Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
0002 /*
0003  *
0004  * Copyright (c) 2011, Microsoft Corporation.
0005  *
0006  * This program is free software; you can redistribute it and/or modify it
0007  * under the terms and conditions of the GNU General Public License,
0008  * version 2, as published by the Free Software Foundation.
0009  *
0010  * This program is distributed in the hope it will be useful, but WITHOUT
0011  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0012  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
0013  * more details.
0014  *
0015  * You should have received a copy of the GNU General Public License along with
0016  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
0017  * Place - Suite 330, Boston, MA 02111-1307 USA.
0018  *
0019  * Authors:
0020  *   Haiyang Zhang <haiyangz@microsoft.com>
0021  *   Hank Janssen  <hjanssen@microsoft.com>
0022  *   K. Y. Srinivasan <kys@microsoft.com>
0023  *
0024  */
0025 
0026 #ifndef _UAPI_HYPERV_H
0027 #define _UAPI_HYPERV_H
0028 
0029 #include <linux/types.h>
0030 
0031 /*
0032  * Framework version for util services.
0033  */
0034 #define UTIL_FW_MINOR  0
0035 
0036 #define UTIL_WS2K8_FW_MAJOR  1
0037 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
0038 
0039 #define UTIL_FW_MAJOR  3
0040 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
0041 
0042 
0043 /*
0044  * Implementation of host controlled snapshot of the guest.
0045  */
0046 
0047 #define VSS_OP_REGISTER 128
0048 
0049 /*
0050   Daemon code with full handshake support.
0051  */
0052 #define VSS_OP_REGISTER1 129
0053 
0054 enum hv_vss_op {
0055     VSS_OP_CREATE = 0,
0056     VSS_OP_DELETE,
0057     VSS_OP_HOT_BACKUP,
0058     VSS_OP_GET_DM_INFO,
0059     VSS_OP_BU_COMPLETE,
0060     /*
0061      * Following operations are only supported with IC version >= 5.0
0062      */
0063     VSS_OP_FREEZE, /* Freeze the file systems in the VM */
0064     VSS_OP_THAW, /* Unfreeze the file systems */
0065     VSS_OP_AUTO_RECOVER,
0066     VSS_OP_COUNT /* Number of operations, must be last */
0067 };
0068 
0069 
0070 /*
0071  * Header for all VSS messages.
0072  */
0073 struct hv_vss_hdr {
0074     __u8 operation;
0075     __u8 reserved[7];
0076 } __attribute__((packed));
0077 
0078 
0079 /*
0080  * Flag values for the hv_vss_check_feature. Linux supports only
0081  * one value.
0082  */
0083 #define VSS_HBU_NO_AUTO_RECOVERY    0x00000005
0084 
0085 struct hv_vss_check_feature {
0086     __u32 flags;
0087 } __attribute__((packed));
0088 
0089 struct hv_vss_check_dm_info {
0090     __u32 flags;
0091 } __attribute__((packed));
0092 
0093 /*
0094  * struct hv_vss_msg encodes the fields that the Linux VSS
0095  * driver accesses. However, FREEZE messages from Hyper-V contain
0096  * additional LUN information that Linux doesn't use and are not
0097  * represented in struct hv_vss_msg. A received FREEZE message may
0098  * be as large as 6,260 bytes, so the driver must allocate at least
0099  * that much space, not sizeof(struct hv_vss_msg). Other messages
0100  * such as AUTO_RECOVER may be as large as 12,500 bytes. However,
0101  * because the Linux VSS driver responds that it doesn't support
0102  * auto-recovery, it should not receive such messages.
0103  */
0104 struct hv_vss_msg {
0105     union {
0106         struct hv_vss_hdr vss_hdr;
0107         int error;
0108     };
0109     union {
0110         struct hv_vss_check_feature vss_cf;
0111         struct hv_vss_check_dm_info dm_info;
0112     };
0113 } __attribute__((packed));
0114 
0115 /*
0116  * Implementation of a host to guest copy facility.
0117  */
0118 
0119 #define FCOPY_VERSION_0 0
0120 #define FCOPY_VERSION_1 1
0121 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
0122 #define W_MAX_PATH 260
0123 
0124 enum hv_fcopy_op {
0125     START_FILE_COPY = 0,
0126     WRITE_TO_FILE,
0127     COMPLETE_FCOPY,
0128     CANCEL_FCOPY,
0129 };
0130 
0131 struct hv_fcopy_hdr {
0132     __u32 operation;
0133     __u8 service_id0[16]; /* currently unused */
0134     __u8 service_id1[16]; /* currently unused */
0135 } __attribute__((packed));
0136 
0137 #define OVER_WRITE  0x1
0138 #define CREATE_PATH 0x2
0139 
0140 struct hv_start_fcopy {
0141     struct hv_fcopy_hdr hdr;
0142     __u16 file_name[W_MAX_PATH];
0143     __u16 path_name[W_MAX_PATH];
0144     __u32 copy_flags;
0145     __u64 file_size;
0146 } __attribute__((packed));
0147 
0148 /*
0149  * The file is chunked into fragments.
0150  */
0151 #define DATA_FRAGMENT   (6 * 1024)
0152 
0153 struct hv_do_fcopy {
0154     struct hv_fcopy_hdr hdr;
0155     __u32   pad;
0156     __u64   offset;
0157     __u32   size;
0158     __u8    data[DATA_FRAGMENT];
0159 } __attribute__((packed));
0160 
0161 /*
0162  * An implementation of HyperV key value pair (KVP) functionality for Linux.
0163  *
0164  *
0165  * Copyright (C) 2010, Novell, Inc.
0166  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
0167  *
0168  */
0169 
0170 /*
0171  * Maximum value size - used for both key names and value data, and includes
0172  * any applicable NULL terminators.
0173  *
0174  * Note:  This limit is somewhat arbitrary, but falls easily within what is
0175  * supported for all native guests (back to Win 2000) and what is reasonable
0176  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
0177  * limited to 255 character key names.
0178  *
0179  * MSDN recommends not storing data values larger than 2048 bytes in the
0180  * registry.
0181  *
0182  * Note:  This value is used in defining the KVP exchange message - this value
0183  * cannot be modified without affecting the message size and compatibility.
0184  */
0185 
0186 /*
0187  * bytes, including any null terminators
0188  */
0189 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
0190 
0191 
0192 /*
0193  * Maximum key size - the registry limit for the length of an entry name
0194  * is 256 characters, including the null terminator
0195  */
0196 
0197 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
0198 
0199 /*
0200  * In Linux, we implement the KVP functionality in two components:
0201  * 1) The kernel component which is packaged as part of the hv_utils driver
0202  * is responsible for communicating with the host and responsible for
0203  * implementing the host/guest protocol. 2) A user level daemon that is
0204  * responsible for data gathering.
0205  *
0206  * Host/Guest Protocol: The host iterates over an index and expects the guest
0207  * to assign a key name to the index and also return the value corresponding to
0208  * the key. The host will have atmost one KVP transaction outstanding at any
0209  * given point in time. The host side iteration stops when the guest returns
0210  * an error. Microsoft has specified the following mapping of key names to
0211  * host specified index:
0212  *
0213  *  Index       Key Name
0214  *  0       FullyQualifiedDomainName
0215  *  1       IntegrationServicesVersion
0216  *  2       NetworkAddressIPv4
0217  *  3       NetworkAddressIPv6
0218  *  4       OSBuildNumber
0219  *  5       OSName
0220  *  6       OSMajorVersion
0221  *  7       OSMinorVersion
0222  *  8       OSVersion
0223  *  9       ProcessorArchitecture
0224  *
0225  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
0226  *
0227  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
0228  * data gathering functionality in a user mode daemon. The user level daemon
0229  * is also responsible for binding the key name to the index as well. The
0230  * kernel and user-level daemon communicate using a connector channel.
0231  *
0232  * The user mode component first registers with the
0233  * kernel component. Subsequently, the kernel component requests, data
0234  * for the specified keys. In response to this message the user mode component
0235  * fills in the value corresponding to the specified key. We overload the
0236  * sequence field in the cn_msg header to define our KVP message types.
0237  *
0238  *
0239  * The kernel component simply acts as a conduit for communication between the
0240  * Windows host and the user-level daemon. The kernel component passes up the
0241  * index received from the Host to the user-level daemon. If the index is
0242  * valid (supported), the corresponding key as well as its
0243  * value (both are strings) is returned. If the index is invalid
0244  * (not supported), a NULL key string is returned.
0245  */
0246 
0247 
0248 /*
0249  * Registry value types.
0250  */
0251 
0252 #define REG_SZ 1
0253 #define REG_U32 4
0254 #define REG_U64 8
0255 
0256 /*
0257  * As we look at expanding the KVP functionality to include
0258  * IP injection functionality, we need to maintain binary
0259  * compatibility with older daemons.
0260  *
0261  * The KVP opcodes are defined by the host and it was unfortunate
0262  * that I chose to treat the registration operation as part of the
0263  * KVP operations defined by the host.
0264  * Here is the level of compatibility
0265  * (between the user level daemon and the kernel KVP driver) that we
0266  * will implement:
0267  *
0268  * An older daemon will always be supported on a newer driver.
0269  * A given user level daemon will require a minimal version of the
0270  * kernel driver.
0271  * If we cannot handle the version differences, we will fail gracefully
0272  * (this can happen when we have a user level daemon that is more
0273  * advanced than the KVP driver.
0274  *
0275  * We will use values used in this handshake for determining if we have
0276  * workable user level daemon and the kernel driver. We begin by taking the
0277  * registration opcode out of the KVP opcode namespace. We will however,
0278  * maintain compatibility with the existing user-level daemon code.
0279  */
0280 
0281 /*
0282  * Daemon code not supporting IP injection (legacy daemon).
0283  */
0284 
0285 #define KVP_OP_REGISTER 4
0286 
0287 /*
0288  * Daemon code supporting IP injection.
0289  * The KVP opcode field is used to communicate the
0290  * registration information; so define a namespace that
0291  * will be distinct from the host defined KVP opcode.
0292  */
0293 
0294 #define KVP_OP_REGISTER1 100
0295 
0296 enum hv_kvp_exchg_op {
0297     KVP_OP_GET = 0,
0298     KVP_OP_SET,
0299     KVP_OP_DELETE,
0300     KVP_OP_ENUMERATE,
0301     KVP_OP_GET_IP_INFO,
0302     KVP_OP_SET_IP_INFO,
0303     KVP_OP_COUNT /* Number of operations, must be last. */
0304 };
0305 
0306 enum hv_kvp_exchg_pool {
0307     KVP_POOL_EXTERNAL = 0,
0308     KVP_POOL_GUEST,
0309     KVP_POOL_AUTO,
0310     KVP_POOL_AUTO_EXTERNAL,
0311     KVP_POOL_AUTO_INTERNAL,
0312     KVP_POOL_COUNT /* Number of pools, must be last. */
0313 };
0314 
0315 /*
0316  * Some Hyper-V status codes.
0317  */
0318 
0319 #define HV_S_OK             0x00000000
0320 #define HV_E_FAIL           0x80004005
0321 #define HV_S_CONT           0x80070103
0322 #define HV_ERROR_NOT_SUPPORTED      0x80070032
0323 #define HV_ERROR_MACHINE_LOCKED     0x800704F7
0324 #define HV_ERROR_DEVICE_NOT_CONNECTED   0x8007048F
0325 #define HV_INVALIDARG           0x80070057
0326 #define HV_GUID_NOTFOUND        0x80041002
0327 #define HV_ERROR_ALREADY_EXISTS     0x80070050
0328 #define HV_ERROR_DISK_FULL      0x80070070
0329 
0330 #define ADDR_FAMILY_NONE    0x00
0331 #define ADDR_FAMILY_IPV4    0x01
0332 #define ADDR_FAMILY_IPV6    0x02
0333 
0334 #define MAX_ADAPTER_ID_SIZE 128
0335 #define MAX_IP_ADDR_SIZE    1024
0336 #define MAX_GATEWAY_SIZE    512
0337 
0338 
0339 struct hv_kvp_ipaddr_value {
0340     __u16   adapter_id[MAX_ADAPTER_ID_SIZE];
0341     __u8    addr_family;
0342     __u8    dhcp_enabled;
0343     __u16   ip_addr[MAX_IP_ADDR_SIZE];
0344     __u16   sub_net[MAX_IP_ADDR_SIZE];
0345     __u16   gate_way[MAX_GATEWAY_SIZE];
0346     __u16   dns_addr[MAX_IP_ADDR_SIZE];
0347 } __attribute__((packed));
0348 
0349 
0350 struct hv_kvp_hdr {
0351     __u8 operation;
0352     __u8 pool;
0353     __u16 pad;
0354 } __attribute__((packed));
0355 
0356 struct hv_kvp_exchg_msg_value {
0357     __u32 value_type;
0358     __u32 key_size;
0359     __u32 value_size;
0360     __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
0361     union {
0362         __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
0363         __u32 value_u32;
0364         __u64 value_u64;
0365     };
0366 } __attribute__((packed));
0367 
0368 struct hv_kvp_msg_enumerate {
0369     __u32 index;
0370     struct hv_kvp_exchg_msg_value data;
0371 } __attribute__((packed));
0372 
0373 struct hv_kvp_msg_get {
0374     struct hv_kvp_exchg_msg_value data;
0375 };
0376 
0377 struct hv_kvp_msg_set {
0378     struct hv_kvp_exchg_msg_value data;
0379 };
0380 
0381 struct hv_kvp_msg_delete {
0382     __u32 key_size;
0383     __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
0384 };
0385 
0386 struct hv_kvp_register {
0387     __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
0388 };
0389 
0390 struct hv_kvp_msg {
0391     union {
0392         struct hv_kvp_hdr   kvp_hdr;
0393         int error;
0394     };
0395     union {
0396         struct hv_kvp_msg_get       kvp_get;
0397         struct hv_kvp_msg_set       kvp_set;
0398         struct hv_kvp_msg_delete    kvp_delete;
0399         struct hv_kvp_msg_enumerate kvp_enum_data;
0400         struct hv_kvp_ipaddr_value      kvp_ip_val;
0401         struct hv_kvp_register      kvp_register;
0402     } body;
0403 } __attribute__((packed));
0404 
0405 struct hv_kvp_ip_msg {
0406     __u8 operation;
0407     __u8 pool;
0408     struct hv_kvp_ipaddr_value      kvp_ip_val;
0409 } __attribute__((packed));
0410 
0411 #endif /* _UAPI_HYPERV_H */