,    "nft_unregister_chain"     },
0133     { AUDIT_NFT_OP_RULE_REGISTER,       "nft_register_rule"    },
0134     { AUDIT_NFT_OP_RULE_UNREGISTER,     "nft_unregister_rule"      },
0135     { AUDIT_NFT_OP_SET_REGISTER,        "nft_register_set"     },
0136     { AUDIT_NFT_OP_SET_UNREGISTER,      "nft_unregister_set"       },
0137     { AUDIT_NFT_OP_SETELEM_REGISTER,    "nft_register_setelem"     },
0138     { AUDIT_NFT_OP_SETELEM_UNREGISTER,  "nft_unregister_setelem"   },
0139     { AUDIT_NFT_OP_GEN_REGISTER,        "nft_register_gen"     },
0140     { AUDIT_NFT_OP_OBJ_REGISTER,        "nft_register_obj"     },
0141     { AUDIT_NFT_OP_OBJ_UNREGISTER,      "nft_unregister_obj"       },
0142     { AUDIT_NFT_OP_OBJ_RESET,       "nft_reset_obj"        },
0143     { AUDIT_NFT_OP_FLOWTABLE_REGISTER,  "nft_register_flowtable"   },
0144     { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,    "nft_unregister_flowtable" },
0145     { AUDIT_NFT_OP_INVALID,         "nft_invalid"          },
0146 };
0147 
0148 static int audit_match_perm(struct audit_context *ctx, int mask)
0149 {
0150     unsigned n;
0151 
0152     if (unlikely(!ctx))
0153         return 0;
0154     n = ctx->major;
0155 
0156     switch (audit_classify_syscall(ctx->arch, n)) {
0157     case AUDITSC_NATIVE:
0158         if ((mask & AUDIT_PERM_WRITE) &&
0159              audit_match_class(AUDIT_CLASS_WRITE, n))
0160             return 1;
0161         if ((mask & AUDIT_PERM_READ) &&
0162              audit_match_class(AUDIT_CLASS_READ, n))
0163             return 1;
0164         if ((mask & AUDIT_PERM_ATTR) &&
0165              audit_match_class(AUDIT_CLASS_CHATTR, n))
0166             return 1;
0167         return 0;
0168     case AUDITSC_COMPAT: /* 32bit on biarch */
0169         if ((mask & AUDIT_PERM_WRITE) &&
0170              audit_match_class(AUDIT_CLASS_WRITE_32, n))
0171             return 1;
0172         if ((mask & AUDIT_PERM_READ) &&
0173              audit_match_class(AUDIT_CLASS_READ_32, n))
0174             return 1;
0175         if ((mask & AUDIT_PERM_ATTR) &&
0176              audit_match_class(AUDIT_CLASS_CHATTR_32, n))
0177             return 1;
0178         return 0;
0179     case AUDITSC_OPEN:
0180         return mask & ACC_MODE(ctx->argv[1]);
0181     case AUDITSC_OPENAT:
0182         return mask & ACC_MODE(ctx->argv[2]);
0183     case AUDITSC_SOCKETCALL:
0184         return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
0185     case AUDITSC_EXECVE:
0186         return mask & AUDIT_PERM_EXEC;
0187     case AUDITSC_OPENAT2:
0188         return mask & ACC_MODE((u32)ctx->openat2.flags);
0189     default:
0190         return 0;
0191     }
0192 }
0193 
0194 static int audit_match_filetype(struct audit_context *ctx, int val)
0195 {
0196     struct audit_names *n;
0197     umode_t mode = (umode_t)val;
0198 
0199     if (unlikely(!ctx))
0200         return 0;
0201 
0202     list_for_each_entry(n, &ctx->names_list, list) {
0203         if ((n->ino != AUDIT_INO_UNSET) &&
0204             ((n->mode & S_IFMT) == mode))
0205             return 1;
0206     }
0207 
0208     return 0;
0209 }
0210 
0211 /*
0212  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
0213  * ->first_trees points to its beginning, ->trees - to the current end of data.
0214  * ->tree_count is the number of free entries in array pointed to by ->trees.
0215  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
0216  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
0217  * it's going to remain 1-element for almost any setup) until we free context itself.
0218  * References in it _are_ dropped - at the same time we free/drop aux stuff.
0219  */
0220 
0221 static void audit_set_auditable(struct audit_context *ctx)
0222 {
0223     if (!ctx->prio) {
0224         ctx->prio = 1;
0225         ctx->current_state = AUDIT_STATE_RECORD;
0226     }
0227 }
0228 
0229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
0230 {
0231     struct audit_tree_refs *p = ctx->trees;
0232     int left = ctx->tree_count;
0233 
0234     if (likely(left)) {
0235         p->c[--left] = chunk;
0236         ctx->tree_count = left;
0237         return 1;
0238     }
0239     if (!p)
0240         return 0;
0241     p = p->next;
0242     if (p) {
0243         p->c[30] = chunk;
0244         ctx->trees = p;
0245         ctx->tree_count = 30;
0246         return 1;
0247     }
0248     return 0;
0249 }
0250 
0251 static int grow_tree_refs(struct audit_context *ctx)
0252 {
0253     struct audit_tree_refs *p = ctx->trees;
0254 
0255     ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
0256     if (!ctx->trees) {
0257         ctx->trees = p;
0258         return 0;
0259     }
0260     if (p)
0261         p->next = ctx->trees;
0262     else
0263         ctx->first_trees = ctx->trees;
0264     ctx->tree_count = 31;
0265     return 1;
0266 }
0267 
0268 static void unroll_tree_refs(struct audit_context *ctx,
0269               struct audit_tree_refs *p, int count)
0270 {
0271     struct audit_tree_refs *q;
0272     int n;
0273 
0274     if (!p) {
0275         /* we started with empty chain */
0276         p = ctx->first_trees;
0277         count = 31;
0278         /* if the very first allocation has failed, nothing to do */
0279         if (!p)
0280             return;
0281     }
0282     n = count;
0283     for (q = p; q != ctx->trees; q = q->next, n = 31) {
0284         while (n--) {
0285             audit_put_chunk(q->c[n]);
0286             q->c[n] = NULL;
0287         }
0288     }
0289     while (n-- > ctx->tree_count) {
0290         audit_put_chunk(q->c[n]);
0291         q->c[n] = NULL;
0292     }
0293     ctx->trees = p;
0294     ctx->tree_count = count;
0295 }
0296 
0297 static void free_tree_refs(struct audit_context *ctx)
0298 {
0299     struct audit_tree_refs *p, *q;
0300 
0301     for (p = ctx->first_trees; p; p = q) {
0302         q = p->next;
0303         kfree(p);
0304     }
0305 }
0306 
0307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
0308 {
0309     struct audit_tree_refs *p;
0310     int n;
0311 
0312     if (!tree)
0313         return 0;
0314     /* full ones */
0315     for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
0316         for (n = 0; n < 31; n++)
0317             if (audit_tree_match(p->c[n], tree))
0318                 return 1;
0319     }
0320     /* partial */
0321     if (p) {
0322         for (n = ctx->tree_count; n < 31; n++)
0323             if (audit_tree_match(p->c[n], tree))
0324                 return 1;
0325     }
0326     return 0;
0327 }
0328 
0329 static int audit_compare_uid(kuid_t uid,
0330                  struct audit_names *name,
0331                  struct audit_field *f,
0332                  struct audit_context *ctx)
0333 {
0334     struct audit_names *n;
0335     int rc;
0336 
0337     if (name) {
0338         rc = audit_uid_comparator(uid, f->op, name->uid);
0339         if (rc)
0340             return rc;
0341     }
0342 
0343     if (ctx) {
0344         list_for_each_entry(n, &ctx->names_list, list) {
0345             rc = audit_uid_comparator(uid, f->op, n->uid);
0346             if (rc)
0347                 return rc;
0348         }
0349     }
0350     return 0;
0351 }
0352 
0353 static int audit_compare_gid(kgid_t gid,
0354                  struct audit_names *name,
0355                  struct audit_field *f,
0356                  struct audit_context *ctx)
0357 {
0358     struct audit_names *n;
0359     int rc;
0360 
0361     if (name) {
0362         rc = audit_gid_comparator(gid, f->op, name->gid);
0363         if (rc)
0364             return rc;
0365     }
0366 
0367     if (ctx) {
0368         list_for_each_entry(n, &ctx->names_list, list) {
0369             rc = audit_gid_comparator(gid, f->op, n->gid);
0370             if (rc)
0371                 return rc;
0372         }
0373     }
0374     return 0;
0375 }
0376 
0377 static int audit_field_compare(struct task_struct *tsk,
0378                    const struct cred *cred,
0379                    struct audit_field *f,
0380                    struct audit_context *ctx,
0381                    struct audit_names *name)
0382 {
0383     switch (f->val) {
0384     /* process to file object comparisons */
0385     case AUDIT_COMPARE_UID_TO_OBJ_UID:
0386         return audit_compare_uid(cred->uid, name, f, ctx);
0387     case AUDIT_COMPARE_GID_TO_OBJ_GID:
0388         return audit_compare_gid(cred->gid, name, f, ctx);
0389     case AUDIT_COMPARE_EUID_TO_OBJ_UID:
0390         return audit_compare_uid(cred->euid, name, f, ctx);
0391     case AUDIT_COMPARE_EGID_TO_OBJ_GID:
0392         return audit_compare_gid(cred->egid, name, f, ctx);
0393     case AUDIT_COMPARE_AUID_TO_OBJ_UID:
0394         return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
0395     case AUDIT_COMPARE_SUID_TO_OBJ_UID:
0396         return audit_compare_uid(cred->suid, name, f, ctx);
0397     case AUDIT_COMPARE_SGID_TO_OBJ_GID:
0398         return audit_compare_gid(cred->sgid, name, f, ctx);
0399     case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
0400         return audit_compare_uid(cred->fsuid, name, f, ctx);
0401     case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
0402         return audit_compare_gid(cred->fsgid, name, f, ctx);
0403     /* uid comparisons */
0404     case AUDIT_COMPARE_UID_TO_AUID:
0405         return audit_uid_comparator(cred->uid, f->op,
0406                         audit_get_loginuid(tsk));
0407     case AUDIT_COMPARE_UID_TO_EUID:
0408         return audit_uid_comparator(cred->uid, f->op, cred->euid);
0409     case AUDIT_COMPARE_UID_TO_SUID:
0410         return audit_uid_comparator(cred->uid, f->op, cred->suid);
0411     case AUDIT_COMPARE_UID_TO_FSUID:
0412         return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
0413     /* auid comparisons */
0414     case AUDIT_COMPARE_AUID_TO_EUID:
0415         return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
0416                         cred->euid);
0417     case AUDIT_COMPARE_AUID_TO_SUID:
0418         return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
0419                         cred->suid);
0420     case AUDIT_COMPARE_AUID_TO_FSUID:
0421         return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
0422                         cred->fsuid);
0423     /* euid comparisons */
0424     case AUDIT_COMPARE_EUID_TO_SUID:
0425         return audit_uid_comparator(cred->euid, f->op, cred->suid);
0426     case AUDIT_COMPARE_EUID_TO_FSUID:
0427         return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
0428     /* suid comparisons */
0429     case AUDIT_COMPARE_SUID_TO_FSUID:
0430         return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
0431     /* gid comparisons */
0432     case AUDIT_COMPARE_GID_TO_EGID:
0433         return audit_gid_comparator(cred->gid, f->op, cred->egid);
0434     case AUDIT_COMPARE_GID_TO_SGID:
0435         return audit_gid_comparator(cred->gid, f->op, cred->sgid);
0436     case AUDIT_COMPARE_GID_TO_FSGID:
0437         return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
0438     /* egid comparisons */
0439     case AUDIT_COMPARE_EGID_TO_SGID:
0440         return audit_gid_comparator(cred->egid, f->op, cred->sgid);
0441     case AUDIT_COMPARE_EGID_TO_FSGID:
0442         return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
0443     /* sgid comparison */
0444     case AUDIT_COMPARE_SGID_TO_FSGID:
0445         return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
0446     default:
0447         WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
0448         return 0;
0449     }
0450     return 0;
0451 }
0452 
0453 /* Determine if any context name data matches a rule's watch data */
0454 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
0455  * otherwise.
0456  *
0457  * If task_creation is true, this is an explicit indication that we are
0458  * filtering a task rule at task creation time.  This and tsk == current are
0459  * the only situations where tsk->cred may be accessed without an rcu read lock.
0460  */
0461 static int audit_filter_rules(struct task_struct *tsk,
0462                   struct audit_krule *rule,
0463                   struct audit_context *ctx,
0464                   struct audit_names *name,
0465                   enum audit_state *state,
0466                   bool task_creation)
0467 {
0468     const struct cred *cred;
0469     int i, need_sid = 1;
0470     u32 sid;
0471     unsigned int sessionid;
0472 
0473     if (ctx && rule->prio <= ctx->prio)
0474         return 0;
0475 
0476     cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
0477 
0478     for (i = 0; i < rule->field_count; i++) {
0479         struct audit_field *f = &rule->fields[i];
0480         struct audit_names *n;
0481         int result = 0;
0482         pid_t pid;
0483 
0484         switch (f->type) {
0485         case AUDIT_PID:
0486             pid = task_tgid_nr(tsk);
0487             result = audit_comparator(pid, f->op, f->val);
0488             break;
0489         case AUDIT_PPID:
0490             if (ctx) {
0491                 if (!ctx->ppid)
0492                     ctx->ppid = task_ppid_nr(tsk);
0493                 result = audit_comparator(ctx->ppid, f->op, f->val);
0494             }
0495             break;
0496         case AUDIT_EXE:
0497             result = audit_exe_compare(tsk, rule->exe);
0498             if (f->op == Audit_not_equal)
0499                 result = !result;
0500             break;
0501         case AUDIT_UID:
0502             result = audit_uid_comparator(cred->uid, f->op, f->uid);
0503             break;
0504         case AUDIT_EUID:
0505             result = audit_uid_comparator(cred->euid, f->op, f->uid);
0506             break;
0507         case AUDIT_SUID:
0508             result = audit_uid_comparator(cred->suid, f->op, f->uid);
0509             break;
0510         case AUDIT_FSUID:
0511             result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
0512             break;
0513         case AUDIT_GID:
0514             result = audit_gid_comparator(cred->gid, f->op, f->gid);
0515             if (f->op == Audit_equal) {
0516                 if (!result)
0517                     result = groups_search(cred->group_info, f->gid);
0518             } else if (f->op == Audit_not_equal) {
0519                 if (result)
0520                     result = !groups_search(cred->group_info, f->gid);
0521             }
0522             break;
0523         case AUDIT_EGID:
0524             result = audit_gid_comparator(cred->egid, f->op, f->gid);
0525             if (f->op == Audit_equal) {
0526                 if (!result)
0527                     result = groups_search(cred->group_info, f->gid);
0528             } else if (f->op == Audit_not_equal) {
0529                 if (result)
0530                     result = !groups_search(cred->group_info, f->gid);
0531             }
0532             break;
0533         case AUDIT_SGID:
0534             result = audit_gid_comparator(cred->sgid, f->op, f->gid);
0535             break;
0536         case AUDIT_FSGID:
0537             result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
0538             break;
0539         case AUDIT_SESSIONID:
0540             sessionid = audit_get_sessionid(tsk);
0541             result = audit_comparator(sessionid, f->op, f->val);
0542             break;
0543         case AUDIT_PERS:
0544             result = audit_comparator(tsk->personality, f->op, f->val);
0545             break;
0546         case AUDIT_ARCH:
0547             if (ctx)
0548                 result = audit_comparator(ctx->arch, f->op, f->val);
0549             break;
0550 
0551         case AUDIT_EXIT:
0552             if (ctx && ctx->return_valid != AUDITSC_INVALID)
0553                 result = audit_comparator(ctx->return_code, f->op, f->val);
0554             break;
0555         case AUDIT_SUCCESS:
0556             if (ctx && ctx->return_valid != AUDITSC_INVALID) {
0557                 if (f->val)
0558                     result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
0559                 else
0560                     result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
0561             }
0562             break;
0563         case AUDIT_DEVMAJOR:
0564             if (name) {
0565                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
0566                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
0567                     ++result;
0568             } else if (ctx) {
0569                 list_for_each_entry(n, &ctx->names_list, list) {
0570                     if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
0571                         audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
0572                         ++result;
0573                         break;
0574                     }
0575                 }
0576             }
0577             break;
0578         case AUDIT_DEVMINOR:
0579             if (name) {
0580                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
0581                     audit_comparator(MINOR(name->rdev), f->op, f->val))
0582                     ++result;
0583             } else if (ctx) {
0584                 list_for_each_entry(n, &ctx->names_list, list) {
0585                     if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
0586                         audit_comparator(MINOR(n->rdev), f->op, f->val)) {
0587                         ++result;
0588                         break;
0589                     }
0590                 }
0591             }
0592             break;
0593         case AUDIT_INODE:
0594             if (name)
0595                 result = audit_comparator(name->ino, f->op, f->val);
0596             else if (ctx) {
0597                 list_for_each_entry(n, &ctx->names_list, list) {
0598                     if (audit_comparator(n->ino, f->op, f->val)) {
0599                         ++result;
0600                         break;
0601                     }
0602                 }
0603             }
0604             break;
0605         case AUDIT_OBJ_UID:
0606             if (name) {
0607                 result = audit_uid_comparator(name->uid, f->op, f->uid);
0608             } else if (ctx) {
0609                 list_for_each_entry(n, &ctx->names_list, list) {
0610                     if (audit_uid_comparator(n->uid, f->op, f->uid)) {
0611                         ++result;
0612                         break;
0613                     }
0614                 }
0615             }
0616             break;
0617         case AUDIT_OBJ_GID:
0618             if (name) {
0619                 result = audit_gid_comparator(name->gid, f->op, f->gid);
0620             } else if (ctx) {
0621                 list_for_each_entry(n, &ctx->names_list, list) {
0622                     if (audit_gid_comparator(n->gid, f->op, f->gid)) {
0623                         ++result;
0624                         break;
0625                     }
0626                 }
0627             }
0628             break;
0629         case AUDIT_WATCH:
0630             if (name) {
0631                 result = audit_watch_compare(rule->watch,
0632                                  name->ino,
0633                                  name->dev);
0634                 if (f->op == Audit_not_equal)
0635                     result = !result;
0636             }
0637             break;
0638         case AUDIT_DIR:
0639             if (ctx) {
0640                 result = match_tree_refs(ctx, rule->tree);
0641                 if (f->op == Audit_not_equal)
0642                     result = !result;
0643             }
0644             break;
0645         case AUDIT_LOGINUID:
0646             result = audit_uid_comparator(audit_get_loginuid(tsk),
0647                               f->op, f->uid);
0648             break;
0649         case AUDIT_LOGINUID_SET:
0650             result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
0651             break;
0652         case AUDIT_SADDR_FAM:
0653             if (ctx && ctx->sockaddr)
0654                 result = audit_comparator(ctx->sockaddr->ss_family,
0655                               f->op, f->val);
0656             break;
0657         case AUDIT_SUBJ_USER:
0658         case AUDIT_SUBJ_ROLE:
0659         case AUDIT_SUBJ_TYPE:
0660         case AUDIT_SUBJ_SEN:
0661         case AUDIT_SUBJ_CLR:
0662             /* NOTE: this may return negative values indicating
0663                a temporary error.  We simply treat this as a
0664                match for now to avoid losing information that
0665                may be wanted.   An error message will also be
0666                logged upon error */
0667             if (f->lsm_rule) {
0668                 if (need_sid) {
0669                     /* @tsk should always be equal to
0670                      * @current with the exception of
0671                      * fork()/copy_process() in which case
0672                      * the new @tsk creds are still a dup
0673                      * of @current's creds so we can still
0674                      * use security_current_getsecid_subj()
0675                      * here even though it always refs
0676                      * @current's creds
0677                      */
0678                     security_current_getsecid_subj(&sid);
0679                     need_sid = 0;
0680                 }
0681                 result = security_audit_rule_match(sid, f->type,
0682                                    f->op,
0683                                    f->lsm_rule);
0684             }
0685             break;
0686         case AUDIT_OBJ_USER:
0687         case AUDIT_OBJ_ROLE:
0688         case AUDIT_OBJ_TYPE:
0689         case AUDIT_OBJ_LEV_LOW:
0690         case AUDIT_OBJ_LEV_HIGH:
0691             /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
0692                also applies here */
0693             if (f->lsm_rule) {
0694                 /* Find files that match */
0695                 if (name) {
0696                     result = security_audit_rule_match(
0697                                 name->osid,
0698                                 f->type,
0699                                 f->op,
0700                                 f->lsm_rule);
0701                 } else if (ctx) {
0702                     list_for_each_entry(n, &ctx->names_list, list) {
0703                         if (security_audit_rule_match(
0704                                 n->osid,
0705                                 f->type,
0706                                 f->op,
0707                                 f->lsm_rule)) {
0708                             ++result;
0709                             break;
0710                         }
0711                     }
0712                 }
0713                 /* Find ipc objects that match */
0714                 if (!ctx || ctx->type != AUDIT_IPC)
0715                     break;
0716                 if (security_audit_rule_match(ctx->ipc.osid,
0717                                   f->type, f->op,
0718                                   f->lsm_rule))
0719                     ++result;
0720             }
0721             break;
0722         case AUDIT_ARG0:
0723         case AUDIT_ARG1:
0724         case AUDIT_ARG2:
0725         case AUDIT_ARG3:
0726             if (ctx)
0727                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
0728             break;
0729         case AUDIT_FILTERKEY:
0730             /* ignore this field for filtering */
0731             result = 1;
0732             break;
0733         case AUDIT_PERM:
0734             result = audit_match_perm(ctx, f->val);
0735             if (f->op == Audit_not_equal)
0736                 result = !result;
0737             break;
0738         case AUDIT_FILETYPE:
0739             result = audit_match_filetype(ctx, f->val);
0740             if (f->op == Audit_not_equal)
0741                 result = !result;
0742             break;
0743         case AUDIT_FIELD_COMPARE:
0744             result = audit_field_compare(tsk, cred, f, ctx, name);
0745             break;
0746         }
0747         if (!result)
0748             return 0;
0749     }
0750 
0751     if (ctx) {
0752         if (rule->filterkey) {
0753             kfree(ctx->filterkey);
0754             ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
0755         }
0756         ctx->prio = rule->prio;
0757     }
0758     switch (rule->action) {
0759     case AUDIT_NEVER:
0760         *state = AUDIT_STATE_DISABLED;
0761         break;
0762     case AUDIT_ALWAYS:
0763         *state = AUDIT_STATE_RECORD;
0764         break;
0765     }
0766     return 1;
0767 }
0768 
0769 /* At process creation time, we can determine if system-call auditing is
0770  * completely disabled for this task.  Since we only have the task
0771  * structure at this point, we can only check uid and gid.
0772  */
0773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
0774 {
0775     struct audit_entry *e;
0776     enum audit_state   state;
0777 
0778     rcu_read_lock();
0779     list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
0780         if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
0781                        &state, true)) {
0782             if (state == AUDIT_STATE_RECORD)
0783                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
0784             rcu_read_unlock();
0785             return state;
0786         }
0787     }
0788     rcu_read_unlock();
0789     return AUDIT_STATE_BUILD;
0790 }
0791 
0792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
0793 {
0794     int word, bit;
0795 
0796     if (val > 0xffffffff)
0797         return false;
0798 
0799     word = AUDIT_WORD(val);
0800     if (word >= AUDIT_BITMASK_SIZE)
0801         return false;
0802 
0803     bit = AUDIT_BIT(val);
0804 
0805     return rule->mask[word] & bit;
0806 }
0807 
0808 /**
0809  * audit_filter_uring - apply filters to an io_uring operation
0810  * @tsk: associated task
0811  * @ctx: audit context
0812  */
0813 static void audit_filter_uring(struct task_struct *tsk,
0814                    struct audit_context *ctx)
0815 {
0816     struct audit_entry *e;
0817     enum audit_state state;
0818 
0819     if (auditd_test_task(tsk))
0820         return;
0821 
0822     rcu_read_lock();
0823     list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
0824                 list) {
0825         if (audit_in_mask(&e->rule, ctx->uring_op) &&
0826             audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
0827                        false)) {
0828             rcu_read_unlock();
0829             ctx->current_state = state;
0830             return;
0831         }
0832     }
0833     rcu_read_unlock();
0834 }
0835 
0836 /* At syscall exit time, this filter is called if the audit_state is
0837  * not low enough that auditing cannot take place, but is also not
0838  * high enough that we already know we have to write an audit record
0839  * (i.e., the state is AUDIT_STATE_BUILD).
0840  */
0841 static void audit_filter_syscall(struct task_struct *tsk,
0842                  struct audit_context *ctx)
0843 {
0844     struct audit_entry *e;
0845     enum audit_state state;
0846 
0847     if (auditd_test_task(tsk))
0848         return;
0849 
0850     rcu_read_lock();
0851     list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
0852         if (audit_in_mask(&e->rule, ctx->major) &&
0853             audit_filter_rules(tsk, &e->rule, ctx, NULL,
0854                        &state, false)) {
0855             rcu_read_unlock();
0856             ctx->current_state = state;
0857             return;
0858         }
0859     }
0860     rcu_read_unlock();
0861     return;
0862 }
0863 
0864 /*
0865  * Given an audit_name check the inode hash table to see if they match.
0866  * Called holding the rcu read lock to protect the use of audit_inode_hash
0867  */
0868 static int audit_filter_inode_name(struct task_struct *tsk,
0869                    struct audit_names *n,
0870                    struct audit_context *ctx) {
0871     int h = audit_hash_ino((u32)n->ino);
0872     struct list_head *list = &audit_inode_hash[h];
0873     struct audit_entry *e;
0874     enum audit_state state;
0875 
0876     list_for_each_entry_rcu(e, list, list) {
0877         if (audit_in_mask(&e->rule, ctx->major) &&
0878             audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
0879             ctx->current_state = state;
0880             return 1;
0881         }
0882     }
0883     return 0;
0884 }
0885 
0886 /* At syscall exit time, this filter is called if any audit_names have been
0887  * collected during syscall processing.  We only check rules in sublists at hash
0888  * buckets applicable to the inode numbers in audit_names.
0889  * Regarding audit_state, same rules apply as for audit_filter_syscall().
0890  */
0891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
0892 {
0893     struct audit_names *n;
0894 
0895     if (auditd_test_task(tsk))
0896         return;
0897 
0898     rcu_read_lock();
0899 
0900     list_for_each_entry(n, &ctx->names_list, list) {
0901         if (audit_filter_inode_name(tsk, n, ctx))
0902             break;
0903     }
0904     rcu_read_unlock();
0905 }
0906 
0907 static inline void audit_proctitle_free(struct audit_context *context)
0908 {
0909     kfree(context->proctitle.value);
0910     context->proctitle.value = NULL;
0911     context->proctitle.len = 0;
0912 }
0913 
0914 static inline void audit_free_module(struct audit_context *context)
0915 {
0916     if (context->type == AUDIT_KERN_MODULE) {
0917         kfree(context->module.name);
0918         context->module.name = NULL;
0919     }
0920 }
0921 static inline void audit_free_names(struct audit_context *context)
0922 {
0923     struct audit_names *n, *next;
0924 
0925     list_for_each_entry_safe(n, next, &context->names_list, list) {
0926         list_del(&n->list);
0927         if (n->name)
0928             putname(n->name);
0929         if (n->should_free)
0930             kfree(n);
0931     }
0932     context->name_count = 0;
0933     path_put(&context->pwd);
0934     context->pwd.dentry = NULL;
0935     context->pwd.mnt = NULL;
0936 }
0937 
0938 static inline void audit_free_aux(struct audit_context *context)
0939 {
0940     struct audit_aux_data *aux;
0941 
0942     while ((aux = context->aux)) {
0943         context->aux = aux->next;
0944         kfree(aux);
0945     }
0946     context->aux = NULL;
0947     while ((aux = context->aux_pids)) {
0948         context->aux_pids = aux->next;
0949         kfree(aux);
0950     }
0951     context->aux_pids = NULL;
0952 }
0953 
0954 /**
0955  * audit_reset_context - reset a audit_context structure
0956  * @ctx: the audit_context to reset
0957  *
0958  * All fields in the audit_context will be reset to an initial state, all
0959  * references held by fields will be dropped, and private memory will be
0960  * released.  When this function returns the audit_context will be suitable
0961  * for reuse, so long as the passed context is not NULL or a dummy context.
0962  */
0963 static void audit_reset_context(struct audit_context *ctx)
0964 {
0965     if (!ctx)
0966         return;
0967 
0968     /* if ctx is non-null, reset the "ctx->state" regardless */
0969     ctx->context = AUDIT_CTX_UNUSED;
0970     if (ctx->dummy)
0971         return;
0972 
0973     /*
0974      * NOTE: It shouldn't matter in what order we release the fields, so
0975      *       release them in the order in which they appear in the struct;
0976      *       this gives us some hope of quickly making sure we are
0977      *       resetting the audit_context properly.
0978      *
0979      *       Other things worth mentioning:
0980      *       - we don't reset "dummy"
0981      *       - we don't reset "state", we do reset "current_state"
0982      *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
0983      *       - much of this is likely overkill, but play it safe for now
0984      *       - we really need to work on improving the audit_context struct
0985      */
0986 
0987     ctx->current_state = ctx->state;
0988     ctx->serial = 0;
0989     ctx->major = 0;
0990     ctx->uring_op = 0;
0991     ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
0992     memset(ctx->argv, 0, sizeof(ctx->argv));
0993     ctx->return_code = 0;
0994     ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
0995     ctx->return_valid = AUDITSC_INVALID;
0996     audit_free_names(ctx);
0997     if (ctx->state != AUDIT_STATE_RECORD) {
0998         kfree(ctx->filterkey);
0999         ctx->filterkey = NULL;
1000     }
1001     audit_free_aux(ctx);
1002     kfree(ctx->sockaddr);
1003     ctx->sockaddr = NULL;
1004     ctx->sockaddr_len = 0;
1005     ctx->pid = ctx->ppid = 0;
1006     ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1007     ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1008     ctx->personality = 0;
1009     ctx->arch = 0;
1010     ctx->target_pid = 0;
1011     ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1012     ctx->target_sessionid = 0;
1013     ctx->target_sid = 0;
1014     ctx->target_comm[0] = '\0';
1015     unroll_tree_refs(ctx, NULL, 0);
1016     WARN_ON(!list_empty(&ctx->killed_trees));
1017     audit_free_module(ctx);
1018     ctx->fds[0] = -1;
1019     audit_proctitle_free(ctx);
1020     ctx->type = 0; /* reset last for audit_free_*() */
1021 }
1022 
1023 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1024 {
1025     struct audit_context *context;
1026 
1027     context = kzalloc(sizeof(*context), GFP_KERNEL);
1028     if (!context)
1029         return NULL;
1030     context->context = AUDIT_CTX_UNUSED;
1031     context->state = state;
1032     context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1033     INIT_LIST_HEAD(&context->killed_trees);
1034     INIT_LIST_HEAD(&context->names_list);
1035     context->fds[0] = -1;
1036     context->return_valid = AUDITSC_INVALID;
1037     return context;
1038 }
1039 
1040 /**
1041  * audit_alloc - allocate an audit context block for a task
1042  * @tsk: task
1043  *
1044  * Filter on the task information and allocate a per-task audit context
1045  * if necessary.  Doing so turns on system call auditing for the
1046  * specified task.  This is called from copy_process, so no lock is
1047  * needed.
1048  */
1049 int audit_alloc(struct task_struct *tsk)
1050 {
1051     struct audit_context *context;
1052     enum audit_state     state;
1053     char *key = NULL;
1054 
1055     if (likely(!audit_ever_enabled))
1056         return 0;
1057 
1058     state = audit_filter_task(tsk, &key);
1059     if (state == AUDIT_STATE_DISABLED) {
1060         clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1061         return 0;
1062     }
1063 
1064     if (!(context = audit_alloc_context(state))) {
1065         kfree(key);
1066         audit_log_lost("out of memory in audit_alloc");
1067         return -ENOMEM;
1068     }
1069     context->filterkey = key;
1070 
1071     audit_set_context(tsk, context);
1072     set_task_syscall_work(tsk, SYSCALL_AUDIT);
1073     return 0;
1074 }
1075 
1076 static inline void audit_free_context(struct audit_context *context)
1077 {
1078     /* resetting is extra work, but it is likely just noise */
1079     audit_reset_context(context);
1080     free_tree_refs(context);
1081     kfree(context->filterkey);
1082     kfree(context);
1083 }
1084 
1085 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1086                  kuid_t auid, kuid_t uid, unsigned int sessionid,
1087                  u32 sid, char *comm)
1088 {
1089     struct audit_buffer *ab;
1090     char *ctx = NULL;
1091     u32 len;
1092     int rc = 0;
1093 
1094     ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1095     if (!ab)
1096         return rc;
1097 
1098     audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1099              from_kuid(&init_user_ns, auid),
1100              from_kuid(&init_user_ns, uid), sessionid);
1101     if (sid) {
1102         if (security_secid_to_secctx(sid, &ctx, &len)) {
1103             audit_log_format(ab, " obj=(none)");
1104             rc = 1;
1105         } else {
1106             audit_log_format(ab, " obj=%s", ctx);
1107             security_release_secctx(ctx, len);
1108         }
1109     }
1110     audit_log_format(ab, " ocomm=");
1111     audit_log_untrustedstring(ab, comm);
1112     audit_log_end(ab);
1113 
1114     return rc;
1115 }
1116 
1117 static void audit_log_execve_info(struct audit_context *context,
1118                   struct audit_buffer **ab)
1119 {
1120     long len_max;
1121     long len_rem;
1122     long len_full;
1123     long len_buf;
1124     long len_abuf = 0;
1125     long len_tmp;
1126     bool require_data;
1127     bool encode;
1128     unsigned int iter;
1129     unsigned int arg;
1130     char *buf_head;
1131     char *buf;
1132     const char __user *p = (const char __user *)current->mm->arg_start;
1133 
1134     /* NOTE: this buffer needs to be large enough to hold all the non-arg
1135      *       data we put in the audit record for this argument (see the
1136      *       code below) ... at this point in time 96 is plenty */
1137     char abuf[96];
1138 
1139     /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1140      *       current value of 7500 is not as important as the fact that it
1141      *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1142      *       room if we go over a little bit in the logging below */
1143     WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1144     len_max = MAX_EXECVE_AUDIT_LEN;
1145 
1146     /* scratch buffer to hold the userspace args */
1147     buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1148     if (!buf_head) {
1149         audit_panic("out of memory for argv string");
1150         return;
1151     }
1152     buf = buf_head;
1153 
1154     audit_log_format(*ab, "argc=%d", context->execve.argc);
1155 
1156     len_rem = len_max;
1157     len_buf = 0;
1158     len_full = 0;
1159     require_data = true;
1160     encode = false;
1161     iter = 0;
1162     arg = 0;
1163     do {
1164         /* NOTE: we don't ever want to trust this value for anything
1165          *       serious, but the audit record format insists we
1166          *       provide an argument length for really long arguments,
1167          *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1168          *       to use strncpy_from_user() to obtain this value for
1169          *       recording in the log, although we don't use it
1170          *       anywhere here to avoid a double-fetch problem */
1171         if (len_full == 0)
1172             len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1173 
1174         /* read more data from userspace */
1175         if (require_data) {
1176             /* can we make more room in the buffer? */
1177             if (buf != buf_head) {
1178                 memmove(buf_head, buf, len_buf);
1179                 buf = buf_head;
1180             }
1181 
1182             /* fetch as much as we can of the argument */
1183             len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1184                             len_max - len_buf);
1185             if (len_tmp == -EFAULT) {
1186                 /* unable to copy from userspace */
1187                 send_sig(SIGKILL, current, 0);
1188                 goto out;
1189             } else if (len_tmp == (len_max - len_buf)) {
1190                 /* buffer is not large enough */
1191                 require_data = true;
1192                 /* NOTE: if we are going to span multiple
1193                  *       buffers force the encoding so we stand
1194                  *       a chance at a sane len_full value and
1195                  *       consistent record encoding */
1196                 encode = true;
1197                 len_full = len_full * 2;
1198                 p += len_tmp;
1199             } else {
1200                 require_data = false;
1201                 if (!encode)
1202                     encode = audit_string_contains_control(
1203                                 buf, len_tmp);
1204                 /* try to use a trusted value for len_full */
1205                 if (len_full < len_max)
1206                     len_full = (encode ?
1207                             len_tmp * 2 : len_tmp);
1208                 p += len_tmp + 1;
1209             }
1210             len_buf += len_tmp;
1211             buf_head[len_buf] = '\0';
1212 
1213             /* length of the buffer in the audit record? */
1214             len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1215         }
1216 
1217         /* write as much as we can to the audit log */
1218         if (len_buf >= 0) {
1219             /* NOTE: some magic numbers here - basically if we
1220              *       can't fit a reasonable amount of data into the
1221              *       existing audit buffer, flush it and start with
1222              *       a new buffer */
1223             if ((sizeof(abuf) + 8) > len_rem) {
1224                 len_rem = len_max;
1225                 audit_log_end(*ab);
1226                 *ab = audit_log_start(context,
1227                               GFP_KERNEL, AUDIT_EXECVE);
1228                 if (!*ab)
1229                     goto out;
1230             }
1231 
1232             /* create the non-arg portion of the arg record */
1233             len_tmp = 0;
1234             if (require_data || (iter > 0) ||
1235                 ((len_abuf + sizeof(abuf)) > len_rem)) {
1236                 if (iter == 0) {
1237                     len_tmp += snprintf(&abuf[len_tmp],
1238                             sizeof(abuf) - len_tmp,
1239                             " a%d_len=%lu",
1240                             arg, len_full);
1241                 }
1242                 len_tmp += snprintf(&abuf[len_tmp],
1243                             sizeof(abuf) - len_tmp,
1244                             " a%d[%d]=", arg, iter++);
1245             } else
1246                 len_tmp += snprintf(&abuf[len_tmp],
1247                             sizeof(abuf) - len_tmp,
1248                             " a%d=", arg);
1249             WARN_ON(len_tmp >= sizeof(abuf));
1250             abuf[sizeof(abuf) - 1] = '\0';
1251 
1252             /* log the arg in the audit record */
1253             audit_log_format(*ab, "%s", abuf);
1254             len_rem -= len_tmp;
1255             len_tmp = len_buf;
1256             if (encode) {
1257                 if (len_abuf > len_rem)
1258                     len_tmp = len_rem / 2; /* encoding */
1259                 audit_log_n_hex(*ab, buf, len_tmp);
1260                 len_rem -= len_tmp * 2;
1261                 len_abuf -= len_tmp * 2;
1262             } else {
1263                 if (len_abuf > len_rem)
1264                     len_tmp = len_rem - 2; /* quotes */
1265                 audit_log_n_string(*ab, buf, len_tmp);
1266                 len_rem -= len_tmp + 2;
1267                 /* don't subtract the "2" because we still need
1268                  * to add quotes to the remaining string */
1269                 len_abuf -= len_tmp;
1270             }
1271             len_buf -= len_tmp;
1272             buf += len_tmp;
1273         }
1274 
1275         /* ready to move to the next argument? */
1276         if ((len_buf == 0) && !require_data) {
1277             arg++;
1278             iter = 0;
1279             len_full = 0;
1280             require_data = true;
1281             encode = false;
1282         }
1283     } while (arg < context->execve.argc);
1284 
1285     /* NOTE: the caller handles the final audit_log_end() call */
1286 
1287 out:
1288     kfree(buf_head);
1289 }
1290 
1291 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1292               kernel_cap_t *cap)
1293 {
1294     int i;
1295 
1296     if (cap_isclear(*cap)) {
1297         audit_log_format(ab, " %s=0", prefix);
1298         return;
1299     }
1300     audit_log_format(ab, " %s=", prefix);
1301     CAP_FOR_EACH_U32(i)
1302         audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1303 }
1304 
1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1306 {
1307     if (name->fcap_ver == -1) {
1308         audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1309         return;
1310     }
1311     audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1312     audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1313     audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1314              name->fcap.fE, name->fcap_ver,
1315              from_kuid(&init_user_ns, name->fcap.rootid));
1316 }
1317 
1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1319 {
1320     const struct audit_ntp_data *ntp = &context->time.ntp_data;
1321     const struct timespec64 *tk = &context->time.tk_injoffset;
1322     static const char * const ntp_name[] = {
1323         "offset",
1324         "freq",
1325         "status",
1326         "tai",
1327         "tick",
1328         "adjust",
1329     };
1330     int type;
1331 
1332     if (context->type == AUDIT_TIME_ADJNTPVAL) {
1333         for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1334             if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1335                 if (!*ab) {
1336                     *ab = audit_log_start(context,
1337                             GFP_KERNEL,
1338                             AUDIT_TIME_ADJNTPVAL);
1339                     if (!*ab)
1340                         return;
1341                 }
1342                 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1343                          ntp_name[type],
1344                          ntp->vals[type].oldval,
1345                          ntp->vals[type].newval);
1346                 audit_log_end(*ab);
1347                 *ab = NULL;
1348             }
1349         }
1350     }
1351     if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1352         if (!*ab) {
1353             *ab = audit_log_start(context, GFP_KERNEL,
1354                           AUDIT_TIME_INJOFFSET);
1355             if (!*ab)
1356                 return;
1357         }
1358         audit_log_format(*ab, "sec=%lli nsec=%li",
1359                  (long long)tk->tv_sec, tk->tv_nsec);
1360         audit_log_end(*ab);
1361         *ab = NULL;
1362     }
1363 }
1364 
1365 static void show_special(struct audit_context *context, int *call_panic)
1366 {
1367     struct audit_buffer *ab;
1368     int i;
1369 
1370     ab = audit_log_start(context, GFP_KERNEL, context->type);
1371     if (!ab)
1372         return;
1373 
1374     switch (context->type) {
1375     case AUDIT_SOCKETCALL: {
1376         int nargs = context->socketcall.nargs;
1377 
1378         audit_log_format(ab, "nargs=%d", nargs);
1379         for (i = 0; i < nargs; i++)
1380             audit_log_format(ab, " a%d=%lx", i,
1381                 context->socketcall.args[i]);
1382         break; }
1383     case AUDIT_IPC: {
1384         u32 osid = context->ipc.osid;
1385 
1386         audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1387                  from_kuid(&init_user_ns, context->ipc.uid),
1388                  from_kgid(&init_user_ns, context->ipc.gid),
1389                  context->ipc.mode);
1390         if (osid) {
1391             char *ctx = NULL;
1392             u32 len;
1393 
1394             if (security_secid_to_secctx(osid, &ctx, &len)) {
1395                 audit_log_format(ab, " osid=%u", osid);
1396                 *call_panic = 1;
1397             } else {
1398                 audit_log_format(ab, " obj=%s", ctx);
1399                 security_release_secctx(ctx, len);
1400             }
1401         }
1402         if (context->ipc.has_perm) {
1403             audit_log_end(ab);
1404             ab = audit_log_start(context, GFP_KERNEL,
1405                          AUDIT_IPC_SET_PERM);
1406             if (unlikely(!ab))
1407                 return;
1408             audit_log_format(ab,
1409                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1410                 context->ipc.qbytes,
1411                 context->ipc.perm_uid,
1412                 context->ipc.perm_gid,
1413                 context->ipc.perm_mode);
1414         }
1415         break; }
1416     case AUDIT_MQ_OPEN:
1417         audit_log_format(ab,
1418             "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1419             "mq_msgsize=%ld mq_curmsgs=%ld",
1420             context->mq_open.oflag, context->mq_open.mode,
1421             context->mq_open.attr.mq_flags,
1422             context->mq_open.attr.mq_maxmsg,
1423             context->mq_open.attr.mq_msgsize,
1424             context->mq_open.attr.mq_curmsgs);
1425         break;
1426     case AUDIT_MQ_SENDRECV:
1427         audit_log_format(ab,
1428             "mqdes=%d msg_len=%zd msg_prio=%u "
1429             "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1430             context->mq_sendrecv.mqdes,
1431             context->mq_sendrecv.msg_len,
1432             context->mq_sendrecv.msg_prio,
1433             (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1434             context->mq_sendrecv.abs_timeout.tv_nsec);
1435         break;
1436     case AUDIT_MQ_NOTIFY:
1437         audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1438                 context->mq_notify.mqdes,
1439                 context->mq_notify.sigev_signo);
1440         break;
1441     case AUDIT_MQ_GETSETATTR: {
1442         struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1443 
1444         audit_log_format(ab,
1445             "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1446             "mq_curmsgs=%ld ",
1447             context->mq_getsetattr.mqdes,
1448             attr->mq_flags, attr->mq_maxmsg,
1449             attr->mq_msgsize, attr->mq_curmsgs);
1450         break; }
1451     case AUDIT_CAPSET:
1452         audit_log_format(ab, "pid=%d", context->capset.pid);
1453         audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1454         audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1455         audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1456         audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1457         break;
1458     case AUDIT_MMAP:
1459         audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1460                  context->mmap.flags);
1461         break;
1462     case AUDIT_OPENAT2:
1463         audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1464                  context->openat2.flags,
1465                  context->openat2.mode,
1466                  context->openat2.resolve);
1467         break;
1468     case AUDIT_EXECVE:
1469         audit_log_execve_info(context, &ab);
1470         break;
1471     case AUDIT_KERN_MODULE:
1472         audit_log_format(ab, "name=");
1473         if (context->module.name) {
1474             audit_log_untrustedstring(ab, context->module.name);
1475         } else
1476             audit_log_format(ab, "(null)");
1477 
1478         break;
1479     case AUDIT_TIME_ADJNTPVAL:
1480     case AUDIT_TIME_INJOFFSET:
1481         /* this call deviates from the rest, eating the buffer */
1482         audit_log_time(context, &ab);
1483         break;
1484     }
1485     audit_log_end(ab);
1486 }
1487 
1488 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1489 {
1490     char *end = proctitle + len - 1;
1491 
1492     while (end > proctitle && !isprint(*end))
1493         end--;
1494 
1495     /* catch the case where proctitle is only 1 non-print character */
1496     len = end - proctitle + 1;
1497     len -= isprint(proctitle[len-1]) == 0;
1498     return len;
1499 }
1500 
1501 /*
1502  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1503  * @context: audit_context for the task
1504  * @n: audit_names structure with reportable details
1505  * @path: optional path to report instead of audit_names->name
1506  * @record_num: record number to report when handling a list of names
1507  * @call_panic: optional pointer to int that will be updated if secid fails
1508  */
1509 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1510             const struct path *path, int record_num, int *call_panic)
1511 {
1512     struct audit_buffer *ab;
1513 
1514     ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1515     if (!ab)
1516         return;
1517 
1518     audit_log_format(ab, "item=%d", record_num);
1519 
1520     if (path)
1521         audit_log_d_path(ab, " name=", path);
1522     else if (n->name) {
1523         switch (n->name_len) {
1524         case AUDIT_NAME_FULL:
1525             /* log the full path */
1526             audit_log_format(ab, " name=");
1527             audit_log_untrustedstring(ab, n->name->name);
1528             break;
1529         case 0:
1530             /* name was specified as a relative path and the
1531              * directory component is the cwd
1532              */
1533             if (context->pwd.dentry && context->pwd.mnt)
1534                 audit_log_d_path(ab, " name=", &context->pwd);
1535             else
1536                 audit_log_format(ab, " name=(null)");
1537             break;
1538         default:
1539             /* log the name's directory component */
1540             audit_log_format(ab, " name=");
1541             audit_log_n_untrustedstring(ab, n->name->name,
1542                             n->name_len);
1543         }
1544     } else
1545         audit_log_format(ab, " name=(null)");
1546 
1547     if (n->ino != AUDIT_INO_UNSET)
1548         audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1549                  n->ino,
1550                  MAJOR(n->dev),
1551                  MINOR(n->dev),
1552                  n->mode,
1553                  from_kuid(&init_user_ns, n->uid),
1554                  from_kgid(&init_user_ns, n->gid),
1555                  MAJOR(n->rdev),
1556                  MINOR(n->rdev));
1557     if (n->osid != 0) {
1558         char *ctx = NULL;
1559         u32 len;
1560 
1561         if (security_secid_to_secctx(
1562             n->osid, &ctx, &len)) {
1563             audit_log_format(ab, " osid=%u", n->osid);
1564             if (call_panic)
1565                 *call_panic = 2;
1566         } else {
1567             audit_log_format(ab, " obj=%s", ctx);
1568             security_release_secctx(ctx, len);
1569         }
1570     }
1571 
1572     /* log the audit_names record type */
1573     switch (n->type) {
1574     case AUDIT_TYPE_NORMAL:
1575         audit_log_format(ab, " nametype=NORMAL");
1576         break;
1577     case AUDIT_TYPE_PARENT:
1578         audit_log_format(ab, " nametype=PARENT");
1579         break;
1580     case AUDIT_TYPE_CHILD_DELETE:
1581         audit_log_format(ab, " nametype=DELETE");
1582         break;
1583     case AUDIT_TYPE_CHILD_CREATE:
1584         audit_log_format(ab, " nametype=CREATE");
1585         break;
1586     default:
1587         audit_log_format(ab, " nametype=UNKNOWN");
1588         break;
1589     }
1590 
1591     audit_log_fcaps(ab, n);
1592     audit_log_end(ab);
1593 }
1594 
1595 static void audit_log_proctitle(void)
1596 {
1597     int res;
1598     char *buf;
1599     char *msg = "(null)";
1600     int len = strlen(msg);
1601     struct audit_context *context = audit_context();
1602     struct audit_buffer *ab;
1603 
1604     ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1605     if (!ab)
1606         return; /* audit_panic or being filtered */
1607 
1608     audit_log_format(ab, "proctitle=");
1609 
1610     /* Not  cached */
1611     if (!context->proctitle.value) {
1612         buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1613         if (!buf)
1614             goto out;
1615         /* Historically called this from procfs naming */
1616         res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1617         if (res == 0) {
1618             kfree(buf);
1619             goto out;
1620         }
1621         res = audit_proctitle_rtrim(buf, res);
1622         if (res == 0) {
1623             kfree(buf);
1624             goto out;
1625         }
1626         context->proctitle.value = buf;
1627         context->proctitle.len = res;
1628     }
1629     msg = context->proctitle.value;
1630     len = context->proctitle.len;
1631 out:
1632     audit_log_n_untrustedstring(ab, msg, len);
1633     audit_log_end(ab);
1634 }
1635 
1636 /**
1637  * audit_log_uring - generate a AUDIT_URINGOP record
1638  * @ctx: the audit context
1639  */
1640 static void audit_log_uring(struct audit_context *ctx)
1641 {
1642     struct audit_buffer *ab;
1643     const struct cred *cred;
1644 
1645     ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1646     if (!ab)
1647         return;
1648     cred = current_cred();
1649     audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650     if (ctx->return_valid != AUDITSC_INVALID)
1651         audit_log_format(ab, " success=%s exit=%ld",
1652                  (ctx->return_valid == AUDITSC_SUCCESS ?
1653                   "yes" : "no"),
1654                  ctx->return_code);
1655     audit_log_format(ab,
1656              " items=%d"
1657              " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658              " fsuid=%u egid=%u sgid=%u fsgid=%u",
1659              ctx->name_count,
1660              task_ppid_nr(current), task_tgid_nr(current),
1661              from_kuid(&init_user_ns, cred->uid),
1662              from_kgid(&init_user_ns, cred->gid),
1663              from_kuid(&init_user_ns, cred->euid),
1664              from_kuid(&init_user_ns, cred->suid),
1665              from_kuid(&init_user_ns, cred->fsuid),
1666              from_kgid(&init_user_ns, cred->egid),
1667              from_kgid(&init_user_ns, cred->sgid),
1668              from_kgid(&init_user_ns, cred->fsgid));
1669     audit_log_task_context(ab);
1670     audit_log_key(ab, ctx->filterkey);
1671     audit_log_end(ab);
1672 }
1673 
1674 static void audit_log_exit(void)
1675 {
1676     int i, call_panic = 0;
1677     struct audit_context *context = audit_context();
1678     struct audit_buffer *ab;
1679     struct audit_aux_data *aux;
1680     struct audit_names *n;
1681 
1682     context->personality = current->personality;
1683 
1684     switch (context->context) {
1685     case AUDIT_CTX_SYSCALL:
1686         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1687         if (!ab)
1688             return;
1689         audit_log_format(ab, "arch=%x syscall=%d",
1690                  context->arch, context->major);
1691         if (context->personality != PER_LINUX)
1692             audit_log_format(ab, " per=%lx", context->personality);
1693         if (context->return_valid != AUDITSC_INVALID)
1694             audit_log_format(ab, " success=%s exit=%ld",
1695                      (context->return_valid == AUDITSC_SUCCESS ?
1696                       "yes" : "no"),
1697                      context->return_code);
1698         audit_log_format(ab,
1699                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1700                  context->argv[0],
1701                  context->argv[1],
1702                  context->argv[2],
1703                  context->argv[3],
1704                  context->name_count);
1705         audit_log_task_info(ab);
1706         audit_log_key(ab, context->filterkey);
1707         audit_log_end(ab);
1708         break;
1709     case AUDIT_CTX_URING:
1710         audit_log_uring(context);
1711         break;
1712     default:
1713         BUG();
1714         break;
1715     }
1716 
1717     for (aux = context->aux; aux; aux = aux->next) {
1718 
1719         ab = audit_log_start(context, GFP_KERNEL, aux->type);
1720         if (!ab)
1721             continue; /* audit_panic has been called */
1722 
1723         switch (aux->type) {
1724 
1725         case AUDIT_BPRM_FCAPS: {
1726             struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1727 
1728             audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729             audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730             audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731             audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732             audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733             audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734             audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1735             audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736             audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737             audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738             audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739             audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1740             audit_log_format(ab, " frootid=%d",
1741                      from_kuid(&init_user_ns,
1742                            axs->fcap.rootid));
1743             break; }
1744 
1745         }
1746         audit_log_end(ab);
1747     }
1748 
1749     if (context->type)
1750         show_special(context, &call_panic);
1751 
1752     if (context->fds[0] >= 0) {
1753         ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1754         if (ab) {
1755             audit_log_format(ab, "fd0=%d fd1=%d",
1756                     context->fds[0], context->fds[1]);
1757             audit_log_end(ab);
1758         }
1759     }
1760 
1761     if (context->sockaddr_len) {
1762         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1763         if (ab) {
1764             audit_log_format(ab, "saddr=");
1765             audit_log_n_hex(ab, (void *)context->sockaddr,
1766                     context->sockaddr_len);
1767             audit_log_end(ab);
1768         }
1769     }
1770 
1771     for (aux = context->aux_pids; aux; aux = aux->next) {
1772         struct audit_aux_data_pids *axs = (void *)aux;
1773 
1774         for (i = 0; i < axs->pid_count; i++)
1775             if (audit_log_pid_context(context, axs->target_pid[i],
1776                           axs->target_auid[i],
1777                           axs->target_uid[i],
1778                           axs->target_sessionid[i],
1779                           axs->target_sid[i],
1780                           axs->target_comm[i]))
1781                 call_panic = 1;
1782     }
1783 
1784     if (context->target_pid &&
1785         audit_log_pid_context(context, context->target_pid,
1786                   context->target_auid, context->target_uid,
1787                   context->target_sessionid,
1788                   context->target_sid, context->target_comm))
1789             call_panic = 1;
1790 
1791     if (context->pwd.dentry && context->pwd.mnt) {
1792         ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1793         if (ab) {
1794             audit_log_d_path(ab, "cwd=", &context->pwd);
1795             audit_log_end(ab);
1796         }
1797     }
1798 
1799     i = 0;
1800     list_for_each_entry(n, &context->names_list, list) {
1801         if (n->hidden)
1802             continue;
1803         audit_log_name(context, n, NULL, i++, &call_panic);
1804     }
1805 
1806     if (context->context == AUDIT_CTX_SYSCALL)
1807         audit_log_proctitle();
1808 
1809     /* Send end of event record to help user space know we are finished */
1810     ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1811     if (ab)
1812         audit_log_end(ab);
1813     if (call_panic)
1814         audit_panic("error in audit_log_exit()");
1815 }
1816 
1817 /**
1818  * __audit_free - free a per-task audit context
1819  * @tsk: task whose audit context block to free
1820  *
1821  * Called from copy_process, do_exit, and the io_uring code
1822  */
1823 void __audit_free(struct task_struct *tsk)
1824 {
1825     struct audit_context *context = tsk->audit_context;
1826 
1827     if (!context)
1828         return;
1829 
1830     /* this may generate CONFIG_CHANGE records */
1831     if (!list_empty(&context->killed_trees))
1832         audit_kill_trees(context);
1833 
1834     /* We are called either by do_exit() or the fork() error handling code;
1835      * in the former case tsk == current and in the latter tsk is a
1836      * random task_struct that doesn't doesn't have any meaningful data we
1837      * need to log via audit_log_exit().
1838      */
1839     if (tsk == current && !context->dummy) {
1840         context->return_valid = AUDITSC_INVALID;
1841         context->return_code = 0;
1842         if (context->context == AUDIT_CTX_SYSCALL) {
1843             audit_filter_syscall(tsk, context);
1844             audit_filter_inodes(tsk, context);
1845             if (context->current_state == AUDIT_STATE_RECORD)
1846                 audit_log_exit();
1847         } else if (context->context == AUDIT_CTX_URING) {
1848             /* TODO: verify this case is real and valid */
1849             audit_filter_uring(tsk, context);
1850             audit_filter_inodes(tsk, context);
1851             if (context->current_state == AUDIT_STATE_RECORD)
1852                 audit_log_uring(context);
1853         }
1854     }
1855 
1856     audit_set_context(tsk, NULL);
1857     audit_free_context(context);
1858 }
1859 
1860 /**
1861  * audit_return_fixup - fixup the return codes in the audit_context
1862  * @ctx: the audit_context
1863  * @success: true/false value to indicate if the operation succeeded or not
1864  * @code: operation return code
1865  *
1866  * We need to fixup the return code in the audit logs if the actual return
1867  * codes are later going to be fixed by the arch specific signal handlers.
1868  */
1869 static void audit_return_fixup(struct audit_context *ctx,
1870                    int success, long code)
1871 {
1872     /*
1873      * This is actually a test for:
1874      * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875      * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1876      *
1877      * but is faster than a bunch of ||
1878      */
1879     if (unlikely(code <= -ERESTARTSYS) &&
1880         (code >= -ERESTART_RESTARTBLOCK) &&
1881         (code != -ENOIOCTLCMD))
1882         ctx->return_code = -EINTR;
1883     else
1884         ctx->return_code  = code;
1885     ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1886 }
1887 
1888 /**
1889  * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890  * @op: the io_uring opcode
1891  *
1892  * This is similar to audit_syscall_entry() but is intended for use by io_uring
1893  * operations.  This function should only ever be called from
1894  * audit_uring_entry() as we rely on the audit context checking present in that
1895  * function.
1896  */
1897 void __audit_uring_entry(u8 op)
1898 {
1899     struct audit_context *ctx = audit_context();
1900 
1901     if (ctx->state == AUDIT_STATE_DISABLED)
1902         return;
1903 
1904     /*
1905      * NOTE: It's possible that we can be called from the process' context
1906      *       before it returns to userspace, and before audit_syscall_exit()
1907      *       is called.  In this case there is not much to do, just record
1908      *       the io_uring details and return.
1909      */
1910     ctx->uring_op = op;
1911     if (ctx->context == AUDIT_CTX_SYSCALL)
1912         return;
1913 
1914     ctx->dummy = !audit_n_rules;
1915     if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1916         ctx->prio = 0;
1917 
1918     ctx->context = AUDIT_CTX_URING;
1919     ctx->current_state = ctx->state;
1920     ktime_get_coarse_real_ts64(&ctx->ctime);
1921 }
1922 
1923 /**
1924  * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925  * @success: true/false value to indicate if the operation succeeded or not
1926  * @code: operation return code
1927  *
1928  * This is similar to audit_syscall_exit() but is intended for use by io_uring
1929  * operations.  This function should only ever be called from
1930  * audit_uring_exit() as we rely on the audit context checking present in that
1931  * function.
1932  */
1933 void __audit_uring_exit(int success, long code)
1934 {
1935     struct audit_context *ctx = audit_context();
1936 
1937     if (ctx->dummy) {
1938         if (ctx->context != AUDIT_CTX_URING)
1939             return;
1940         goto out;
1941     }
1942 
1943     audit_return_fixup(ctx, success, code);
1944     if (ctx->context == AUDIT_CTX_SYSCALL) {
1945         /*
1946          * NOTE: See the note in __audit_uring_entry() about the case
1947          *       where we may be called from process context before we
1948          *       return to userspace via audit_syscall_exit().  In this
1949          *       case we simply emit a URINGOP record and bail, the
1950          *       normal syscall exit handling will take care of
1951          *       everything else.
1952          *       It is also worth mentioning that when we are called,
1953          *       the current process creds may differ from the creds
1954          *       used during the normal syscall processing; keep that
1955          *       in mind if/when we move the record generation code.
1956          */
1957 
1958         /*
1959          * We need to filter on the syscall info here to decide if we
1960          * should emit a URINGOP record.  I know it seems odd but this
1961          * solves the problem where users have a filter to block *all*
1962          * syscall records in the "exit" filter; we want to preserve
1963          * the behavior here.
1964          */
1965         audit_filter_syscall(current, ctx);
1966         if (ctx->current_state != AUDIT_STATE_RECORD)
1967             audit_filter_uring(current, ctx);
1968         audit_filter_inodes(current, ctx);
1969         if (ctx->current_state != AUDIT_STATE_RECORD)
1970             return;
1971 
1972         audit_log_uring(ctx);
1973         return;
1974     }
1975 
1976     /* this may generate CONFIG_CHANGE records */
1977     if (!list_empty(&ctx->killed_trees))
1978         audit_kill_trees(ctx);
1979 
1980     /* run through both filters to ensure we set the filterkey properly */
1981     audit_filter_uring(current, ctx);
1982     audit_filter_inodes(current, ctx);
1983     if (ctx->current_state != AUDIT_STATE_RECORD)
1984         goto out;
1985     audit_log_exit();
1986 
1987 out:
1988     audit_reset_context(ctx);
1989 }
1990 
1991 /**
1992  * __audit_syscall_entry - fill in an audit record at syscall entry
1993  * @major: major syscall type (function)
1994  * @a1: additional syscall register 1
1995  * @a2: additional syscall register 2
1996  * @a3: additional syscall register 3
1997  * @a4: additional syscall register 4
1998  *
1999  * Fill in audit context at syscall entry.  This only happens if the
2000  * audit context was created when the task was created and the state or
2001  * filters demand the audit context be built.  If the state from the
2002  * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2003  * then the record will be written at syscall exit time (otherwise, it
2004  * will only be written if another part of the kernel requests that it
2005  * be written).
2006  */
2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008                unsigned long a3, unsigned long a4)
2009 {
2010     struct audit_context *context = audit_context();
2011     enum audit_state     state;
2012 
2013     if (!audit_enabled || !context)
2014         return;
2015 
2016     WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017     WARN_ON(context->name_count);
2018     if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019         audit_panic("unrecoverable error in audit_syscall_entry()");
2020         return;
2021     }
2022 
2023     state = context->state;
2024     if (state == AUDIT_STATE_DISABLED)
2025         return;
2026 
2027     context->dummy = !audit_n_rules;
2028     if (!context->dummy && state == AUDIT_STATE_BUILD) {
2029         context->prio = 0;
2030         if (auditd_test_task(current))
2031             return;
2032     }
2033 
2034     context->arch       = syscall_get_arch(current);
2035     context->major      = major;
2036     context->argv[0]    = a1;
2037     context->argv[1]    = a2;
2038     context->argv[2]    = a3;
2039     context->argv[3]    = a4;
2040     context->context = AUDIT_CTX_SYSCALL;
2041     context->current_state  = state;
2042     ktime_get_coarse_real_ts64(&context->ctime);
2043 }
2044 
2045 /**
2046  * __audit_syscall_exit - deallocate audit context after a system call
2047  * @success: success value of the syscall
2048  * @return_code: return value of the syscall
2049  *
2050  * Tear down after system call.  If the audit context has been marked as
2051  * auditable (either because of the AUDIT_STATE_RECORD state from
2052  * filtering, or because some other part of the kernel wrote an audit
2053  * message), then write out the syscall information.  In call cases,
2054  * free the names stored from getname().
2055  */
2056 void __audit_syscall_exit(int success, long return_code)
2057 {
2058     struct audit_context *context = audit_context();
2059 
2060     if (!context || context->dummy ||
2061         context->context != AUDIT_CTX_SYSCALL)
2062         goto out;
2063 
2064     /* this may generate CONFIG_CHANGE records */
2065     if (!list_empty(&context->killed_trees))
2066         audit_kill_trees(context);
2067 
2068     audit_return_fixup(context, success, return_code);
2069     /* run through both filters to ensure we set the filterkey properly */
2070     audit_filter_syscall(current, context);
2071     audit_filter_inodes(current, context);
2072     if (context->current_state < AUDIT_STATE_RECORD)
2073         goto out;
2074 
2075     audit_log_exit();
2076 
2077 out:
2078     audit_reset_context(context);
2079 }
2080 
2081 static inline void handle_one(const struct inode *inode)
2082 {
2083     struct audit_context *context;
2084     struct audit_tree_refs *p;
2085     struct audit_chunk *chunk;
2086     int count;
2087 
2088     if (likely(!inode->i_fsnotify_marks))
2089         return;
2090     context = audit_context();
2091     p = context->trees;
2092     count = context->tree_count;
2093     rcu_read_lock();
2094     chunk = audit_tree_lookup(inode);
2095     rcu_read_unlock();
2096     if (!chunk)
2097         return;
2098     if (likely(put_tree_ref(context, chunk)))
2099         return;
2100     if (unlikely(!grow_tree_refs(context))) {
2101         pr_warn("out of memory, audit has lost a tree reference\n");
2102         audit_set_auditable(context);
2103         audit_put_chunk(chunk);
2104         unroll_tree_refs(context, p, count);
2105         return;
2106     }
2107     put_tree_ref(context, chunk);
2108 }
2109 
2110 static void handle_path(const struct dentry *dentry)
2111 {
2112     struct audit_context *context;
2113     struct audit_tree_refs *p;
2114     const struct dentry *d, *parent;
2115     struct audit_chunk *drop;
2116     unsigned long seq;
2117     int count;
2118 
2119     context = audit_context();
2120     p = context->trees;
2121     count = context->tree_count;
2122 retry:
2123     drop = NULL;
2124     d = dentry;
2125     rcu_read_lock();
2126     seq = read_seqbegin(&rename_lock);
2127     for(;;) {
2128         struct inode *inode = d_backing_inode(d);
2129 
2130         if (inode && unlikely(inode->i_fsnotify_marks)) {
2131             struct audit_chunk *chunk;
2132 
2133             chunk = audit_tree_lookup(inode);
2134             if (chunk) {
2135                 if (unlikely(!put_tree_ref(context, chunk))) {
2136                     drop = chunk;
2137                     break;
2138                 }
2139             }
2140         }
2141         parent = d->d_parent;
2142         if (parent == d)
2143             break;
2144         d = parent;
2145     }
2146     if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2147         rcu_read_unlock();
2148         if (!drop) {
2149             /* just a race with rename */
2150             unroll_tree_refs(context, p, count);
2151             goto retry;
2152         }
2153         audit_put_chunk(drop);
2154         if (grow_tree_refs(context)) {
2155             /* OK, got more space */
2156             unroll_tree_refs(context, p, count);
2157             goto retry;
2158         }
2159         /* too bad */
2160         pr_warn("out of memory, audit has lost a tree reference\n");
2161         unroll_tree_refs(context, p, count);
2162         audit_set_auditable(context);
2163         return;
2164     }
2165     rcu_read_unlock();
2166 }
2167 
2168 static struct audit_names *audit_alloc_name(struct audit_context *context,
2169                         unsigned char type)
2170 {
2171     struct audit_names *aname;
2172 
2173     if (context->name_count < AUDIT_NAMES) {
2174         aname = &context->preallocated_names[context->name_count];
2175         memset(aname, 0, sizeof(*aname));
2176     } else {
2177         aname = kzalloc(sizeof(*aname), GFP_NOFS);
2178         if (!aname)
2179             return NULL;
2180         aname->should_free = true;
2181     }
2182 
2183     aname->ino = AUDIT_INO_UNSET;
2184     aname->type = type;
2185     list_add_tail(&aname->list, &context->names_list);
2186 
2187     context->name_count++;
2188     if (!context->pwd.dentry)
2189         get_fs_pwd(current->fs, &context->pwd);
2190     return aname;
2191 }
2192 
2193 /**
2194  * __audit_reusename - fill out filename with info from existing entry
2195  * @uptr: userland ptr to pathname
2196  *
2197  * Search the audit_names list for the current audit context. If there is an
2198  * existing entry with a matching "uptr" then return the filename
2199  * associated with that audit_name. If not, return NULL.
2200  */
2201 struct filename *
2202 __audit_reusename(const __user char *uptr)
2203 {
2204     struct audit_context *context = audit_context();
2205     struct audit_names *n;
2206 
2207     list_for_each_entry(n, &context->names_list, list) {
2208         if (!n->name)
2209             continue;
2210         if (n->name->uptr == uptr) {
2211             n->name->refcnt++;
2212             return n->name;
2213         }
2214     }
2215     return NULL;
2216 }
2217 
2218 /**
2219  * __audit_getname - add a name to the list
2220  * @name: name to add
2221  *
2222  * Add a name to the list of audit names for this context.
2223  * Called from fs/namei.c:getname().
2224  */
2225 void __audit_getname(struct filename *name)
2226 {
2227     struct audit_context *context = audit_context();
2228     struct audit_names *n;
2229 
2230     if (context->context == AUDIT_CTX_UNUSED)
2231         return;
2232 
2233     n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2234     if (!n)
2235         return;
2236 
2237     n->name = name;
2238     n->name_len = AUDIT_NAME_FULL;
2239     name->aname = n;
2240     name->refcnt++;
2241 }
2242 
2243 static inline int audit_copy_fcaps(struct audit_names *name,
2244                    const struct dentry *dentry)
2245 {
2246     struct cpu_vfs_cap_data caps;
2247     int rc;
2248 
2249     if (!dentry)
2250         return 0;
2251 
2252     rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2253     if (rc)
2254         return rc;
2255 
2256     name->fcap.permitted = caps.permitted;
2257     name->fcap.inheritable = caps.inheritable;
2258     name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2259     name->fcap.rootid = caps.rootid;
2260     name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2261                 VFS_CAP_REVISION_SHIFT;
2262 
2263     return 0;
2264 }
2265 
2266 /* Copy inode data into an audit_names. */
2267 static void audit_copy_inode(struct audit_names *name,
2268                  const struct dentry *dentry,
2269                  struct inode *inode, unsigned int flags)
2270 {
2271     name->ino   = inode->i_ino;
2272     name->dev   = inode->i_sb->s_dev;
2273     name->mode  = inode->i_mode;
2274     name->uid   = inode->i_uid;
2275     name->gid   = inode->i_gid;
2276     name->rdev  = inode->i_rdev;
2277     security_inode_getsecid(inode, &name->osid);
2278     if (flags & AUDIT_INODE_NOEVAL) {
2279         name->fcap_ver = -1;
2280         return;
2281     }
2282     audit_copy_fcaps(name, dentry);
2283 }
2284 
2285 /**
2286  * __audit_inode - store the inode and device from a lookup
2287  * @name: name being audited
2288  * @dentry: dentry being audited
2289  * @flags: attributes for this particular entry
2290  */
2291 void __audit_inode(struct filename *name, const struct dentry *dentry,
2292            unsigned int flags)
2293 {
2294     struct audit_context *context = audit_context();
2295     struct inode *inode = d_backing_inode(dentry);
2296     struct audit_names *n;
2297     bool parent = flags & AUDIT_INODE_PARENT;
2298     struct audit_entry *e;
2299     struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2300     int i;
2301 
2302     if (context->context == AUDIT_CTX_UNUSED)
2303         return;
2304 
2305     rcu_read_lock();
2306     list_for_each_entry_rcu(e, list, list) {
2307         for (i = 0; i < e->rule.field_count; i++) {
2308             struct audit_field *f = &e->rule.fields[i];
2309 
2310             if (f->type == AUDIT_FSTYPE
2311                 && audit_comparator(inode->i_sb->s_magic,
2312                         f->op, f->val)
2313                 && e->rule.action == AUDIT_NEVER) {
2314                 rcu_read_unlock();
2315                 return;
2316             }
2317         }
2318     }
2319     rcu_read_unlock();
2320 
2321     if (!name)
2322         goto out_alloc;
2323 
2324     /*
2325      * If we have a pointer to an audit_names entry already, then we can
2326      * just use it directly if the type is correct.
2327      */
2328     n = name->aname;
2329     if (n) {
2330         if (parent) {
2331             if (n->type == AUDIT_TYPE_PARENT ||
2332                 n->type == AUDIT_TYPE_UNKNOWN)
2333                 goto out;
2334         } else {
2335             if (n->type != AUDIT_TYPE_PARENT)
2336                 goto out;
2337         }
2338     }
2339 
2340     list_for_each_entry_reverse(n, &context->names_list, list) {
2341         if (n->ino) {
2342             /* valid inode number, use that for the comparison */
2343             if (n->ino != inode->i_ino ||
2344                 n->dev != inode->i_sb->s_dev)
2345                 continue;
2346         } else if (n->name) {
2347             /* inode number has not been set, check the name */
2348             if (strcmp(n->name->name, name->name))
2349                 continue;
2350         } else
2351             /* no inode and no name (?!) ... this is odd ... */
2352             continue;
2353 
2354         /* match the correct record type */
2355         if (parent) {
2356             if (n->type == AUDIT_TYPE_PARENT ||
2357                 n->type == AUDIT_TYPE_UNKNOWN)
2358                 goto out;
2359         } else {
2360             if (n->type != AUDIT_TYPE_PARENT)
2361                 goto out;
2362         }
2363     }
2364 
2365 out_alloc:
2366     /* unable to find an entry with both a matching name and type */
2367     n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2368     if (!n)
2369         return;
2370     if (name) {
2371         n->name = name;
2372         name->refcnt++;
2373     }
2374 
2375 out:
2376     if (parent) {
2377         n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2378         n->type = AUDIT_TYPE_PARENT;
2379         if (flags & AUDIT_INODE_HIDDEN)
2380             n->hidden = true;
2381     } else {
2382         n->name_len = AUDIT_NAME_FULL;
2383         n->type = AUDIT_TYPE_NORMAL;
2384     }
2385     handle_path(dentry);
2386     audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2387 }
2388 
2389 void __audit_file(const struct file *file)
2390 {
2391     __audit_inode(NULL, file->f_path.dentry, 0);
2392 }
2393 
2394 /**
2395  * __audit_inode_child - collect inode info for created/removed objects
2396  * @parent: inode of dentry parent
2397  * @dentry: dentry being audited
2398  * @type:   AUDIT_TYPE_* value that we're looking for
2399  *
2400  * For syscalls that create or remove filesystem objects, audit_inode
2401  * can only collect information for the filesystem object's parent.
2402  * This call updates the audit context with the child's information.
2403  * Syscalls that create a new filesystem object must be hooked after
2404  * the object is created.  Syscalls that remove a filesystem object
2405  * must be hooked prior, in order to capture the target inode during
2406  * unsuccessful attempts.
2407  */
2408 void __audit_inode_child(struct inode *parent,
2409              const struct dentry *dentry,
2410              const unsigned char type)
2411 {
2412     struct audit_context *context = audit_context();
2413     struct inode *inode = d_backing_inode(dentry);
2414     const struct qstr *dname = &dentry->d_name;
2415     struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2416     struct audit_entry *e;
2417     struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2418     int i;
2419 
2420     if (context->context == AUDIT_CTX_UNUSED)
2421         return;
2422 
2423     rcu_read_lock();
2424     list_for_each_entry_rcu(e, list, list) {
2425         for (i = 0; i < e->rule.field_count; i++) {
2426             struct audit_field *f = &e->rule.fields[i];
2427 
2428             if (f->type == AUDIT_FSTYPE
2429                 && audit_comparator(parent->i_sb->s_magic,
2430                         f->op, f->val)
2431                 && e->rule.action == AUDIT_NEVER) {
2432                 rcu_read_unlock();
2433                 return;
2434             }
2435         }
2436     }
2437     rcu_read_unlock();
2438 
2439     if (inode)
2440         handle_one(inode);
2441 
2442     /* look for a parent entry first */
2443     list_for_each_entry(n, &context->names_list, list) {
2444         if (!n->name ||
2445             (n->type != AUDIT_TYPE_PARENT &&
2446              n->type != AUDIT_TYPE_UNKNOWN))
2447             continue;
2448 
2449         if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2450             !audit_compare_dname_path(dname,
2451                           n->name->name, n->name_len)) {
2452             if (n->type == AUDIT_TYPE_UNKNOWN)
2453                 n->type = AUDIT_TYPE_PARENT;
2454             found_parent = n;
2455             break;
2456         }
2457     }
2458 
2459     /* is there a matching child entry? */
2460     list_for_each_entry(n, &context->names_list, list) {
2461         /* can only match entries that have a name */
2462         if (!n->name ||
2463             (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2464             continue;
2465 
2466         if (!strcmp(dname->name, n->name->name) ||
2467             !audit_compare_dname_path(dname, n->name->name,
2468                         found_parent ?
2469                         found_parent->name_len :
2470                         AUDIT_NAME_FULL)) {
2471             if (n->type == AUDIT_TYPE_UNKNOWN)
2472                 n->type = type;
2473             found_child = n;
2474             break;
2475         }
2476     }
2477 
2478     if (!found_parent) {
2479         /* create a new, "anonymous" parent record */
2480         n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2481         if (!n)
2482             return;
2483         audit_copy_inode(n, NULL, parent, 0);
2484     }
2485 
2486     if (!found_child) {
2487         found_child = audit_alloc_name(context, type);
2488         if (!found_child)
2489             return;
2490 
2491         /* Re-use the name belonging to the slot for a matching parent
2492          * directory. All names for this context are relinquished in
2493          * audit_free_names() */
2494         if (found_parent) {
2495             found_child->name = found_parent->name;
2496             found_child->name_len = AUDIT_NAME_FULL;
2497             found_child->name->refcnt++;
2498         }
2499     }
2500 
2501     if (inode)
2502         audit_copy_inode(found_child, dentry, inode, 0);
2503     else
2504         found_child->ino = AUDIT_INO_UNSET;
2505 }
2506 EXPORT_SYMBOL_GPL(__audit_inode_child);
2507 
2508 /**
2509  * auditsc_get_stamp - get local copies of audit_context values
2510  * @ctx: audit_context for the task
2511  * @t: timespec64 to store time recorded in the audit_context
2512  * @serial: serial value that is recorded in the audit_context
2513  *
2514  * Also sets the context as auditable.
2515  */
2516 int auditsc_get_stamp(struct audit_context *ctx,
2517                struct timespec64 *t, unsigned int *serial)
2518 {
2519     if (ctx->context == AUDIT_CTX_UNUSED)
2520         return 0;
2521     if (!ctx->serial)
2522         ctx->serial = audit_serial();
2523     t->tv_sec  = ctx->ctime.tv_sec;
2524     t->tv_nsec = ctx->ctime.tv_nsec;
2525     *serial    = ctx->serial;
2526     if (!ctx->prio) {
2527         ctx->prio = 1;
2528         ctx->current_state = AUDIT_STATE_RECORD;
2529     }
2530     return 1;
2531 }
2532 
2533 /**
2534  * __audit_mq_open - record audit data for a POSIX MQ open
2535  * @oflag: open flag
2536  * @mode: mode bits
2537  * @attr: queue attributes
2538  *
2539  */
2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2541 {
2542     struct audit_context *context = audit_context();
2543 
2544     if (attr)
2545         memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2546     else
2547         memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2548 
2549     context->mq_open.oflag = oflag;
2550     context->mq_open.mode = mode;
2551 
2552     context->type = AUDIT_MQ_OPEN;
2553 }
2554 
2555 /**
2556  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2557  * @mqdes: MQ descriptor
2558  * @msg_len: Message length
2559  * @msg_prio: Message priority
2560  * @abs_timeout: Message timeout in absolute time
2561  *
2562  */
2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2564             const struct timespec64 *abs_timeout)
2565 {
2566     struct audit_context *context = audit_context();
2567     struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2568 
2569     if (abs_timeout)
2570         memcpy(p, abs_timeout, sizeof(*p));
2571     else
2572         memset(p, 0, sizeof(*p));
2573 
2574     context->mq_sendrecv.mqdes = mqdes;
2575     context->mq_sendrecv.msg_len = msg_len;
2576     context->mq_sendrecv.msg_prio = msg_prio;
2577 
2578     context->type = AUDIT_MQ_SENDRECV;
2579 }
2580 
2581 /**
2582  * __audit_mq_notify - record audit data for a POSIX MQ notify
2583  * @mqdes: MQ descriptor
2584  * @notification: Notification event
2585  *
2586  */
2587 
2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2589 {
2590     struct audit_context *context = audit_context();
2591 
2592     if (notification)
2593         context->mq_notify.sigev_signo = notification->sigev_signo;
2594     else
2595         context->mq_notify.sigev_signo = 0;
2596 
2597     context->mq_notify.mqdes = mqdes;
2598     context->type = AUDIT_MQ_NOTIFY;
2599 }
2600 
2601 /**
2602  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2603  * @mqdes: MQ descriptor
2604  * @mqstat: MQ flags
2605  *
2606  */
2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2608 {
2609     struct audit_context *context = audit_context();
2610 
2611     context->mq_getsetattr.mqdes = mqdes;
2612     context->mq_getsetattr.mqstat = *mqstat;
2613     context->type = AUDIT_MQ_GETSETATTR;
2614 }
2615 
2616 /**
2617  * __audit_ipc_obj - record audit data for ipc object
2618  * @ipcp: ipc permissions
2619  *
2620  */
2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2622 {
2623     struct audit_context *context = audit_context();
2624 
2625     context->ipc.uid = ipcp->uid;
2626     context->ipc.gid = ipcp->gid;
2627     context->ipc.mode = ipcp->mode;
2628     context->ipc.has_perm = 0;
2629     security_ipc_getsecid(ipcp, &context->ipc.osid);
2630     context->type = AUDIT_IPC;
2631 }
2632 
2633 /**
2634  * __audit_ipc_set_perm - record audit data for new ipc permissions
2635  * @qbytes: msgq bytes
2636  * @uid: msgq user id
2637  * @gid: msgq group id
2638  * @mode: msgq mode (permissions)
2639  *
2640  * Called only after audit_ipc_obj().
2641  */
2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2643 {
2644     struct audit_context *context = audit_context();
2645 
2646     context->ipc.qbytes = qbytes;
2647     context->ipc.perm_uid = uid;
2648     context->ipc.perm_gid = gid;
2649     context->ipc.perm_mode = mode;
2650     context->ipc.has_perm = 1;
2651 }
2652 
2653 void __audit_bprm(struct linux_binprm *bprm)
2654 {
2655     struct audit_context *context = audit_context();
2656 
2657     context->type = AUDIT_EXECVE;
2658     context->execve.argc = bprm->argc;
2659 }
2660 
2661 
2662 /**
2663  * __audit_socketcall - record audit data for sys_socketcall
2664  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2665  * @args: args array
2666  *
2667  */
2668 int __audit_socketcall(int nargs, unsigned long *args)
2669 {
2670     struct audit_context *context = audit_context();
2671 
2672     if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2673         return -EINVAL;
2674     context->type = AUDIT_SOCKETCALL;
2675     context->socketcall.nargs = nargs;
2676     memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2677     return 0;
2678 }
2679 
2680 /**
2681  * __audit_fd_pair - record audit data for pipe and socketpair
2682  * @fd1: the first file descriptor
2683  * @fd2: the second file descriptor
2684  *
2685  */
2686 void __audit_fd_pair(int fd1, int fd2)
2687 {
2688     struct audit_context *context = audit_context();
2689 
2690     context->fds[0] = fd1;
2691     context->fds[1] = fd2;
2692 }
2693 
2694 /**
2695  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2696  * @len: data length in user space
2697  * @a: data address in kernel space
2698  *
2699  * Returns 0 for success or NULL context or < 0 on error.
2700  */
2701 int __audit_sockaddr(int len, void *a)
2702 {
2703     struct audit_context *context = audit_context();
2704 
2705     if (!context->sockaddr) {
2706         void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2707 
2708         if (!p)
2709             return -ENOMEM;
2710         context->sockaddr = p;
2711     }
2712 
2713     context->sockaddr_len = len;
2714     memcpy(context->sockaddr, a, len);
2715     return 0;
2716 }
2717 
2718 void __audit_ptrace(struct task_struct *t)
2719 {
2720     struct audit_context *context = audit_context();
2721 
2722     context->target_pid = task_tgid_nr(t);
2723     context->target_auid = audit_get_loginuid(t);
2724     context->target_uid = task_uid(t);
2725     context->target_sessionid = audit_get_sessionid(t);
2726     security_task_getsecid_obj(t, &context->target_sid);
2727     memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2728 }
2729 
2730 /**
2731  * audit_signal_info_syscall - record signal info for syscalls
2732  * @t: task being signaled
2733  *
2734  * If the audit subsystem is being terminated, record the task (pid)
2735  * and uid that is doing that.
2736  */
2737 int audit_signal_info_syscall(struct task_struct *t)
2738 {
2739     struct audit_aux_data_pids *axp;
2740     struct audit_context *ctx = audit_context();
2741     kuid_t t_uid = task_uid(t);
2742 
2743     if (!audit_signals || audit_dummy_context())
2744         return 0;
2745 
2746     /* optimize the common case by putting first signal recipient directly
2747      * in audit_context */
2748     if (!ctx->target_pid) {
2749         ctx->target_pid = task_tgid_nr(t);
2750         ctx->target_auid = audit_get_loginuid(t);
2751         ctx->target_uid = t_uid;
2752         ctx->target_sessionid = audit_get_sessionid(t);
2753         security_task_getsecid_obj(t, &ctx->target_sid);
2754         memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2755         return 0;
2756     }
2757 
2758     axp = (void *)ctx->aux_pids;
2759     if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2760         axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2761         if (!axp)
2762             return -ENOMEM;
2763 
2764         axp->d.type = AUDIT_OBJ_PID;
2765         axp->d.next = ctx->aux_pids;
2766         ctx->aux_pids = (void *)axp;
2767     }
2768     BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2769 
2770     axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2771     axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2772     axp->target_uid[axp->pid_count] = t_uid;
2773     axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2774     security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2775     memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2776     axp->pid_count++;
2777 
2778     return 0;
2779 }
2780 
2781 /**
2782  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2783  * @bprm: pointer to the bprm being processed
2784  * @new: the proposed new credentials
2785  * @old: the old credentials
2786  *
2787  * Simply check if the proc already has the caps given by the file and if not
2788  * store the priv escalation info for later auditing at the end of the syscall
2789  *
2790  * -Eric
2791  */
2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2793                const struct cred *new, const struct cred *old)
2794 {
2795     struct audit_aux_data_bprm_fcaps *ax;
2796     struct audit_context *context = audit_context();
2797     struct cpu_vfs_cap_data vcaps;
2798 
2799     ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2800     if (!ax)
2801         return -ENOMEM;
2802 
2803     ax->d.type = AUDIT_BPRM_FCAPS;
2804     ax->d.next = context->aux;
2805     context->aux = (void *)ax;
2806 
2807     get_vfs_caps_from_disk(&init_user_ns,
2808                    bprm->file->f_path.dentry, &vcaps);
2809 
2810     ax->fcap.permitted = vcaps.permitted;
2811     ax->fcap.inheritable = vcaps.inheritable;
2812     ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2813     ax->fcap.rootid = vcaps.rootid;
2814     ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2815 
2816     ax->old_pcap.permitted   = old->cap_permitted;
2817     ax->old_pcap.inheritable = old->cap_inheritable;
2818     ax->old_pcap.effective   = old->cap_effective;
2819     ax->old_pcap.ambient     = old->cap_ambient;
2820 
2821     ax->new_pcap.permitted   = new->cap_permitted;
2822     ax->new_pcap.inheritable = new->cap_inheritable;
2823     ax->new_pcap.effective   = new->cap_effective;
2824     ax->new_pcap.ambient     = new->cap_ambient;
2825     return 0;
2826 }
2827 
2828 /**
2829  * __audit_log_capset - store information about the arguments to the capset syscall
2830  * @new: the new credentials
2831  * @old: the old (current) credentials
2832  *
2833  * Record the arguments userspace sent to sys_capset for later printing by the
2834  * audit system if applicable
2835  */
2836 void __audit_log_capset(const struct cred *new, const struct cred *old)
2837 {
2838     struct audit_context *context = audit_context();
2839 
2840     context->capset.pid = task_tgid_nr(current);
2841     context->capset.cap.effective   = new->cap_effective;
2842     context->capset.cap.inheritable = new->cap_effective;
2843     context->capset.cap.permitted   = new->cap_permitted;
2844     context->capset.cap.ambient     = new->cap_ambient;
2845     context->type = AUDIT_CAPSET;
2846 }
2847 
2848 void __audit_mmap_fd(int fd, int flags)
2849 {
2850     struct audit_context *context = audit_context();
2851 
2852     context->mmap.fd = fd;
2853     context->mmap.flags = flags;
2854     context->type = AUDIT_MMAP;
2855 }
2856 
2857 void __audit_openat2_how(struct open_how *how)
2858 {
2859     struct audit_context *context = audit_context();
2860 
2861     context->openat2.flags = how->flags;
2862     context->openat2.mode = how->mode;
2863     context->openat2.resolve = how->resolve;
2864     context->type = AUDIT_OPENAT2;
2865 }
2866 
2867 void __audit_log_kern_module(char *name)
2868 {
2869     struct audit_context *context = audit_context();
2870 
2871     context->module.name = kstrdup(name, GFP_KERNEL);
2872     if (!context->module.name)
2873         audit_log_lost("out of memory in __audit_log_kern_module");
2874     context->type = AUDIT_KERN_MODULE;
2875 }
2876 
2877 void __audit_fanotify(unsigned int response)
2878 {
2879     audit_log(audit_context(), GFP_KERNEL,
2880         AUDIT_FANOTIFY, "resp=%u", response);
2881 }
2882 
2883 void __audit_tk_injoffset(struct timespec64 offset)
2884 {
2885     struct audit_context *context = audit_context();
2886 
2887     /* only set type if not already set by NTP */
2888     if (!context->type)
2889         context->type = AUDIT_TIME_INJOFFSET;
2890     memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2891 }
2892 
2893 void __audit_ntp_log(const struct audit_ntp_data *ad)
2894 {
2895     struct audit_context *context = audit_context();
2896     int type;
2897 
2898     for (type = 0; type < AUDIT_NTP_NVALS; type++)
2899         if (ad->vals[type].newval != ad->vals[type].oldval) {
2900             /* unconditionally set type, overwriting TK */
2901             context->type = AUDIT_TIME_ADJNTPVAL;
2902             memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2903             break;
2904         }
2905 }
2906 
2907 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2908                enum audit_nfcfgop op, gfp_t gfp)
2909 {
2910     struct audit_buffer *ab;
2911     char comm[sizeof(current->comm)];
2912 
2913     ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2914     if (!ab)
2915         return;
2916     audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2917              name, af, nentries, audit_nfcfgs[op].s);
2918 
2919     audit_log_format(ab, " pid=%u", task_pid_nr(current));
2920     audit_log_task_context(ab); /* subj= */
2921     audit_log_format(ab, " comm=");
2922     audit_log_untrustedstring(ab, get_task_comm(comm, current));
2923     audit_log_end(ab);
2924 }
2925 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2926 
2927 static void audit_log_task(struct audit_buffer *ab)
2928 {
2929     kuid_t auid, uid;
2930     kgid_t gid;
2931     unsigned int sessionid;
2932     char comm[sizeof(current->comm)];
2933 
2934     auid = audit_get_loginuid(current);
2935     sessionid = audit_get_sessionid(current);
2936     current_uid_gid(&uid, &gid);
2937 
2938     audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2939              from_kuid(&init_user_ns, auid),
2940              from_kuid(&init_user_ns, uid),
2941              from_kgid(&init_user_ns, gid),
2942              sessionid);
2943     audit_log_task_context(ab);
2944     audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2945     audit_log_untrustedstring(ab, get_task_comm(comm, current));
2946     audit_log_d_path_exe(ab, current->mm);
2947 }
2948 
2949 /**
2950  * audit_core_dumps - record information about processes that end abnormally
2951  * @signr: signal value
2952  *
2953  * If a process ends with a core dump, something fishy is going on and we
2954  * should record the event for investigation.
2955  */
2956 void audit_core_dumps(long signr)
2957 {
2958     struct audit_buffer *ab;
2959 
2960     if (!audit_enabled)
2961         return;
2962 
2963     if (signr == SIGQUIT)   /* don't care for those */
2964         return;
2965 
2966     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2967     if (unlikely(!ab))
2968         return;
2969     audit_log_task(ab);
2970     audit_log_format(ab, " sig=%ld res=1", signr);
2971     audit_log_end(ab);
2972 }
2973 
2974 /**
2975  * audit_seccomp - record information about a seccomp action
2976  * @syscall: syscall number
2977  * @signr: signal value
2978  * @code: the seccomp action
2979  *
2980  * Record the information associated with a seccomp action. Event filtering for
2981  * seccomp actions that are not to be logged is done in seccomp_log().
2982  * Therefore, this function forces auditing independent of the audit_enabled
2983  * and dummy context state because seccomp actions should be logged even when
2984  * audit is not in use.
2985  */
2986 void audit_seccomp(unsigned long syscall, long signr, int code)
2987 {
2988     struct audit_buffer *ab;
2989 
2990     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2991     if (unlikely(!ab))
2992         return;
2993     audit_log_task(ab);
2994     audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2995              signr, syscall_get_arch(current), syscall,
2996              in_compat_syscall(), KSTK_EIP(current), code);
2997     audit_log_end(ab);
2998 }
2999 
3000 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3001                   int res)
3002 {
3003     struct audit_buffer *ab;
3004 
3005     if (!audit_enabled)
3006         return;
3007 
3008     ab = audit_log_start(audit_context(), GFP_KERNEL,
3009                  AUDIT_CONFIG_CHANGE);
3010     if (unlikely(!ab))
3011         return;
3012 
3013     audit_log_format(ab,
3014              "op=seccomp-logging actions=%s old-actions=%s res=%d",
3015              names, old_names, res);
3016     audit_log_end(ab);
3017 }
3018 
3019 struct list_head *audit_killed_trees(void)
3020 {
3021     struct audit_context *ctx = audit_context();
3022     if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3023         return NULL;
3024     return &ctx->killed_trees;
3025 }