Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * linux/ipc/sem.c
0004  * Copyright (C) 1992 Krishna Balasubramanian
0005  * Copyright (C) 1995 Eric Schenk, Bruno Haible
0006  *
0007  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
0008  *
0009  * SMP-threaded, sysctl's added
0010  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
0011  * Enforced range limit on SEM_UNDO
0012  * (c) 2001 Red Hat Inc
0013  * Lockless wakeup
0014  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
0015  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
0016  * Further wakeup optimizations, documentation
0017  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
0018  *
0019  * support for audit of ipc object properties and permission changes
0020  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
0021  *
0022  * namespaces support
0023  * OpenVZ, SWsoft Inc.
0024  * Pavel Emelianov <xemul@openvz.org>
0025  *
0026  * Implementation notes: (May 2010)
0027  * This file implements System V semaphores.
0028  *
0029  * User space visible behavior:
0030  * - FIFO ordering for semop() operations (just FIFO, not starvation
0031  *   protection)
0032  * - multiple semaphore operations that alter the same semaphore in
0033  *   one semop() are handled.
0034  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
0035  *   SETALL calls.
0036  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
0037  * - undo adjustments at process exit are limited to 0..SEMVMX.
0038  * - namespace are supported.
0039  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
0040  *   to /proc/sys/kernel/sem.
0041  * - statistics about the usage are reported in /proc/sysvipc/sem.
0042  *
0043  * Internals:
0044  * - scalability:
0045  *   - all global variables are read-mostly.
0046  *   - semop() calls and semctl(RMID) are synchronized by RCU.
0047  *   - most operations do write operations (actually: spin_lock calls) to
0048  *     the per-semaphore array structure.
0049  *   Thus: Perfect SMP scaling between independent semaphore arrays.
0050  *         If multiple semaphores in one array are used, then cache line
0051  *         trashing on the semaphore array spinlock will limit the scaling.
0052  * - semncnt and semzcnt are calculated on demand in count_semcnt()
0053  * - the task that performs a successful semop() scans the list of all
0054  *   sleeping tasks and completes any pending operations that can be fulfilled.
0055  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
0056  *   (see update_queue())
0057  * - To improve the scalability, the actual wake-up calls are performed after
0058  *   dropping all locks. (see wake_up_sem_queue_prepare())
0059  * - All work is done by the waker, the woken up task does not have to do
0060  *   anything - not even acquiring a lock or dropping a refcount.
0061  * - A woken up task may not even touch the semaphore array anymore, it may
0062  *   have been destroyed already by a semctl(RMID).
0063  * - UNDO values are stored in an array (one per process and per
0064  *   semaphore array, lazily allocated). For backwards compatibility, multiple
0065  *   modes for the UNDO variables are supported (per process, per thread)
0066  *   (see copy_semundo, CLONE_SYSVSEM)
0067  * - There are two lists of the pending operations: a per-array list
0068  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
0069  *   ordering without always scanning all pending operations.
0070  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
0071  */
0072 
0073 #include <linux/compat.h>
0074 #include <linux/slab.h>
0075 #include <linux/spinlock.h>
0076 #include <linux/init.h>
0077 #include <linux/proc_fs.h>
0078 #include <linux/time.h>
0079 #include <linux/security.h>
0080 #include <linux/syscalls.h>
0081 #include <linux/audit.h>
0082 #include <linux/capability.h>
0083 #include <linux/seq_file.h>
0084 #include <linux/rwsem.h>
0085 #include <linux/nsproxy.h>
0086 #include <linux/ipc_namespace.h>
0087 #include <linux/sched/wake_q.h>
0088 #include <linux/nospec.h>
0089 #include <linux/rhashtable.h>
0090 
0091 #include <linux/uaccess.h>
0092 #include "util.h"
0093 
0094 /* One semaphore structure for each semaphore in the system. */
0095 struct sem {
0096     int semval;     /* current value */
0097     /*
0098      * PID of the process that last modified the semaphore. For
0099      * Linux, specifically these are:
0100      *  - semop
0101      *  - semctl, via SETVAL and SETALL.
0102      *  - at task exit when performing undo adjustments (see exit_sem).
0103      */
0104     struct pid *sempid;
0105     spinlock_t  lock;   /* spinlock for fine-grained semtimedop */
0106     struct list_head pending_alter; /* pending single-sop operations */
0107                     /* that alter the semaphore */
0108     struct list_head pending_const; /* pending single-sop operations */
0109                     /* that do not alter the semaphore*/
0110     time64_t     sem_otime; /* candidate for sem_otime */
0111 } ____cacheline_aligned_in_smp;
0112 
0113 /* One sem_array data structure for each set of semaphores in the system. */
0114 struct sem_array {
0115     struct kern_ipc_perm    sem_perm;   /* permissions .. see ipc.h */
0116     time64_t        sem_ctime;  /* create/last semctl() time */
0117     struct list_head    pending_alter;  /* pending operations */
0118                         /* that alter the array */
0119     struct list_head    pending_const;  /* pending complex operations */
0120                         /* that do not alter semvals */
0121     struct list_head    list_id;    /* undo requests on this array */
0122     int         sem_nsems;  /* no. of semaphores in array */
0123     int         complex_count;  /* pending complex operations */
0124     unsigned int        use_global_lock;/* >0: global lock required */
0125 
0126     struct sem      sems[];
0127 } __randomize_layout;
0128 
0129 /* One queue for each sleeping process in the system. */
0130 struct sem_queue {
0131     struct list_head    list;    /* queue of pending operations */
0132     struct task_struct  *sleeper; /* this process */
0133     struct sem_undo     *undo;   /* undo structure */
0134     struct pid      *pid;    /* process id of requesting process */
0135     int         status;  /* completion status of operation */
0136     struct sembuf       *sops;   /* array of pending operations */
0137     struct sembuf       *blocking; /* the operation that blocked */
0138     int         nsops;   /* number of operations */
0139     bool            alter;   /* does *sops alter the array? */
0140     bool                    dupsop;  /* sops on more than one sem_num */
0141 };
0142 
0143 /* Each task has a list of undo requests. They are executed automatically
0144  * when the process exits.
0145  */
0146 struct sem_undo {
0147     struct list_head    list_proc;  /* per-process list: *
0148                          * all undos from one process
0149                          * rcu protected */
0150     struct rcu_head     rcu;        /* rcu struct for sem_undo */
0151     struct sem_undo_list    *ulp;       /* back ptr to sem_undo_list */
0152     struct list_head    list_id;    /* per semaphore array list:
0153                          * all undos for one array */
0154     int         semid;      /* semaphore set identifier */
0155     short           *semadj;    /* array of adjustments */
0156                         /* one per semaphore */
0157 };
0158 
0159 /* sem_undo_list controls shared access to the list of sem_undo structures
0160  * that may be shared among all a CLONE_SYSVSEM task group.
0161  */
0162 struct sem_undo_list {
0163     refcount_t      refcnt;
0164     spinlock_t      lock;
0165     struct list_head    list_proc;
0166 };
0167 
0168 
0169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
0170 
0171 static int newary(struct ipc_namespace *, struct ipc_params *);
0172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
0173 #ifdef CONFIG_PROC_FS
0174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
0175 #endif
0176 
0177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
0178 #define SEMOPM_FAST 64  /* ~ 372 bytes on stack */
0179 
0180 /*
0181  * Switching from the mode suitable for simple ops
0182  * to the mode for complex ops is costly. Therefore:
0183  * use some hysteresis
0184  */
0185 #define USE_GLOBAL_LOCK_HYSTERESIS  10
0186 
0187 /*
0188  * Locking:
0189  * a) global sem_lock() for read/write
0190  *  sem_undo.id_next,
0191  *  sem_array.complex_count,
0192  *  sem_array.pending{_alter,_const},
0193  *  sem_array.sem_undo
0194  *
0195  * b) global or semaphore sem_lock() for read/write:
0196  *  sem_array.sems[i].pending_{const,alter}:
0197  *
0198  * c) special:
0199  *  sem_undo_list.list_proc:
0200  *  * undo_list->lock for write
0201  *  * rcu for read
0202  *  use_global_lock:
0203  *  * global sem_lock() for write
0204  *  * either local or global sem_lock() for read.
0205  *
0206  * Memory ordering:
0207  * Most ordering is enforced by using spin_lock() and spin_unlock().
0208  *
0209  * Exceptions:
0210  * 1) use_global_lock: (SEM_BARRIER_1)
0211  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
0212  * using smp_store_release(): Immediately after setting it to 0,
0213  * a simple op can start.
0214  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
0215  * smp_load_acquire().
0216  * Setting it from 0 to non-zero must be ordered with regards to
0217  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
0218  * is inside a spin_lock() and after a write from 0 to non-zero a
0219  * spin_lock()+spin_unlock() is done.
0220  * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
0221  * READ_ONCE()/WRITE_ONCE() is used.
0222  *
0223  * 2) queue.status: (SEM_BARRIER_2)
0224  * Initialization is done while holding sem_lock(), so no further barrier is
0225  * required.
0226  * Setting it to a result code is a RELEASE, this is ensured by both a
0227  * smp_store_release() (for case a) and while holding sem_lock()
0228  * (for case b).
0229  * The ACQUIRE when reading the result code without holding sem_lock() is
0230  * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
0231  * (case a above).
0232  * Reading the result code while holding sem_lock() needs no further barriers,
0233  * the locks inside sem_lock() enforce ordering (case b above)
0234  *
0235  * 3) current->state:
0236  * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
0237  * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
0238  * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
0239  * when holding sem_lock(), no further barriers are required.
0240  *
0241  * See also ipc/mqueue.c for more details on the covered races.
0242  */
0243 
0244 #define sc_semmsl   sem_ctls[0]
0245 #define sc_semmns   sem_ctls[1]
0246 #define sc_semopm   sem_ctls[2]
0247 #define sc_semmni   sem_ctls[3]
0248 
0249 void sem_init_ns(struct ipc_namespace *ns)
0250 {
0251     ns->sc_semmsl = SEMMSL;
0252     ns->sc_semmns = SEMMNS;
0253     ns->sc_semopm = SEMOPM;
0254     ns->sc_semmni = SEMMNI;
0255     ns->used_sems = 0;
0256     ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
0257 }
0258 
0259 #ifdef CONFIG_IPC_NS
0260 void sem_exit_ns(struct ipc_namespace *ns)
0261 {
0262     free_ipcs(ns, &sem_ids(ns), freeary);
0263     idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0264     rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
0265 }
0266 #endif
0267 
0268 void __init sem_init(void)
0269 {
0270     sem_init_ns(&init_ipc_ns);
0271     ipc_init_proc_interface("sysvipc/sem",
0272                 "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
0273                 IPC_SEM_IDS, sysvipc_sem_proc_show);
0274 }
0275 
0276 /**
0277  * unmerge_queues - unmerge queues, if possible.
0278  * @sma: semaphore array
0279  *
0280  * The function unmerges the wait queues if complex_count is 0.
0281  * It must be called prior to dropping the global semaphore array lock.
0282  */
0283 static void unmerge_queues(struct sem_array *sma)
0284 {
0285     struct sem_queue *q, *tq;
0286 
0287     /* complex operations still around? */
0288     if (sma->complex_count)
0289         return;
0290     /*
0291      * We will switch back to simple mode.
0292      * Move all pending operation back into the per-semaphore
0293      * queues.
0294      */
0295     list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
0296         struct sem *curr;
0297         curr = &sma->sems[q->sops[0].sem_num];
0298 
0299         list_add_tail(&q->list, &curr->pending_alter);
0300     }
0301     INIT_LIST_HEAD(&sma->pending_alter);
0302 }
0303 
0304 /**
0305  * merge_queues - merge single semop queues into global queue
0306  * @sma: semaphore array
0307  *
0308  * This function merges all per-semaphore queues into the global queue.
0309  * It is necessary to achieve FIFO ordering for the pending single-sop
0310  * operations when a multi-semop operation must sleep.
0311  * Only the alter operations must be moved, the const operations can stay.
0312  */
0313 static void merge_queues(struct sem_array *sma)
0314 {
0315     int i;
0316     for (i = 0; i < sma->sem_nsems; i++) {
0317         struct sem *sem = &sma->sems[i];
0318 
0319         list_splice_init(&sem->pending_alter, &sma->pending_alter);
0320     }
0321 }
0322 
0323 static void sem_rcu_free(struct rcu_head *head)
0324 {
0325     struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
0326     struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
0327 
0328     security_sem_free(&sma->sem_perm);
0329     kvfree(sma);
0330 }
0331 
0332 /*
0333  * Enter the mode suitable for non-simple operations:
0334  * Caller must own sem_perm.lock.
0335  */
0336 static void complexmode_enter(struct sem_array *sma)
0337 {
0338     int i;
0339     struct sem *sem;
0340 
0341     if (sma->use_global_lock > 0)  {
0342         /*
0343          * We are already in global lock mode.
0344          * Nothing to do, just reset the
0345          * counter until we return to simple mode.
0346          */
0347         WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
0348         return;
0349     }
0350     WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
0351 
0352     for (i = 0; i < sma->sem_nsems; i++) {
0353         sem = &sma->sems[i];
0354         spin_lock(&sem->lock);
0355         spin_unlock(&sem->lock);
0356     }
0357 }
0358 
0359 /*
0360  * Try to leave the mode that disallows simple operations:
0361  * Caller must own sem_perm.lock.
0362  */
0363 static void complexmode_tryleave(struct sem_array *sma)
0364 {
0365     if (sma->complex_count)  {
0366         /* Complex ops are sleeping.
0367          * We must stay in complex mode
0368          */
0369         return;
0370     }
0371     if (sma->use_global_lock == 1) {
0372 
0373         /* See SEM_BARRIER_1 for purpose/pairing */
0374         smp_store_release(&sma->use_global_lock, 0);
0375     } else {
0376         WRITE_ONCE(sma->use_global_lock,
0377                 sma->use_global_lock-1);
0378     }
0379 }
0380 
0381 #define SEM_GLOBAL_LOCK (-1)
0382 /*
0383  * If the request contains only one semaphore operation, and there are
0384  * no complex transactions pending, lock only the semaphore involved.
0385  * Otherwise, lock the entire semaphore array, since we either have
0386  * multiple semaphores in our own semops, or we need to look at
0387  * semaphores from other pending complex operations.
0388  */
0389 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
0390                   int nsops)
0391 {
0392     struct sem *sem;
0393     int idx;
0394 
0395     if (nsops != 1) {
0396         /* Complex operation - acquire a full lock */
0397         ipc_lock_object(&sma->sem_perm);
0398 
0399         /* Prevent parallel simple ops */
0400         complexmode_enter(sma);
0401         return SEM_GLOBAL_LOCK;
0402     }
0403 
0404     /*
0405      * Only one semaphore affected - try to optimize locking.
0406      * Optimized locking is possible if no complex operation
0407      * is either enqueued or processed right now.
0408      *
0409      * Both facts are tracked by use_global_mode.
0410      */
0411     idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
0412     sem = &sma->sems[idx];
0413 
0414     /*
0415      * Initial check for use_global_lock. Just an optimization,
0416      * no locking, no memory barrier.
0417      */
0418     if (!READ_ONCE(sma->use_global_lock)) {
0419         /*
0420          * It appears that no complex operation is around.
0421          * Acquire the per-semaphore lock.
0422          */
0423         spin_lock(&sem->lock);
0424 
0425         /* see SEM_BARRIER_1 for purpose/pairing */
0426         if (!smp_load_acquire(&sma->use_global_lock)) {
0427             /* fast path successful! */
0428             return sops->sem_num;
0429         }
0430         spin_unlock(&sem->lock);
0431     }
0432 
0433     /* slow path: acquire the full lock */
0434     ipc_lock_object(&sma->sem_perm);
0435 
0436     if (sma->use_global_lock == 0) {
0437         /*
0438          * The use_global_lock mode ended while we waited for
0439          * sma->sem_perm.lock. Thus we must switch to locking
0440          * with sem->lock.
0441          * Unlike in the fast path, there is no need to recheck
0442          * sma->use_global_lock after we have acquired sem->lock:
0443          * We own sma->sem_perm.lock, thus use_global_lock cannot
0444          * change.
0445          */
0446         spin_lock(&sem->lock);
0447 
0448         ipc_unlock_object(&sma->sem_perm);
0449         return sops->sem_num;
0450     } else {
0451         /*
0452          * Not a false alarm, thus continue to use the global lock
0453          * mode. No need for complexmode_enter(), this was done by
0454          * the caller that has set use_global_mode to non-zero.
0455          */
0456         return SEM_GLOBAL_LOCK;
0457     }
0458 }
0459 
0460 static inline void sem_unlock(struct sem_array *sma, int locknum)
0461 {
0462     if (locknum == SEM_GLOBAL_LOCK) {
0463         unmerge_queues(sma);
0464         complexmode_tryleave(sma);
0465         ipc_unlock_object(&sma->sem_perm);
0466     } else {
0467         struct sem *sem = &sma->sems[locknum];
0468         spin_unlock(&sem->lock);
0469     }
0470 }
0471 
0472 /*
0473  * sem_lock_(check_) routines are called in the paths where the rwsem
0474  * is not held.
0475  *
0476  * The caller holds the RCU read lock.
0477  */
0478 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
0479 {
0480     struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
0481 
0482     if (IS_ERR(ipcp))
0483         return ERR_CAST(ipcp);
0484 
0485     return container_of(ipcp, struct sem_array, sem_perm);
0486 }
0487 
0488 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
0489                             int id)
0490 {
0491     struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
0492 
0493     if (IS_ERR(ipcp))
0494         return ERR_CAST(ipcp);
0495 
0496     return container_of(ipcp, struct sem_array, sem_perm);
0497 }
0498 
0499 static inline void sem_lock_and_putref(struct sem_array *sma)
0500 {
0501     sem_lock(sma, NULL, -1);
0502     ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
0503 }
0504 
0505 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
0506 {
0507     ipc_rmid(&sem_ids(ns), &s->sem_perm);
0508 }
0509 
0510 static struct sem_array *sem_alloc(size_t nsems)
0511 {
0512     struct sem_array *sma;
0513 
0514     if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
0515         return NULL;
0516 
0517     sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
0518     if (unlikely(!sma))
0519         return NULL;
0520 
0521     return sma;
0522 }
0523 
0524 /**
0525  * newary - Create a new semaphore set
0526  * @ns: namespace
0527  * @params: ptr to the structure that contains key, semflg and nsems
0528  *
0529  * Called with sem_ids.rwsem held (as a writer)
0530  */
0531 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
0532 {
0533     int retval;
0534     struct sem_array *sma;
0535     key_t key = params->key;
0536     int nsems = params->u.nsems;
0537     int semflg = params->flg;
0538     int i;
0539 
0540     if (!nsems)
0541         return -EINVAL;
0542     if (ns->used_sems + nsems > ns->sc_semmns)
0543         return -ENOSPC;
0544 
0545     sma = sem_alloc(nsems);
0546     if (!sma)
0547         return -ENOMEM;
0548 
0549     sma->sem_perm.mode = (semflg & S_IRWXUGO);
0550     sma->sem_perm.key = key;
0551 
0552     sma->sem_perm.security = NULL;
0553     retval = security_sem_alloc(&sma->sem_perm);
0554     if (retval) {
0555         kvfree(sma);
0556         return retval;
0557     }
0558 
0559     for (i = 0; i < nsems; i++) {
0560         INIT_LIST_HEAD(&sma->sems[i].pending_alter);
0561         INIT_LIST_HEAD(&sma->sems[i].pending_const);
0562         spin_lock_init(&sma->sems[i].lock);
0563     }
0564 
0565     sma->complex_count = 0;
0566     sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
0567     INIT_LIST_HEAD(&sma->pending_alter);
0568     INIT_LIST_HEAD(&sma->pending_const);
0569     INIT_LIST_HEAD(&sma->list_id);
0570     sma->sem_nsems = nsems;
0571     sma->sem_ctime = ktime_get_real_seconds();
0572 
0573     /* ipc_addid() locks sma upon success. */
0574     retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
0575     if (retval < 0) {
0576         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
0577         return retval;
0578     }
0579     ns->used_sems += nsems;
0580 
0581     sem_unlock(sma, -1);
0582     rcu_read_unlock();
0583 
0584     return sma->sem_perm.id;
0585 }
0586 
0587 
0588 /*
0589  * Called with sem_ids.rwsem and ipcp locked.
0590  */
0591 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
0592 {
0593     struct sem_array *sma;
0594 
0595     sma = container_of(ipcp, struct sem_array, sem_perm);
0596     if (params->u.nsems > sma->sem_nsems)
0597         return -EINVAL;
0598 
0599     return 0;
0600 }
0601 
0602 long ksys_semget(key_t key, int nsems, int semflg)
0603 {
0604     struct ipc_namespace *ns;
0605     static const struct ipc_ops sem_ops = {
0606         .getnew = newary,
0607         .associate = security_sem_associate,
0608         .more_checks = sem_more_checks,
0609     };
0610     struct ipc_params sem_params;
0611 
0612     ns = current->nsproxy->ipc_ns;
0613 
0614     if (nsems < 0 || nsems > ns->sc_semmsl)
0615         return -EINVAL;
0616 
0617     sem_params.key = key;
0618     sem_params.flg = semflg;
0619     sem_params.u.nsems = nsems;
0620 
0621     return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
0622 }
0623 
0624 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
0625 {
0626     return ksys_semget(key, nsems, semflg);
0627 }
0628 
0629 /**
0630  * perform_atomic_semop[_slow] - Attempt to perform semaphore
0631  *                               operations on a given array.
0632  * @sma: semaphore array
0633  * @q: struct sem_queue that describes the operation
0634  *
0635  * Caller blocking are as follows, based the value
0636  * indicated by the semaphore operation (sem_op):
0637  *
0638  *  (1) >0 never blocks.
0639  *  (2)  0 (wait-for-zero operation): semval is non-zero.
0640  *  (3) <0 attempting to decrement semval to a value smaller than zero.
0641  *
0642  * Returns 0 if the operation was possible.
0643  * Returns 1 if the operation is impossible, the caller must sleep.
0644  * Returns <0 for error codes.
0645  */
0646 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
0647 {
0648     int result, sem_op, nsops;
0649     struct pid *pid;
0650     struct sembuf *sop;
0651     struct sem *curr;
0652     struct sembuf *sops;
0653     struct sem_undo *un;
0654 
0655     sops = q->sops;
0656     nsops = q->nsops;
0657     un = q->undo;
0658 
0659     for (sop = sops; sop < sops + nsops; sop++) {
0660         int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
0661         curr = &sma->sems[idx];
0662         sem_op = sop->sem_op;
0663         result = curr->semval;
0664 
0665         if (!sem_op && result)
0666             goto would_block;
0667 
0668         result += sem_op;
0669         if (result < 0)
0670             goto would_block;
0671         if (result > SEMVMX)
0672             goto out_of_range;
0673 
0674         if (sop->sem_flg & SEM_UNDO) {
0675             int undo = un->semadj[sop->sem_num] - sem_op;
0676             /* Exceeding the undo range is an error. */
0677             if (undo < (-SEMAEM - 1) || undo > SEMAEM)
0678                 goto out_of_range;
0679             un->semadj[sop->sem_num] = undo;
0680         }
0681 
0682         curr->semval = result;
0683     }
0684 
0685     sop--;
0686     pid = q->pid;
0687     while (sop >= sops) {
0688         ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
0689         sop--;
0690     }
0691 
0692     return 0;
0693 
0694 out_of_range:
0695     result = -ERANGE;
0696     goto undo;
0697 
0698 would_block:
0699     q->blocking = sop;
0700 
0701     if (sop->sem_flg & IPC_NOWAIT)
0702         result = -EAGAIN;
0703     else
0704         result = 1;
0705 
0706 undo:
0707     sop--;
0708     while (sop >= sops) {
0709         sem_op = sop->sem_op;
0710         sma->sems[sop->sem_num].semval -= sem_op;
0711         if (sop->sem_flg & SEM_UNDO)
0712             un->semadj[sop->sem_num] += sem_op;
0713         sop--;
0714     }
0715 
0716     return result;
0717 }
0718 
0719 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
0720 {
0721     int result, sem_op, nsops;
0722     struct sembuf *sop;
0723     struct sem *curr;
0724     struct sembuf *sops;
0725     struct sem_undo *un;
0726 
0727     sops = q->sops;
0728     nsops = q->nsops;
0729     un = q->undo;
0730 
0731     if (unlikely(q->dupsop))
0732         return perform_atomic_semop_slow(sma, q);
0733 
0734     /*
0735      * We scan the semaphore set twice, first to ensure that the entire
0736      * operation can succeed, therefore avoiding any pointless writes
0737      * to shared memory and having to undo such changes in order to block
0738      * until the operations can go through.
0739      */
0740     for (sop = sops; sop < sops + nsops; sop++) {
0741         int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
0742 
0743         curr = &sma->sems[idx];
0744         sem_op = sop->sem_op;
0745         result = curr->semval;
0746 
0747         if (!sem_op && result)
0748             goto would_block; /* wait-for-zero */
0749 
0750         result += sem_op;
0751         if (result < 0)
0752             goto would_block;
0753 
0754         if (result > SEMVMX)
0755             return -ERANGE;
0756 
0757         if (sop->sem_flg & SEM_UNDO) {
0758             int undo = un->semadj[sop->sem_num] - sem_op;
0759 
0760             /* Exceeding the undo range is an error. */
0761             if (undo < (-SEMAEM - 1) || undo > SEMAEM)
0762                 return -ERANGE;
0763         }
0764     }
0765 
0766     for (sop = sops; sop < sops + nsops; sop++) {
0767         curr = &sma->sems[sop->sem_num];
0768         sem_op = sop->sem_op;
0769 
0770         if (sop->sem_flg & SEM_UNDO) {
0771             int undo = un->semadj[sop->sem_num] - sem_op;
0772 
0773             un->semadj[sop->sem_num] = undo;
0774         }
0775         curr->semval += sem_op;
0776         ipc_update_pid(&curr->sempid, q->pid);
0777     }
0778 
0779     return 0;
0780 
0781 would_block:
0782     q->blocking = sop;
0783     return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
0784 }
0785 
0786 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
0787                          struct wake_q_head *wake_q)
0788 {
0789     struct task_struct *sleeper;
0790 
0791     sleeper = get_task_struct(q->sleeper);
0792 
0793     /* see SEM_BARRIER_2 for purpose/pairing */
0794     smp_store_release(&q->status, error);
0795 
0796     wake_q_add_safe(wake_q, sleeper);
0797 }
0798 
0799 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
0800 {
0801     list_del(&q->list);
0802     if (q->nsops > 1)
0803         sma->complex_count--;
0804 }
0805 
0806 /** check_restart(sma, q)
0807  * @sma: semaphore array
0808  * @q: the operation that just completed
0809  *
0810  * update_queue is O(N^2) when it restarts scanning the whole queue of
0811  * waiting operations. Therefore this function checks if the restart is
0812  * really necessary. It is called after a previously waiting operation
0813  * modified the array.
0814  * Note that wait-for-zero operations are handled without restart.
0815  */
0816 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
0817 {
0818     /* pending complex alter operations are too difficult to analyse */
0819     if (!list_empty(&sma->pending_alter))
0820         return 1;
0821 
0822     /* we were a sleeping complex operation. Too difficult */
0823     if (q->nsops > 1)
0824         return 1;
0825 
0826     /* It is impossible that someone waits for the new value:
0827      * - complex operations always restart.
0828      * - wait-for-zero are handled separately.
0829      * - q is a previously sleeping simple operation that
0830      *   altered the array. It must be a decrement, because
0831      *   simple increments never sleep.
0832      * - If there are older (higher priority) decrements
0833      *   in the queue, then they have observed the original
0834      *   semval value and couldn't proceed. The operation
0835      *   decremented to value - thus they won't proceed either.
0836      */
0837     return 0;
0838 }
0839 
0840 /**
0841  * wake_const_ops - wake up non-alter tasks
0842  * @sma: semaphore array.
0843  * @semnum: semaphore that was modified.
0844  * @wake_q: lockless wake-queue head.
0845  *
0846  * wake_const_ops must be called after a semaphore in a semaphore array
0847  * was set to 0. If complex const operations are pending, wake_const_ops must
0848  * be called with semnum = -1, as well as with the number of each modified
0849  * semaphore.
0850  * The tasks that must be woken up are added to @wake_q. The return code
0851  * is stored in q->pid.
0852  * The function returns 1 if at least one operation was completed successfully.
0853  */
0854 static int wake_const_ops(struct sem_array *sma, int semnum,
0855               struct wake_q_head *wake_q)
0856 {
0857     struct sem_queue *q, *tmp;
0858     struct list_head *pending_list;
0859     int semop_completed = 0;
0860 
0861     if (semnum == -1)
0862         pending_list = &sma->pending_const;
0863     else
0864         pending_list = &sma->sems[semnum].pending_const;
0865 
0866     list_for_each_entry_safe(q, tmp, pending_list, list) {
0867         int error = perform_atomic_semop(sma, q);
0868 
0869         if (error > 0)
0870             continue;
0871         /* operation completed, remove from queue & wakeup */
0872         unlink_queue(sma, q);
0873 
0874         wake_up_sem_queue_prepare(q, error, wake_q);
0875         if (error == 0)
0876             semop_completed = 1;
0877     }
0878 
0879     return semop_completed;
0880 }
0881 
0882 /**
0883  * do_smart_wakeup_zero - wakeup all wait for zero tasks
0884  * @sma: semaphore array
0885  * @sops: operations that were performed
0886  * @nsops: number of operations
0887  * @wake_q: lockless wake-queue head
0888  *
0889  * Checks all required queue for wait-for-zero operations, based
0890  * on the actual changes that were performed on the semaphore array.
0891  * The function returns 1 if at least one operation was completed successfully.
0892  */
0893 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
0894                 int nsops, struct wake_q_head *wake_q)
0895 {
0896     int i;
0897     int semop_completed = 0;
0898     int got_zero = 0;
0899 
0900     /* first: the per-semaphore queues, if known */
0901     if (sops) {
0902         for (i = 0; i < nsops; i++) {
0903             int num = sops[i].sem_num;
0904 
0905             if (sma->sems[num].semval == 0) {
0906                 got_zero = 1;
0907                 semop_completed |= wake_const_ops(sma, num, wake_q);
0908             }
0909         }
0910     } else {
0911         /*
0912          * No sops means modified semaphores not known.
0913          * Assume all were changed.
0914          */
0915         for (i = 0; i < sma->sem_nsems; i++) {
0916             if (sma->sems[i].semval == 0) {
0917                 got_zero = 1;
0918                 semop_completed |= wake_const_ops(sma, i, wake_q);
0919             }
0920         }
0921     }
0922     /*
0923      * If one of the modified semaphores got 0,
0924      * then check the global queue, too.
0925      */
0926     if (got_zero)
0927         semop_completed |= wake_const_ops(sma, -1, wake_q);
0928 
0929     return semop_completed;
0930 }
0931 
0932 
0933 /**
0934  * update_queue - look for tasks that can be completed.
0935  * @sma: semaphore array.
0936  * @semnum: semaphore that was modified.
0937  * @wake_q: lockless wake-queue head.
0938  *
0939  * update_queue must be called after a semaphore in a semaphore array
0940  * was modified. If multiple semaphores were modified, update_queue must
0941  * be called with semnum = -1, as well as with the number of each modified
0942  * semaphore.
0943  * The tasks that must be woken up are added to @wake_q. The return code
0944  * is stored in q->pid.
0945  * The function internally checks if const operations can now succeed.
0946  *
0947  * The function return 1 if at least one semop was completed successfully.
0948  */
0949 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
0950 {
0951     struct sem_queue *q, *tmp;
0952     struct list_head *pending_list;
0953     int semop_completed = 0;
0954 
0955     if (semnum == -1)
0956         pending_list = &sma->pending_alter;
0957     else
0958         pending_list = &sma->sems[semnum].pending_alter;
0959 
0960 again:
0961     list_for_each_entry_safe(q, tmp, pending_list, list) {
0962         int error, restart;
0963 
0964         /* If we are scanning the single sop, per-semaphore list of
0965          * one semaphore and that semaphore is 0, then it is not
0966          * necessary to scan further: simple increments
0967          * that affect only one entry succeed immediately and cannot
0968          * be in the  per semaphore pending queue, and decrements
0969          * cannot be successful if the value is already 0.
0970          */
0971         if (semnum != -1 && sma->sems[semnum].semval == 0)
0972             break;
0973 
0974         error = perform_atomic_semop(sma, q);
0975 
0976         /* Does q->sleeper still need to sleep? */
0977         if (error > 0)
0978             continue;
0979 
0980         unlink_queue(sma, q);
0981 
0982         if (error) {
0983             restart = 0;
0984         } else {
0985             semop_completed = 1;
0986             do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
0987             restart = check_restart(sma, q);
0988         }
0989 
0990         wake_up_sem_queue_prepare(q, error, wake_q);
0991         if (restart)
0992             goto again;
0993     }
0994     return semop_completed;
0995 }
0996 
0997 /**
0998  * set_semotime - set sem_otime
0999  * @sma: semaphore array
1000  * @sops: operations that modified the array, may be NULL
1001  *
1002  * sem_otime is replicated to avoid cache line trashing.
1003  * This function sets one instance to the current time.
1004  */
1005 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1006 {
1007     if (sops == NULL) {
1008         sma->sems[0].sem_otime = ktime_get_real_seconds();
1009     } else {
1010         sma->sems[sops[0].sem_num].sem_otime =
1011                         ktime_get_real_seconds();
1012     }
1013 }
1014 
1015 /**
1016  * do_smart_update - optimized update_queue
1017  * @sma: semaphore array
1018  * @sops: operations that were performed
1019  * @nsops: number of operations
1020  * @otime: force setting otime
1021  * @wake_q: lockless wake-queue head
1022  *
1023  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1024  * based on the actual changes that were performed on the semaphore array.
1025  * Note that the function does not do the actual wake-up: the caller is
1026  * responsible for calling wake_up_q().
1027  * It is safe to perform this call after dropping all locks.
1028  */
1029 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1030                 int otime, struct wake_q_head *wake_q)
1031 {
1032     int i;
1033 
1034     otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1035 
1036     if (!list_empty(&sma->pending_alter)) {
1037         /* semaphore array uses the global queue - just process it. */
1038         otime |= update_queue(sma, -1, wake_q);
1039     } else {
1040         if (!sops) {
1041             /*
1042              * No sops, thus the modified semaphores are not
1043              * known. Check all.
1044              */
1045             for (i = 0; i < sma->sem_nsems; i++)
1046                 otime |= update_queue(sma, i, wake_q);
1047         } else {
1048             /*
1049              * Check the semaphores that were increased:
1050              * - No complex ops, thus all sleeping ops are
1051              *   decrease.
1052              * - if we decreased the value, then any sleeping
1053              *   semaphore ops won't be able to run: If the
1054              *   previous value was too small, then the new
1055              *   value will be too small, too.
1056              */
1057             for (i = 0; i < nsops; i++) {
1058                 if (sops[i].sem_op > 0) {
1059                     otime |= update_queue(sma,
1060                                   sops[i].sem_num, wake_q);
1061                 }
1062             }
1063         }
1064     }
1065     if (otime)
1066         set_semotime(sma, sops);
1067 }
1068 
1069 /*
1070  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1071  */
1072 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1073             bool count_zero)
1074 {
1075     struct sembuf *sop = q->blocking;
1076 
1077     /*
1078      * Linux always (since 0.99.10) reported a task as sleeping on all
1079      * semaphores. This violates SUS, therefore it was changed to the
1080      * standard compliant behavior.
1081      * Give the administrators a chance to notice that an application
1082      * might misbehave because it relies on the Linux behavior.
1083      */
1084     pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1085             "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1086             current->comm, task_pid_nr(current));
1087 
1088     if (sop->sem_num != semnum)
1089         return 0;
1090 
1091     if (count_zero && sop->sem_op == 0)
1092         return 1;
1093     if (!count_zero && sop->sem_op < 0)
1094         return 1;
1095 
1096     return 0;
1097 }
1098 
1099 /* The following counts are associated to each semaphore:
1100  *   semncnt        number of tasks waiting on semval being nonzero
1101  *   semzcnt        number of tasks waiting on semval being zero
1102  *
1103  * Per definition, a task waits only on the semaphore of the first semop
1104  * that cannot proceed, even if additional operation would block, too.
1105  */
1106 static int count_semcnt(struct sem_array *sma, ushort semnum,
1107             bool count_zero)
1108 {
1109     struct list_head *l;
1110     struct sem_queue *q;
1111     int semcnt;
1112 
1113     semcnt = 0;
1114     /* First: check the simple operations. They are easy to evaluate */
1115     if (count_zero)
1116         l = &sma->sems[semnum].pending_const;
1117     else
1118         l = &sma->sems[semnum].pending_alter;
1119 
1120     list_for_each_entry(q, l, list) {
1121         /* all task on a per-semaphore list sleep on exactly
1122          * that semaphore
1123          */
1124         semcnt++;
1125     }
1126 
1127     /* Then: check the complex operations. */
1128     list_for_each_entry(q, &sma->pending_alter, list) {
1129         semcnt += check_qop(sma, semnum, q, count_zero);
1130     }
1131     if (count_zero) {
1132         list_for_each_entry(q, &sma->pending_const, list) {
1133             semcnt += check_qop(sma, semnum, q, count_zero);
1134         }
1135     }
1136     return semcnt;
1137 }
1138 
1139 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1140  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1141  * remains locked on exit.
1142  */
1143 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1144 {
1145     struct sem_undo *un, *tu;
1146     struct sem_queue *q, *tq;
1147     struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1148     int i;
1149     DEFINE_WAKE_Q(wake_q);
1150 
1151     /* Free the existing undo structures for this semaphore set.  */
1152     ipc_assert_locked_object(&sma->sem_perm);
1153     list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1154         list_del(&un->list_id);
1155         spin_lock(&un->ulp->lock);
1156         un->semid = -1;
1157         list_del_rcu(&un->list_proc);
1158         spin_unlock(&un->ulp->lock);
1159         kvfree_rcu(un, rcu);
1160     }
1161 
1162     /* Wake up all pending processes and let them fail with EIDRM. */
1163     list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1164         unlink_queue(sma, q);
1165         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1166     }
1167 
1168     list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1169         unlink_queue(sma, q);
1170         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1171     }
1172     for (i = 0; i < sma->sem_nsems; i++) {
1173         struct sem *sem = &sma->sems[i];
1174         list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1175             unlink_queue(sma, q);
1176             wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1177         }
1178         list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1179             unlink_queue(sma, q);
1180             wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1181         }
1182         ipc_update_pid(&sem->sempid, NULL);
1183     }
1184 
1185     /* Remove the semaphore set from the IDR */
1186     sem_rmid(ns, sma);
1187     sem_unlock(sma, -1);
1188     rcu_read_unlock();
1189 
1190     wake_up_q(&wake_q);
1191     ns->used_sems -= sma->sem_nsems;
1192     ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1193 }
1194 
1195 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1196 {
1197     switch (version) {
1198     case IPC_64:
1199         return copy_to_user(buf, in, sizeof(*in));
1200     case IPC_OLD:
1201         {
1202         struct semid_ds out;
1203 
1204         memset(&out, 0, sizeof(out));
1205 
1206         ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1207 
1208         out.sem_otime   = in->sem_otime;
1209         out.sem_ctime   = in->sem_ctime;
1210         out.sem_nsems   = in->sem_nsems;
1211 
1212         return copy_to_user(buf, &out, sizeof(out));
1213         }
1214     default:
1215         return -EINVAL;
1216     }
1217 }
1218 
1219 static time64_t get_semotime(struct sem_array *sma)
1220 {
1221     int i;
1222     time64_t res;
1223 
1224     res = sma->sems[0].sem_otime;
1225     for (i = 1; i < sma->sem_nsems; i++) {
1226         time64_t to = sma->sems[i].sem_otime;
1227 
1228         if (to > res)
1229             res = to;
1230     }
1231     return res;
1232 }
1233 
1234 static int semctl_stat(struct ipc_namespace *ns, int semid,
1235              int cmd, struct semid64_ds *semid64)
1236 {
1237     struct sem_array *sma;
1238     time64_t semotime;
1239     int err;
1240 
1241     memset(semid64, 0, sizeof(*semid64));
1242 
1243     rcu_read_lock();
1244     if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1245         sma = sem_obtain_object(ns, semid);
1246         if (IS_ERR(sma)) {
1247             err = PTR_ERR(sma);
1248             goto out_unlock;
1249         }
1250     } else { /* IPC_STAT */
1251         sma = sem_obtain_object_check(ns, semid);
1252         if (IS_ERR(sma)) {
1253             err = PTR_ERR(sma);
1254             goto out_unlock;
1255         }
1256     }
1257 
1258     /* see comment for SHM_STAT_ANY */
1259     if (cmd == SEM_STAT_ANY)
1260         audit_ipc_obj(&sma->sem_perm);
1261     else {
1262         err = -EACCES;
1263         if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1264             goto out_unlock;
1265     }
1266 
1267     err = security_sem_semctl(&sma->sem_perm, cmd);
1268     if (err)
1269         goto out_unlock;
1270 
1271     ipc_lock_object(&sma->sem_perm);
1272 
1273     if (!ipc_valid_object(&sma->sem_perm)) {
1274         ipc_unlock_object(&sma->sem_perm);
1275         err = -EIDRM;
1276         goto out_unlock;
1277     }
1278 
1279     kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1280     semotime = get_semotime(sma);
1281     semid64->sem_otime = semotime;
1282     semid64->sem_ctime = sma->sem_ctime;
1283 #ifndef CONFIG_64BIT
1284     semid64->sem_otime_high = semotime >> 32;
1285     semid64->sem_ctime_high = sma->sem_ctime >> 32;
1286 #endif
1287     semid64->sem_nsems = sma->sem_nsems;
1288 
1289     if (cmd == IPC_STAT) {
1290         /*
1291          * As defined in SUS:
1292          * Return 0 on success
1293          */
1294         err = 0;
1295     } else {
1296         /*
1297          * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1298          * Return the full id, including the sequence number
1299          */
1300         err = sma->sem_perm.id;
1301     }
1302     ipc_unlock_object(&sma->sem_perm);
1303 out_unlock:
1304     rcu_read_unlock();
1305     return err;
1306 }
1307 
1308 static int semctl_info(struct ipc_namespace *ns, int semid,
1309              int cmd, void __user *p)
1310 {
1311     struct seminfo seminfo;
1312     int max_idx;
1313     int err;
1314 
1315     err = security_sem_semctl(NULL, cmd);
1316     if (err)
1317         return err;
1318 
1319     memset(&seminfo, 0, sizeof(seminfo));
1320     seminfo.semmni = ns->sc_semmni;
1321     seminfo.semmns = ns->sc_semmns;
1322     seminfo.semmsl = ns->sc_semmsl;
1323     seminfo.semopm = ns->sc_semopm;
1324     seminfo.semvmx = SEMVMX;
1325     seminfo.semmnu = SEMMNU;
1326     seminfo.semmap = SEMMAP;
1327     seminfo.semume = SEMUME;
1328     down_read(&sem_ids(ns).rwsem);
1329     if (cmd == SEM_INFO) {
1330         seminfo.semusz = sem_ids(ns).in_use;
1331         seminfo.semaem = ns->used_sems;
1332     } else {
1333         seminfo.semusz = SEMUSZ;
1334         seminfo.semaem = SEMAEM;
1335     }
1336     max_idx = ipc_get_maxidx(&sem_ids(ns));
1337     up_read(&sem_ids(ns).rwsem);
1338     if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1339         return -EFAULT;
1340     return (max_idx < 0) ? 0 : max_idx;
1341 }
1342 
1343 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1344         int val)
1345 {
1346     struct sem_undo *un;
1347     struct sem_array *sma;
1348     struct sem *curr;
1349     int err;
1350     DEFINE_WAKE_Q(wake_q);
1351 
1352     if (val > SEMVMX || val < 0)
1353         return -ERANGE;
1354 
1355     rcu_read_lock();
1356     sma = sem_obtain_object_check(ns, semid);
1357     if (IS_ERR(sma)) {
1358         rcu_read_unlock();
1359         return PTR_ERR(sma);
1360     }
1361 
1362     if (semnum < 0 || semnum >= sma->sem_nsems) {
1363         rcu_read_unlock();
1364         return -EINVAL;
1365     }
1366 
1367 
1368     if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1369         rcu_read_unlock();
1370         return -EACCES;
1371     }
1372 
1373     err = security_sem_semctl(&sma->sem_perm, SETVAL);
1374     if (err) {
1375         rcu_read_unlock();
1376         return -EACCES;
1377     }
1378 
1379     sem_lock(sma, NULL, -1);
1380 
1381     if (!ipc_valid_object(&sma->sem_perm)) {
1382         sem_unlock(sma, -1);
1383         rcu_read_unlock();
1384         return -EIDRM;
1385     }
1386 
1387     semnum = array_index_nospec(semnum, sma->sem_nsems);
1388     curr = &sma->sems[semnum];
1389 
1390     ipc_assert_locked_object(&sma->sem_perm);
1391     list_for_each_entry(un, &sma->list_id, list_id)
1392         un->semadj[semnum] = 0;
1393 
1394     curr->semval = val;
1395     ipc_update_pid(&curr->sempid, task_tgid(current));
1396     sma->sem_ctime = ktime_get_real_seconds();
1397     /* maybe some queued-up processes were waiting for this */
1398     do_smart_update(sma, NULL, 0, 0, &wake_q);
1399     sem_unlock(sma, -1);
1400     rcu_read_unlock();
1401     wake_up_q(&wake_q);
1402     return 0;
1403 }
1404 
1405 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1406         int cmd, void __user *p)
1407 {
1408     struct sem_array *sma;
1409     struct sem *curr;
1410     int err, nsems;
1411     ushort fast_sem_io[SEMMSL_FAST];
1412     ushort *sem_io = fast_sem_io;
1413     DEFINE_WAKE_Q(wake_q);
1414 
1415     rcu_read_lock();
1416     sma = sem_obtain_object_check(ns, semid);
1417     if (IS_ERR(sma)) {
1418         rcu_read_unlock();
1419         return PTR_ERR(sma);
1420     }
1421 
1422     nsems = sma->sem_nsems;
1423 
1424     err = -EACCES;
1425     if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1426         goto out_rcu_wakeup;
1427 
1428     err = security_sem_semctl(&sma->sem_perm, cmd);
1429     if (err)
1430         goto out_rcu_wakeup;
1431 
1432     switch (cmd) {
1433     case GETALL:
1434     {
1435         ushort __user *array = p;
1436         int i;
1437 
1438         sem_lock(sma, NULL, -1);
1439         if (!ipc_valid_object(&sma->sem_perm)) {
1440             err = -EIDRM;
1441             goto out_unlock;
1442         }
1443         if (nsems > SEMMSL_FAST) {
1444             if (!ipc_rcu_getref(&sma->sem_perm)) {
1445                 err = -EIDRM;
1446                 goto out_unlock;
1447             }
1448             sem_unlock(sma, -1);
1449             rcu_read_unlock();
1450             sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451                         GFP_KERNEL);
1452             if (sem_io == NULL) {
1453                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454                 return -ENOMEM;
1455             }
1456 
1457             rcu_read_lock();
1458             sem_lock_and_putref(sma);
1459             if (!ipc_valid_object(&sma->sem_perm)) {
1460                 err = -EIDRM;
1461                 goto out_unlock;
1462             }
1463         }
1464         for (i = 0; i < sma->sem_nsems; i++)
1465             sem_io[i] = sma->sems[i].semval;
1466         sem_unlock(sma, -1);
1467         rcu_read_unlock();
1468         err = 0;
1469         if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1470             err = -EFAULT;
1471         goto out_free;
1472     }
1473     case SETALL:
1474     {
1475         int i;
1476         struct sem_undo *un;
1477 
1478         if (!ipc_rcu_getref(&sma->sem_perm)) {
1479             err = -EIDRM;
1480             goto out_rcu_wakeup;
1481         }
1482         rcu_read_unlock();
1483 
1484         if (nsems > SEMMSL_FAST) {
1485             sem_io = kvmalloc_array(nsems, sizeof(ushort),
1486                         GFP_KERNEL);
1487             if (sem_io == NULL) {
1488                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1489                 return -ENOMEM;
1490             }
1491         }
1492 
1493         if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1494             ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1495             err = -EFAULT;
1496             goto out_free;
1497         }
1498 
1499         for (i = 0; i < nsems; i++) {
1500             if (sem_io[i] > SEMVMX) {
1501                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1502                 err = -ERANGE;
1503                 goto out_free;
1504             }
1505         }
1506         rcu_read_lock();
1507         sem_lock_and_putref(sma);
1508         if (!ipc_valid_object(&sma->sem_perm)) {
1509             err = -EIDRM;
1510             goto out_unlock;
1511         }
1512 
1513         for (i = 0; i < nsems; i++) {
1514             sma->sems[i].semval = sem_io[i];
1515             ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1516         }
1517 
1518         ipc_assert_locked_object(&sma->sem_perm);
1519         list_for_each_entry(un, &sma->list_id, list_id) {
1520             for (i = 0; i < nsems; i++)
1521                 un->semadj[i] = 0;
1522         }
1523         sma->sem_ctime = ktime_get_real_seconds();
1524         /* maybe some queued-up processes were waiting for this */
1525         do_smart_update(sma, NULL, 0, 0, &wake_q);
1526         err = 0;
1527         goto out_unlock;
1528     }
1529     /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1530     }
1531     err = -EINVAL;
1532     if (semnum < 0 || semnum >= nsems)
1533         goto out_rcu_wakeup;
1534 
1535     sem_lock(sma, NULL, -1);
1536     if (!ipc_valid_object(&sma->sem_perm)) {
1537         err = -EIDRM;
1538         goto out_unlock;
1539     }
1540 
1541     semnum = array_index_nospec(semnum, nsems);
1542     curr = &sma->sems[semnum];
1543 
1544     switch (cmd) {
1545     case GETVAL:
1546         err = curr->semval;
1547         goto out_unlock;
1548     case GETPID:
1549         err = pid_vnr(curr->sempid);
1550         goto out_unlock;
1551     case GETNCNT:
1552         err = count_semcnt(sma, semnum, 0);
1553         goto out_unlock;
1554     case GETZCNT:
1555         err = count_semcnt(sma, semnum, 1);
1556         goto out_unlock;
1557     }
1558 
1559 out_unlock:
1560     sem_unlock(sma, -1);
1561 out_rcu_wakeup:
1562     rcu_read_unlock();
1563     wake_up_q(&wake_q);
1564 out_free:
1565     if (sem_io != fast_sem_io)
1566         kvfree(sem_io);
1567     return err;
1568 }
1569 
1570 static inline unsigned long
1571 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1572 {
1573     switch (version) {
1574     case IPC_64:
1575         if (copy_from_user(out, buf, sizeof(*out)))
1576             return -EFAULT;
1577         return 0;
1578     case IPC_OLD:
1579         {
1580         struct semid_ds tbuf_old;
1581 
1582         if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1583             return -EFAULT;
1584 
1585         out->sem_perm.uid   = tbuf_old.sem_perm.uid;
1586         out->sem_perm.gid   = tbuf_old.sem_perm.gid;
1587         out->sem_perm.mode  = tbuf_old.sem_perm.mode;
1588 
1589         return 0;
1590         }
1591     default:
1592         return -EINVAL;
1593     }
1594 }
1595 
1596 /*
1597  * This function handles some semctl commands which require the rwsem
1598  * to be held in write mode.
1599  * NOTE: no locks must be held, the rwsem is taken inside this function.
1600  */
1601 static int semctl_down(struct ipc_namespace *ns, int semid,
1602                int cmd, struct semid64_ds *semid64)
1603 {
1604     struct sem_array *sma;
1605     int err;
1606     struct kern_ipc_perm *ipcp;
1607 
1608     down_write(&sem_ids(ns).rwsem);
1609     rcu_read_lock();
1610 
1611     ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1612                       &semid64->sem_perm, 0);
1613     if (IS_ERR(ipcp)) {
1614         err = PTR_ERR(ipcp);
1615         goto out_unlock1;
1616     }
1617 
1618     sma = container_of(ipcp, struct sem_array, sem_perm);
1619 
1620     err = security_sem_semctl(&sma->sem_perm, cmd);
1621     if (err)
1622         goto out_unlock1;
1623 
1624     switch (cmd) {
1625     case IPC_RMID:
1626         sem_lock(sma, NULL, -1);
1627         /* freeary unlocks the ipc object and rcu */
1628         freeary(ns, ipcp);
1629         goto out_up;
1630     case IPC_SET:
1631         sem_lock(sma, NULL, -1);
1632         err = ipc_update_perm(&semid64->sem_perm, ipcp);
1633         if (err)
1634             goto out_unlock0;
1635         sma->sem_ctime = ktime_get_real_seconds();
1636         break;
1637     default:
1638         err = -EINVAL;
1639         goto out_unlock1;
1640     }
1641 
1642 out_unlock0:
1643     sem_unlock(sma, -1);
1644 out_unlock1:
1645     rcu_read_unlock();
1646 out_up:
1647     up_write(&sem_ids(ns).rwsem);
1648     return err;
1649 }
1650 
1651 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1652 {
1653     struct ipc_namespace *ns;
1654     void __user *p = (void __user *)arg;
1655     struct semid64_ds semid64;
1656     int err;
1657 
1658     if (semid < 0)
1659         return -EINVAL;
1660 
1661     ns = current->nsproxy->ipc_ns;
1662 
1663     switch (cmd) {
1664     case IPC_INFO:
1665     case SEM_INFO:
1666         return semctl_info(ns, semid, cmd, p);
1667     case IPC_STAT:
1668     case SEM_STAT:
1669     case SEM_STAT_ANY:
1670         err = semctl_stat(ns, semid, cmd, &semid64);
1671         if (err < 0)
1672             return err;
1673         if (copy_semid_to_user(p, &semid64, version))
1674             err = -EFAULT;
1675         return err;
1676     case GETALL:
1677     case GETVAL:
1678     case GETPID:
1679     case GETNCNT:
1680     case GETZCNT:
1681     case SETALL:
1682         return semctl_main(ns, semid, semnum, cmd, p);
1683     case SETVAL: {
1684         int val;
1685 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1686         /* big-endian 64bit */
1687         val = arg >> 32;
1688 #else
1689         /* 32bit or little-endian 64bit */
1690         val = arg;
1691 #endif
1692         return semctl_setval(ns, semid, semnum, val);
1693     }
1694     case IPC_SET:
1695         if (copy_semid_from_user(&semid64, p, version))
1696             return -EFAULT;
1697         fallthrough;
1698     case IPC_RMID:
1699         return semctl_down(ns, semid, cmd, &semid64);
1700     default:
1701         return -EINVAL;
1702     }
1703 }
1704 
1705 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1706 {
1707     return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1708 }
1709 
1710 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1711 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1712 {
1713     int version = ipc_parse_version(&cmd);
1714 
1715     return ksys_semctl(semid, semnum, cmd, arg, version);
1716 }
1717 
1718 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1719 {
1720     return ksys_old_semctl(semid, semnum, cmd, arg);
1721 }
1722 #endif
1723 
1724 #ifdef CONFIG_COMPAT
1725 
1726 struct compat_semid_ds {
1727     struct compat_ipc_perm sem_perm;
1728     old_time32_t sem_otime;
1729     old_time32_t sem_ctime;
1730     compat_uptr_t sem_base;
1731     compat_uptr_t sem_pending;
1732     compat_uptr_t sem_pending_last;
1733     compat_uptr_t undo;
1734     unsigned short sem_nsems;
1735 };
1736 
1737 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1738                     int version)
1739 {
1740     memset(out, 0, sizeof(*out));
1741     if (version == IPC_64) {
1742         struct compat_semid64_ds __user *p = buf;
1743         return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1744     } else {
1745         struct compat_semid_ds __user *p = buf;
1746         return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1747     }
1748 }
1749 
1750 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1751                     int version)
1752 {
1753     if (version == IPC_64) {
1754         struct compat_semid64_ds v;
1755         memset(&v, 0, sizeof(v));
1756         to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1757         v.sem_otime  = lower_32_bits(in->sem_otime);
1758         v.sem_otime_high = upper_32_bits(in->sem_otime);
1759         v.sem_ctime  = lower_32_bits(in->sem_ctime);
1760         v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1761         v.sem_nsems = in->sem_nsems;
1762         return copy_to_user(buf, &v, sizeof(v));
1763     } else {
1764         struct compat_semid_ds v;
1765         memset(&v, 0, sizeof(v));
1766         to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1767         v.sem_otime = in->sem_otime;
1768         v.sem_ctime = in->sem_ctime;
1769         v.sem_nsems = in->sem_nsems;
1770         return copy_to_user(buf, &v, sizeof(v));
1771     }
1772 }
1773 
1774 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1775 {
1776     void __user *p = compat_ptr(arg);
1777     struct ipc_namespace *ns;
1778     struct semid64_ds semid64;
1779     int err;
1780 
1781     ns = current->nsproxy->ipc_ns;
1782 
1783     if (semid < 0)
1784         return -EINVAL;
1785 
1786     switch (cmd & (~IPC_64)) {
1787     case IPC_INFO:
1788     case SEM_INFO:
1789         return semctl_info(ns, semid, cmd, p);
1790     case IPC_STAT:
1791     case SEM_STAT:
1792     case SEM_STAT_ANY:
1793         err = semctl_stat(ns, semid, cmd, &semid64);
1794         if (err < 0)
1795             return err;
1796         if (copy_compat_semid_to_user(p, &semid64, version))
1797             err = -EFAULT;
1798         return err;
1799     case GETVAL:
1800     case GETPID:
1801     case GETNCNT:
1802     case GETZCNT:
1803     case GETALL:
1804     case SETALL:
1805         return semctl_main(ns, semid, semnum, cmd, p);
1806     case SETVAL:
1807         return semctl_setval(ns, semid, semnum, arg);
1808     case IPC_SET:
1809         if (copy_compat_semid_from_user(&semid64, p, version))
1810             return -EFAULT;
1811         fallthrough;
1812     case IPC_RMID:
1813         return semctl_down(ns, semid, cmd, &semid64);
1814     default:
1815         return -EINVAL;
1816     }
1817 }
1818 
1819 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1820 {
1821     return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1822 }
1823 
1824 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1825 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1826 {
1827     int version = compat_ipc_parse_version(&cmd);
1828 
1829     return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1830 }
1831 
1832 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1833 {
1834     return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1835 }
1836 #endif
1837 #endif
1838 
1839 /* If the task doesn't already have a undo_list, then allocate one
1840  * here.  We guarantee there is only one thread using this undo list,
1841  * and current is THE ONE
1842  *
1843  * If this allocation and assignment succeeds, but later
1844  * portions of this code fail, there is no need to free the sem_undo_list.
1845  * Just let it stay associated with the task, and it'll be freed later
1846  * at exit time.
1847  *
1848  * This can block, so callers must hold no locks.
1849  */
1850 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1851 {
1852     struct sem_undo_list *undo_list;
1853 
1854     undo_list = current->sysvsem.undo_list;
1855     if (!undo_list) {
1856         undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1857         if (undo_list == NULL)
1858             return -ENOMEM;
1859         spin_lock_init(&undo_list->lock);
1860         refcount_set(&undo_list->refcnt, 1);
1861         INIT_LIST_HEAD(&undo_list->list_proc);
1862 
1863         current->sysvsem.undo_list = undo_list;
1864     }
1865     *undo_listp = undo_list;
1866     return 0;
1867 }
1868 
1869 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1870 {
1871     struct sem_undo *un;
1872 
1873     list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1874                 spin_is_locked(&ulp->lock)) {
1875         if (un->semid == semid)
1876             return un;
1877     }
1878     return NULL;
1879 }
1880 
1881 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1882 {
1883     struct sem_undo *un;
1884 
1885     assert_spin_locked(&ulp->lock);
1886 
1887     un = __lookup_undo(ulp, semid);
1888     if (un) {
1889         list_del_rcu(&un->list_proc);
1890         list_add_rcu(&un->list_proc, &ulp->list_proc);
1891     }
1892     return un;
1893 }
1894 
1895 /**
1896  * find_alloc_undo - lookup (and if not present create) undo array
1897  * @ns: namespace
1898  * @semid: semaphore array id
1899  *
1900  * The function looks up (and if not present creates) the undo structure.
1901  * The size of the undo structure depends on the size of the semaphore
1902  * array, thus the alloc path is not that straightforward.
1903  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1904  * performs a rcu_read_lock().
1905  */
1906 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1907 {
1908     struct sem_array *sma;
1909     struct sem_undo_list *ulp;
1910     struct sem_undo *un, *new;
1911     int nsems, error;
1912 
1913     error = get_undo_list(&ulp);
1914     if (error)
1915         return ERR_PTR(error);
1916 
1917     rcu_read_lock();
1918     spin_lock(&ulp->lock);
1919     un = lookup_undo(ulp, semid);
1920     spin_unlock(&ulp->lock);
1921     if (likely(un != NULL))
1922         goto out;
1923 
1924     /* no undo structure around - allocate one. */
1925     /* step 1: figure out the size of the semaphore array */
1926     sma = sem_obtain_object_check(ns, semid);
1927     if (IS_ERR(sma)) {
1928         rcu_read_unlock();
1929         return ERR_CAST(sma);
1930     }
1931 
1932     nsems = sma->sem_nsems;
1933     if (!ipc_rcu_getref(&sma->sem_perm)) {
1934         rcu_read_unlock();
1935         un = ERR_PTR(-EIDRM);
1936         goto out;
1937     }
1938     rcu_read_unlock();
1939 
1940     /* step 2: allocate new undo structure */
1941     new = kvzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems,
1942                GFP_KERNEL_ACCOUNT);
1943     if (!new) {
1944         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1945         return ERR_PTR(-ENOMEM);
1946     }
1947 
1948     /* step 3: Acquire the lock on semaphore array */
1949     rcu_read_lock();
1950     sem_lock_and_putref(sma);
1951     if (!ipc_valid_object(&sma->sem_perm)) {
1952         sem_unlock(sma, -1);
1953         rcu_read_unlock();
1954         kvfree(new);
1955         un = ERR_PTR(-EIDRM);
1956         goto out;
1957     }
1958     spin_lock(&ulp->lock);
1959 
1960     /*
1961      * step 4: check for races: did someone else allocate the undo struct?
1962      */
1963     un = lookup_undo(ulp, semid);
1964     if (un) {
1965         spin_unlock(&ulp->lock);
1966         kvfree(new);
1967         goto success;
1968     }
1969     /* step 5: initialize & link new undo structure */
1970     new->semadj = (short *) &new[1];
1971     new->ulp = ulp;
1972     new->semid = semid;
1973     assert_spin_locked(&ulp->lock);
1974     list_add_rcu(&new->list_proc, &ulp->list_proc);
1975     ipc_assert_locked_object(&sma->sem_perm);
1976     list_add(&new->list_id, &sma->list_id);
1977     un = new;
1978     spin_unlock(&ulp->lock);
1979 success:
1980     sem_unlock(sma, -1);
1981 out:
1982     return un;
1983 }
1984 
1985 long __do_semtimedop(int semid, struct sembuf *sops,
1986         unsigned nsops, const struct timespec64 *timeout,
1987         struct ipc_namespace *ns)
1988 {
1989     int error = -EINVAL;
1990     struct sem_array *sma;
1991     struct sembuf *sop;
1992     struct sem_undo *un;
1993     int max, locknum;
1994     bool undos = false, alter = false, dupsop = false;
1995     struct sem_queue queue;
1996     unsigned long dup = 0;
1997     ktime_t expires, *exp = NULL;
1998     bool timed_out = false;
1999 
2000     if (nsops < 1 || semid < 0)
2001         return -EINVAL;
2002     if (nsops > ns->sc_semopm)
2003         return -E2BIG;
2004 
2005     if (timeout) {
2006         if (!timespec64_valid(timeout))
2007             return -EINVAL;
2008         expires = ktime_add_safe(ktime_get(),
2009                 timespec64_to_ktime(*timeout));
2010         exp = &expires;
2011     }
2012 
2013 
2014     max = 0;
2015     for (sop = sops; sop < sops + nsops; sop++) {
2016         unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2017 
2018         if (sop->sem_num >= max)
2019             max = sop->sem_num;
2020         if (sop->sem_flg & SEM_UNDO)
2021             undos = true;
2022         if (dup & mask) {
2023             /*
2024              * There was a previous alter access that appears
2025              * to have accessed the same semaphore, thus use
2026              * the dupsop logic. "appears", because the detection
2027              * can only check % BITS_PER_LONG.
2028              */
2029             dupsop = true;
2030         }
2031         if (sop->sem_op != 0) {
2032             alter = true;
2033             dup |= mask;
2034         }
2035     }
2036 
2037     if (undos) {
2038         /* On success, find_alloc_undo takes the rcu_read_lock */
2039         un = find_alloc_undo(ns, semid);
2040         if (IS_ERR(un)) {
2041             error = PTR_ERR(un);
2042             goto out;
2043         }
2044     } else {
2045         un = NULL;
2046         rcu_read_lock();
2047     }
2048 
2049     sma = sem_obtain_object_check(ns, semid);
2050     if (IS_ERR(sma)) {
2051         rcu_read_unlock();
2052         error = PTR_ERR(sma);
2053         goto out;
2054     }
2055 
2056     error = -EFBIG;
2057     if (max >= sma->sem_nsems) {
2058         rcu_read_unlock();
2059         goto out;
2060     }
2061 
2062     error = -EACCES;
2063     if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2064         rcu_read_unlock();
2065         goto out;
2066     }
2067 
2068     error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2069     if (error) {
2070         rcu_read_unlock();
2071         goto out;
2072     }
2073 
2074     error = -EIDRM;
2075     locknum = sem_lock(sma, sops, nsops);
2076     /*
2077      * We eventually might perform the following check in a lockless
2078      * fashion, considering ipc_valid_object() locking constraints.
2079      * If nsops == 1 and there is no contention for sem_perm.lock, then
2080      * only a per-semaphore lock is held and it's OK to proceed with the
2081      * check below. More details on the fine grained locking scheme
2082      * entangled here and why it's RMID race safe on comments at sem_lock()
2083      */
2084     if (!ipc_valid_object(&sma->sem_perm))
2085         goto out_unlock;
2086     /*
2087      * semid identifiers are not unique - find_alloc_undo may have
2088      * allocated an undo structure, it was invalidated by an RMID
2089      * and now a new array with received the same id. Check and fail.
2090      * This case can be detected checking un->semid. The existence of
2091      * "un" itself is guaranteed by rcu.
2092      */
2093     if (un && un->semid == -1)
2094         goto out_unlock;
2095 
2096     queue.sops = sops;
2097     queue.nsops = nsops;
2098     queue.undo = un;
2099     queue.pid = task_tgid(current);
2100     queue.alter = alter;
2101     queue.dupsop = dupsop;
2102 
2103     error = perform_atomic_semop(sma, &queue);
2104     if (error == 0) { /* non-blocking successful path */
2105         DEFINE_WAKE_Q(wake_q);
2106 
2107         /*
2108          * If the operation was successful, then do
2109          * the required updates.
2110          */
2111         if (alter)
2112             do_smart_update(sma, sops, nsops, 1, &wake_q);
2113         else
2114             set_semotime(sma, sops);
2115 
2116         sem_unlock(sma, locknum);
2117         rcu_read_unlock();
2118         wake_up_q(&wake_q);
2119 
2120         goto out;
2121     }
2122     if (error < 0) /* non-blocking error path */
2123         goto out_unlock;
2124 
2125     /*
2126      * We need to sleep on this operation, so we put the current
2127      * task into the pending queue and go to sleep.
2128      */
2129     if (nsops == 1) {
2130         struct sem *curr;
2131         int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2132         curr = &sma->sems[idx];
2133 
2134         if (alter) {
2135             if (sma->complex_count) {
2136                 list_add_tail(&queue.list,
2137                         &sma->pending_alter);
2138             } else {
2139 
2140                 list_add_tail(&queue.list,
2141                         &curr->pending_alter);
2142             }
2143         } else {
2144             list_add_tail(&queue.list, &curr->pending_const);
2145         }
2146     } else {
2147         if (!sma->complex_count)
2148             merge_queues(sma);
2149 
2150         if (alter)
2151             list_add_tail(&queue.list, &sma->pending_alter);
2152         else
2153             list_add_tail(&queue.list, &sma->pending_const);
2154 
2155         sma->complex_count++;
2156     }
2157 
2158     do {
2159         /* memory ordering ensured by the lock in sem_lock() */
2160         WRITE_ONCE(queue.status, -EINTR);
2161         queue.sleeper = current;
2162 
2163         /* memory ordering is ensured by the lock in sem_lock() */
2164         __set_current_state(TASK_INTERRUPTIBLE);
2165         sem_unlock(sma, locknum);
2166         rcu_read_unlock();
2167 
2168         timed_out = !schedule_hrtimeout_range(exp,
2169                 current->timer_slack_ns, HRTIMER_MODE_ABS);
2170 
2171         /*
2172          * fastpath: the semop has completed, either successfully or
2173          * not, from the syscall pov, is quite irrelevant to us at this
2174          * point; we're done.
2175          *
2176          * We _do_ care, nonetheless, about being awoken by a signal or
2177          * spuriously.  The queue.status is checked again in the
2178          * slowpath (aka after taking sem_lock), such that we can detect
2179          * scenarios where we were awakened externally, during the
2180          * window between wake_q_add() and wake_up_q().
2181          */
2182         error = READ_ONCE(queue.status);
2183         if (error != -EINTR) {
2184             /* see SEM_BARRIER_2 for purpose/pairing */
2185             smp_acquire__after_ctrl_dep();
2186             goto out;
2187         }
2188 
2189         rcu_read_lock();
2190         locknum = sem_lock(sma, sops, nsops);
2191 
2192         if (!ipc_valid_object(&sma->sem_perm))
2193             goto out_unlock;
2194 
2195         /*
2196          * No necessity for any barrier: We are protect by sem_lock()
2197          */
2198         error = READ_ONCE(queue.status);
2199 
2200         /*
2201          * If queue.status != -EINTR we are woken up by another process.
2202          * Leave without unlink_queue(), but with sem_unlock().
2203          */
2204         if (error != -EINTR)
2205             goto out_unlock;
2206 
2207         /*
2208          * If an interrupt occurred we have to clean up the queue.
2209          */
2210         if (timed_out)
2211             error = -EAGAIN;
2212     } while (error == -EINTR && !signal_pending(current)); /* spurious */
2213 
2214     unlink_queue(sma, &queue);
2215 
2216 out_unlock:
2217     sem_unlock(sma, locknum);
2218     rcu_read_unlock();
2219 out:
2220     return error;
2221 }
2222 
2223 static long do_semtimedop(int semid, struct sembuf __user *tsops,
2224         unsigned nsops, const struct timespec64 *timeout)
2225 {
2226     struct sembuf fast_sops[SEMOPM_FAST];
2227     struct sembuf *sops = fast_sops;
2228     struct ipc_namespace *ns;
2229     int ret;
2230 
2231     ns = current->nsproxy->ipc_ns;
2232     if (nsops > ns->sc_semopm)
2233         return -E2BIG;
2234     if (nsops < 1)
2235         return -EINVAL;
2236 
2237     if (nsops > SEMOPM_FAST) {
2238         sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2239         if (sops == NULL)
2240             return -ENOMEM;
2241     }
2242 
2243     if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2244         ret =  -EFAULT;
2245         goto out_free;
2246     }
2247 
2248     ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2249 
2250 out_free:
2251     if (sops != fast_sops)
2252         kvfree(sops);
2253 
2254     return ret;
2255 }
2256 
2257 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2258              unsigned int nsops, const struct __kernel_timespec __user *timeout)
2259 {
2260     if (timeout) {
2261         struct timespec64 ts;
2262         if (get_timespec64(&ts, timeout))
2263             return -EFAULT;
2264         return do_semtimedop(semid, tsops, nsops, &ts);
2265     }
2266     return do_semtimedop(semid, tsops, nsops, NULL);
2267 }
2268 
2269 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2270         unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2271 {
2272     return ksys_semtimedop(semid, tsops, nsops, timeout);
2273 }
2274 
2275 #ifdef CONFIG_COMPAT_32BIT_TIME
2276 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2277                 unsigned int nsops,
2278                 const struct old_timespec32 __user *timeout)
2279 {
2280     if (timeout) {
2281         struct timespec64 ts;
2282         if (get_old_timespec32(&ts, timeout))
2283             return -EFAULT;
2284         return do_semtimedop(semid, tsems, nsops, &ts);
2285     }
2286     return do_semtimedop(semid, tsems, nsops, NULL);
2287 }
2288 
2289 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2290                unsigned int, nsops,
2291                const struct old_timespec32 __user *, timeout)
2292 {
2293     return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2294 }
2295 #endif
2296 
2297 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2298         unsigned, nsops)
2299 {
2300     return do_semtimedop(semid, tsops, nsops, NULL);
2301 }
2302 
2303 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2304  * parent and child tasks.
2305  */
2306 
2307 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2308 {
2309     struct sem_undo_list *undo_list;
2310     int error;
2311 
2312     if (clone_flags & CLONE_SYSVSEM) {
2313         error = get_undo_list(&undo_list);
2314         if (error)
2315             return error;
2316         refcount_inc(&undo_list->refcnt);
2317         tsk->sysvsem.undo_list = undo_list;
2318     } else
2319         tsk->sysvsem.undo_list = NULL;
2320 
2321     return 0;
2322 }
2323 
2324 /*
2325  * add semadj values to semaphores, free undo structures.
2326  * undo structures are not freed when semaphore arrays are destroyed
2327  * so some of them may be out of date.
2328  * IMPLEMENTATION NOTE: There is some confusion over whether the
2329  * set of adjustments that needs to be done should be done in an atomic
2330  * manner or not. That is, if we are attempting to decrement the semval
2331  * should we queue up and wait until we can do so legally?
2332  * The original implementation attempted to do this (queue and wait).
2333  * The current implementation does not do so. The POSIX standard
2334  * and SVID should be consulted to determine what behavior is mandated.
2335  */
2336 void exit_sem(struct task_struct *tsk)
2337 {
2338     struct sem_undo_list *ulp;
2339 
2340     ulp = tsk->sysvsem.undo_list;
2341     if (!ulp)
2342         return;
2343     tsk->sysvsem.undo_list = NULL;
2344 
2345     if (!refcount_dec_and_test(&ulp->refcnt))
2346         return;
2347 
2348     for (;;) {
2349         struct sem_array *sma;
2350         struct sem_undo *un;
2351         int semid, i;
2352         DEFINE_WAKE_Q(wake_q);
2353 
2354         cond_resched();
2355 
2356         rcu_read_lock();
2357         un = list_entry_rcu(ulp->list_proc.next,
2358                     struct sem_undo, list_proc);
2359         if (&un->list_proc == &ulp->list_proc) {
2360             /*
2361              * We must wait for freeary() before freeing this ulp,
2362              * in case we raced with last sem_undo. There is a small
2363              * possibility where we exit while freeary() didn't
2364              * finish unlocking sem_undo_list.
2365              */
2366             spin_lock(&ulp->lock);
2367             spin_unlock(&ulp->lock);
2368             rcu_read_unlock();
2369             break;
2370         }
2371         spin_lock(&ulp->lock);
2372         semid = un->semid;
2373         spin_unlock(&ulp->lock);
2374 
2375         /* exit_sem raced with IPC_RMID, nothing to do */
2376         if (semid == -1) {
2377             rcu_read_unlock();
2378             continue;
2379         }
2380 
2381         sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2382         /* exit_sem raced with IPC_RMID, nothing to do */
2383         if (IS_ERR(sma)) {
2384             rcu_read_unlock();
2385             continue;
2386         }
2387 
2388         sem_lock(sma, NULL, -1);
2389         /* exit_sem raced with IPC_RMID, nothing to do */
2390         if (!ipc_valid_object(&sma->sem_perm)) {
2391             sem_unlock(sma, -1);
2392             rcu_read_unlock();
2393             continue;
2394         }
2395         un = __lookup_undo(ulp, semid);
2396         if (un == NULL) {
2397             /* exit_sem raced with IPC_RMID+semget() that created
2398              * exactly the same semid. Nothing to do.
2399              */
2400             sem_unlock(sma, -1);
2401             rcu_read_unlock();
2402             continue;
2403         }
2404 
2405         /* remove un from the linked lists */
2406         ipc_assert_locked_object(&sma->sem_perm);
2407         list_del(&un->list_id);
2408 
2409         spin_lock(&ulp->lock);
2410         list_del_rcu(&un->list_proc);
2411         spin_unlock(&ulp->lock);
2412 
2413         /* perform adjustments registered in un */
2414         for (i = 0; i < sma->sem_nsems; i++) {
2415             struct sem *semaphore = &sma->sems[i];
2416             if (un->semadj[i]) {
2417                 semaphore->semval += un->semadj[i];
2418                 /*
2419                  * Range checks of the new semaphore value,
2420                  * not defined by sus:
2421                  * - Some unices ignore the undo entirely
2422                  *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2423                  * - some cap the value (e.g. FreeBSD caps
2424                  *   at 0, but doesn't enforce SEMVMX)
2425                  *
2426                  * Linux caps the semaphore value, both at 0
2427                  * and at SEMVMX.
2428                  *
2429                  *  Manfred <manfred@colorfullife.com>
2430                  */
2431                 if (semaphore->semval < 0)
2432                     semaphore->semval = 0;
2433                 if (semaphore->semval > SEMVMX)
2434                     semaphore->semval = SEMVMX;
2435                 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2436             }
2437         }
2438         /* maybe some queued-up processes were waiting for this */
2439         do_smart_update(sma, NULL, 0, 1, &wake_q);
2440         sem_unlock(sma, -1);
2441         rcu_read_unlock();
2442         wake_up_q(&wake_q);
2443 
2444         kvfree_rcu(un, rcu);
2445     }
2446     kfree(ulp);
2447 }
2448 
2449 #ifdef CONFIG_PROC_FS
2450 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2451 {
2452     struct user_namespace *user_ns = seq_user_ns(s);
2453     struct kern_ipc_perm *ipcp = it;
2454     struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2455     time64_t sem_otime;
2456 
2457     /*
2458      * The proc interface isn't aware of sem_lock(), it calls
2459      * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2460      * (in sysvipc_find_ipc)
2461      * In order to stay compatible with sem_lock(), we must
2462      * enter / leave complex_mode.
2463      */
2464     complexmode_enter(sma);
2465 
2466     sem_otime = get_semotime(sma);
2467 
2468     seq_printf(s,
2469            "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2470            sma->sem_perm.key,
2471            sma->sem_perm.id,
2472            sma->sem_perm.mode,
2473            sma->sem_nsems,
2474            from_kuid_munged(user_ns, sma->sem_perm.uid),
2475            from_kgid_munged(user_ns, sma->sem_perm.gid),
2476            from_kuid_munged(user_ns, sma->sem_perm.cuid),
2477            from_kgid_munged(user_ns, sma->sem_perm.cgid),
2478            sem_otime,
2479            sma->sem_ctime);
2480 
2481     complexmode_tryleave(sma);
2482 
2483     return 0;
2484 }
2485 #endif