Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * POSIX message queues filesystem for Linux.
0003  *
0004  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
0005  *                          Michal Wronski          (michal.wronski@gmail.com)
0006  *
0007  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
0008  * Lockless receive & send, fd based notify:
0009  *              Manfred Spraul      (manfred@colorfullife.com)
0010  *
0011  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
0012  *
0013  * This file is released under the GPL.
0014  */
0015 
0016 #include <linux/capability.h>
0017 #include <linux/init.h>
0018 #include <linux/pagemap.h>
0019 #include <linux/file.h>
0020 #include <linux/mount.h>
0021 #include <linux/fs_context.h>
0022 #include <linux/namei.h>
0023 #include <linux/sysctl.h>
0024 #include <linux/poll.h>
0025 #include <linux/mqueue.h>
0026 #include <linux/msg.h>
0027 #include <linux/skbuff.h>
0028 #include <linux/vmalloc.h>
0029 #include <linux/netlink.h>
0030 #include <linux/syscalls.h>
0031 #include <linux/audit.h>
0032 #include <linux/signal.h>
0033 #include <linux/mutex.h>
0034 #include <linux/nsproxy.h>
0035 #include <linux/pid.h>
0036 #include <linux/ipc_namespace.h>
0037 #include <linux/user_namespace.h>
0038 #include <linux/slab.h>
0039 #include <linux/sched/wake_q.h>
0040 #include <linux/sched/signal.h>
0041 #include <linux/sched/user.h>
0042 
0043 #include <net/sock.h>
0044 #include "util.h"
0045 
0046 struct mqueue_fs_context {
0047     struct ipc_namespace    *ipc_ns;
0048     bool             newns; /* Set if newly created ipc namespace */
0049 };
0050 
0051 #define MQUEUE_MAGIC    0x19800202
0052 #define DIRENT_SIZE 20
0053 #define FILENT_SIZE 80
0054 
0055 #define SEND        0
0056 #define RECV        1
0057 
0058 #define STATE_NONE  0
0059 #define STATE_READY 1
0060 
0061 struct posix_msg_tree_node {
0062     struct rb_node      rb_node;
0063     struct list_head    msg_list;
0064     int         priority;
0065 };
0066 
0067 /*
0068  * Locking:
0069  *
0070  * Accesses to a message queue are synchronized by acquiring info->lock.
0071  *
0072  * There are two notable exceptions:
0073  * - The actual wakeup of a sleeping task is performed using the wake_q
0074  *   framework. info->lock is already released when wake_up_q is called.
0075  * - The exit codepaths after sleeping check ext_wait_queue->state without
0076  *   any locks. If it is STATE_READY, then the syscall is completed without
0077  *   acquiring info->lock.
0078  *
0079  * MQ_BARRIER:
0080  * To achieve proper release/acquire memory barrier pairing, the state is set to
0081  * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
0082  * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
0083  *
0084  * This prevents the following races:
0085  *
0086  * 1) With the simple wake_q_add(), the task could be gone already before
0087  *    the increase of the reference happens
0088  * Thread A
0089  *              Thread B
0090  * WRITE_ONCE(wait.state, STATE_NONE);
0091  * schedule_hrtimeout()
0092  *              wake_q_add(A)
0093  *              if (cmpxchg()) // success
0094  *                 ->state = STATE_READY (reordered)
0095  * <timeout returns>
0096  * if (wait.state == STATE_READY) return;
0097  * sysret to user space
0098  * sys_exit()
0099  *              get_task_struct() // UaF
0100  *
0101  * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
0102  * the smp_store_release() that does ->state = STATE_READY.
0103  *
0104  * 2) Without proper _release/_acquire barriers, the woken up task
0105  *    could read stale data
0106  *
0107  * Thread A
0108  *              Thread B
0109  * do_mq_timedreceive
0110  * WRITE_ONCE(wait.state, STATE_NONE);
0111  * schedule_hrtimeout()
0112  *              state = STATE_READY;
0113  * <timeout returns>
0114  * if (wait.state == STATE_READY) return;
0115  * msg_ptr = wait.msg;      // Access to stale data!
0116  *              receiver->msg = message; (reordered)
0117  *
0118  * Solution: use _release and _acquire barriers.
0119  *
0120  * 3) There is intentionally no barrier when setting current->state
0121  *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
0122  *    release memory barrier, and the wakeup is triggered when holding
0123  *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
0124  *    acquire memory barrier.
0125  */
0126 
0127 struct ext_wait_queue {     /* queue of sleeping tasks */
0128     struct task_struct *task;
0129     struct list_head list;
0130     struct msg_msg *msg;    /* ptr of loaded message */
0131     int state;      /* one of STATE_* values */
0132 };
0133 
0134 struct mqueue_inode_info {
0135     spinlock_t lock;
0136     struct inode vfs_inode;
0137     wait_queue_head_t wait_q;
0138 
0139     struct rb_root msg_tree;
0140     struct rb_node *msg_tree_rightmost;
0141     struct posix_msg_tree_node *node_cache;
0142     struct mq_attr attr;
0143 
0144     struct sigevent notify;
0145     struct pid *notify_owner;
0146     u32 notify_self_exec_id;
0147     struct user_namespace *notify_user_ns;
0148     struct ucounts *ucounts;    /* user who created, for accounting */
0149     struct sock *notify_sock;
0150     struct sk_buff *notify_cookie;
0151 
0152     /* for tasks waiting for free space and messages, respectively */
0153     struct ext_wait_queue e_wait_q[2];
0154 
0155     unsigned long qsize; /* size of queue in memory (sum of all msgs) */
0156 };
0157 
0158 static struct file_system_type mqueue_fs_type;
0159 static const struct inode_operations mqueue_dir_inode_operations;
0160 static const struct file_operations mqueue_file_operations;
0161 static const struct super_operations mqueue_super_ops;
0162 static const struct fs_context_operations mqueue_fs_context_ops;
0163 static void remove_notification(struct mqueue_inode_info *info);
0164 
0165 static struct kmem_cache *mqueue_inode_cachep;
0166 
0167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
0168 {
0169     return container_of(inode, struct mqueue_inode_info, vfs_inode);
0170 }
0171 
0172 /*
0173  * This routine should be called with the mq_lock held.
0174  */
0175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
0176 {
0177     return get_ipc_ns(inode->i_sb->s_fs_info);
0178 }
0179 
0180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
0181 {
0182     struct ipc_namespace *ns;
0183 
0184     spin_lock(&mq_lock);
0185     ns = __get_ns_from_inode(inode);
0186     spin_unlock(&mq_lock);
0187     return ns;
0188 }
0189 
0190 /* Auxiliary functions to manipulate messages' list */
0191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
0192 {
0193     struct rb_node **p, *parent = NULL;
0194     struct posix_msg_tree_node *leaf;
0195     bool rightmost = true;
0196 
0197     p = &info->msg_tree.rb_node;
0198     while (*p) {
0199         parent = *p;
0200         leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
0201 
0202         if (likely(leaf->priority == msg->m_type))
0203             goto insert_msg;
0204         else if (msg->m_type < leaf->priority) {
0205             p = &(*p)->rb_left;
0206             rightmost = false;
0207         } else
0208             p = &(*p)->rb_right;
0209     }
0210     if (info->node_cache) {
0211         leaf = info->node_cache;
0212         info->node_cache = NULL;
0213     } else {
0214         leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
0215         if (!leaf)
0216             return -ENOMEM;
0217         INIT_LIST_HEAD(&leaf->msg_list);
0218     }
0219     leaf->priority = msg->m_type;
0220 
0221     if (rightmost)
0222         info->msg_tree_rightmost = &leaf->rb_node;
0223 
0224     rb_link_node(&leaf->rb_node, parent, p);
0225     rb_insert_color(&leaf->rb_node, &info->msg_tree);
0226 insert_msg:
0227     info->attr.mq_curmsgs++;
0228     info->qsize += msg->m_ts;
0229     list_add_tail(&msg->m_list, &leaf->msg_list);
0230     return 0;
0231 }
0232 
0233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
0234                   struct mqueue_inode_info *info)
0235 {
0236     struct rb_node *node = &leaf->rb_node;
0237 
0238     if (info->msg_tree_rightmost == node)
0239         info->msg_tree_rightmost = rb_prev(node);
0240 
0241     rb_erase(node, &info->msg_tree);
0242     if (info->node_cache)
0243         kfree(leaf);
0244     else
0245         info->node_cache = leaf;
0246 }
0247 
0248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
0249 {
0250     struct rb_node *parent = NULL;
0251     struct posix_msg_tree_node *leaf;
0252     struct msg_msg *msg;
0253 
0254 try_again:
0255     /*
0256      * During insert, low priorities go to the left and high to the
0257      * right.  On receive, we want the highest priorities first, so
0258      * walk all the way to the right.
0259      */
0260     parent = info->msg_tree_rightmost;
0261     if (!parent) {
0262         if (info->attr.mq_curmsgs) {
0263             pr_warn_once("Inconsistency in POSIX message queue, "
0264                      "no tree element, but supposedly messages "
0265                      "should exist!\n");
0266             info->attr.mq_curmsgs = 0;
0267         }
0268         return NULL;
0269     }
0270     leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
0271     if (unlikely(list_empty(&leaf->msg_list))) {
0272         pr_warn_once("Inconsistency in POSIX message queue, "
0273                  "empty leaf node but we haven't implemented "
0274                  "lazy leaf delete!\n");
0275         msg_tree_erase(leaf, info);
0276         goto try_again;
0277     } else {
0278         msg = list_first_entry(&leaf->msg_list,
0279                        struct msg_msg, m_list);
0280         list_del(&msg->m_list);
0281         if (list_empty(&leaf->msg_list)) {
0282             msg_tree_erase(leaf, info);
0283         }
0284     }
0285     info->attr.mq_curmsgs--;
0286     info->qsize -= msg->m_ts;
0287     return msg;
0288 }
0289 
0290 static struct inode *mqueue_get_inode(struct super_block *sb,
0291         struct ipc_namespace *ipc_ns, umode_t mode,
0292         struct mq_attr *attr)
0293 {
0294     struct inode *inode;
0295     int ret = -ENOMEM;
0296 
0297     inode = new_inode(sb);
0298     if (!inode)
0299         goto err;
0300 
0301     inode->i_ino = get_next_ino();
0302     inode->i_mode = mode;
0303     inode->i_uid = current_fsuid();
0304     inode->i_gid = current_fsgid();
0305     inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
0306 
0307     if (S_ISREG(mode)) {
0308         struct mqueue_inode_info *info;
0309         unsigned long mq_bytes, mq_treesize;
0310 
0311         inode->i_fop = &mqueue_file_operations;
0312         inode->i_size = FILENT_SIZE;
0313         /* mqueue specific info */
0314         info = MQUEUE_I(inode);
0315         spin_lock_init(&info->lock);
0316         init_waitqueue_head(&info->wait_q);
0317         INIT_LIST_HEAD(&info->e_wait_q[0].list);
0318         INIT_LIST_HEAD(&info->e_wait_q[1].list);
0319         info->notify_owner = NULL;
0320         info->notify_user_ns = NULL;
0321         info->qsize = 0;
0322         info->ucounts = NULL;   /* set when all is ok */
0323         info->msg_tree = RB_ROOT;
0324         info->msg_tree_rightmost = NULL;
0325         info->node_cache = NULL;
0326         memset(&info->attr, 0, sizeof(info->attr));
0327         info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
0328                        ipc_ns->mq_msg_default);
0329         info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
0330                         ipc_ns->mq_msgsize_default);
0331         if (attr) {
0332             info->attr.mq_maxmsg = attr->mq_maxmsg;
0333             info->attr.mq_msgsize = attr->mq_msgsize;
0334         }
0335         /*
0336          * We used to allocate a static array of pointers and account
0337          * the size of that array as well as one msg_msg struct per
0338          * possible message into the queue size. That's no longer
0339          * accurate as the queue is now an rbtree and will grow and
0340          * shrink depending on usage patterns.  We can, however, still
0341          * account one msg_msg struct per message, but the nodes are
0342          * allocated depending on priority usage, and most programs
0343          * only use one, or a handful, of priorities.  However, since
0344          * this is pinned memory, we need to assume worst case, so
0345          * that means the min(mq_maxmsg, max_priorities) * struct
0346          * posix_msg_tree_node.
0347          */
0348 
0349         ret = -EINVAL;
0350         if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
0351             goto out_inode;
0352         if (capable(CAP_SYS_RESOURCE)) {
0353             if (info->attr.mq_maxmsg > HARD_MSGMAX ||
0354                 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
0355                 goto out_inode;
0356         } else {
0357             if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
0358                     info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
0359                 goto out_inode;
0360         }
0361         ret = -EOVERFLOW;
0362         /* check for overflow */
0363         if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
0364             goto out_inode;
0365         mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
0366             min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
0367             sizeof(struct posix_msg_tree_node);
0368         mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
0369         if (mq_bytes + mq_treesize < mq_bytes)
0370             goto out_inode;
0371         mq_bytes += mq_treesize;
0372         info->ucounts = get_ucounts(current_ucounts());
0373         if (info->ucounts) {
0374             long msgqueue;
0375 
0376             spin_lock(&mq_lock);
0377             msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
0378             if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
0379                 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
0380                 spin_unlock(&mq_lock);
0381                 put_ucounts(info->ucounts);
0382                 info->ucounts = NULL;
0383                 /* mqueue_evict_inode() releases info->messages */
0384                 ret = -EMFILE;
0385                 goto out_inode;
0386             }
0387             spin_unlock(&mq_lock);
0388         }
0389     } else if (S_ISDIR(mode)) {
0390         inc_nlink(inode);
0391         /* Some things misbehave if size == 0 on a directory */
0392         inode->i_size = 2 * DIRENT_SIZE;
0393         inode->i_op = &mqueue_dir_inode_operations;
0394         inode->i_fop = &simple_dir_operations;
0395     }
0396 
0397     return inode;
0398 out_inode:
0399     iput(inode);
0400 err:
0401     return ERR_PTR(ret);
0402 }
0403 
0404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
0405 {
0406     struct inode *inode;
0407     struct ipc_namespace *ns = sb->s_fs_info;
0408 
0409     sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
0410     sb->s_blocksize = PAGE_SIZE;
0411     sb->s_blocksize_bits = PAGE_SHIFT;
0412     sb->s_magic = MQUEUE_MAGIC;
0413     sb->s_op = &mqueue_super_ops;
0414 
0415     inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
0416     if (IS_ERR(inode))
0417         return PTR_ERR(inode);
0418 
0419     sb->s_root = d_make_root(inode);
0420     if (!sb->s_root)
0421         return -ENOMEM;
0422     return 0;
0423 }
0424 
0425 static int mqueue_get_tree(struct fs_context *fc)
0426 {
0427     struct mqueue_fs_context *ctx = fc->fs_private;
0428 
0429     /*
0430      * With a newly created ipc namespace, we don't need to do a search
0431      * for an ipc namespace match, but we still need to set s_fs_info.
0432      */
0433     if (ctx->newns) {
0434         fc->s_fs_info = ctx->ipc_ns;
0435         return get_tree_nodev(fc, mqueue_fill_super);
0436     }
0437     return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
0438 }
0439 
0440 static void mqueue_fs_context_free(struct fs_context *fc)
0441 {
0442     struct mqueue_fs_context *ctx = fc->fs_private;
0443 
0444     put_ipc_ns(ctx->ipc_ns);
0445     kfree(ctx);
0446 }
0447 
0448 static int mqueue_init_fs_context(struct fs_context *fc)
0449 {
0450     struct mqueue_fs_context *ctx;
0451 
0452     ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
0453     if (!ctx)
0454         return -ENOMEM;
0455 
0456     ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
0457     put_user_ns(fc->user_ns);
0458     fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
0459     fc->fs_private = ctx;
0460     fc->ops = &mqueue_fs_context_ops;
0461     return 0;
0462 }
0463 
0464 /*
0465  * mq_init_ns() is currently the only caller of mq_create_mount().
0466  * So the ns parameter is always a newly created ipc namespace.
0467  */
0468 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
0469 {
0470     struct mqueue_fs_context *ctx;
0471     struct fs_context *fc;
0472     struct vfsmount *mnt;
0473 
0474     fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
0475     if (IS_ERR(fc))
0476         return ERR_CAST(fc);
0477 
0478     ctx = fc->fs_private;
0479     ctx->newns = true;
0480     put_ipc_ns(ctx->ipc_ns);
0481     ctx->ipc_ns = get_ipc_ns(ns);
0482     put_user_ns(fc->user_ns);
0483     fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
0484 
0485     mnt = fc_mount(fc);
0486     put_fs_context(fc);
0487     return mnt;
0488 }
0489 
0490 static void init_once(void *foo)
0491 {
0492     struct mqueue_inode_info *p = foo;
0493 
0494     inode_init_once(&p->vfs_inode);
0495 }
0496 
0497 static struct inode *mqueue_alloc_inode(struct super_block *sb)
0498 {
0499     struct mqueue_inode_info *ei;
0500 
0501     ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
0502     if (!ei)
0503         return NULL;
0504     return &ei->vfs_inode;
0505 }
0506 
0507 static void mqueue_free_inode(struct inode *inode)
0508 {
0509     kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
0510 }
0511 
0512 static void mqueue_evict_inode(struct inode *inode)
0513 {
0514     struct mqueue_inode_info *info;
0515     struct ipc_namespace *ipc_ns;
0516     struct msg_msg *msg, *nmsg;
0517     LIST_HEAD(tmp_msg);
0518 
0519     clear_inode(inode);
0520 
0521     if (S_ISDIR(inode->i_mode))
0522         return;
0523 
0524     ipc_ns = get_ns_from_inode(inode);
0525     info = MQUEUE_I(inode);
0526     spin_lock(&info->lock);
0527     while ((msg = msg_get(info)) != NULL)
0528         list_add_tail(&msg->m_list, &tmp_msg);
0529     kfree(info->node_cache);
0530     spin_unlock(&info->lock);
0531 
0532     list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
0533         list_del(&msg->m_list);
0534         free_msg(msg);
0535     }
0536 
0537     if (info->ucounts) {
0538         unsigned long mq_bytes, mq_treesize;
0539 
0540         /* Total amount of bytes accounted for the mqueue */
0541         mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
0542             min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
0543             sizeof(struct posix_msg_tree_node);
0544 
0545         mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
0546                       info->attr.mq_msgsize);
0547 
0548         spin_lock(&mq_lock);
0549         dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
0550         /*
0551          * get_ns_from_inode() ensures that the
0552          * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
0553          * to which we now hold a reference, or it is NULL.
0554          * We can't put it here under mq_lock, though.
0555          */
0556         if (ipc_ns)
0557             ipc_ns->mq_queues_count--;
0558         spin_unlock(&mq_lock);
0559         put_ucounts(info->ucounts);
0560         info->ucounts = NULL;
0561     }
0562     if (ipc_ns)
0563         put_ipc_ns(ipc_ns);
0564 }
0565 
0566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
0567 {
0568     struct inode *dir = dentry->d_parent->d_inode;
0569     struct inode *inode;
0570     struct mq_attr *attr = arg;
0571     int error;
0572     struct ipc_namespace *ipc_ns;
0573 
0574     spin_lock(&mq_lock);
0575     ipc_ns = __get_ns_from_inode(dir);
0576     if (!ipc_ns) {
0577         error = -EACCES;
0578         goto out_unlock;
0579     }
0580 
0581     if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
0582         !capable(CAP_SYS_RESOURCE)) {
0583         error = -ENOSPC;
0584         goto out_unlock;
0585     }
0586     ipc_ns->mq_queues_count++;
0587     spin_unlock(&mq_lock);
0588 
0589     inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
0590     if (IS_ERR(inode)) {
0591         error = PTR_ERR(inode);
0592         spin_lock(&mq_lock);
0593         ipc_ns->mq_queues_count--;
0594         goto out_unlock;
0595     }
0596 
0597     put_ipc_ns(ipc_ns);
0598     dir->i_size += DIRENT_SIZE;
0599     dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
0600 
0601     d_instantiate(dentry, inode);
0602     dget(dentry);
0603     return 0;
0604 out_unlock:
0605     spin_unlock(&mq_lock);
0606     if (ipc_ns)
0607         put_ipc_ns(ipc_ns);
0608     return error;
0609 }
0610 
0611 static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
0612              struct dentry *dentry, umode_t mode, bool excl)
0613 {
0614     return mqueue_create_attr(dentry, mode, NULL);
0615 }
0616 
0617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
0618 {
0619     struct inode *inode = d_inode(dentry);
0620 
0621     dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
0622     dir->i_size -= DIRENT_SIZE;
0623     drop_nlink(inode);
0624     dput(dentry);
0625     return 0;
0626 }
0627 
0628 /*
0629 *   This is routine for system read from queue file.
0630 *   To avoid mess with doing here some sort of mq_receive we allow
0631 *   to read only queue size & notification info (the only values
0632 *   that are interesting from user point of view and aren't accessible
0633 *   through std routines)
0634 */
0635 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
0636                 size_t count, loff_t *off)
0637 {
0638     struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
0639     char buffer[FILENT_SIZE];
0640     ssize_t ret;
0641 
0642     spin_lock(&info->lock);
0643     snprintf(buffer, sizeof(buffer),
0644             "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
0645             info->qsize,
0646             info->notify_owner ? info->notify.sigev_notify : 0,
0647             (info->notify_owner &&
0648              info->notify.sigev_notify == SIGEV_SIGNAL) ?
0649                 info->notify.sigev_signo : 0,
0650             pid_vnr(info->notify_owner));
0651     spin_unlock(&info->lock);
0652     buffer[sizeof(buffer)-1] = '\0';
0653 
0654     ret = simple_read_from_buffer(u_data, count, off, buffer,
0655                 strlen(buffer));
0656     if (ret <= 0)
0657         return ret;
0658 
0659     file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
0660     return ret;
0661 }
0662 
0663 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
0664 {
0665     struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
0666 
0667     spin_lock(&info->lock);
0668     if (task_tgid(current) == info->notify_owner)
0669         remove_notification(info);
0670 
0671     spin_unlock(&info->lock);
0672     return 0;
0673 }
0674 
0675 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
0676 {
0677     struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
0678     __poll_t retval = 0;
0679 
0680     poll_wait(filp, &info->wait_q, poll_tab);
0681 
0682     spin_lock(&info->lock);
0683     if (info->attr.mq_curmsgs)
0684         retval = EPOLLIN | EPOLLRDNORM;
0685 
0686     if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
0687         retval |= EPOLLOUT | EPOLLWRNORM;
0688     spin_unlock(&info->lock);
0689 
0690     return retval;
0691 }
0692 
0693 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
0694 static void wq_add(struct mqueue_inode_info *info, int sr,
0695             struct ext_wait_queue *ewp)
0696 {
0697     struct ext_wait_queue *walk;
0698 
0699     list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
0700         if (walk->task->prio <= current->prio) {
0701             list_add_tail(&ewp->list, &walk->list);
0702             return;
0703         }
0704     }
0705     list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
0706 }
0707 
0708 /*
0709  * Puts current task to sleep. Caller must hold queue lock. After return
0710  * lock isn't held.
0711  * sr: SEND or RECV
0712  */
0713 static int wq_sleep(struct mqueue_inode_info *info, int sr,
0714             ktime_t *timeout, struct ext_wait_queue *ewp)
0715     __releases(&info->lock)
0716 {
0717     int retval;
0718     signed long time;
0719 
0720     wq_add(info, sr, ewp);
0721 
0722     for (;;) {
0723         /* memory barrier not required, we hold info->lock */
0724         __set_current_state(TASK_INTERRUPTIBLE);
0725 
0726         spin_unlock(&info->lock);
0727         time = schedule_hrtimeout_range_clock(timeout, 0,
0728             HRTIMER_MODE_ABS, CLOCK_REALTIME);
0729 
0730         if (READ_ONCE(ewp->state) == STATE_READY) {
0731             /* see MQ_BARRIER for purpose/pairing */
0732             smp_acquire__after_ctrl_dep();
0733             retval = 0;
0734             goto out;
0735         }
0736         spin_lock(&info->lock);
0737 
0738         /* we hold info->lock, so no memory barrier required */
0739         if (READ_ONCE(ewp->state) == STATE_READY) {
0740             retval = 0;
0741             goto out_unlock;
0742         }
0743         if (signal_pending(current)) {
0744             retval = -ERESTARTSYS;
0745             break;
0746         }
0747         if (time == 0) {
0748             retval = -ETIMEDOUT;
0749             break;
0750         }
0751     }
0752     list_del(&ewp->list);
0753 out_unlock:
0754     spin_unlock(&info->lock);
0755 out:
0756     return retval;
0757 }
0758 
0759 /*
0760  * Returns waiting task that should be serviced first or NULL if none exists
0761  */
0762 static struct ext_wait_queue *wq_get_first_waiter(
0763         struct mqueue_inode_info *info, int sr)
0764 {
0765     struct list_head *ptr;
0766 
0767     ptr = info->e_wait_q[sr].list.prev;
0768     if (ptr == &info->e_wait_q[sr].list)
0769         return NULL;
0770     return list_entry(ptr, struct ext_wait_queue, list);
0771 }
0772 
0773 
0774 static inline void set_cookie(struct sk_buff *skb, char code)
0775 {
0776     ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
0777 }
0778 
0779 /*
0780  * The next function is only to split too long sys_mq_timedsend
0781  */
0782 static void __do_notify(struct mqueue_inode_info *info)
0783 {
0784     /* notification
0785      * invoked when there is registered process and there isn't process
0786      * waiting synchronously for message AND state of queue changed from
0787      * empty to not empty. Here we are sure that no one is waiting
0788      * synchronously. */
0789     if (info->notify_owner &&
0790         info->attr.mq_curmsgs == 1) {
0791         switch (info->notify.sigev_notify) {
0792         case SIGEV_NONE:
0793             break;
0794         case SIGEV_SIGNAL: {
0795             struct kernel_siginfo sig_i;
0796             struct task_struct *task;
0797 
0798             /* do_mq_notify() accepts sigev_signo == 0, why?? */
0799             if (!info->notify.sigev_signo)
0800                 break;
0801 
0802             clear_siginfo(&sig_i);
0803             sig_i.si_signo = info->notify.sigev_signo;
0804             sig_i.si_errno = 0;
0805             sig_i.si_code = SI_MESGQ;
0806             sig_i.si_value = info->notify.sigev_value;
0807             rcu_read_lock();
0808             /* map current pid/uid into info->owner's namespaces */
0809             sig_i.si_pid = task_tgid_nr_ns(current,
0810                         ns_of_pid(info->notify_owner));
0811             sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
0812                         current_uid());
0813             /*
0814              * We can't use kill_pid_info(), this signal should
0815              * bypass check_kill_permission(). It is from kernel
0816              * but si_fromuser() can't know this.
0817              * We do check the self_exec_id, to avoid sending
0818              * signals to programs that don't expect them.
0819              */
0820             task = pid_task(info->notify_owner, PIDTYPE_TGID);
0821             if (task && task->self_exec_id ==
0822                         info->notify_self_exec_id) {
0823                 do_send_sig_info(info->notify.sigev_signo,
0824                         &sig_i, task, PIDTYPE_TGID);
0825             }
0826             rcu_read_unlock();
0827             break;
0828         }
0829         case SIGEV_THREAD:
0830             set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
0831             netlink_sendskb(info->notify_sock, info->notify_cookie);
0832             break;
0833         }
0834         /* after notification unregisters process */
0835         put_pid(info->notify_owner);
0836         put_user_ns(info->notify_user_ns);
0837         info->notify_owner = NULL;
0838         info->notify_user_ns = NULL;
0839     }
0840     wake_up(&info->wait_q);
0841 }
0842 
0843 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
0844                struct timespec64 *ts)
0845 {
0846     if (get_timespec64(ts, u_abs_timeout))
0847         return -EFAULT;
0848     if (!timespec64_valid(ts))
0849         return -EINVAL;
0850     return 0;
0851 }
0852 
0853 static void remove_notification(struct mqueue_inode_info *info)
0854 {
0855     if (info->notify_owner != NULL &&
0856         info->notify.sigev_notify == SIGEV_THREAD) {
0857         set_cookie(info->notify_cookie, NOTIFY_REMOVED);
0858         netlink_sendskb(info->notify_sock, info->notify_cookie);
0859     }
0860     put_pid(info->notify_owner);
0861     put_user_ns(info->notify_user_ns);
0862     info->notify_owner = NULL;
0863     info->notify_user_ns = NULL;
0864 }
0865 
0866 static int prepare_open(struct dentry *dentry, int oflag, int ro,
0867             umode_t mode, struct filename *name,
0868             struct mq_attr *attr)
0869 {
0870     static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
0871                           MAY_READ | MAY_WRITE };
0872     int acc;
0873 
0874     if (d_really_is_negative(dentry)) {
0875         if (!(oflag & O_CREAT))
0876             return -ENOENT;
0877         if (ro)
0878             return ro;
0879         audit_inode_parent_hidden(name, dentry->d_parent);
0880         return vfs_mkobj(dentry, mode & ~current_umask(),
0881                   mqueue_create_attr, attr);
0882     }
0883     /* it already existed */
0884     audit_inode(name, dentry, 0);
0885     if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
0886         return -EEXIST;
0887     if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
0888         return -EINVAL;
0889     acc = oflag2acc[oflag & O_ACCMODE];
0890     return inode_permission(&init_user_ns, d_inode(dentry), acc);
0891 }
0892 
0893 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
0894               struct mq_attr *attr)
0895 {
0896     struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
0897     struct dentry *root = mnt->mnt_root;
0898     struct filename *name;
0899     struct path path;
0900     int fd, error;
0901     int ro;
0902 
0903     audit_mq_open(oflag, mode, attr);
0904 
0905     if (IS_ERR(name = getname(u_name)))
0906         return PTR_ERR(name);
0907 
0908     fd = get_unused_fd_flags(O_CLOEXEC);
0909     if (fd < 0)
0910         goto out_putname;
0911 
0912     ro = mnt_want_write(mnt);   /* we'll drop it in any case */
0913     inode_lock(d_inode(root));
0914     path.dentry = lookup_one_len(name->name, root, strlen(name->name));
0915     if (IS_ERR(path.dentry)) {
0916         error = PTR_ERR(path.dentry);
0917         goto out_putfd;
0918     }
0919     path.mnt = mntget(mnt);
0920     error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
0921     if (!error) {
0922         struct file *file = dentry_open(&path, oflag, current_cred());
0923         if (!IS_ERR(file))
0924             fd_install(fd, file);
0925         else
0926             error = PTR_ERR(file);
0927     }
0928     path_put(&path);
0929 out_putfd:
0930     if (error) {
0931         put_unused_fd(fd);
0932         fd = error;
0933     }
0934     inode_unlock(d_inode(root));
0935     if (!ro)
0936         mnt_drop_write(mnt);
0937 out_putname:
0938     putname(name);
0939     return fd;
0940 }
0941 
0942 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
0943         struct mq_attr __user *, u_attr)
0944 {
0945     struct mq_attr attr;
0946     if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
0947         return -EFAULT;
0948 
0949     return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
0950 }
0951 
0952 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
0953 {
0954     int err;
0955     struct filename *name;
0956     struct dentry *dentry;
0957     struct inode *inode = NULL;
0958     struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
0959     struct vfsmount *mnt = ipc_ns->mq_mnt;
0960 
0961     name = getname(u_name);
0962     if (IS_ERR(name))
0963         return PTR_ERR(name);
0964 
0965     audit_inode_parent_hidden(name, mnt->mnt_root);
0966     err = mnt_want_write(mnt);
0967     if (err)
0968         goto out_name;
0969     inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
0970     dentry = lookup_one_len(name->name, mnt->mnt_root,
0971                 strlen(name->name));
0972     if (IS_ERR(dentry)) {
0973         err = PTR_ERR(dentry);
0974         goto out_unlock;
0975     }
0976 
0977     inode = d_inode(dentry);
0978     if (!inode) {
0979         err = -ENOENT;
0980     } else {
0981         ihold(inode);
0982         err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
0983                  dentry, NULL);
0984     }
0985     dput(dentry);
0986 
0987 out_unlock:
0988     inode_unlock(d_inode(mnt->mnt_root));
0989     if (inode)
0990         iput(inode);
0991     mnt_drop_write(mnt);
0992 out_name:
0993     putname(name);
0994 
0995     return err;
0996 }
0997 
0998 /* Pipelined send and receive functions.
0999  *
1000  * If a receiver finds no waiting message, then it registers itself in the
1001  * list of waiting receivers. A sender checks that list before adding the new
1002  * message into the message array. If there is a waiting receiver, then it
1003  * bypasses the message array and directly hands the message over to the
1004  * receiver. The receiver accepts the message and returns without grabbing the
1005  * queue spinlock:
1006  *
1007  * - Set pointer to message.
1008  * - Queue the receiver task for later wakeup (without the info->lock).
1009  * - Update its state to STATE_READY. Now the receiver can continue.
1010  * - Wake up the process after the lock is dropped. Should the process wake up
1011  *   before this wakeup (due to a timeout or a signal) it will either see
1012  *   STATE_READY and continue or acquire the lock to check the state again.
1013  *
1014  * The same algorithm is used for senders.
1015  */
1016 
1017 static inline void __pipelined_op(struct wake_q_head *wake_q,
1018                   struct mqueue_inode_info *info,
1019                   struct ext_wait_queue *this)
1020 {
1021     struct task_struct *task;
1022 
1023     list_del(&this->list);
1024     task = get_task_struct(this->task);
1025 
1026     /* see MQ_BARRIER for purpose/pairing */
1027     smp_store_release(&this->state, STATE_READY);
1028     wake_q_add_safe(wake_q, task);
1029 }
1030 
1031 /* pipelined_send() - send a message directly to the task waiting in
1032  * sys_mq_timedreceive() (without inserting message into a queue).
1033  */
1034 static inline void pipelined_send(struct wake_q_head *wake_q,
1035                   struct mqueue_inode_info *info,
1036                   struct msg_msg *message,
1037                   struct ext_wait_queue *receiver)
1038 {
1039     receiver->msg = message;
1040     __pipelined_op(wake_q, info, receiver);
1041 }
1042 
1043 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1044  * gets its message and put to the queue (we have one free place for sure). */
1045 static inline void pipelined_receive(struct wake_q_head *wake_q,
1046                      struct mqueue_inode_info *info)
1047 {
1048     struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1049 
1050     if (!sender) {
1051         /* for poll */
1052         wake_up_interruptible(&info->wait_q);
1053         return;
1054     }
1055     if (msg_insert(sender->msg, info))
1056         return;
1057 
1058     __pipelined_op(wake_q, info, sender);
1059 }
1060 
1061 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1062         size_t msg_len, unsigned int msg_prio,
1063         struct timespec64 *ts)
1064 {
1065     struct fd f;
1066     struct inode *inode;
1067     struct ext_wait_queue wait;
1068     struct ext_wait_queue *receiver;
1069     struct msg_msg *msg_ptr;
1070     struct mqueue_inode_info *info;
1071     ktime_t expires, *timeout = NULL;
1072     struct posix_msg_tree_node *new_leaf = NULL;
1073     int ret = 0;
1074     DEFINE_WAKE_Q(wake_q);
1075 
1076     if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1077         return -EINVAL;
1078 
1079     if (ts) {
1080         expires = timespec64_to_ktime(*ts);
1081         timeout = &expires;
1082     }
1083 
1084     audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1085 
1086     f = fdget(mqdes);
1087     if (unlikely(!f.file)) {
1088         ret = -EBADF;
1089         goto out;
1090     }
1091 
1092     inode = file_inode(f.file);
1093     if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1094         ret = -EBADF;
1095         goto out_fput;
1096     }
1097     info = MQUEUE_I(inode);
1098     audit_file(f.file);
1099 
1100     if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1101         ret = -EBADF;
1102         goto out_fput;
1103     }
1104 
1105     if (unlikely(msg_len > info->attr.mq_msgsize)) {
1106         ret = -EMSGSIZE;
1107         goto out_fput;
1108     }
1109 
1110     /* First try to allocate memory, before doing anything with
1111      * existing queues. */
1112     msg_ptr = load_msg(u_msg_ptr, msg_len);
1113     if (IS_ERR(msg_ptr)) {
1114         ret = PTR_ERR(msg_ptr);
1115         goto out_fput;
1116     }
1117     msg_ptr->m_ts = msg_len;
1118     msg_ptr->m_type = msg_prio;
1119 
1120     /*
1121      * msg_insert really wants us to have a valid, spare node struct so
1122      * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1123      * fall back to that if necessary.
1124      */
1125     if (!info->node_cache)
1126         new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1127 
1128     spin_lock(&info->lock);
1129 
1130     if (!info->node_cache && new_leaf) {
1131         /* Save our speculative allocation into the cache */
1132         INIT_LIST_HEAD(&new_leaf->msg_list);
1133         info->node_cache = new_leaf;
1134         new_leaf = NULL;
1135     } else {
1136         kfree(new_leaf);
1137     }
1138 
1139     if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1140         if (f.file->f_flags & O_NONBLOCK) {
1141             ret = -EAGAIN;
1142         } else {
1143             wait.task = current;
1144             wait.msg = (void *) msg_ptr;
1145 
1146             /* memory barrier not required, we hold info->lock */
1147             WRITE_ONCE(wait.state, STATE_NONE);
1148             ret = wq_sleep(info, SEND, timeout, &wait);
1149             /*
1150              * wq_sleep must be called with info->lock held, and
1151              * returns with the lock released
1152              */
1153             goto out_free;
1154         }
1155     } else {
1156         receiver = wq_get_first_waiter(info, RECV);
1157         if (receiver) {
1158             pipelined_send(&wake_q, info, msg_ptr, receiver);
1159         } else {
1160             /* adds message to the queue */
1161             ret = msg_insert(msg_ptr, info);
1162             if (ret)
1163                 goto out_unlock;
1164             __do_notify(info);
1165         }
1166         inode->i_atime = inode->i_mtime = inode->i_ctime =
1167                 current_time(inode);
1168     }
1169 out_unlock:
1170     spin_unlock(&info->lock);
1171     wake_up_q(&wake_q);
1172 out_free:
1173     if (ret)
1174         free_msg(msg_ptr);
1175 out_fput:
1176     fdput(f);
1177 out:
1178     return ret;
1179 }
1180 
1181 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1182         size_t msg_len, unsigned int __user *u_msg_prio,
1183         struct timespec64 *ts)
1184 {
1185     ssize_t ret;
1186     struct msg_msg *msg_ptr;
1187     struct fd f;
1188     struct inode *inode;
1189     struct mqueue_inode_info *info;
1190     struct ext_wait_queue wait;
1191     ktime_t expires, *timeout = NULL;
1192     struct posix_msg_tree_node *new_leaf = NULL;
1193 
1194     if (ts) {
1195         expires = timespec64_to_ktime(*ts);
1196         timeout = &expires;
1197     }
1198 
1199     audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1200 
1201     f = fdget(mqdes);
1202     if (unlikely(!f.file)) {
1203         ret = -EBADF;
1204         goto out;
1205     }
1206 
1207     inode = file_inode(f.file);
1208     if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1209         ret = -EBADF;
1210         goto out_fput;
1211     }
1212     info = MQUEUE_I(inode);
1213     audit_file(f.file);
1214 
1215     if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1216         ret = -EBADF;
1217         goto out_fput;
1218     }
1219 
1220     /* checks if buffer is big enough */
1221     if (unlikely(msg_len < info->attr.mq_msgsize)) {
1222         ret = -EMSGSIZE;
1223         goto out_fput;
1224     }
1225 
1226     /*
1227      * msg_insert really wants us to have a valid, spare node struct so
1228      * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1229      * fall back to that if necessary.
1230      */
1231     if (!info->node_cache)
1232         new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1233 
1234     spin_lock(&info->lock);
1235 
1236     if (!info->node_cache && new_leaf) {
1237         /* Save our speculative allocation into the cache */
1238         INIT_LIST_HEAD(&new_leaf->msg_list);
1239         info->node_cache = new_leaf;
1240     } else {
1241         kfree(new_leaf);
1242     }
1243 
1244     if (info->attr.mq_curmsgs == 0) {
1245         if (f.file->f_flags & O_NONBLOCK) {
1246             spin_unlock(&info->lock);
1247             ret = -EAGAIN;
1248         } else {
1249             wait.task = current;
1250 
1251             /* memory barrier not required, we hold info->lock */
1252             WRITE_ONCE(wait.state, STATE_NONE);
1253             ret = wq_sleep(info, RECV, timeout, &wait);
1254             msg_ptr = wait.msg;
1255         }
1256     } else {
1257         DEFINE_WAKE_Q(wake_q);
1258 
1259         msg_ptr = msg_get(info);
1260 
1261         inode->i_atime = inode->i_mtime = inode->i_ctime =
1262                 current_time(inode);
1263 
1264         /* There is now free space in queue. */
1265         pipelined_receive(&wake_q, info);
1266         spin_unlock(&info->lock);
1267         wake_up_q(&wake_q);
1268         ret = 0;
1269     }
1270     if (ret == 0) {
1271         ret = msg_ptr->m_ts;
1272 
1273         if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1274             store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1275             ret = -EFAULT;
1276         }
1277         free_msg(msg_ptr);
1278     }
1279 out_fput:
1280     fdput(f);
1281 out:
1282     return ret;
1283 }
1284 
1285 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1286         size_t, msg_len, unsigned int, msg_prio,
1287         const struct __kernel_timespec __user *, u_abs_timeout)
1288 {
1289     struct timespec64 ts, *p = NULL;
1290     if (u_abs_timeout) {
1291         int res = prepare_timeout(u_abs_timeout, &ts);
1292         if (res)
1293             return res;
1294         p = &ts;
1295     }
1296     return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1297 }
1298 
1299 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1300         size_t, msg_len, unsigned int __user *, u_msg_prio,
1301         const struct __kernel_timespec __user *, u_abs_timeout)
1302 {
1303     struct timespec64 ts, *p = NULL;
1304     if (u_abs_timeout) {
1305         int res = prepare_timeout(u_abs_timeout, &ts);
1306         if (res)
1307             return res;
1308         p = &ts;
1309     }
1310     return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1311 }
1312 
1313 /*
1314  * Notes: the case when user wants us to deregister (with NULL as pointer)
1315  * and he isn't currently owner of notification, will be silently discarded.
1316  * It isn't explicitly defined in the POSIX.
1317  */
1318 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1319 {
1320     int ret;
1321     struct fd f;
1322     struct sock *sock;
1323     struct inode *inode;
1324     struct mqueue_inode_info *info;
1325     struct sk_buff *nc;
1326 
1327     audit_mq_notify(mqdes, notification);
1328 
1329     nc = NULL;
1330     sock = NULL;
1331     if (notification != NULL) {
1332         if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1333                  notification->sigev_notify != SIGEV_SIGNAL &&
1334                  notification->sigev_notify != SIGEV_THREAD))
1335             return -EINVAL;
1336         if (notification->sigev_notify == SIGEV_SIGNAL &&
1337             !valid_signal(notification->sigev_signo)) {
1338             return -EINVAL;
1339         }
1340         if (notification->sigev_notify == SIGEV_THREAD) {
1341             long timeo;
1342 
1343             /* create the notify skb */
1344             nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1345             if (!nc)
1346                 return -ENOMEM;
1347 
1348             if (copy_from_user(nc->data,
1349                     notification->sigev_value.sival_ptr,
1350                     NOTIFY_COOKIE_LEN)) {
1351                 ret = -EFAULT;
1352                 goto free_skb;
1353             }
1354 
1355             /* TODO: add a header? */
1356             skb_put(nc, NOTIFY_COOKIE_LEN);
1357             /* and attach it to the socket */
1358 retry:
1359             f = fdget(notification->sigev_signo);
1360             if (!f.file) {
1361                 ret = -EBADF;
1362                 goto out;
1363             }
1364             sock = netlink_getsockbyfilp(f.file);
1365             fdput(f);
1366             if (IS_ERR(sock)) {
1367                 ret = PTR_ERR(sock);
1368                 goto free_skb;
1369             }
1370 
1371             timeo = MAX_SCHEDULE_TIMEOUT;
1372             ret = netlink_attachskb(sock, nc, &timeo, NULL);
1373             if (ret == 1) {
1374                 sock = NULL;
1375                 goto retry;
1376             }
1377             if (ret)
1378                 return ret;
1379         }
1380     }
1381 
1382     f = fdget(mqdes);
1383     if (!f.file) {
1384         ret = -EBADF;
1385         goto out;
1386     }
1387 
1388     inode = file_inode(f.file);
1389     if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1390         ret = -EBADF;
1391         goto out_fput;
1392     }
1393     info = MQUEUE_I(inode);
1394 
1395     ret = 0;
1396     spin_lock(&info->lock);
1397     if (notification == NULL) {
1398         if (info->notify_owner == task_tgid(current)) {
1399             remove_notification(info);
1400             inode->i_atime = inode->i_ctime = current_time(inode);
1401         }
1402     } else if (info->notify_owner != NULL) {
1403         ret = -EBUSY;
1404     } else {
1405         switch (notification->sigev_notify) {
1406         case SIGEV_NONE:
1407             info->notify.sigev_notify = SIGEV_NONE;
1408             break;
1409         case SIGEV_THREAD:
1410             info->notify_sock = sock;
1411             info->notify_cookie = nc;
1412             sock = NULL;
1413             nc = NULL;
1414             info->notify.sigev_notify = SIGEV_THREAD;
1415             break;
1416         case SIGEV_SIGNAL:
1417             info->notify.sigev_signo = notification->sigev_signo;
1418             info->notify.sigev_value = notification->sigev_value;
1419             info->notify.sigev_notify = SIGEV_SIGNAL;
1420             info->notify_self_exec_id = current->self_exec_id;
1421             break;
1422         }
1423 
1424         info->notify_owner = get_pid(task_tgid(current));
1425         info->notify_user_ns = get_user_ns(current_user_ns());
1426         inode->i_atime = inode->i_ctime = current_time(inode);
1427     }
1428     spin_unlock(&info->lock);
1429 out_fput:
1430     fdput(f);
1431 out:
1432     if (sock)
1433         netlink_detachskb(sock, nc);
1434     else
1435 free_skb:
1436         dev_kfree_skb(nc);
1437 
1438     return ret;
1439 }
1440 
1441 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1442         const struct sigevent __user *, u_notification)
1443 {
1444     struct sigevent n, *p = NULL;
1445     if (u_notification) {
1446         if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1447             return -EFAULT;
1448         p = &n;
1449     }
1450     return do_mq_notify(mqdes, p);
1451 }
1452 
1453 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1454 {
1455     struct fd f;
1456     struct inode *inode;
1457     struct mqueue_inode_info *info;
1458 
1459     if (new && (new->mq_flags & (~O_NONBLOCK)))
1460         return -EINVAL;
1461 
1462     f = fdget(mqdes);
1463     if (!f.file)
1464         return -EBADF;
1465 
1466     if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1467         fdput(f);
1468         return -EBADF;
1469     }
1470 
1471     inode = file_inode(f.file);
1472     info = MQUEUE_I(inode);
1473 
1474     spin_lock(&info->lock);
1475 
1476     if (old) {
1477         *old = info->attr;
1478         old->mq_flags = f.file->f_flags & O_NONBLOCK;
1479     }
1480     if (new) {
1481         audit_mq_getsetattr(mqdes, new);
1482         spin_lock(&f.file->f_lock);
1483         if (new->mq_flags & O_NONBLOCK)
1484             f.file->f_flags |= O_NONBLOCK;
1485         else
1486             f.file->f_flags &= ~O_NONBLOCK;
1487         spin_unlock(&f.file->f_lock);
1488 
1489         inode->i_atime = inode->i_ctime = current_time(inode);
1490     }
1491 
1492     spin_unlock(&info->lock);
1493     fdput(f);
1494     return 0;
1495 }
1496 
1497 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1498         const struct mq_attr __user *, u_mqstat,
1499         struct mq_attr __user *, u_omqstat)
1500 {
1501     int ret;
1502     struct mq_attr mqstat, omqstat;
1503     struct mq_attr *new = NULL, *old = NULL;
1504 
1505     if (u_mqstat) {
1506         new = &mqstat;
1507         if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1508             return -EFAULT;
1509     }
1510     if (u_omqstat)
1511         old = &omqstat;
1512 
1513     ret = do_mq_getsetattr(mqdes, new, old);
1514     if (ret || !old)
1515         return ret;
1516 
1517     if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1518         return -EFAULT;
1519     return 0;
1520 }
1521 
1522 #ifdef CONFIG_COMPAT
1523 
1524 struct compat_mq_attr {
1525     compat_long_t mq_flags;      /* message queue flags          */
1526     compat_long_t mq_maxmsg;     /* maximum number of messages       */
1527     compat_long_t mq_msgsize;    /* maximum message size             */
1528     compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1529     compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1530 };
1531 
1532 static inline int get_compat_mq_attr(struct mq_attr *attr,
1533             const struct compat_mq_attr __user *uattr)
1534 {
1535     struct compat_mq_attr v;
1536 
1537     if (copy_from_user(&v, uattr, sizeof(*uattr)))
1538         return -EFAULT;
1539 
1540     memset(attr, 0, sizeof(*attr));
1541     attr->mq_flags = v.mq_flags;
1542     attr->mq_maxmsg = v.mq_maxmsg;
1543     attr->mq_msgsize = v.mq_msgsize;
1544     attr->mq_curmsgs = v.mq_curmsgs;
1545     return 0;
1546 }
1547 
1548 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1549             struct compat_mq_attr __user *uattr)
1550 {
1551     struct compat_mq_attr v;
1552 
1553     memset(&v, 0, sizeof(v));
1554     v.mq_flags = attr->mq_flags;
1555     v.mq_maxmsg = attr->mq_maxmsg;
1556     v.mq_msgsize = attr->mq_msgsize;
1557     v.mq_curmsgs = attr->mq_curmsgs;
1558     if (copy_to_user(uattr, &v, sizeof(*uattr)))
1559         return -EFAULT;
1560     return 0;
1561 }
1562 
1563 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1564                int, oflag, compat_mode_t, mode,
1565                struct compat_mq_attr __user *, u_attr)
1566 {
1567     struct mq_attr attr, *p = NULL;
1568     if (u_attr && oflag & O_CREAT) {
1569         p = &attr;
1570         if (get_compat_mq_attr(&attr, u_attr))
1571             return -EFAULT;
1572     }
1573     return do_mq_open(u_name, oflag, mode, p);
1574 }
1575 
1576 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1577                const struct compat_sigevent __user *, u_notification)
1578 {
1579     struct sigevent n, *p = NULL;
1580     if (u_notification) {
1581         if (get_compat_sigevent(&n, u_notification))
1582             return -EFAULT;
1583         if (n.sigev_notify == SIGEV_THREAD)
1584             n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1585         p = &n;
1586     }
1587     return do_mq_notify(mqdes, p);
1588 }
1589 
1590 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1591                const struct compat_mq_attr __user *, u_mqstat,
1592                struct compat_mq_attr __user *, u_omqstat)
1593 {
1594     int ret;
1595     struct mq_attr mqstat, omqstat;
1596     struct mq_attr *new = NULL, *old = NULL;
1597 
1598     if (u_mqstat) {
1599         new = &mqstat;
1600         if (get_compat_mq_attr(new, u_mqstat))
1601             return -EFAULT;
1602     }
1603     if (u_omqstat)
1604         old = &omqstat;
1605 
1606     ret = do_mq_getsetattr(mqdes, new, old);
1607     if (ret || !old)
1608         return ret;
1609 
1610     if (put_compat_mq_attr(old, u_omqstat))
1611         return -EFAULT;
1612     return 0;
1613 }
1614 #endif
1615 
1616 #ifdef CONFIG_COMPAT_32BIT_TIME
1617 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1618                    struct timespec64 *ts)
1619 {
1620     if (get_old_timespec32(ts, p))
1621         return -EFAULT;
1622     if (!timespec64_valid(ts))
1623         return -EINVAL;
1624     return 0;
1625 }
1626 
1627 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1628         const char __user *, u_msg_ptr,
1629         unsigned int, msg_len, unsigned int, msg_prio,
1630         const struct old_timespec32 __user *, u_abs_timeout)
1631 {
1632     struct timespec64 ts, *p = NULL;
1633     if (u_abs_timeout) {
1634         int res = compat_prepare_timeout(u_abs_timeout, &ts);
1635         if (res)
1636             return res;
1637         p = &ts;
1638     }
1639     return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1640 }
1641 
1642 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1643         char __user *, u_msg_ptr,
1644         unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1645         const struct old_timespec32 __user *, u_abs_timeout)
1646 {
1647     struct timespec64 ts, *p = NULL;
1648     if (u_abs_timeout) {
1649         int res = compat_prepare_timeout(u_abs_timeout, &ts);
1650         if (res)
1651             return res;
1652         p = &ts;
1653     }
1654     return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1655 }
1656 #endif
1657 
1658 static const struct inode_operations mqueue_dir_inode_operations = {
1659     .lookup = simple_lookup,
1660     .create = mqueue_create,
1661     .unlink = mqueue_unlink,
1662 };
1663 
1664 static const struct file_operations mqueue_file_operations = {
1665     .flush = mqueue_flush_file,
1666     .poll = mqueue_poll_file,
1667     .read = mqueue_read_file,
1668     .llseek = default_llseek,
1669 };
1670 
1671 static const struct super_operations mqueue_super_ops = {
1672     .alloc_inode = mqueue_alloc_inode,
1673     .free_inode = mqueue_free_inode,
1674     .evict_inode = mqueue_evict_inode,
1675     .statfs = simple_statfs,
1676 };
1677 
1678 static const struct fs_context_operations mqueue_fs_context_ops = {
1679     .free       = mqueue_fs_context_free,
1680     .get_tree   = mqueue_get_tree,
1681 };
1682 
1683 static struct file_system_type mqueue_fs_type = {
1684     .name           = "mqueue",
1685     .init_fs_context    = mqueue_init_fs_context,
1686     .kill_sb        = kill_litter_super,
1687     .fs_flags       = FS_USERNS_MOUNT,
1688 };
1689 
1690 int mq_init_ns(struct ipc_namespace *ns)
1691 {
1692     struct vfsmount *m;
1693 
1694     ns->mq_queues_count  = 0;
1695     ns->mq_queues_max    = DFLT_QUEUESMAX;
1696     ns->mq_msg_max       = DFLT_MSGMAX;
1697     ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1698     ns->mq_msg_default   = DFLT_MSG;
1699     ns->mq_msgsize_default  = DFLT_MSGSIZE;
1700 
1701     m = mq_create_mount(ns);
1702     if (IS_ERR(m))
1703         return PTR_ERR(m);
1704     ns->mq_mnt = m;
1705     return 0;
1706 }
1707 
1708 void mq_clear_sbinfo(struct ipc_namespace *ns)
1709 {
1710     ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1711 }
1712 
1713 void mq_put_mnt(struct ipc_namespace *ns)
1714 {
1715     kern_unmount(ns->mq_mnt);
1716 }
1717 
1718 static int __init init_mqueue_fs(void)
1719 {
1720     int error;
1721 
1722     mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1723                 sizeof(struct mqueue_inode_info), 0,
1724                 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1725     if (mqueue_inode_cachep == NULL)
1726         return -ENOMEM;
1727 
1728     if (!setup_mq_sysctls(&init_ipc_ns)) {
1729         pr_warn("sysctl registration failed\n");
1730         return -ENOMEM;
1731     }
1732 
1733     error = register_filesystem(&mqueue_fs_type);
1734     if (error)
1735         goto out_sysctl;
1736 
1737     spin_lock_init(&mq_lock);
1738 
1739     error = mq_init_ns(&init_ipc_ns);
1740     if (error)
1741         goto out_filesystem;
1742 
1743     return 0;
1744 
1745 out_filesystem:
1746     unregister_filesystem(&mqueue_fs_type);
1747 out_sysctl:
1748     kmem_cache_destroy(mqueue_inode_cachep);
1749     return error;
1750 }
1751 
1752 device_initcall(init_mqueue_fs);