![]() |
|
|||
0001 /* SPDX-License-Identifier: MIT */ 0002 /****************************************************************************** 0003 * xen.h 0004 * 0005 * Guest OS interface to Xen. 0006 * 0007 * Copyright (c) 2004, K A Fraser 0008 */ 0009 0010 #ifndef __XEN_PUBLIC_XEN_H__ 0011 #define __XEN_PUBLIC_XEN_H__ 0012 0013 #include <asm/xen/interface.h> 0014 0015 /* 0016 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS). 0017 */ 0018 0019 /* 0020 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5. 0021 * EAX = return value 0022 * (argument registers may be clobbered on return) 0023 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6. 0024 * RAX = return value 0025 * (argument registers not clobbered on return; RCX, R11 are) 0026 */ 0027 #define __HYPERVISOR_set_trap_table 0 0028 #define __HYPERVISOR_mmu_update 1 0029 #define __HYPERVISOR_set_gdt 2 0030 #define __HYPERVISOR_stack_switch 3 0031 #define __HYPERVISOR_set_callbacks 4 0032 #define __HYPERVISOR_fpu_taskswitch 5 0033 #define __HYPERVISOR_sched_op_compat 6 0034 #define __HYPERVISOR_platform_op 7 0035 #define __HYPERVISOR_set_debugreg 8 0036 #define __HYPERVISOR_get_debugreg 9 0037 #define __HYPERVISOR_update_descriptor 10 0038 #define __HYPERVISOR_memory_op 12 0039 #define __HYPERVISOR_multicall 13 0040 #define __HYPERVISOR_update_va_mapping 14 0041 #define __HYPERVISOR_set_timer_op 15 0042 #define __HYPERVISOR_event_channel_op_compat 16 0043 #define __HYPERVISOR_xen_version 17 0044 #define __HYPERVISOR_console_io 18 0045 #define __HYPERVISOR_physdev_op_compat 19 0046 #define __HYPERVISOR_grant_table_op 20 0047 #define __HYPERVISOR_vm_assist 21 0048 #define __HYPERVISOR_update_va_mapping_otherdomain 22 0049 #define __HYPERVISOR_iret 23 /* x86 only */ 0050 #define __HYPERVISOR_vcpu_op 24 0051 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */ 0052 #define __HYPERVISOR_mmuext_op 26 0053 #define __HYPERVISOR_xsm_op 27 0054 #define __HYPERVISOR_nmi_op 28 0055 #define __HYPERVISOR_sched_op 29 0056 #define __HYPERVISOR_callback_op 30 0057 #define __HYPERVISOR_xenoprof_op 31 0058 #define __HYPERVISOR_event_channel_op 32 0059 #define __HYPERVISOR_physdev_op 33 0060 #define __HYPERVISOR_hvm_op 34 0061 #define __HYPERVISOR_sysctl 35 0062 #define __HYPERVISOR_domctl 36 0063 #define __HYPERVISOR_kexec_op 37 0064 #define __HYPERVISOR_tmem_op 38 0065 #define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */ 0066 #define __HYPERVISOR_xenpmu_op 40 0067 #define __HYPERVISOR_dm_op 41 0068 0069 /* Architecture-specific hypercall definitions. */ 0070 #define __HYPERVISOR_arch_0 48 0071 #define __HYPERVISOR_arch_1 49 0072 #define __HYPERVISOR_arch_2 50 0073 #define __HYPERVISOR_arch_3 51 0074 #define __HYPERVISOR_arch_4 52 0075 #define __HYPERVISOR_arch_5 53 0076 #define __HYPERVISOR_arch_6 54 0077 #define __HYPERVISOR_arch_7 55 0078 0079 /* 0080 * VIRTUAL INTERRUPTS 0081 * 0082 * Virtual interrupts that a guest OS may receive from Xen. 0083 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a 0084 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound. 0085 * The latter can be allocated only once per guest: they must initially be 0086 * allocated to VCPU0 but can subsequently be re-bound. 0087 */ 0088 #define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */ 0089 #define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */ 0090 #define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */ 0091 #define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */ 0092 #define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */ 0093 #define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */ 0094 #define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */ 0095 #define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */ 0096 #define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */ 0097 #define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */ 0098 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */ 0099 #define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */ 0100 #define VIRQ_XENPMU 13 /* PMC interrupt */ 0101 0102 /* Architecture-specific VIRQ definitions. */ 0103 #define VIRQ_ARCH_0 16 0104 #define VIRQ_ARCH_1 17 0105 #define VIRQ_ARCH_2 18 0106 #define VIRQ_ARCH_3 19 0107 #define VIRQ_ARCH_4 20 0108 #define VIRQ_ARCH_5 21 0109 #define VIRQ_ARCH_6 22 0110 #define VIRQ_ARCH_7 23 0111 0112 #define NR_VIRQS 24 0113 0114 /* 0115 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[], 0116 * unsigned count, unsigned *done_out, 0117 * unsigned foreigndom) 0118 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs). 0119 * @count is the length of the above array. 0120 * @pdone is an output parameter indicating number of completed operations 0121 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this 0122 * hypercall invocation. Can be DOMID_SELF. 0123 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced 0124 * in this hypercall invocation. The value of this field 0125 * (x) encodes the PFD as follows: 0126 * x == 0 => PFD == DOMID_SELF 0127 * x != 0 => PFD == x - 1 0128 * 0129 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command. 0130 * ------------- 0131 * ptr[1:0] == MMU_NORMAL_PT_UPDATE: 0132 * Updates an entry in a page table belonging to PFD. If updating an L1 table, 0133 * and the new table entry is valid/present, the mapped frame must belong to 0134 * FD. If attempting to map an I/O page then the caller assumes the privilege 0135 * of the FD. 0136 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller. 0137 * FD == DOMID_XEN: Map restricted areas of Xen's heap space. 0138 * ptr[:2] -- Machine address of the page-table entry to modify. 0139 * val -- Value to write. 0140 * 0141 * There also certain implicit requirements when using this hypercall. The 0142 * pages that make up a pagetable must be mapped read-only in the guest. 0143 * This prevents uncontrolled guest updates to the pagetable. Xen strictly 0144 * enforces this, and will disallow any pagetable update which will end up 0145 * mapping pagetable page RW, and will disallow using any writable page as a 0146 * pagetable. In practice it means that when constructing a page table for a 0147 * process, thread, etc, we MUST be very dilligient in following these rules: 0148 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out 0149 * the entries. 0150 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD 0151 * or L2). 0152 * 3). Start filling out the PTE table (L1) with the PTE entries. Once 0153 * done, make sure to set each of those entries to RO (so writeable bit 0154 * is unset). Once that has been completed, set the PMD (L2) for this 0155 * PTE table as RO. 0156 * 4). When completed with all of the PMD (L2) entries, and all of them have 0157 * been set to RO, make sure to set RO the PUD (L3). Do the same 0158 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry. 0159 * 5). Now before you can use those pages (so setting the cr3), you MUST also 0160 * pin them so that the hypervisor can verify the entries. This is done 0161 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame 0162 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op( 0163 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be 0164 * issued. 0165 * For 32-bit guests, the L4 is not used (as there is less pagetables), so 0166 * instead use L3. 0167 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE 0168 * hypercall. Also if so desired the OS can also try to write to the PTE 0169 * and be trapped by the hypervisor (as the PTE entry is RO). 0170 * 0171 * To deallocate the pages, the operations are the reverse of the steps 0172 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the 0173 * pagetable MUST not be in use (meaning that the cr3 is not set to it). 0174 * 0175 * ptr[1:0] == MMU_MACHPHYS_UPDATE: 0176 * Updates an entry in the machine->pseudo-physical mapping table. 0177 * ptr[:2] -- Machine address within the frame whose mapping to modify. 0178 * The frame must belong to the FD, if one is specified. 0179 * val -- Value to write into the mapping entry. 0180 * 0181 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD: 0182 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed 0183 * with those in @val. 0184 * 0185 * @val is usually the machine frame number along with some attributes. 0186 * The attributes by default follow the architecture defined bits. Meaning that 0187 * if this is a X86_64 machine and four page table layout is used, the layout 0188 * of val is: 0189 * - 63 if set means No execute (NX) 0190 * - 46-13 the machine frame number 0191 * - 12 available for guest 0192 * - 11 available for guest 0193 * - 10 available for guest 0194 * - 9 available for guest 0195 * - 8 global 0196 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages) 0197 * - 6 dirty 0198 * - 5 accessed 0199 * - 4 page cached disabled 0200 * - 3 page write through 0201 * - 2 userspace accessible 0202 * - 1 writeable 0203 * - 0 present 0204 * 0205 * The one bits that does not fit with the default layout is the PAGE_PSE 0206 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the 0207 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB 0208 * (or 2MB) instead of using the PAGE_PSE bit. 0209 * 0210 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen 0211 * using it as the Page Attribute Table (PAT) bit - for details on it please 0212 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of 0213 * pages instead of using MTRRs. 0214 * 0215 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits): 0216 * PAT4 PAT0 0217 * +-----+-----+----+----+----+-----+----+----+ 0218 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux 0219 * +-----+-----+----+----+----+-----+----+----+ 0220 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots) 0221 * +-----+-----+----+----+----+-----+----+----+ 0222 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen 0223 * +-----+-----+----+----+----+-----+----+----+ 0224 * 0225 * The lookup of this index table translates to looking up 0226 * Bit 7, Bit 4, and Bit 3 of val entry: 0227 * 0228 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3). 0229 * 0230 * If all bits are off, then we are using PAT0. If bit 3 turned on, 0231 * then we are using PAT1, if bit 3 and bit 4, then PAT2.. 0232 * 0233 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means 0234 * that if a guest that follows Linux's PAT setup and would like to set Write 0235 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is 0236 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the 0237 * caching as: 0238 * 0239 * WB = none (so PAT0) 0240 * WC = PWT (bit 3 on) 0241 * UC = PWT | PCD (bit 3 and 4 are on). 0242 * 0243 * To make it work with Xen, it needs to translate the WC bit as so: 0244 * 0245 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3 0246 * 0247 * And to translate back it would: 0248 * 0249 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7. 0250 */ 0251 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */ 0252 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */ 0253 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */ 0254 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA. */ 0255 0256 /* 0257 * MMU EXTENDED OPERATIONS 0258 * 0259 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[], 0260 * unsigned int count, 0261 * unsigned int *pdone, 0262 * unsigned int foreigndom) 0263 */ 0264 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures. 0265 * A foreigndom (FD) can be specified (or DOMID_SELF for none). 0266 * Where the FD has some effect, it is described below. 0267 * 0268 * cmd: MMUEXT_(UN)PIN_*_TABLE 0269 * mfn: Machine frame number to be (un)pinned as a p.t. page. 0270 * The frame must belong to the FD, if one is specified. 0271 * 0272 * cmd: MMUEXT_NEW_BASEPTR 0273 * mfn: Machine frame number of new page-table base to install in MMU. 0274 * 0275 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only] 0276 * mfn: Machine frame number of new page-table base to install in MMU 0277 * when in user space. 0278 * 0279 * cmd: MMUEXT_TLB_FLUSH_LOCAL 0280 * No additional arguments. Flushes local TLB. 0281 * 0282 * cmd: MMUEXT_INVLPG_LOCAL 0283 * linear_addr: Linear address to be flushed from the local TLB. 0284 * 0285 * cmd: MMUEXT_TLB_FLUSH_MULTI 0286 * vcpumask: Pointer to bitmap of VCPUs to be flushed. 0287 * 0288 * cmd: MMUEXT_INVLPG_MULTI 0289 * linear_addr: Linear address to be flushed. 0290 * vcpumask: Pointer to bitmap of VCPUs to be flushed. 0291 * 0292 * cmd: MMUEXT_TLB_FLUSH_ALL 0293 * No additional arguments. Flushes all VCPUs' TLBs. 0294 * 0295 * cmd: MMUEXT_INVLPG_ALL 0296 * linear_addr: Linear address to be flushed from all VCPUs' TLBs. 0297 * 0298 * cmd: MMUEXT_FLUSH_CACHE 0299 * No additional arguments. Writes back and flushes cache contents. 0300 * 0301 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL 0302 * No additional arguments. Writes back and flushes cache contents 0303 * on all CPUs in the system. 0304 * 0305 * cmd: MMUEXT_SET_LDT 0306 * linear_addr: Linear address of LDT base (NB. must be page-aligned). 0307 * nr_ents: Number of entries in LDT. 0308 * 0309 * cmd: MMUEXT_CLEAR_PAGE 0310 * mfn: Machine frame number to be cleared. 0311 * 0312 * cmd: MMUEXT_COPY_PAGE 0313 * mfn: Machine frame number of the destination page. 0314 * src_mfn: Machine frame number of the source page. 0315 * 0316 * cmd: MMUEXT_[UN]MARK_SUPER 0317 * mfn: Machine frame number of head of superpage to be [un]marked. 0318 */ 0319 #define MMUEXT_PIN_L1_TABLE 0 0320 #define MMUEXT_PIN_L2_TABLE 1 0321 #define MMUEXT_PIN_L3_TABLE 2 0322 #define MMUEXT_PIN_L4_TABLE 3 0323 #define MMUEXT_UNPIN_TABLE 4 0324 #define MMUEXT_NEW_BASEPTR 5 0325 #define MMUEXT_TLB_FLUSH_LOCAL 6 0326 #define MMUEXT_INVLPG_LOCAL 7 0327 #define MMUEXT_TLB_FLUSH_MULTI 8 0328 #define MMUEXT_INVLPG_MULTI 9 0329 #define MMUEXT_TLB_FLUSH_ALL 10 0330 #define MMUEXT_INVLPG_ALL 11 0331 #define MMUEXT_FLUSH_CACHE 12 0332 #define MMUEXT_SET_LDT 13 0333 #define MMUEXT_NEW_USER_BASEPTR 15 0334 #define MMUEXT_CLEAR_PAGE 16 0335 #define MMUEXT_COPY_PAGE 17 0336 #define MMUEXT_FLUSH_CACHE_GLOBAL 18 0337 #define MMUEXT_MARK_SUPER 19 0338 #define MMUEXT_UNMARK_SUPER 20 0339 0340 #ifndef __ASSEMBLY__ 0341 struct mmuext_op { 0342 unsigned int cmd; 0343 union { 0344 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR 0345 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */ 0346 xen_pfn_t mfn; 0347 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */ 0348 unsigned long linear_addr; 0349 } arg1; 0350 union { 0351 /* SET_LDT */ 0352 unsigned int nr_ents; 0353 /* TLB_FLUSH_MULTI, INVLPG_MULTI */ 0354 void *vcpumask; 0355 /* COPY_PAGE */ 0356 xen_pfn_t src_mfn; 0357 } arg2; 0358 }; 0359 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op); 0360 #endif 0361 0362 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */ 0363 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */ 0364 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */ 0365 #define UVMF_NONE (0UL<<0) /* No flushing at all. */ 0366 #define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */ 0367 #define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */ 0368 #define UVMF_FLUSHTYPE_MASK (3UL<<0) 0369 #define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */ 0370 #define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */ 0371 #define UVMF_ALL (1UL<<2) /* Flush all TLBs. */ 0372 0373 /* 0374 * Commands to HYPERVISOR_console_io(). 0375 */ 0376 #define CONSOLEIO_write 0 0377 #define CONSOLEIO_read 1 0378 0379 /* 0380 * Commands to HYPERVISOR_vm_assist(). 0381 */ 0382 #define VMASST_CMD_enable 0 0383 #define VMASST_CMD_disable 1 0384 0385 /* x86/32 guests: simulate full 4GB segment limits. */ 0386 #define VMASST_TYPE_4gb_segments 0 0387 0388 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */ 0389 #define VMASST_TYPE_4gb_segments_notify 1 0390 0391 /* 0392 * x86 guests: support writes to bottom-level PTEs. 0393 * NB1. Page-directory entries cannot be written. 0394 * NB2. Guest must continue to remove all writable mappings of PTEs. 0395 */ 0396 #define VMASST_TYPE_writable_pagetables 2 0397 0398 /* x86/PAE guests: support PDPTs above 4GB. */ 0399 #define VMASST_TYPE_pae_extended_cr3 3 0400 0401 /* 0402 * x86 guests: Sane behaviour for virtual iopl 0403 * - virtual iopl updated from do_iret() hypercalls. 0404 * - virtual iopl reported in bounce frames. 0405 * - guest kernels assumed to be level 0 for the purpose of iopl checks. 0406 */ 0407 #define VMASST_TYPE_architectural_iopl 4 0408 0409 /* 0410 * All guests: activate update indicator in vcpu_runstate_info 0411 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped 0412 * vcpu_runstate_info during updates of the runstate information. 0413 */ 0414 #define VMASST_TYPE_runstate_update_flag 5 0415 0416 #define MAX_VMASST_TYPE 5 0417 0418 #ifndef __ASSEMBLY__ 0419 0420 typedef uint16_t domid_t; 0421 0422 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */ 0423 #define DOMID_FIRST_RESERVED (0x7FF0U) 0424 0425 /* DOMID_SELF is used in certain contexts to refer to oneself. */ 0426 #define DOMID_SELF (0x7FF0U) 0427 0428 /* 0429 * DOMID_IO is used to restrict page-table updates to mapping I/O memory. 0430 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO 0431 * is useful to ensure that no mappings to the OS's own heap are accidentally 0432 * installed. (e.g., in Linux this could cause havoc as reference counts 0433 * aren't adjusted on the I/O-mapping code path). 0434 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can 0435 * be specified by any calling domain. 0436 */ 0437 #define DOMID_IO (0x7FF1U) 0438 0439 /* 0440 * DOMID_XEN is used to allow privileged domains to map restricted parts of 0441 * Xen's heap space (e.g., the machine_to_phys table). 0442 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if 0443 * the caller is privileged. 0444 */ 0445 #define DOMID_XEN (0x7FF2U) 0446 0447 /* DOMID_COW is used as the owner of sharable pages */ 0448 #define DOMID_COW (0x7FF3U) 0449 0450 /* DOMID_INVALID is used to identify pages with unknown owner. */ 0451 #define DOMID_INVALID (0x7FF4U) 0452 0453 /* Idle domain. */ 0454 #define DOMID_IDLE (0x7FFFU) 0455 0456 /* 0457 * Send an array of these to HYPERVISOR_mmu_update(). 0458 * NB. The fields are natural pointer/address size for this architecture. 0459 */ 0460 struct mmu_update { 0461 uint64_t ptr; /* Machine address of PTE. */ 0462 uint64_t val; /* New contents of PTE. */ 0463 }; 0464 DEFINE_GUEST_HANDLE_STRUCT(mmu_update); 0465 0466 /* 0467 * Send an array of these to HYPERVISOR_multicall(). 0468 * NB. The fields are logically the natural register size for this 0469 * architecture. In cases where xen_ulong_t is larger than this then 0470 * any unused bits in the upper portion must be zero. 0471 */ 0472 struct multicall_entry { 0473 xen_ulong_t op; 0474 xen_long_t result; 0475 xen_ulong_t args[6]; 0476 }; 0477 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry); 0478 0479 struct vcpu_time_info { 0480 /* 0481 * Updates to the following values are preceded and followed 0482 * by an increment of 'version'. The guest can therefore 0483 * detect updates by looking for changes to 'version'. If the 0484 * least-significant bit of the version number is set then an 0485 * update is in progress and the guest must wait to read a 0486 * consistent set of values. The correct way to interact with 0487 * the version number is similar to Linux's seqlock: see the 0488 * implementations of read_seqbegin/read_seqretry. 0489 */ 0490 uint32_t version; 0491 uint32_t pad0; 0492 uint64_t tsc_timestamp; /* TSC at last update of time vals. */ 0493 uint64_t system_time; /* Time, in nanosecs, since boot. */ 0494 /* 0495 * Current system time: 0496 * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul 0497 * CPU frequency (Hz): 0498 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift 0499 */ 0500 uint32_t tsc_to_system_mul; 0501 int8_t tsc_shift; 0502 int8_t pad1[3]; 0503 }; /* 32 bytes */ 0504 0505 struct vcpu_info { 0506 /* 0507 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate 0508 * a pending notification for a particular VCPU. It is then cleared 0509 * by the guest OS /before/ checking for pending work, thus avoiding 0510 * a set-and-check race. Note that the mask is only accessed by Xen 0511 * on the CPU that is currently hosting the VCPU. This means that the 0512 * pending and mask flags can be updated by the guest without special 0513 * synchronisation (i.e., no need for the x86 LOCK prefix). 0514 * This may seem suboptimal because if the pending flag is set by 0515 * a different CPU then an IPI may be scheduled even when the mask 0516 * is set. However, note: 0517 * 1. The task of 'interrupt holdoff' is covered by the per-event- 0518 * channel mask bits. A 'noisy' event that is continually being 0519 * triggered can be masked at source at this very precise 0520 * granularity. 0521 * 2. The main purpose of the per-VCPU mask is therefore to restrict 0522 * reentrant execution: whether for concurrency control, or to 0523 * prevent unbounded stack usage. Whatever the purpose, we expect 0524 * that the mask will be asserted only for short periods at a time, 0525 * and so the likelihood of a 'spurious' IPI is suitably small. 0526 * The mask is read before making an event upcall to the guest: a 0527 * non-zero mask therefore guarantees that the VCPU will not receive 0528 * an upcall activation. The mask is cleared when the VCPU requests 0529 * to block: this avoids wakeup-waiting races. 0530 */ 0531 uint8_t evtchn_upcall_pending; 0532 uint8_t evtchn_upcall_mask; 0533 xen_ulong_t evtchn_pending_sel; 0534 struct arch_vcpu_info arch; 0535 struct pvclock_vcpu_time_info time; 0536 }; /* 64 bytes (x86) */ 0537 0538 /* 0539 * Xen/kernel shared data -- pointer provided in start_info. 0540 * NB. We expect that this struct is smaller than a page. 0541 */ 0542 struct shared_info { 0543 struct vcpu_info vcpu_info[MAX_VIRT_CPUS]; 0544 0545 /* 0546 * A domain can create "event channels" on which it can send and receive 0547 * asynchronous event notifications. There are three classes of event that 0548 * are delivered by this mechanism: 0549 * 1. Bi-directional inter- and intra-domain connections. Domains must 0550 * arrange out-of-band to set up a connection (usually by allocating 0551 * an unbound 'listener' port and avertising that via a storage service 0552 * such as xenstore). 0553 * 2. Physical interrupts. A domain with suitable hardware-access 0554 * privileges can bind an event-channel port to a physical interrupt 0555 * source. 0556 * 3. Virtual interrupts ('events'). A domain can bind an event-channel 0557 * port to a virtual interrupt source, such as the virtual-timer 0558 * device or the emergency console. 0559 * 0560 * Event channels are addressed by a "port index". Each channel is 0561 * associated with two bits of information: 0562 * 1. PENDING -- notifies the domain that there is a pending notification 0563 * to be processed. This bit is cleared by the guest. 0564 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING 0565 * will cause an asynchronous upcall to be scheduled. This bit is only 0566 * updated by the guest. It is read-only within Xen. If a channel 0567 * becomes pending while the channel is masked then the 'edge' is lost 0568 * (i.e., when the channel is unmasked, the guest must manually handle 0569 * pending notifications as no upcall will be scheduled by Xen). 0570 * 0571 * To expedite scanning of pending notifications, any 0->1 pending 0572 * transition on an unmasked channel causes a corresponding bit in a 0573 * per-vcpu selector word to be set. Each bit in the selector covers a 0574 * 'C long' in the PENDING bitfield array. 0575 */ 0576 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8]; 0577 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8]; 0578 0579 /* 0580 * Wallclock time: updated only by control software. Guests should base 0581 * their gettimeofday() syscall on this wallclock-base value. 0582 */ 0583 struct pvclock_wall_clock wc; 0584 #ifndef CONFIG_X86_32 0585 uint32_t wc_sec_hi; 0586 #endif 0587 struct arch_shared_info arch; 0588 0589 }; 0590 0591 /* 0592 * Start-of-day memory layout 0593 * 0594 * 1. The domain is started within contiguous virtual-memory region. 0595 * 2. The contiguous region begins and ends on an aligned 4MB boundary. 0596 * 3. This the order of bootstrap elements in the initial virtual region: 0597 * a. relocated kernel image 0598 * b. initial ram disk [mod_start, mod_len] 0599 * (may be omitted) 0600 * c. list of allocated page frames [mfn_list, nr_pages] 0601 * (unless relocated due to XEN_ELFNOTE_INIT_P2M) 0602 * d. start_info_t structure [register ESI (x86)] 0603 * in case of dom0 this page contains the console info, too 0604 * e. unless dom0: xenstore ring page 0605 * f. unless dom0: console ring page 0606 * g. bootstrap page tables [pt_base, CR3 (x86)] 0607 * h. bootstrap stack [register ESP (x86)] 0608 * 4. Bootstrap elements are packed together, but each is 4kB-aligned. 0609 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory 0610 * layout for the domain. In particular, the bootstrap virtual-memory 0611 * region is a 1:1 mapping to the first section of the pseudo-physical map. 0612 * 6. All bootstrap elements are mapped read-writable for the guest OS. The 0613 * only exception is the bootstrap page table, which is mapped read-only. 0614 * 7. There is guaranteed to be at least 512kB padding after the final 0615 * bootstrap element. If necessary, the bootstrap virtual region is 0616 * extended by an extra 4MB to ensure this. 0617 */ 0618 0619 #define MAX_GUEST_CMDLINE 1024 0620 struct start_info { 0621 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */ 0622 char magic[32]; /* "xen-<version>-<platform>". */ 0623 unsigned long nr_pages; /* Total pages allocated to this domain. */ 0624 unsigned long shared_info; /* MACHINE address of shared info struct. */ 0625 uint32_t flags; /* SIF_xxx flags. */ 0626 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */ 0627 uint32_t store_evtchn; /* Event channel for store communication. */ 0628 union { 0629 struct { 0630 xen_pfn_t mfn; /* MACHINE page number of console page. */ 0631 uint32_t evtchn; /* Event channel for console page. */ 0632 } domU; 0633 struct { 0634 uint32_t info_off; /* Offset of console_info struct. */ 0635 uint32_t info_size; /* Size of console_info struct from start.*/ 0636 } dom0; 0637 } console; 0638 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */ 0639 unsigned long pt_base; /* VIRTUAL address of page directory. */ 0640 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */ 0641 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */ 0642 unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */ 0643 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */ 0644 int8_t cmd_line[MAX_GUEST_CMDLINE]; 0645 /* The pfn range here covers both page table and p->m table frames. */ 0646 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */ 0647 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */ 0648 }; 0649 0650 /* These flags are passed in the 'flags' field of start_info_t. */ 0651 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */ 0652 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */ 0653 #define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */ 0654 #define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */ 0655 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */ 0656 /* P->M making the 3 level tree obsolete? */ 0657 #define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */ 0658 0659 /* 0660 * A multiboot module is a package containing modules very similar to a 0661 * multiboot module array. The only differences are: 0662 * - the array of module descriptors is by convention simply at the beginning 0663 * of the multiboot module, 0664 * - addresses in the module descriptors are based on the beginning of the 0665 * multiboot module, 0666 * - the number of modules is determined by a termination descriptor that has 0667 * mod_start == 0. 0668 * 0669 * This permits to both build it statically and reference it in a configuration 0670 * file, and let the PV guest easily rebase the addresses to virtual addresses 0671 * and at the same time count the number of modules. 0672 */ 0673 struct xen_multiboot_mod_list { 0674 /* Address of first byte of the module */ 0675 uint32_t mod_start; 0676 /* Address of last byte of the module (inclusive) */ 0677 uint32_t mod_end; 0678 /* Address of zero-terminated command line */ 0679 uint32_t cmdline; 0680 /* Unused, must be zero */ 0681 uint32_t pad; 0682 }; 0683 /* 0684 * The console structure in start_info.console.dom0 0685 * 0686 * This structure includes a variety of information required to 0687 * have a working VGA/VESA console. 0688 */ 0689 struct dom0_vga_console_info { 0690 uint8_t video_type; 0691 #define XEN_VGATYPE_TEXT_MODE_3 0x03 0692 #define XEN_VGATYPE_VESA_LFB 0x23 0693 #define XEN_VGATYPE_EFI_LFB 0x70 0694 0695 union { 0696 struct { 0697 /* Font height, in pixels. */ 0698 uint16_t font_height; 0699 /* Cursor location (column, row). */ 0700 uint16_t cursor_x, cursor_y; 0701 /* Number of rows and columns (dimensions in characters). */ 0702 uint16_t rows, columns; 0703 } text_mode_3; 0704 0705 struct { 0706 /* Width and height, in pixels. */ 0707 uint16_t width, height; 0708 /* Bytes per scan line. */ 0709 uint16_t bytes_per_line; 0710 /* Bits per pixel. */ 0711 uint16_t bits_per_pixel; 0712 /* LFB physical address, and size (in units of 64kB). */ 0713 uint32_t lfb_base; 0714 uint32_t lfb_size; 0715 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */ 0716 uint8_t red_pos, red_size; 0717 uint8_t green_pos, green_size; 0718 uint8_t blue_pos, blue_size; 0719 uint8_t rsvd_pos, rsvd_size; 0720 0721 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */ 0722 uint32_t gbl_caps; 0723 /* Mode attributes (offset 0x0, VESA command 0x4f01). */ 0724 uint16_t mode_attrs; 0725 uint16_t pad; 0726 /* high 32 bits of lfb_base */ 0727 uint32_t ext_lfb_base; 0728 } vesa_lfb; 0729 } u; 0730 }; 0731 0732 typedef uint64_t cpumap_t; 0733 0734 typedef uint8_t xen_domain_handle_t[16]; 0735 0736 /* Turn a plain number into a C unsigned long constant. */ 0737 #define __mk_unsigned_long(x) x ## UL 0738 #define mk_unsigned_long(x) __mk_unsigned_long(x) 0739 0740 #define TMEM_SPEC_VERSION 1 0741 0742 struct tmem_op { 0743 uint32_t cmd; 0744 int32_t pool_id; 0745 union { 0746 struct { /* for cmd == TMEM_NEW_POOL */ 0747 uint64_t uuid[2]; 0748 uint32_t flags; 0749 } new; 0750 struct { 0751 uint64_t oid[3]; 0752 uint32_t index; 0753 uint32_t tmem_offset; 0754 uint32_t pfn_offset; 0755 uint32_t len; 0756 GUEST_HANDLE(void) gmfn; /* guest machine page frame */ 0757 } gen; 0758 } u; 0759 }; 0760 0761 DEFINE_GUEST_HANDLE(u64); 0762 0763 #else /* __ASSEMBLY__ */ 0764 0765 /* In assembly code we cannot use C numeric constant suffixes. */ 0766 #define mk_unsigned_long(x) x 0767 0768 #endif /* !__ASSEMBLY__ */ 0769 0770 #endif /* __XEN_PUBLIC_XEN_H__ */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |