Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* audit.c -- Auditing support
0003  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
0004  * System-call specific features have moved to auditsc.c
0005  *
0006  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
0007  * All Rights Reserved.
0008  *
0009  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
0010  *
0011  * Goals: 1) Integrate fully with Security Modules.
0012  *    2) Minimal run-time overhead:
0013  *       a) Minimal when syscall auditing is disabled (audit_enable=0).
0014  *       b) Small when syscall auditing is enabled and no audit record
0015  *      is generated (defer as much work as possible to record
0016  *      generation time):
0017  *      i) context is allocated,
0018  *      ii) names from getname are stored without a copy, and
0019  *      iii) inode information stored from path_lookup.
0020  *    3) Ability to disable syscall auditing at boot time (audit=0).
0021  *    4) Usable by other parts of the kernel (if audit_log* is called,
0022  *       then a syscall record will be generated automatically for the
0023  *       current syscall).
0024  *    5) Netlink interface to user-space.
0025  *    6) Support low-overhead kernel-based filtering to minimize the
0026  *       information that must be passed to user-space.
0027  *
0028  * Audit userspace, documentation, tests, and bug/issue trackers:
0029  *  https://github.com/linux-audit
0030  */
0031 
0032 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0033 
0034 #include <linux/file.h>
0035 #include <linux/init.h>
0036 #include <linux/types.h>
0037 #include <linux/atomic.h>
0038 #include <linux/mm.h>
0039 #include <linux/export.h>
0040 #include <linux/slab.h>
0041 #include <linux/err.h>
0042 #include <linux/kthread.h>
0043 #include <linux/kernel.h>
0044 #include <linux/syscalls.h>
0045 #include <linux/spinlock.h>
0046 #include <linux/rcupdate.h>
0047 #include <linux/mutex.h>
0048 #include <linux/gfp.h>
0049 #include <linux/pid.h>
0050 
0051 #include <linux/audit.h>
0052 
0053 #include <net/sock.h>
0054 #include <net/netlink.h>
0055 #include <linux/skbuff.h>
0056 #ifdef CONFIG_SECURITY
0057 #include <linux/security.h>
0058 #endif
0059 #include <linux/freezer.h>
0060 #include <linux/pid_namespace.h>
0061 #include <net/netns/generic.h>
0062 
0063 #include "audit.h"
0064 
0065 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
0066  * (Initialization happens after skb_init is called.) */
0067 #define AUDIT_DISABLED      -1
0068 #define AUDIT_UNINITIALIZED 0
0069 #define AUDIT_INITIALIZED   1
0070 static int  audit_initialized = AUDIT_UNINITIALIZED;
0071 
0072 u32     audit_enabled = AUDIT_OFF;
0073 bool        audit_ever_enabled = !!AUDIT_OFF;
0074 
0075 EXPORT_SYMBOL_GPL(audit_enabled);
0076 
0077 /* Default state when kernel boots without any parameters. */
0078 static u32  audit_default = AUDIT_OFF;
0079 
0080 /* If auditing cannot proceed, audit_failure selects what happens. */
0081 static u32  audit_failure = AUDIT_FAIL_PRINTK;
0082 
0083 /* private audit network namespace index */
0084 static unsigned int audit_net_id;
0085 
0086 /**
0087  * struct audit_net - audit private network namespace data
0088  * @sk: communication socket
0089  */
0090 struct audit_net {
0091     struct sock *sk;
0092 };
0093 
0094 /**
0095  * struct auditd_connection - kernel/auditd connection state
0096  * @pid: auditd PID
0097  * @portid: netlink portid
0098  * @net: the associated network namespace
0099  * @rcu: RCU head
0100  *
0101  * Description:
0102  * This struct is RCU protected; you must either hold the RCU lock for reading
0103  * or the associated spinlock for writing.
0104  */
0105 struct auditd_connection {
0106     struct pid *pid;
0107     u32 portid;
0108     struct net *net;
0109     struct rcu_head rcu;
0110 };
0111 static struct auditd_connection __rcu *auditd_conn;
0112 static DEFINE_SPINLOCK(auditd_conn_lock);
0113 
0114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
0115  * to that number per second.  This prevents DoS attacks, but results in
0116  * audit records being dropped. */
0117 static u32  audit_rate_limit;
0118 
0119 /* Number of outstanding audit_buffers allowed.
0120  * When set to zero, this means unlimited. */
0121 static u32  audit_backlog_limit = 64;
0122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
0123 static u32  audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
0124 
0125 /* The identity of the user shutting down the audit system. */
0126 static kuid_t       audit_sig_uid = INVALID_UID;
0127 static pid_t        audit_sig_pid = -1;
0128 static u32      audit_sig_sid;
0129 
0130 /* Records can be lost in several ways:
0131    0) [suppressed in audit_alloc]
0132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
0133    2) out of memory in audit_log_move [alloc_skb]
0134    3) suppressed due to audit_rate_limit
0135    4) suppressed due to audit_backlog_limit
0136 */
0137 static atomic_t audit_lost = ATOMIC_INIT(0);
0138 
0139 /* Monotonically increasing sum of time the kernel has spent
0140  * waiting while the backlog limit is exceeded.
0141  */
0142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
0143 
0144 /* Hash for inode-based rules */
0145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
0146 
0147 static struct kmem_cache *audit_buffer_cache;
0148 
0149 /* queue msgs to send via kauditd_task */
0150 static struct sk_buff_head audit_queue;
0151 /* queue msgs due to temporary unicast send problems */
0152 static struct sk_buff_head audit_retry_queue;
0153 /* queue msgs waiting for new auditd connection */
0154 static struct sk_buff_head audit_hold_queue;
0155 
0156 /* queue servicing thread */
0157 static struct task_struct *kauditd_task;
0158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
0159 
0160 /* waitqueue for callers who are blocked on the audit backlog */
0161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
0162 
0163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
0164                    .mask = -1,
0165                    .features = 0,
0166                    .lock = 0,};
0167 
0168 static char *audit_feature_names[2] = {
0169     "only_unset_loginuid",
0170     "loginuid_immutable",
0171 };
0172 
0173 /**
0174  * struct audit_ctl_mutex - serialize requests from userspace
0175  * @lock: the mutex used for locking
0176  * @owner: the task which owns the lock
0177  *
0178  * Description:
0179  * This is the lock struct used to ensure we only process userspace requests
0180  * in an orderly fashion.  We can't simply use a mutex/lock here because we
0181  * need to track lock ownership so we don't end up blocking the lock owner in
0182  * audit_log_start() or similar.
0183  */
0184 static struct audit_ctl_mutex {
0185     struct mutex lock;
0186     void *owner;
0187 } audit_cmd_mutex;
0188 
0189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
0190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
0191  * should be at least that large. */
0192 #define AUDIT_BUFSIZ 1024
0193 
0194 /* The audit_buffer is used when formatting an audit record.  The caller
0195  * locks briefly to get the record off the freelist or to allocate the
0196  * buffer, and locks briefly to send the buffer to the netlink layer or
0197  * to place it on a transmit queue.  Multiple audit_buffers can be in
0198  * use simultaneously. */
0199 struct audit_buffer {
0200     struct sk_buff       *skb;  /* formatted skb ready to send */
0201     struct audit_context *ctx;  /* NULL or associated context */
0202     gfp_t            gfp_mask;
0203 };
0204 
0205 struct audit_reply {
0206     __u32 portid;
0207     struct net *net;
0208     struct sk_buff *skb;
0209 };
0210 
0211 /**
0212  * auditd_test_task - Check to see if a given task is an audit daemon
0213  * @task: the task to check
0214  *
0215  * Description:
0216  * Return 1 if the task is a registered audit daemon, 0 otherwise.
0217  */
0218 int auditd_test_task(struct task_struct *task)
0219 {
0220     int rc;
0221     struct auditd_connection *ac;
0222 
0223     rcu_read_lock();
0224     ac = rcu_dereference(auditd_conn);
0225     rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
0226     rcu_read_unlock();
0227 
0228     return rc;
0229 }
0230 
0231 /**
0232  * audit_ctl_lock - Take the audit control lock
0233  */
0234 void audit_ctl_lock(void)
0235 {
0236     mutex_lock(&audit_cmd_mutex.lock);
0237     audit_cmd_mutex.owner = current;
0238 }
0239 
0240 /**
0241  * audit_ctl_unlock - Drop the audit control lock
0242  */
0243 void audit_ctl_unlock(void)
0244 {
0245     audit_cmd_mutex.owner = NULL;
0246     mutex_unlock(&audit_cmd_mutex.lock);
0247 }
0248 
0249 /**
0250  * audit_ctl_owner_current - Test to see if the current task owns the lock
0251  *
0252  * Description:
0253  * Return true if the current task owns the audit control lock, false if it
0254  * doesn't own the lock.
0255  */
0256 static bool audit_ctl_owner_current(void)
0257 {
0258     return (current == audit_cmd_mutex.owner);
0259 }
0260 
0261 /**
0262  * auditd_pid_vnr - Return the auditd PID relative to the namespace
0263  *
0264  * Description:
0265  * Returns the PID in relation to the namespace, 0 on failure.
0266  */
0267 static pid_t auditd_pid_vnr(void)
0268 {
0269     pid_t pid;
0270     const struct auditd_connection *ac;
0271 
0272     rcu_read_lock();
0273     ac = rcu_dereference(auditd_conn);
0274     if (!ac || !ac->pid)
0275         pid = 0;
0276     else
0277         pid = pid_vnr(ac->pid);
0278     rcu_read_unlock();
0279 
0280     return pid;
0281 }
0282 
0283 /**
0284  * audit_get_sk - Return the audit socket for the given network namespace
0285  * @net: the destination network namespace
0286  *
0287  * Description:
0288  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
0289  * that a reference is held for the network namespace while the sock is in use.
0290  */
0291 static struct sock *audit_get_sk(const struct net *net)
0292 {
0293     struct audit_net *aunet;
0294 
0295     if (!net)
0296         return NULL;
0297 
0298     aunet = net_generic(net, audit_net_id);
0299     return aunet->sk;
0300 }
0301 
0302 void audit_panic(const char *message)
0303 {
0304     switch (audit_failure) {
0305     case AUDIT_FAIL_SILENT:
0306         break;
0307     case AUDIT_FAIL_PRINTK:
0308         if (printk_ratelimit())
0309             pr_err("%s\n", message);
0310         break;
0311     case AUDIT_FAIL_PANIC:
0312         panic("audit: %s\n", message);
0313         break;
0314     }
0315 }
0316 
0317 static inline int audit_rate_check(void)
0318 {
0319     static unsigned long    last_check = 0;
0320     static int      messages   = 0;
0321     static DEFINE_SPINLOCK(lock);
0322     unsigned long       flags;
0323     unsigned long       now;
0324     unsigned long       elapsed;
0325     int         retval     = 0;
0326 
0327     if (!audit_rate_limit) return 1;
0328 
0329     spin_lock_irqsave(&lock, flags);
0330     if (++messages < audit_rate_limit) {
0331         retval = 1;
0332     } else {
0333         now     = jiffies;
0334         elapsed = now - last_check;
0335         if (elapsed > HZ) {
0336             last_check = now;
0337             messages   = 0;
0338             retval     = 1;
0339         }
0340     }
0341     spin_unlock_irqrestore(&lock, flags);
0342 
0343     return retval;
0344 }
0345 
0346 /**
0347  * audit_log_lost - conditionally log lost audit message event
0348  * @message: the message stating reason for lost audit message
0349  *
0350  * Emit at least 1 message per second, even if audit_rate_check is
0351  * throttling.
0352  * Always increment the lost messages counter.
0353 */
0354 void audit_log_lost(const char *message)
0355 {
0356     static unsigned long    last_msg = 0;
0357     static DEFINE_SPINLOCK(lock);
0358     unsigned long       flags;
0359     unsigned long       now;
0360     int         print;
0361 
0362     atomic_inc(&audit_lost);
0363 
0364     print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
0365 
0366     if (!print) {
0367         spin_lock_irqsave(&lock, flags);
0368         now = jiffies;
0369         if (now - last_msg > HZ) {
0370             print = 1;
0371             last_msg = now;
0372         }
0373         spin_unlock_irqrestore(&lock, flags);
0374     }
0375 
0376     if (print) {
0377         if (printk_ratelimit())
0378             pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
0379                 atomic_read(&audit_lost),
0380                 audit_rate_limit,
0381                 audit_backlog_limit);
0382         audit_panic(message);
0383     }
0384 }
0385 
0386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
0387                    int allow_changes)
0388 {
0389     struct audit_buffer *ab;
0390     int rc = 0;
0391 
0392     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
0393     if (unlikely(!ab))
0394         return rc;
0395     audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
0396     audit_log_session_info(ab);
0397     rc = audit_log_task_context(ab);
0398     if (rc)
0399         allow_changes = 0; /* Something weird, deny request */
0400     audit_log_format(ab, " res=%d", allow_changes);
0401     audit_log_end(ab);
0402     return rc;
0403 }
0404 
0405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
0406 {
0407     int allow_changes, rc = 0;
0408     u32 old = *to_change;
0409 
0410     /* check if we are locked */
0411     if (audit_enabled == AUDIT_LOCKED)
0412         allow_changes = 0;
0413     else
0414         allow_changes = 1;
0415 
0416     if (audit_enabled != AUDIT_OFF) {
0417         rc = audit_log_config_change(function_name, new, old, allow_changes);
0418         if (rc)
0419             allow_changes = 0;
0420     }
0421 
0422     /* If we are allowed, make the change */
0423     if (allow_changes == 1)
0424         *to_change = new;
0425     /* Not allowed, update reason */
0426     else if (rc == 0)
0427         rc = -EPERM;
0428     return rc;
0429 }
0430 
0431 static int audit_set_rate_limit(u32 limit)
0432 {
0433     return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
0434 }
0435 
0436 static int audit_set_backlog_limit(u32 limit)
0437 {
0438     return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
0439 }
0440 
0441 static int audit_set_backlog_wait_time(u32 timeout)
0442 {
0443     return audit_do_config_change("audit_backlog_wait_time",
0444                       &audit_backlog_wait_time, timeout);
0445 }
0446 
0447 static int audit_set_enabled(u32 state)
0448 {
0449     int rc;
0450     if (state > AUDIT_LOCKED)
0451         return -EINVAL;
0452 
0453     rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
0454     if (!rc)
0455         audit_ever_enabled |= !!state;
0456 
0457     return rc;
0458 }
0459 
0460 static int audit_set_failure(u32 state)
0461 {
0462     if (state != AUDIT_FAIL_SILENT
0463         && state != AUDIT_FAIL_PRINTK
0464         && state != AUDIT_FAIL_PANIC)
0465         return -EINVAL;
0466 
0467     return audit_do_config_change("audit_failure", &audit_failure, state);
0468 }
0469 
0470 /**
0471  * auditd_conn_free - RCU helper to release an auditd connection struct
0472  * @rcu: RCU head
0473  *
0474  * Description:
0475  * Drop any references inside the auditd connection tracking struct and free
0476  * the memory.
0477  */
0478 static void auditd_conn_free(struct rcu_head *rcu)
0479 {
0480     struct auditd_connection *ac;
0481 
0482     ac = container_of(rcu, struct auditd_connection, rcu);
0483     put_pid(ac->pid);
0484     put_net(ac->net);
0485     kfree(ac);
0486 }
0487 
0488 /**
0489  * auditd_set - Set/Reset the auditd connection state
0490  * @pid: auditd PID
0491  * @portid: auditd netlink portid
0492  * @net: auditd network namespace pointer
0493  *
0494  * Description:
0495  * This function will obtain and drop network namespace references as
0496  * necessary.  Returns zero on success, negative values on failure.
0497  */
0498 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
0499 {
0500     unsigned long flags;
0501     struct auditd_connection *ac_old, *ac_new;
0502 
0503     if (!pid || !net)
0504         return -EINVAL;
0505 
0506     ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
0507     if (!ac_new)
0508         return -ENOMEM;
0509     ac_new->pid = get_pid(pid);
0510     ac_new->portid = portid;
0511     ac_new->net = get_net(net);
0512 
0513     spin_lock_irqsave(&auditd_conn_lock, flags);
0514     ac_old = rcu_dereference_protected(auditd_conn,
0515                        lockdep_is_held(&auditd_conn_lock));
0516     rcu_assign_pointer(auditd_conn, ac_new);
0517     spin_unlock_irqrestore(&auditd_conn_lock, flags);
0518 
0519     if (ac_old)
0520         call_rcu(&ac_old->rcu, auditd_conn_free);
0521 
0522     return 0;
0523 }
0524 
0525 /**
0526  * kauditd_printk_skb - Print the audit record to the ring buffer
0527  * @skb: audit record
0528  *
0529  * Whatever the reason, this packet may not make it to the auditd connection
0530  * so write it via printk so the information isn't completely lost.
0531  */
0532 static void kauditd_printk_skb(struct sk_buff *skb)
0533 {
0534     struct nlmsghdr *nlh = nlmsg_hdr(skb);
0535     char *data = nlmsg_data(nlh);
0536 
0537     if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
0538         pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
0539 }
0540 
0541 /**
0542  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
0543  * @skb: audit record
0544  * @error: error code (unused)
0545  *
0546  * Description:
0547  * This should only be used by the kauditd_thread when it fails to flush the
0548  * hold queue.
0549  */
0550 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
0551 {
0552     /* put the record back in the queue */
0553     skb_queue_tail(&audit_hold_queue, skb);
0554 }
0555 
0556 /**
0557  * kauditd_hold_skb - Queue an audit record, waiting for auditd
0558  * @skb: audit record
0559  * @error: error code
0560  *
0561  * Description:
0562  * Queue the audit record, waiting for an instance of auditd.  When this
0563  * function is called we haven't given up yet on sending the record, but things
0564  * are not looking good.  The first thing we want to do is try to write the
0565  * record via printk and then see if we want to try and hold on to the record
0566  * and queue it, if we have room.  If we want to hold on to the record, but we
0567  * don't have room, record a record lost message.
0568  */
0569 static void kauditd_hold_skb(struct sk_buff *skb, int error)
0570 {
0571     /* at this point it is uncertain if we will ever send this to auditd so
0572      * try to send the message via printk before we go any further */
0573     kauditd_printk_skb(skb);
0574 
0575     /* can we just silently drop the message? */
0576     if (!audit_default)
0577         goto drop;
0578 
0579     /* the hold queue is only for when the daemon goes away completely,
0580      * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
0581      * record on the retry queue unless it's full, in which case drop it
0582      */
0583     if (error == -EAGAIN) {
0584         if (!audit_backlog_limit ||
0585             skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
0586             skb_queue_tail(&audit_retry_queue, skb);
0587             return;
0588         }
0589         audit_log_lost("kauditd retry queue overflow");
0590         goto drop;
0591     }
0592 
0593     /* if we have room in the hold queue, queue the message */
0594     if (!audit_backlog_limit ||
0595         skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
0596         skb_queue_tail(&audit_hold_queue, skb);
0597         return;
0598     }
0599 
0600     /* we have no other options - drop the message */
0601     audit_log_lost("kauditd hold queue overflow");
0602 drop:
0603     kfree_skb(skb);
0604 }
0605 
0606 /**
0607  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
0608  * @skb: audit record
0609  * @error: error code (unused)
0610  *
0611  * Description:
0612  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
0613  * but for some reason we are having problems sending it audit records so
0614  * queue the given record and attempt to resend.
0615  */
0616 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
0617 {
0618     if (!audit_backlog_limit ||
0619         skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
0620         skb_queue_tail(&audit_retry_queue, skb);
0621         return;
0622     }
0623 
0624     /* we have to drop the record, send it via printk as a last effort */
0625     kauditd_printk_skb(skb);
0626     audit_log_lost("kauditd retry queue overflow");
0627     kfree_skb(skb);
0628 }
0629 
0630 /**
0631  * auditd_reset - Disconnect the auditd connection
0632  * @ac: auditd connection state
0633  *
0634  * Description:
0635  * Break the auditd/kauditd connection and move all the queued records into the
0636  * hold queue in case auditd reconnects.  It is important to note that the @ac
0637  * pointer should never be dereferenced inside this function as it may be NULL
0638  * or invalid, you can only compare the memory address!  If @ac is NULL then
0639  * the connection will always be reset.
0640  */
0641 static void auditd_reset(const struct auditd_connection *ac)
0642 {
0643     unsigned long flags;
0644     struct sk_buff *skb;
0645     struct auditd_connection *ac_old;
0646 
0647     /* if it isn't already broken, break the connection */
0648     spin_lock_irqsave(&auditd_conn_lock, flags);
0649     ac_old = rcu_dereference_protected(auditd_conn,
0650                        lockdep_is_held(&auditd_conn_lock));
0651     if (ac && ac != ac_old) {
0652         /* someone already registered a new auditd connection */
0653         spin_unlock_irqrestore(&auditd_conn_lock, flags);
0654         return;
0655     }
0656     rcu_assign_pointer(auditd_conn, NULL);
0657     spin_unlock_irqrestore(&auditd_conn_lock, flags);
0658 
0659     if (ac_old)
0660         call_rcu(&ac_old->rcu, auditd_conn_free);
0661 
0662     /* flush the retry queue to the hold queue, but don't touch the main
0663      * queue since we need to process that normally for multicast */
0664     while ((skb = skb_dequeue(&audit_retry_queue)))
0665         kauditd_hold_skb(skb, -ECONNREFUSED);
0666 }
0667 
0668 /**
0669  * auditd_send_unicast_skb - Send a record via unicast to auditd
0670  * @skb: audit record
0671  *
0672  * Description:
0673  * Send a skb to the audit daemon, returns positive/zero values on success and
0674  * negative values on failure; in all cases the skb will be consumed by this
0675  * function.  If the send results in -ECONNREFUSED the connection with auditd
0676  * will be reset.  This function may sleep so callers should not hold any locks
0677  * where this would cause a problem.
0678  */
0679 static int auditd_send_unicast_skb(struct sk_buff *skb)
0680 {
0681     int rc;
0682     u32 portid;
0683     struct net *net;
0684     struct sock *sk;
0685     struct auditd_connection *ac;
0686 
0687     /* NOTE: we can't call netlink_unicast while in the RCU section so
0688      *       take a reference to the network namespace and grab local
0689      *       copies of the namespace, the sock, and the portid; the
0690      *       namespace and sock aren't going to go away while we hold a
0691      *       reference and if the portid does become invalid after the RCU
0692      *       section netlink_unicast() should safely return an error */
0693 
0694     rcu_read_lock();
0695     ac = rcu_dereference(auditd_conn);
0696     if (!ac) {
0697         rcu_read_unlock();
0698         kfree_skb(skb);
0699         rc = -ECONNREFUSED;
0700         goto err;
0701     }
0702     net = get_net(ac->net);
0703     sk = audit_get_sk(net);
0704     portid = ac->portid;
0705     rcu_read_unlock();
0706 
0707     rc = netlink_unicast(sk, skb, portid, 0);
0708     put_net(net);
0709     if (rc < 0)
0710         goto err;
0711 
0712     return rc;
0713 
0714 err:
0715     if (ac && rc == -ECONNREFUSED)
0716         auditd_reset(ac);
0717     return rc;
0718 }
0719 
0720 /**
0721  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
0722  * @sk: the sending sock
0723  * @portid: the netlink destination
0724  * @queue: the skb queue to process
0725  * @retry_limit: limit on number of netlink unicast failures
0726  * @skb_hook: per-skb hook for additional processing
0727  * @err_hook: hook called if the skb fails the netlink unicast send
0728  *
0729  * Description:
0730  * Run through the given queue and attempt to send the audit records to auditd,
0731  * returns zero on success, negative values on failure.  It is up to the caller
0732  * to ensure that the @sk is valid for the duration of this function.
0733  *
0734  */
0735 static int kauditd_send_queue(struct sock *sk, u32 portid,
0736                   struct sk_buff_head *queue,
0737                   unsigned int retry_limit,
0738                   void (*skb_hook)(struct sk_buff *skb),
0739                   void (*err_hook)(struct sk_buff *skb, int error))
0740 {
0741     int rc = 0;
0742     struct sk_buff *skb = NULL;
0743     struct sk_buff *skb_tail;
0744     unsigned int failed = 0;
0745 
0746     /* NOTE: kauditd_thread takes care of all our locking, we just use
0747      *       the netlink info passed to us (e.g. sk and portid) */
0748 
0749     skb_tail = skb_peek_tail(queue);
0750     while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
0751         /* call the skb_hook for each skb we touch */
0752         if (skb_hook)
0753             (*skb_hook)(skb);
0754 
0755         /* can we send to anyone via unicast? */
0756         if (!sk) {
0757             if (err_hook)
0758                 (*err_hook)(skb, -ECONNREFUSED);
0759             continue;
0760         }
0761 
0762 retry:
0763         /* grab an extra skb reference in case of error */
0764         skb_get(skb);
0765         rc = netlink_unicast(sk, skb, portid, 0);
0766         if (rc < 0) {
0767             /* send failed - try a few times unless fatal error */
0768             if (++failed >= retry_limit ||
0769                 rc == -ECONNREFUSED || rc == -EPERM) {
0770                 sk = NULL;
0771                 if (err_hook)
0772                     (*err_hook)(skb, rc);
0773                 if (rc == -EAGAIN)
0774                     rc = 0;
0775                 /* continue to drain the queue */
0776                 continue;
0777             } else
0778                 goto retry;
0779         } else {
0780             /* skb sent - drop the extra reference and continue */
0781             consume_skb(skb);
0782             failed = 0;
0783         }
0784     }
0785 
0786     return (rc >= 0 ? 0 : rc);
0787 }
0788 
0789 /*
0790  * kauditd_send_multicast_skb - Send a record to any multicast listeners
0791  * @skb: audit record
0792  *
0793  * Description:
0794  * Write a multicast message to anyone listening in the initial network
0795  * namespace.  This function doesn't consume an skb as might be expected since
0796  * it has to copy it anyways.
0797  */
0798 static void kauditd_send_multicast_skb(struct sk_buff *skb)
0799 {
0800     struct sk_buff *copy;
0801     struct sock *sock = audit_get_sk(&init_net);
0802     struct nlmsghdr *nlh;
0803 
0804     /* NOTE: we are not taking an additional reference for init_net since
0805      *       we don't have to worry about it going away */
0806 
0807     if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
0808         return;
0809 
0810     /*
0811      * The seemingly wasteful skb_copy() rather than bumping the refcount
0812      * using skb_get() is necessary because non-standard mods are made to
0813      * the skb by the original kaudit unicast socket send routine.  The
0814      * existing auditd daemon assumes this breakage.  Fixing this would
0815      * require co-ordinating a change in the established protocol between
0816      * the kaudit kernel subsystem and the auditd userspace code.  There is
0817      * no reason for new multicast clients to continue with this
0818      * non-compliance.
0819      */
0820     copy = skb_copy(skb, GFP_KERNEL);
0821     if (!copy)
0822         return;
0823     nlh = nlmsg_hdr(copy);
0824     nlh->nlmsg_len = skb->len;
0825 
0826     nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
0827 }
0828 
0829 /**
0830  * kauditd_thread - Worker thread to send audit records to userspace
0831  * @dummy: unused
0832  */
0833 static int kauditd_thread(void *dummy)
0834 {
0835     int rc;
0836     u32 portid = 0;
0837     struct net *net = NULL;
0838     struct sock *sk = NULL;
0839     struct auditd_connection *ac;
0840 
0841 #define UNICAST_RETRIES 5
0842 
0843     set_freezable();
0844     while (!kthread_should_stop()) {
0845         /* NOTE: see the lock comments in auditd_send_unicast_skb() */
0846         rcu_read_lock();
0847         ac = rcu_dereference(auditd_conn);
0848         if (!ac) {
0849             rcu_read_unlock();
0850             goto main_queue;
0851         }
0852         net = get_net(ac->net);
0853         sk = audit_get_sk(net);
0854         portid = ac->portid;
0855         rcu_read_unlock();
0856 
0857         /* attempt to flush the hold queue */
0858         rc = kauditd_send_queue(sk, portid,
0859                     &audit_hold_queue, UNICAST_RETRIES,
0860                     NULL, kauditd_rehold_skb);
0861         if (rc < 0) {
0862             sk = NULL;
0863             auditd_reset(ac);
0864             goto main_queue;
0865         }
0866 
0867         /* attempt to flush the retry queue */
0868         rc = kauditd_send_queue(sk, portid,
0869                     &audit_retry_queue, UNICAST_RETRIES,
0870                     NULL, kauditd_hold_skb);
0871         if (rc < 0) {
0872             sk = NULL;
0873             auditd_reset(ac);
0874             goto main_queue;
0875         }
0876 
0877 main_queue:
0878         /* process the main queue - do the multicast send and attempt
0879          * unicast, dump failed record sends to the retry queue; if
0880          * sk == NULL due to previous failures we will just do the
0881          * multicast send and move the record to the hold queue */
0882         rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
0883                     kauditd_send_multicast_skb,
0884                     (sk ?
0885                      kauditd_retry_skb : kauditd_hold_skb));
0886         if (ac && rc < 0)
0887             auditd_reset(ac);
0888         sk = NULL;
0889 
0890         /* drop our netns reference, no auditd sends past this line */
0891         if (net) {
0892             put_net(net);
0893             net = NULL;
0894         }
0895 
0896         /* we have processed all the queues so wake everyone */
0897         wake_up(&audit_backlog_wait);
0898 
0899         /* NOTE: we want to wake up if there is anything on the queue,
0900          *       regardless of if an auditd is connected, as we need to
0901          *       do the multicast send and rotate records from the
0902          *       main queue to the retry/hold queues */
0903         wait_event_freezable(kauditd_wait,
0904                      (skb_queue_len(&audit_queue) ? 1 : 0));
0905     }
0906 
0907     return 0;
0908 }
0909 
0910 int audit_send_list_thread(void *_dest)
0911 {
0912     struct audit_netlink_list *dest = _dest;
0913     struct sk_buff *skb;
0914     struct sock *sk = audit_get_sk(dest->net);
0915 
0916     /* wait for parent to finish and send an ACK */
0917     audit_ctl_lock();
0918     audit_ctl_unlock();
0919 
0920     while ((skb = __skb_dequeue(&dest->q)) != NULL)
0921         netlink_unicast(sk, skb, dest->portid, 0);
0922 
0923     put_net(dest->net);
0924     kfree(dest);
0925 
0926     return 0;
0927 }
0928 
0929 struct sk_buff *audit_make_reply(int seq, int type, int done,
0930                  int multi, const void *payload, int size)
0931 {
0932     struct sk_buff  *skb;
0933     struct nlmsghdr *nlh;
0934     void        *data;
0935     int     flags = multi ? NLM_F_MULTI : 0;
0936     int     t     = done  ? NLMSG_DONE  : type;
0937 
0938     skb = nlmsg_new(size, GFP_KERNEL);
0939     if (!skb)
0940         return NULL;
0941 
0942     nlh = nlmsg_put(skb, 0, seq, t, size, flags);
0943     if (!nlh)
0944         goto out_kfree_skb;
0945     data = nlmsg_data(nlh);
0946     memcpy(data, payload, size);
0947     return skb;
0948 
0949 out_kfree_skb:
0950     kfree_skb(skb);
0951     return NULL;
0952 }
0953 
0954 static void audit_free_reply(struct audit_reply *reply)
0955 {
0956     if (!reply)
0957         return;
0958 
0959     kfree_skb(reply->skb);
0960     if (reply->net)
0961         put_net(reply->net);
0962     kfree(reply);
0963 }
0964 
0965 static int audit_send_reply_thread(void *arg)
0966 {
0967     struct audit_reply *reply = (struct audit_reply *)arg;
0968 
0969     audit_ctl_lock();
0970     audit_ctl_unlock();
0971 
0972     /* Ignore failure. It'll only happen if the sender goes away,
0973        because our timeout is set to infinite. */
0974     netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
0975     reply->skb = NULL;
0976     audit_free_reply(reply);
0977     return 0;
0978 }
0979 
0980 /**
0981  * audit_send_reply - send an audit reply message via netlink
0982  * @request_skb: skb of request we are replying to (used to target the reply)
0983  * @seq: sequence number
0984  * @type: audit message type
0985  * @done: done (last) flag
0986  * @multi: multi-part message flag
0987  * @payload: payload data
0988  * @size: payload size
0989  *
0990  * Allocates a skb, builds the netlink message, and sends it to the port id.
0991  */
0992 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
0993                  int multi, const void *payload, int size)
0994 {
0995     struct task_struct *tsk;
0996     struct audit_reply *reply;
0997 
0998     reply = kzalloc(sizeof(*reply), GFP_KERNEL);
0999     if (!reply)
1000         return;
1001 
1002     reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1003     if (!reply->skb)
1004         goto err;
1005     reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1006     reply->portid = NETLINK_CB(request_skb).portid;
1007 
1008     tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1009     if (IS_ERR(tsk))
1010         goto err;
1011 
1012     return;
1013 
1014 err:
1015     audit_free_reply(reply);
1016 }
1017 
1018 /*
1019  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1020  * control messages.
1021  */
1022 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1023 {
1024     int err = 0;
1025 
1026     /* Only support initial user namespace for now. */
1027     /*
1028      * We return ECONNREFUSED because it tricks userspace into thinking
1029      * that audit was not configured into the kernel.  Lots of users
1030      * configure their PAM stack (because that's what the distro does)
1031      * to reject login if unable to send messages to audit.  If we return
1032      * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1033      * configured in and will let login proceed.  If we return EPERM
1034      * userspace will reject all logins.  This should be removed when we
1035      * support non init namespaces!!
1036      */
1037     if (current_user_ns() != &init_user_ns)
1038         return -ECONNREFUSED;
1039 
1040     switch (msg_type) {
1041     case AUDIT_LIST:
1042     case AUDIT_ADD:
1043     case AUDIT_DEL:
1044         return -EOPNOTSUPP;
1045     case AUDIT_GET:
1046     case AUDIT_SET:
1047     case AUDIT_GET_FEATURE:
1048     case AUDIT_SET_FEATURE:
1049     case AUDIT_LIST_RULES:
1050     case AUDIT_ADD_RULE:
1051     case AUDIT_DEL_RULE:
1052     case AUDIT_SIGNAL_INFO:
1053     case AUDIT_TTY_GET:
1054     case AUDIT_TTY_SET:
1055     case AUDIT_TRIM:
1056     case AUDIT_MAKE_EQUIV:
1057         /* Only support auditd and auditctl in initial pid namespace
1058          * for now. */
1059         if (task_active_pid_ns(current) != &init_pid_ns)
1060             return -EPERM;
1061 
1062         if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1063             err = -EPERM;
1064         break;
1065     case AUDIT_USER:
1066     case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1067     case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1068         if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1069             err = -EPERM;
1070         break;
1071     default:  /* bad msg */
1072         err = -EINVAL;
1073     }
1074 
1075     return err;
1076 }
1077 
1078 static void audit_log_common_recv_msg(struct audit_context *context,
1079                     struct audit_buffer **ab, u16 msg_type)
1080 {
1081     uid_t uid = from_kuid(&init_user_ns, current_uid());
1082     pid_t pid = task_tgid_nr(current);
1083 
1084     if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1085         *ab = NULL;
1086         return;
1087     }
1088 
1089     *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1090     if (unlikely(!*ab))
1091         return;
1092     audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1093     audit_log_session_info(*ab);
1094     audit_log_task_context(*ab);
1095 }
1096 
1097 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1098                        u16 msg_type)
1099 {
1100     audit_log_common_recv_msg(NULL, ab, msg_type);
1101 }
1102 
1103 static int is_audit_feature_set(int i)
1104 {
1105     return af.features & AUDIT_FEATURE_TO_MASK(i);
1106 }
1107 
1108 
1109 static int audit_get_feature(struct sk_buff *skb)
1110 {
1111     u32 seq;
1112 
1113     seq = nlmsg_hdr(skb)->nlmsg_seq;
1114 
1115     audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1116 
1117     return 0;
1118 }
1119 
1120 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1121                      u32 old_lock, u32 new_lock, int res)
1122 {
1123     struct audit_buffer *ab;
1124 
1125     if (audit_enabled == AUDIT_OFF)
1126         return;
1127 
1128     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1129     if (!ab)
1130         return;
1131     audit_log_task_info(ab);
1132     audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1133              audit_feature_names[which], !!old_feature, !!new_feature,
1134              !!old_lock, !!new_lock, res);
1135     audit_log_end(ab);
1136 }
1137 
1138 static int audit_set_feature(struct audit_features *uaf)
1139 {
1140     int i;
1141 
1142     BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1143 
1144     /* if there is ever a version 2 we should handle that here */
1145 
1146     for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1147         u32 feature = AUDIT_FEATURE_TO_MASK(i);
1148         u32 old_feature, new_feature, old_lock, new_lock;
1149 
1150         /* if we are not changing this feature, move along */
1151         if (!(feature & uaf->mask))
1152             continue;
1153 
1154         old_feature = af.features & feature;
1155         new_feature = uaf->features & feature;
1156         new_lock = (uaf->lock | af.lock) & feature;
1157         old_lock = af.lock & feature;
1158 
1159         /* are we changing a locked feature? */
1160         if (old_lock && (new_feature != old_feature)) {
1161             audit_log_feature_change(i, old_feature, new_feature,
1162                          old_lock, new_lock, 0);
1163             return -EPERM;
1164         }
1165     }
1166     /* nothing invalid, do the changes */
1167     for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1168         u32 feature = AUDIT_FEATURE_TO_MASK(i);
1169         u32 old_feature, new_feature, old_lock, new_lock;
1170 
1171         /* if we are not changing this feature, move along */
1172         if (!(feature & uaf->mask))
1173             continue;
1174 
1175         old_feature = af.features & feature;
1176         new_feature = uaf->features & feature;
1177         old_lock = af.lock & feature;
1178         new_lock = (uaf->lock | af.lock) & feature;
1179 
1180         if (new_feature != old_feature)
1181             audit_log_feature_change(i, old_feature, new_feature,
1182                          old_lock, new_lock, 1);
1183 
1184         if (new_feature)
1185             af.features |= feature;
1186         else
1187             af.features &= ~feature;
1188         af.lock |= new_lock;
1189     }
1190 
1191     return 0;
1192 }
1193 
1194 static int audit_replace(struct pid *pid)
1195 {
1196     pid_t pvnr;
1197     struct sk_buff *skb;
1198 
1199     pvnr = pid_vnr(pid);
1200     skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1201     if (!skb)
1202         return -ENOMEM;
1203     return auditd_send_unicast_skb(skb);
1204 }
1205 
1206 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1207 {
1208     u32         seq;
1209     void            *data;
1210     int         data_len;
1211     int         err;
1212     struct audit_buffer *ab;
1213     u16         msg_type = nlh->nlmsg_type;
1214     struct audit_sig_info   *sig_data;
1215     char            *ctx = NULL;
1216     u32         len;
1217 
1218     err = audit_netlink_ok(skb, msg_type);
1219     if (err)
1220         return err;
1221 
1222     seq  = nlh->nlmsg_seq;
1223     data = nlmsg_data(nlh);
1224     data_len = nlmsg_len(nlh);
1225 
1226     switch (msg_type) {
1227     case AUDIT_GET: {
1228         struct audit_status s;
1229         memset(&s, 0, sizeof(s));
1230         s.enabled          = audit_enabled;
1231         s.failure          = audit_failure;
1232         /* NOTE: use pid_vnr() so the PID is relative to the current
1233          *       namespace */
1234         s.pid              = auditd_pid_vnr();
1235         s.rate_limit           = audit_rate_limit;
1236         s.backlog_limit        = audit_backlog_limit;
1237         s.lost             = atomic_read(&audit_lost);
1238         s.backlog          = skb_queue_len(&audit_queue);
1239         s.feature_bitmap       = AUDIT_FEATURE_BITMAP_ALL;
1240         s.backlog_wait_time    = audit_backlog_wait_time;
1241         s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1242         audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1243         break;
1244     }
1245     case AUDIT_SET: {
1246         struct audit_status s;
1247         memset(&s, 0, sizeof(s));
1248         /* guard against past and future API changes */
1249         memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1250         if (s.mask & AUDIT_STATUS_ENABLED) {
1251             err = audit_set_enabled(s.enabled);
1252             if (err < 0)
1253                 return err;
1254         }
1255         if (s.mask & AUDIT_STATUS_FAILURE) {
1256             err = audit_set_failure(s.failure);
1257             if (err < 0)
1258                 return err;
1259         }
1260         if (s.mask & AUDIT_STATUS_PID) {
1261             /* NOTE: we are using the vnr PID functions below
1262              *       because the s.pid value is relative to the
1263              *       namespace of the caller; at present this
1264              *       doesn't matter much since you can really only
1265              *       run auditd from the initial pid namespace, but
1266              *       something to keep in mind if this changes */
1267             pid_t new_pid = s.pid;
1268             pid_t auditd_pid;
1269             struct pid *req_pid = task_tgid(current);
1270 
1271             /* Sanity check - PID values must match. Setting
1272              * pid to 0 is how auditd ends auditing. */
1273             if (new_pid && (new_pid != pid_vnr(req_pid)))
1274                 return -EINVAL;
1275 
1276             /* test the auditd connection */
1277             audit_replace(req_pid);
1278 
1279             auditd_pid = auditd_pid_vnr();
1280             if (auditd_pid) {
1281                 /* replacing a healthy auditd is not allowed */
1282                 if (new_pid) {
1283                     audit_log_config_change("audit_pid",
1284                             new_pid, auditd_pid, 0);
1285                     return -EEXIST;
1286                 }
1287                 /* only current auditd can unregister itself */
1288                 if (pid_vnr(req_pid) != auditd_pid) {
1289                     audit_log_config_change("audit_pid",
1290                             new_pid, auditd_pid, 0);
1291                     return -EACCES;
1292                 }
1293             }
1294 
1295             if (new_pid) {
1296                 /* register a new auditd connection */
1297                 err = auditd_set(req_pid,
1298                          NETLINK_CB(skb).portid,
1299                          sock_net(NETLINK_CB(skb).sk));
1300                 if (audit_enabled != AUDIT_OFF)
1301                     audit_log_config_change("audit_pid",
1302                                 new_pid,
1303                                 auditd_pid,
1304                                 err ? 0 : 1);
1305                 if (err)
1306                     return err;
1307 
1308                 /* try to process any backlog */
1309                 wake_up_interruptible(&kauditd_wait);
1310             } else {
1311                 if (audit_enabled != AUDIT_OFF)
1312                     audit_log_config_change("audit_pid",
1313                                 new_pid,
1314                                 auditd_pid, 1);
1315 
1316                 /* unregister the auditd connection */
1317                 auditd_reset(NULL);
1318             }
1319         }
1320         if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1321             err = audit_set_rate_limit(s.rate_limit);
1322             if (err < 0)
1323                 return err;
1324         }
1325         if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1326             err = audit_set_backlog_limit(s.backlog_limit);
1327             if (err < 0)
1328                 return err;
1329         }
1330         if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1331             if (sizeof(s) > (size_t)nlh->nlmsg_len)
1332                 return -EINVAL;
1333             if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1334                 return -EINVAL;
1335             err = audit_set_backlog_wait_time(s.backlog_wait_time);
1336             if (err < 0)
1337                 return err;
1338         }
1339         if (s.mask == AUDIT_STATUS_LOST) {
1340             u32 lost = atomic_xchg(&audit_lost, 0);
1341 
1342             audit_log_config_change("lost", 0, lost, 1);
1343             return lost;
1344         }
1345         if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1346             u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1347 
1348             audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1349             return actual;
1350         }
1351         break;
1352     }
1353     case AUDIT_GET_FEATURE:
1354         err = audit_get_feature(skb);
1355         if (err)
1356             return err;
1357         break;
1358     case AUDIT_SET_FEATURE:
1359         if (data_len < sizeof(struct audit_features))
1360             return -EINVAL;
1361         err = audit_set_feature(data);
1362         if (err)
1363             return err;
1364         break;
1365     case AUDIT_USER:
1366     case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1367     case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1368         if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1369             return 0;
1370         /* exit early if there isn't at least one character to print */
1371         if (data_len < 2)
1372             return -EINVAL;
1373 
1374         err = audit_filter(msg_type, AUDIT_FILTER_USER);
1375         if (err == 1) { /* match or error */
1376             char *str = data;
1377 
1378             err = 0;
1379             if (msg_type == AUDIT_USER_TTY) {
1380                 err = tty_audit_push();
1381                 if (err)
1382                     break;
1383             }
1384             audit_log_user_recv_msg(&ab, msg_type);
1385             if (msg_type != AUDIT_USER_TTY) {
1386                 /* ensure NULL termination */
1387                 str[data_len - 1] = '\0';
1388                 audit_log_format(ab, " msg='%.*s'",
1389                          AUDIT_MESSAGE_TEXT_MAX,
1390                          str);
1391             } else {
1392                 audit_log_format(ab, " data=");
1393                 if (str[data_len - 1] == '\0')
1394                     data_len--;
1395                 audit_log_n_untrustedstring(ab, str, data_len);
1396             }
1397             audit_log_end(ab);
1398         }
1399         break;
1400     case AUDIT_ADD_RULE:
1401     case AUDIT_DEL_RULE:
1402         if (data_len < sizeof(struct audit_rule_data))
1403             return -EINVAL;
1404         if (audit_enabled == AUDIT_LOCKED) {
1405             audit_log_common_recv_msg(audit_context(), &ab,
1406                           AUDIT_CONFIG_CHANGE);
1407             audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1408                      msg_type == AUDIT_ADD_RULE ?
1409                         "add_rule" : "remove_rule",
1410                      audit_enabled);
1411             audit_log_end(ab);
1412             return -EPERM;
1413         }
1414         err = audit_rule_change(msg_type, seq, data, data_len);
1415         break;
1416     case AUDIT_LIST_RULES:
1417         err = audit_list_rules_send(skb, seq);
1418         break;
1419     case AUDIT_TRIM:
1420         audit_trim_trees();
1421         audit_log_common_recv_msg(audit_context(), &ab,
1422                       AUDIT_CONFIG_CHANGE);
1423         audit_log_format(ab, " op=trim res=1");
1424         audit_log_end(ab);
1425         break;
1426     case AUDIT_MAKE_EQUIV: {
1427         void *bufp = data;
1428         u32 sizes[2];
1429         size_t msglen = data_len;
1430         char *old, *new;
1431 
1432         err = -EINVAL;
1433         if (msglen < 2 * sizeof(u32))
1434             break;
1435         memcpy(sizes, bufp, 2 * sizeof(u32));
1436         bufp += 2 * sizeof(u32);
1437         msglen -= 2 * sizeof(u32);
1438         old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1439         if (IS_ERR(old)) {
1440             err = PTR_ERR(old);
1441             break;
1442         }
1443         new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1444         if (IS_ERR(new)) {
1445             err = PTR_ERR(new);
1446             kfree(old);
1447             break;
1448         }
1449         /* OK, here comes... */
1450         err = audit_tag_tree(old, new);
1451 
1452         audit_log_common_recv_msg(audit_context(), &ab,
1453                       AUDIT_CONFIG_CHANGE);
1454         audit_log_format(ab, " op=make_equiv old=");
1455         audit_log_untrustedstring(ab, old);
1456         audit_log_format(ab, " new=");
1457         audit_log_untrustedstring(ab, new);
1458         audit_log_format(ab, " res=%d", !err);
1459         audit_log_end(ab);
1460         kfree(old);
1461         kfree(new);
1462         break;
1463     }
1464     case AUDIT_SIGNAL_INFO:
1465         len = 0;
1466         if (audit_sig_sid) {
1467             err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1468             if (err)
1469                 return err;
1470         }
1471         sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1472         if (!sig_data) {
1473             if (audit_sig_sid)
1474                 security_release_secctx(ctx, len);
1475             return -ENOMEM;
1476         }
1477         sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1478         sig_data->pid = audit_sig_pid;
1479         if (audit_sig_sid) {
1480             memcpy(sig_data->ctx, ctx, len);
1481             security_release_secctx(ctx, len);
1482         }
1483         audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1484                  sig_data, struct_size(sig_data, ctx, len));
1485         kfree(sig_data);
1486         break;
1487     case AUDIT_TTY_GET: {
1488         struct audit_tty_status s;
1489         unsigned int t;
1490 
1491         t = READ_ONCE(current->signal->audit_tty);
1492         s.enabled = t & AUDIT_TTY_ENABLE;
1493         s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1494 
1495         audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1496         break;
1497     }
1498     case AUDIT_TTY_SET: {
1499         struct audit_tty_status s, old;
1500         struct audit_buffer *ab;
1501         unsigned int t;
1502 
1503         memset(&s, 0, sizeof(s));
1504         /* guard against past and future API changes */
1505         memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1506         /* check if new data is valid */
1507         if ((s.enabled != 0 && s.enabled != 1) ||
1508             (s.log_passwd != 0 && s.log_passwd != 1))
1509             err = -EINVAL;
1510 
1511         if (err)
1512             t = READ_ONCE(current->signal->audit_tty);
1513         else {
1514             t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1515             t = xchg(&current->signal->audit_tty, t);
1516         }
1517         old.enabled = t & AUDIT_TTY_ENABLE;
1518         old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1519 
1520         audit_log_common_recv_msg(audit_context(), &ab,
1521                       AUDIT_CONFIG_CHANGE);
1522         audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1523                  " old-log_passwd=%d new-log_passwd=%d res=%d",
1524                  old.enabled, s.enabled, old.log_passwd,
1525                  s.log_passwd, !err);
1526         audit_log_end(ab);
1527         break;
1528     }
1529     default:
1530         err = -EINVAL;
1531         break;
1532     }
1533 
1534     return err < 0 ? err : 0;
1535 }
1536 
1537 /**
1538  * audit_receive - receive messages from a netlink control socket
1539  * @skb: the message buffer
1540  *
1541  * Parse the provided skb and deal with any messages that may be present,
1542  * malformed skbs are discarded.
1543  */
1544 static void audit_receive(struct sk_buff  *skb)
1545 {
1546     struct nlmsghdr *nlh;
1547     /*
1548      * len MUST be signed for nlmsg_next to be able to dec it below 0
1549      * if the nlmsg_len was not aligned
1550      */
1551     int len;
1552     int err;
1553 
1554     nlh = nlmsg_hdr(skb);
1555     len = skb->len;
1556 
1557     audit_ctl_lock();
1558     while (nlmsg_ok(nlh, len)) {
1559         err = audit_receive_msg(skb, nlh);
1560         /* if err or if this message says it wants a response */
1561         if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1562             netlink_ack(skb, nlh, err, NULL);
1563 
1564         nlh = nlmsg_next(nlh, &len);
1565     }
1566     audit_ctl_unlock();
1567 
1568     /* can't block with the ctrl lock, so penalize the sender now */
1569     if (audit_backlog_limit &&
1570         (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1571         DECLARE_WAITQUEUE(wait, current);
1572 
1573         /* wake kauditd to try and flush the queue */
1574         wake_up_interruptible(&kauditd_wait);
1575 
1576         add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1577         set_current_state(TASK_UNINTERRUPTIBLE);
1578         schedule_timeout(audit_backlog_wait_time);
1579         remove_wait_queue(&audit_backlog_wait, &wait);
1580     }
1581 }
1582 
1583 /* Log information about who is connecting to the audit multicast socket */
1584 static void audit_log_multicast(int group, const char *op, int err)
1585 {
1586     const struct cred *cred;
1587     struct tty_struct *tty;
1588     char comm[sizeof(current->comm)];
1589     struct audit_buffer *ab;
1590 
1591     if (!audit_enabled)
1592         return;
1593 
1594     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1595     if (!ab)
1596         return;
1597 
1598     cred = current_cred();
1599     tty = audit_get_tty();
1600     audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1601              task_pid_nr(current),
1602              from_kuid(&init_user_ns, cred->uid),
1603              from_kuid(&init_user_ns, audit_get_loginuid(current)),
1604              tty ? tty_name(tty) : "(none)",
1605              audit_get_sessionid(current));
1606     audit_put_tty(tty);
1607     audit_log_task_context(ab); /* subj= */
1608     audit_log_format(ab, " comm=");
1609     audit_log_untrustedstring(ab, get_task_comm(comm, current));
1610     audit_log_d_path_exe(ab, current->mm); /* exe= */
1611     audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1612     audit_log_end(ab);
1613 }
1614 
1615 /* Run custom bind function on netlink socket group connect or bind requests. */
1616 static int audit_multicast_bind(struct net *net, int group)
1617 {
1618     int err = 0;
1619 
1620     if (!capable(CAP_AUDIT_READ))
1621         err = -EPERM;
1622     audit_log_multicast(group, "connect", err);
1623     return err;
1624 }
1625 
1626 static void audit_multicast_unbind(struct net *net, int group)
1627 {
1628     audit_log_multicast(group, "disconnect", 0);
1629 }
1630 
1631 static int __net_init audit_net_init(struct net *net)
1632 {
1633     struct netlink_kernel_cfg cfg = {
1634         .input  = audit_receive,
1635         .bind   = audit_multicast_bind,
1636         .unbind = audit_multicast_unbind,
1637         .flags  = NL_CFG_F_NONROOT_RECV,
1638         .groups = AUDIT_NLGRP_MAX,
1639     };
1640 
1641     struct audit_net *aunet = net_generic(net, audit_net_id);
1642 
1643     aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1644     if (aunet->sk == NULL) {
1645         audit_panic("cannot initialize netlink socket in namespace");
1646         return -ENOMEM;
1647     }
1648     /* limit the timeout in case auditd is blocked/stopped */
1649     aunet->sk->sk_sndtimeo = HZ / 10;
1650 
1651     return 0;
1652 }
1653 
1654 static void __net_exit audit_net_exit(struct net *net)
1655 {
1656     struct audit_net *aunet = net_generic(net, audit_net_id);
1657 
1658     /* NOTE: you would think that we would want to check the auditd
1659      * connection and potentially reset it here if it lives in this
1660      * namespace, but since the auditd connection tracking struct holds a
1661      * reference to this namespace (see auditd_set()) we are only ever
1662      * going to get here after that connection has been released */
1663 
1664     netlink_kernel_release(aunet->sk);
1665 }
1666 
1667 static struct pernet_operations audit_net_ops __net_initdata = {
1668     .init = audit_net_init,
1669     .exit = audit_net_exit,
1670     .id = &audit_net_id,
1671     .size = sizeof(struct audit_net),
1672 };
1673 
1674 /* Initialize audit support at boot time. */
1675 static int __init audit_init(void)
1676 {
1677     int i;
1678 
1679     if (audit_initialized == AUDIT_DISABLED)
1680         return 0;
1681 
1682     audit_buffer_cache = kmem_cache_create("audit_buffer",
1683                            sizeof(struct audit_buffer),
1684                            0, SLAB_PANIC, NULL);
1685 
1686     skb_queue_head_init(&audit_queue);
1687     skb_queue_head_init(&audit_retry_queue);
1688     skb_queue_head_init(&audit_hold_queue);
1689 
1690     for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1691         INIT_LIST_HEAD(&audit_inode_hash[i]);
1692 
1693     mutex_init(&audit_cmd_mutex.lock);
1694     audit_cmd_mutex.owner = NULL;
1695 
1696     pr_info("initializing netlink subsys (%s)\n",
1697         audit_default ? "enabled" : "disabled");
1698     register_pernet_subsys(&audit_net_ops);
1699 
1700     audit_initialized = AUDIT_INITIALIZED;
1701 
1702     kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1703     if (IS_ERR(kauditd_task)) {
1704         int err = PTR_ERR(kauditd_task);
1705         panic("audit: failed to start the kauditd thread (%d)\n", err);
1706     }
1707 
1708     audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1709         "state=initialized audit_enabled=%u res=1",
1710          audit_enabled);
1711 
1712     return 0;
1713 }
1714 postcore_initcall(audit_init);
1715 
1716 /*
1717  * Process kernel command-line parameter at boot time.
1718  * audit={0|off} or audit={1|on}.
1719  */
1720 static int __init audit_enable(char *str)
1721 {
1722     if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1723         audit_default = AUDIT_OFF;
1724     else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1725         audit_default = AUDIT_ON;
1726     else {
1727         pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1728         audit_default = AUDIT_ON;
1729     }
1730 
1731     if (audit_default == AUDIT_OFF)
1732         audit_initialized = AUDIT_DISABLED;
1733     if (audit_set_enabled(audit_default))
1734         pr_err("audit: error setting audit state (%d)\n",
1735                audit_default);
1736 
1737     pr_info("%s\n", audit_default ?
1738         "enabled (after initialization)" : "disabled (until reboot)");
1739 
1740     return 1;
1741 }
1742 __setup("audit=", audit_enable);
1743 
1744 /* Process kernel command-line parameter at boot time.
1745  * audit_backlog_limit=<n> */
1746 static int __init audit_backlog_limit_set(char *str)
1747 {
1748     u32 audit_backlog_limit_arg;
1749 
1750     pr_info("audit_backlog_limit: ");
1751     if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1752         pr_cont("using default of %u, unable to parse %s\n",
1753             audit_backlog_limit, str);
1754         return 1;
1755     }
1756 
1757     audit_backlog_limit = audit_backlog_limit_arg;
1758     pr_cont("%d\n", audit_backlog_limit);
1759 
1760     return 1;
1761 }
1762 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1763 
1764 static void audit_buffer_free(struct audit_buffer *ab)
1765 {
1766     if (!ab)
1767         return;
1768 
1769     kfree_skb(ab->skb);
1770     kmem_cache_free(audit_buffer_cache, ab);
1771 }
1772 
1773 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1774                            gfp_t gfp_mask, int type)
1775 {
1776     struct audit_buffer *ab;
1777 
1778     ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1779     if (!ab)
1780         return NULL;
1781 
1782     ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1783     if (!ab->skb)
1784         goto err;
1785     if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1786         goto err;
1787 
1788     ab->ctx = ctx;
1789     ab->gfp_mask = gfp_mask;
1790 
1791     return ab;
1792 
1793 err:
1794     audit_buffer_free(ab);
1795     return NULL;
1796 }
1797 
1798 /**
1799  * audit_serial - compute a serial number for the audit record
1800  *
1801  * Compute a serial number for the audit record.  Audit records are
1802  * written to user-space as soon as they are generated, so a complete
1803  * audit record may be written in several pieces.  The timestamp of the
1804  * record and this serial number are used by the user-space tools to
1805  * determine which pieces belong to the same audit record.  The
1806  * (timestamp,serial) tuple is unique for each syscall and is live from
1807  * syscall entry to syscall exit.
1808  *
1809  * NOTE: Another possibility is to store the formatted records off the
1810  * audit context (for those records that have a context), and emit them
1811  * all at syscall exit.  However, this could delay the reporting of
1812  * significant errors until syscall exit (or never, if the system
1813  * halts).
1814  */
1815 unsigned int audit_serial(void)
1816 {
1817     static atomic_t serial = ATOMIC_INIT(0);
1818 
1819     return atomic_inc_return(&serial);
1820 }
1821 
1822 static inline void audit_get_stamp(struct audit_context *ctx,
1823                    struct timespec64 *t, unsigned int *serial)
1824 {
1825     if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1826         ktime_get_coarse_real_ts64(t);
1827         *serial = audit_serial();
1828     }
1829 }
1830 
1831 /**
1832  * audit_log_start - obtain an audit buffer
1833  * @ctx: audit_context (may be NULL)
1834  * @gfp_mask: type of allocation
1835  * @type: audit message type
1836  *
1837  * Returns audit_buffer pointer on success or NULL on error.
1838  *
1839  * Obtain an audit buffer.  This routine does locking to obtain the
1840  * audit buffer, but then no locking is required for calls to
1841  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1842  * syscall, then the syscall is marked as auditable and an audit record
1843  * will be written at syscall exit.  If there is no associated task, then
1844  * task context (ctx) should be NULL.
1845  */
1846 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1847                      int type)
1848 {
1849     struct audit_buffer *ab;
1850     struct timespec64 t;
1851     unsigned int serial;
1852 
1853     if (audit_initialized != AUDIT_INITIALIZED)
1854         return NULL;
1855 
1856     if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1857         return NULL;
1858 
1859     /* NOTE: don't ever fail/sleep on these two conditions:
1860      * 1. auditd generated record - since we need auditd to drain the
1861      *    queue; also, when we are checking for auditd, compare PIDs using
1862      *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1863      *    using a PID anchored in the caller's namespace
1864      * 2. generator holding the audit_cmd_mutex - we don't want to block
1865      *    while holding the mutex, although we do penalize the sender
1866      *    later in audit_receive() when it is safe to block
1867      */
1868     if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1869         long stime = audit_backlog_wait_time;
1870 
1871         while (audit_backlog_limit &&
1872                (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1873             /* wake kauditd to try and flush the queue */
1874             wake_up_interruptible(&kauditd_wait);
1875 
1876             /* sleep if we are allowed and we haven't exhausted our
1877              * backlog wait limit */
1878             if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1879                 long rtime = stime;
1880 
1881                 DECLARE_WAITQUEUE(wait, current);
1882 
1883                 add_wait_queue_exclusive(&audit_backlog_wait,
1884                              &wait);
1885                 set_current_state(TASK_UNINTERRUPTIBLE);
1886                 stime = schedule_timeout(rtime);
1887                 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1888                 remove_wait_queue(&audit_backlog_wait, &wait);
1889             } else {
1890                 if (audit_rate_check() && printk_ratelimit())
1891                     pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1892                         skb_queue_len(&audit_queue),
1893                         audit_backlog_limit);
1894                 audit_log_lost("backlog limit exceeded");
1895                 return NULL;
1896             }
1897         }
1898     }
1899 
1900     ab = audit_buffer_alloc(ctx, gfp_mask, type);
1901     if (!ab) {
1902         audit_log_lost("out of memory in audit_log_start");
1903         return NULL;
1904     }
1905 
1906     audit_get_stamp(ab->ctx, &t, &serial);
1907     /* cancel dummy context to enable supporting records */
1908     if (ctx)
1909         ctx->dummy = 0;
1910     audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1911              (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1912 
1913     return ab;
1914 }
1915 
1916 /**
1917  * audit_expand - expand skb in the audit buffer
1918  * @ab: audit_buffer
1919  * @extra: space to add at tail of the skb
1920  *
1921  * Returns 0 (no space) on failed expansion, or available space if
1922  * successful.
1923  */
1924 static inline int audit_expand(struct audit_buffer *ab, int extra)
1925 {
1926     struct sk_buff *skb = ab->skb;
1927     int oldtail = skb_tailroom(skb);
1928     int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1929     int newtail = skb_tailroom(skb);
1930 
1931     if (ret < 0) {
1932         audit_log_lost("out of memory in audit_expand");
1933         return 0;
1934     }
1935 
1936     skb->truesize += newtail - oldtail;
1937     return newtail;
1938 }
1939 
1940 /*
1941  * Format an audit message into the audit buffer.  If there isn't enough
1942  * room in the audit buffer, more room will be allocated and vsnprint
1943  * will be called a second time.  Currently, we assume that a printk
1944  * can't format message larger than 1024 bytes, so we don't either.
1945  */
1946 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1947                   va_list args)
1948 {
1949     int len, avail;
1950     struct sk_buff *skb;
1951     va_list args2;
1952 
1953     if (!ab)
1954         return;
1955 
1956     BUG_ON(!ab->skb);
1957     skb = ab->skb;
1958     avail = skb_tailroom(skb);
1959     if (avail == 0) {
1960         avail = audit_expand(ab, AUDIT_BUFSIZ);
1961         if (!avail)
1962             goto out;
1963     }
1964     va_copy(args2, args);
1965     len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1966     if (len >= avail) {
1967         /* The printk buffer is 1024 bytes long, so if we get
1968          * here and AUDIT_BUFSIZ is at least 1024, then we can
1969          * log everything that printk could have logged. */
1970         avail = audit_expand(ab,
1971             max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1972         if (!avail)
1973             goto out_va_end;
1974         len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1975     }
1976     if (len > 0)
1977         skb_put(skb, len);
1978 out_va_end:
1979     va_end(args2);
1980 out:
1981     return;
1982 }
1983 
1984 /**
1985  * audit_log_format - format a message into the audit buffer.
1986  * @ab: audit_buffer
1987  * @fmt: format string
1988  * @...: optional parameters matching @fmt string
1989  *
1990  * All the work is done in audit_log_vformat.
1991  */
1992 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1993 {
1994     va_list args;
1995 
1996     if (!ab)
1997         return;
1998     va_start(args, fmt);
1999     audit_log_vformat(ab, fmt, args);
2000     va_end(args);
2001 }
2002 
2003 /**
2004  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2005  * @ab: the audit_buffer
2006  * @buf: buffer to convert to hex
2007  * @len: length of @buf to be converted
2008  *
2009  * No return value; failure to expand is silently ignored.
2010  *
2011  * This function will take the passed buf and convert it into a string of
2012  * ascii hex digits. The new string is placed onto the skb.
2013  */
2014 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2015         size_t len)
2016 {
2017     int i, avail, new_len;
2018     unsigned char *ptr;
2019     struct sk_buff *skb;
2020 
2021     if (!ab)
2022         return;
2023 
2024     BUG_ON(!ab->skb);
2025     skb = ab->skb;
2026     avail = skb_tailroom(skb);
2027     new_len = len<<1;
2028     if (new_len >= avail) {
2029         /* Round the buffer request up to the next multiple */
2030         new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2031         avail = audit_expand(ab, new_len);
2032         if (!avail)
2033             return;
2034     }
2035 
2036     ptr = skb_tail_pointer(skb);
2037     for (i = 0; i < len; i++)
2038         ptr = hex_byte_pack_upper(ptr, buf[i]);
2039     *ptr = 0;
2040     skb_put(skb, len << 1); /* new string is twice the old string */
2041 }
2042 
2043 /*
2044  * Format a string of no more than slen characters into the audit buffer,
2045  * enclosed in quote marks.
2046  */
2047 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2048             size_t slen)
2049 {
2050     int avail, new_len;
2051     unsigned char *ptr;
2052     struct sk_buff *skb;
2053 
2054     if (!ab)
2055         return;
2056 
2057     BUG_ON(!ab->skb);
2058     skb = ab->skb;
2059     avail = skb_tailroom(skb);
2060     new_len = slen + 3; /* enclosing quotes + null terminator */
2061     if (new_len > avail) {
2062         avail = audit_expand(ab, new_len);
2063         if (!avail)
2064             return;
2065     }
2066     ptr = skb_tail_pointer(skb);
2067     *ptr++ = '"';
2068     memcpy(ptr, string, slen);
2069     ptr += slen;
2070     *ptr++ = '"';
2071     *ptr = 0;
2072     skb_put(skb, slen + 2); /* don't include null terminator */
2073 }
2074 
2075 /**
2076  * audit_string_contains_control - does a string need to be logged in hex
2077  * @string: string to be checked
2078  * @len: max length of the string to check
2079  */
2080 bool audit_string_contains_control(const char *string, size_t len)
2081 {
2082     const unsigned char *p;
2083     for (p = string; p < (const unsigned char *)string + len; p++) {
2084         if (*p == '"' || *p < 0x21 || *p > 0x7e)
2085             return true;
2086     }
2087     return false;
2088 }
2089 
2090 /**
2091  * audit_log_n_untrustedstring - log a string that may contain random characters
2092  * @ab: audit_buffer
2093  * @len: length of string (not including trailing null)
2094  * @string: string to be logged
2095  *
2096  * This code will escape a string that is passed to it if the string
2097  * contains a control character, unprintable character, double quote mark,
2098  * or a space. Unescaped strings will start and end with a double quote mark.
2099  * Strings that are escaped are printed in hex (2 digits per char).
2100  *
2101  * The caller specifies the number of characters in the string to log, which may
2102  * or may not be the entire string.
2103  */
2104 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2105                  size_t len)
2106 {
2107     if (audit_string_contains_control(string, len))
2108         audit_log_n_hex(ab, string, len);
2109     else
2110         audit_log_n_string(ab, string, len);
2111 }
2112 
2113 /**
2114  * audit_log_untrustedstring - log a string that may contain random characters
2115  * @ab: audit_buffer
2116  * @string: string to be logged
2117  *
2118  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2119  * determine string length.
2120  */
2121 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2122 {
2123     audit_log_n_untrustedstring(ab, string, strlen(string));
2124 }
2125 
2126 /* This is a helper-function to print the escaped d_path */
2127 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2128               const struct path *path)
2129 {
2130     char *p, *pathname;
2131 
2132     if (prefix)
2133         audit_log_format(ab, "%s", prefix);
2134 
2135     /* We will allow 11 spaces for ' (deleted)' to be appended */
2136     pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2137     if (!pathname) {
2138         audit_log_format(ab, "\"<no_memory>\"");
2139         return;
2140     }
2141     p = d_path(path, pathname, PATH_MAX+11);
2142     if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2143         /* FIXME: can we save some information here? */
2144         audit_log_format(ab, "\"<too_long>\"");
2145     } else
2146         audit_log_untrustedstring(ab, p);
2147     kfree(pathname);
2148 }
2149 
2150 void audit_log_session_info(struct audit_buffer *ab)
2151 {
2152     unsigned int sessionid = audit_get_sessionid(current);
2153     uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2154 
2155     audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2156 }
2157 
2158 void audit_log_key(struct audit_buffer *ab, char *key)
2159 {
2160     audit_log_format(ab, " key=");
2161     if (key)
2162         audit_log_untrustedstring(ab, key);
2163     else
2164         audit_log_format(ab, "(null)");
2165 }
2166 
2167 int audit_log_task_context(struct audit_buffer *ab)
2168 {
2169     char *ctx = NULL;
2170     unsigned len;
2171     int error;
2172     u32 sid;
2173 
2174     security_current_getsecid_subj(&sid);
2175     if (!sid)
2176         return 0;
2177 
2178     error = security_secid_to_secctx(sid, &ctx, &len);
2179     if (error) {
2180         if (error != -EINVAL)
2181             goto error_path;
2182         return 0;
2183     }
2184 
2185     audit_log_format(ab, " subj=%s", ctx);
2186     security_release_secctx(ctx, len);
2187     return 0;
2188 
2189 error_path:
2190     audit_panic("error in audit_log_task_context");
2191     return error;
2192 }
2193 EXPORT_SYMBOL(audit_log_task_context);
2194 
2195 void audit_log_d_path_exe(struct audit_buffer *ab,
2196               struct mm_struct *mm)
2197 {
2198     struct file *exe_file;
2199 
2200     if (!mm)
2201         goto out_null;
2202 
2203     exe_file = get_mm_exe_file(mm);
2204     if (!exe_file)
2205         goto out_null;
2206 
2207     audit_log_d_path(ab, " exe=", &exe_file->f_path);
2208     fput(exe_file);
2209     return;
2210 out_null:
2211     audit_log_format(ab, " exe=(null)");
2212 }
2213 
2214 struct tty_struct *audit_get_tty(void)
2215 {
2216     struct tty_struct *tty = NULL;
2217     unsigned long flags;
2218 
2219     spin_lock_irqsave(&current->sighand->siglock, flags);
2220     if (current->signal)
2221         tty = tty_kref_get(current->signal->tty);
2222     spin_unlock_irqrestore(&current->sighand->siglock, flags);
2223     return tty;
2224 }
2225 
2226 void audit_put_tty(struct tty_struct *tty)
2227 {
2228     tty_kref_put(tty);
2229 }
2230 
2231 void audit_log_task_info(struct audit_buffer *ab)
2232 {
2233     const struct cred *cred;
2234     char comm[sizeof(current->comm)];
2235     struct tty_struct *tty;
2236 
2237     if (!ab)
2238         return;
2239 
2240     cred = current_cred();
2241     tty = audit_get_tty();
2242     audit_log_format(ab,
2243              " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2244              " euid=%u suid=%u fsuid=%u"
2245              " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2246              task_ppid_nr(current),
2247              task_tgid_nr(current),
2248              from_kuid(&init_user_ns, audit_get_loginuid(current)),
2249              from_kuid(&init_user_ns, cred->uid),
2250              from_kgid(&init_user_ns, cred->gid),
2251              from_kuid(&init_user_ns, cred->euid),
2252              from_kuid(&init_user_ns, cred->suid),
2253              from_kuid(&init_user_ns, cred->fsuid),
2254              from_kgid(&init_user_ns, cred->egid),
2255              from_kgid(&init_user_ns, cred->sgid),
2256              from_kgid(&init_user_ns, cred->fsgid),
2257              tty ? tty_name(tty) : "(none)",
2258              audit_get_sessionid(current));
2259     audit_put_tty(tty);
2260     audit_log_format(ab, " comm=");
2261     audit_log_untrustedstring(ab, get_task_comm(comm, current));
2262     audit_log_d_path_exe(ab, current->mm);
2263     audit_log_task_context(ab);
2264 }
2265 EXPORT_SYMBOL(audit_log_task_info);
2266 
2267 /**
2268  * audit_log_path_denied - report a path restriction denial
2269  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2270  * @operation: specific operation name
2271  */
2272 void audit_log_path_denied(int type, const char *operation)
2273 {
2274     struct audit_buffer *ab;
2275 
2276     if (!audit_enabled || audit_dummy_context())
2277         return;
2278 
2279     /* Generate log with subject, operation, outcome. */
2280     ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2281     if (!ab)
2282         return;
2283     audit_log_format(ab, "op=%s", operation);
2284     audit_log_task_info(ab);
2285     audit_log_format(ab, " res=0");
2286     audit_log_end(ab);
2287 }
2288 
2289 /* global counter which is incremented every time something logs in */
2290 static atomic_t session_id = ATOMIC_INIT(0);
2291 
2292 static int audit_set_loginuid_perm(kuid_t loginuid)
2293 {
2294     /* if we are unset, we don't need privs */
2295     if (!audit_loginuid_set(current))
2296         return 0;
2297     /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2298     if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2299         return -EPERM;
2300     /* it is set, you need permission */
2301     if (!capable(CAP_AUDIT_CONTROL))
2302         return -EPERM;
2303     /* reject if this is not an unset and we don't allow that */
2304     if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2305                  && uid_valid(loginuid))
2306         return -EPERM;
2307     return 0;
2308 }
2309 
2310 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2311                    unsigned int oldsessionid,
2312                    unsigned int sessionid, int rc)
2313 {
2314     struct audit_buffer *ab;
2315     uid_t uid, oldloginuid, loginuid;
2316     struct tty_struct *tty;
2317 
2318     if (!audit_enabled)
2319         return;
2320 
2321     ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2322     if (!ab)
2323         return;
2324 
2325     uid = from_kuid(&init_user_ns, task_uid(current));
2326     oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2327     loginuid = from_kuid(&init_user_ns, kloginuid);
2328     tty = audit_get_tty();
2329 
2330     audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2331     audit_log_task_context(ab);
2332     audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2333              oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2334              oldsessionid, sessionid, !rc);
2335     audit_put_tty(tty);
2336     audit_log_end(ab);
2337 }
2338 
2339 /**
2340  * audit_set_loginuid - set current task's loginuid
2341  * @loginuid: loginuid value
2342  *
2343  * Returns 0.
2344  *
2345  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2346  */
2347 int audit_set_loginuid(kuid_t loginuid)
2348 {
2349     unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2350     kuid_t oldloginuid;
2351     int rc;
2352 
2353     oldloginuid = audit_get_loginuid(current);
2354     oldsessionid = audit_get_sessionid(current);
2355 
2356     rc = audit_set_loginuid_perm(loginuid);
2357     if (rc)
2358         goto out;
2359 
2360     /* are we setting or clearing? */
2361     if (uid_valid(loginuid)) {
2362         sessionid = (unsigned int)atomic_inc_return(&session_id);
2363         if (unlikely(sessionid == AUDIT_SID_UNSET))
2364             sessionid = (unsigned int)atomic_inc_return(&session_id);
2365     }
2366 
2367     current->sessionid = sessionid;
2368     current->loginuid = loginuid;
2369 out:
2370     audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2371     return rc;
2372 }
2373 
2374 /**
2375  * audit_signal_info - record signal info for shutting down audit subsystem
2376  * @sig: signal value
2377  * @t: task being signaled
2378  *
2379  * If the audit subsystem is being terminated, record the task (pid)
2380  * and uid that is doing that.
2381  */
2382 int audit_signal_info(int sig, struct task_struct *t)
2383 {
2384     kuid_t uid = current_uid(), auid;
2385 
2386     if (auditd_test_task(t) &&
2387         (sig == SIGTERM || sig == SIGHUP ||
2388          sig == SIGUSR1 || sig == SIGUSR2)) {
2389         audit_sig_pid = task_tgid_nr(current);
2390         auid = audit_get_loginuid(current);
2391         if (uid_valid(auid))
2392             audit_sig_uid = auid;
2393         else
2394             audit_sig_uid = uid;
2395         security_current_getsecid_subj(&audit_sig_sid);
2396     }
2397 
2398     return audit_signal_info_syscall(t);
2399 }
2400 
2401 /**
2402  * audit_log_end - end one audit record
2403  * @ab: the audit_buffer
2404  *
2405  * We can not do a netlink send inside an irq context because it blocks (last
2406  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2407  * queue and a kthread is scheduled to remove them from the queue outside the
2408  * irq context.  May be called in any context.
2409  */
2410 void audit_log_end(struct audit_buffer *ab)
2411 {
2412     struct sk_buff *skb;
2413     struct nlmsghdr *nlh;
2414 
2415     if (!ab)
2416         return;
2417 
2418     if (audit_rate_check()) {
2419         skb = ab->skb;
2420         ab->skb = NULL;
2421 
2422         /* setup the netlink header, see the comments in
2423          * kauditd_send_multicast_skb() for length quirks */
2424         nlh = nlmsg_hdr(skb);
2425         nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2426 
2427         /* queue the netlink packet and poke the kauditd thread */
2428         skb_queue_tail(&audit_queue, skb);
2429         wake_up_interruptible(&kauditd_wait);
2430     } else
2431         audit_log_lost("rate limit exceeded");
2432 
2433     audit_buffer_free(ab);
2434 }
2435 
2436 /**
2437  * audit_log - Log an audit record
2438  * @ctx: audit context
2439  * @gfp_mask: type of allocation
2440  * @type: audit message type
2441  * @fmt: format string to use
2442  * @...: variable parameters matching the format string
2443  *
2444  * This is a convenience function that calls audit_log_start,
2445  * audit_log_vformat, and audit_log_end.  It may be called
2446  * in any context.
2447  */
2448 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2449            const char *fmt, ...)
2450 {
2451     struct audit_buffer *ab;
2452     va_list args;
2453 
2454     ab = audit_log_start(ctx, gfp_mask, type);
2455     if (ab) {
2456         va_start(args, fmt);
2457         audit_log_vformat(ab, fmt, args);
2458         va_end(args);
2459         audit_log_end(ab);
2460     }
2461 }
2462 
2463 EXPORT_SYMBOL(audit_log_start);
2464 EXPORT_SYMBOL(audit_log_end);
2465 EXPORT_SYMBOL(audit_log_format);
2466 EXPORT_SYMBOL(audit_log);