Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-or-later */
0002 /*
0003  * INET     An implementation of the TCP/IP protocol suite for the LINUX
0004  *      operating system.  INET is implemented using the  BSD Socket
0005  *      interface as the means of communication with the user level.
0006  *
0007  *      Definitions for the AF_INET socket handler.
0008  *
0009  * Version: @(#)sock.h  1.0.4   05/13/93
0010  *
0011  * Authors: Ross Biro
0012  *      Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
0013  *      Corey Minyard <wf-rch!minyard@relay.EU.net>
0014  *      Florian La Roche <flla@stud.uni-sb.de>
0015  *
0016  * Fixes:
0017  *      Alan Cox    :   Volatiles in skbuff pointers. See
0018  *                  skbuff comments. May be overdone,
0019  *                  better to prove they can be removed
0020  *                  than the reverse.
0021  *      Alan Cox    :   Added a zapped field for tcp to note
0022  *                  a socket is reset and must stay shut up
0023  *      Alan Cox    :   New fields for options
0024  *  Pauline Middelink   :   identd support
0025  *      Alan Cox    :   Eliminate low level recv/recvfrom
0026  *      David S. Miller :   New socket lookup architecture.
0027  *              Steve Whitehouse:       Default routines for sock_ops
0028  *              Arnaldo C. Melo :   removed net_pinfo, tp_pinfo and made
0029  *                          protinfo be just a void pointer, as the
0030  *                          protocol specific parts were moved to
0031  *                          respective headers and ipv4/v6, etc now
0032  *                          use private slabcaches for its socks
0033  *              Pedro Hortas    :   New flags field for socket options
0034  */
0035 #ifndef _SOCK_H
0036 #define _SOCK_H
0037 
0038 #include <linux/hardirq.h>
0039 #include <linux/kernel.h>
0040 #include <linux/list.h>
0041 #include <linux/list_nulls.h>
0042 #include <linux/timer.h>
0043 #include <linux/cache.h>
0044 #include <linux/bitops.h>
0045 #include <linux/lockdep.h>
0046 #include <linux/netdevice.h>
0047 #include <linux/skbuff.h>   /* struct sk_buff */
0048 #include <linux/mm.h>
0049 #include <linux/security.h>
0050 #include <linux/slab.h>
0051 #include <linux/uaccess.h>
0052 #include <linux/page_counter.h>
0053 #include <linux/memcontrol.h>
0054 #include <linux/static_key.h>
0055 #include <linux/sched.h>
0056 #include <linux/wait.h>
0057 #include <linux/cgroup-defs.h>
0058 #include <linux/rbtree.h>
0059 #include <linux/rculist_nulls.h>
0060 #include <linux/poll.h>
0061 #include <linux/sockptr.h>
0062 #include <linux/indirect_call_wrapper.h>
0063 #include <linux/atomic.h>
0064 #include <linux/refcount.h>
0065 #include <linux/llist.h>
0066 #include <net/dst.h>
0067 #include <net/checksum.h>
0068 #include <net/tcp_states.h>
0069 #include <linux/net_tstamp.h>
0070 #include <net/l3mdev.h>
0071 #include <uapi/linux/socket.h>
0072 
0073 /*
0074  * This structure really needs to be cleaned up.
0075  * Most of it is for TCP, and not used by any of
0076  * the other protocols.
0077  */
0078 
0079 /* Define this to get the SOCK_DBG debugging facility. */
0080 #define SOCK_DEBUGGING
0081 #ifdef SOCK_DEBUGGING
0082 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
0083                     printk(KERN_DEBUG msg); } while (0)
0084 #else
0085 /* Validate arguments and do nothing */
0086 static inline __printf(2, 3)
0087 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
0088 {
0089 }
0090 #endif
0091 
0092 /* This is the per-socket lock.  The spinlock provides a synchronization
0093  * between user contexts and software interrupt processing, whereas the
0094  * mini-semaphore synchronizes multiple users amongst themselves.
0095  */
0096 typedef struct {
0097     spinlock_t      slock;
0098     int         owned;
0099     wait_queue_head_t   wq;
0100     /*
0101      * We express the mutex-alike socket_lock semantics
0102      * to the lock validator by explicitly managing
0103      * the slock as a lock variant (in addition to
0104      * the slock itself):
0105      */
0106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0107     struct lockdep_map dep_map;
0108 #endif
0109 } socket_lock_t;
0110 
0111 struct sock;
0112 struct proto;
0113 struct net;
0114 
0115 typedef __u32 __bitwise __portpair;
0116 typedef __u64 __bitwise __addrpair;
0117 
0118 /**
0119  *  struct sock_common - minimal network layer representation of sockets
0120  *  @skc_daddr: Foreign IPv4 addr
0121  *  @skc_rcv_saddr: Bound local IPv4 addr
0122  *  @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
0123  *  @skc_hash: hash value used with various protocol lookup tables
0124  *  @skc_u16hashes: two u16 hash values used by UDP lookup tables
0125  *  @skc_dport: placeholder for inet_dport/tw_dport
0126  *  @skc_num: placeholder for inet_num/tw_num
0127  *  @skc_portpair: __u32 union of @skc_dport & @skc_num
0128  *  @skc_family: network address family
0129  *  @skc_state: Connection state
0130  *  @skc_reuse: %SO_REUSEADDR setting
0131  *  @skc_reuseport: %SO_REUSEPORT setting
0132  *  @skc_ipv6only: socket is IPV6 only
0133  *  @skc_net_refcnt: socket is using net ref counting
0134  *  @skc_bound_dev_if: bound device index if != 0
0135  *  @skc_bind_node: bind hash linkage for various protocol lookup tables
0136  *  @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
0137  *  @skc_prot: protocol handlers inside a network family
0138  *  @skc_net: reference to the network namespace of this socket
0139  *  @skc_v6_daddr: IPV6 destination address
0140  *  @skc_v6_rcv_saddr: IPV6 source address
0141  *  @skc_cookie: socket's cookie value
0142  *  @skc_node: main hash linkage for various protocol lookup tables
0143  *  @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
0144  *  @skc_tx_queue_mapping: tx queue number for this connection
0145  *  @skc_rx_queue_mapping: rx queue number for this connection
0146  *  @skc_flags: place holder for sk_flags
0147  *      %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
0148  *      %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
0149  *  @skc_listener: connection request listener socket (aka rsk_listener)
0150  *      [union with @skc_flags]
0151  *  @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
0152  *      [union with @skc_flags]
0153  *  @skc_incoming_cpu: record/match cpu processing incoming packets
0154  *  @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
0155  *      [union with @skc_incoming_cpu]
0156  *  @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
0157  *      [union with @skc_incoming_cpu]
0158  *  @skc_refcnt: reference count
0159  *
0160  *  This is the minimal network layer representation of sockets, the header
0161  *  for struct sock and struct inet_timewait_sock.
0162  */
0163 struct sock_common {
0164     union {
0165         __addrpair  skc_addrpair;
0166         struct {
0167             __be32  skc_daddr;
0168             __be32  skc_rcv_saddr;
0169         };
0170     };
0171     union  {
0172         unsigned int    skc_hash;
0173         __u16       skc_u16hashes[2];
0174     };
0175     /* skc_dport && skc_num must be grouped as well */
0176     union {
0177         __portpair  skc_portpair;
0178         struct {
0179             __be16  skc_dport;
0180             __u16   skc_num;
0181         };
0182     };
0183 
0184     unsigned short      skc_family;
0185     volatile unsigned char  skc_state;
0186     unsigned char       skc_reuse:4;
0187     unsigned char       skc_reuseport:1;
0188     unsigned char       skc_ipv6only:1;
0189     unsigned char       skc_net_refcnt:1;
0190     int         skc_bound_dev_if;
0191     union {
0192         struct hlist_node   skc_bind_node;
0193         struct hlist_node   skc_portaddr_node;
0194     };
0195     struct proto        *skc_prot;
0196     possible_net_t      skc_net;
0197 
0198 #if IS_ENABLED(CONFIG_IPV6)
0199     struct in6_addr     skc_v6_daddr;
0200     struct in6_addr     skc_v6_rcv_saddr;
0201 #endif
0202 
0203     atomic64_t      skc_cookie;
0204 
0205     /* following fields are padding to force
0206      * offset(struct sock, sk_refcnt) == 128 on 64bit arches
0207      * assuming IPV6 is enabled. We use this padding differently
0208      * for different kind of 'sockets'
0209      */
0210     union {
0211         unsigned long   skc_flags;
0212         struct sock *skc_listener; /* request_sock */
0213         struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
0214     };
0215     /*
0216      * fields between dontcopy_begin/dontcopy_end
0217      * are not copied in sock_copy()
0218      */
0219     /* private: */
0220     int         skc_dontcopy_begin[0];
0221     /* public: */
0222     union {
0223         struct hlist_node   skc_node;
0224         struct hlist_nulls_node skc_nulls_node;
0225     };
0226     unsigned short      skc_tx_queue_mapping;
0227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
0228     unsigned short      skc_rx_queue_mapping;
0229 #endif
0230     union {
0231         int     skc_incoming_cpu;
0232         u32     skc_rcv_wnd;
0233         u32     skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
0234     };
0235 
0236     refcount_t      skc_refcnt;
0237     /* private: */
0238     int                     skc_dontcopy_end[0];
0239     union {
0240         u32     skc_rxhash;
0241         u32     skc_window_clamp;
0242         u32     skc_tw_snd_nxt; /* struct tcp_timewait_sock */
0243     };
0244     /* public: */
0245 };
0246 
0247 struct bpf_local_storage;
0248 struct sk_filter;
0249 
0250 /**
0251   * struct sock - network layer representation of sockets
0252   * @__sk_common: shared layout with inet_timewait_sock
0253   * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
0254   * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
0255   * @sk_lock:   synchronizer
0256   * @sk_kern_sock: True if sock is using kernel lock classes
0257   * @sk_rcvbuf: size of receive buffer in bytes
0258   * @sk_wq: sock wait queue and async head
0259   * @sk_rx_dst: receive input route used by early demux
0260   * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
0261   * @sk_rx_dst_cookie: cookie for @sk_rx_dst
0262   * @sk_dst_cache: destination cache
0263   * @sk_dst_pending_confirm: need to confirm neighbour
0264   * @sk_policy: flow policy
0265   * @sk_receive_queue: incoming packets
0266   * @sk_wmem_alloc: transmit queue bytes committed
0267   * @sk_tsq_flags: TCP Small Queues flags
0268   * @sk_write_queue: Packet sending queue
0269   * @sk_omem_alloc: "o" is "option" or "other"
0270   * @sk_wmem_queued: persistent queue size
0271   * @sk_forward_alloc: space allocated forward
0272   * @sk_reserved_mem: space reserved and non-reclaimable for the socket
0273   * @sk_napi_id: id of the last napi context to receive data for sk
0274   * @sk_ll_usec: usecs to busypoll when there is no data
0275   * @sk_allocation: allocation mode
0276   * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
0277   * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
0278   * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
0279   * @sk_sndbuf: size of send buffer in bytes
0280   * @__sk_flags_offset: empty field used to determine location of bitfield
0281   * @sk_padding: unused element for alignment
0282   * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
0283   * @sk_no_check_rx: allow zero checksum in RX packets
0284   * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
0285   * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
0286   * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
0287   * @sk_gso_max_size: Maximum GSO segment size to build
0288   * @sk_gso_max_segs: Maximum number of GSO segments
0289   * @sk_pacing_shift: scaling factor for TCP Small Queues
0290   * @sk_lingertime: %SO_LINGER l_linger setting
0291   * @sk_backlog: always used with the per-socket spinlock held
0292   * @sk_callback_lock: used with the callbacks in the end of this struct
0293   * @sk_error_queue: rarely used
0294   * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
0295   *           IPV6_ADDRFORM for instance)
0296   * @sk_err: last error
0297   * @sk_err_soft: errors that don't cause failure but are the cause of a
0298   *           persistent failure not just 'timed out'
0299   * @sk_drops: raw/udp drops counter
0300   * @sk_ack_backlog: current listen backlog
0301   * @sk_max_ack_backlog: listen backlog set in listen()
0302   * @sk_uid: user id of owner
0303   * @sk_prefer_busy_poll: prefer busypolling over softirq processing
0304   * @sk_busy_poll_budget: napi processing budget when busypolling
0305   * @sk_priority: %SO_PRIORITY setting
0306   * @sk_type: socket type (%SOCK_STREAM, etc)
0307   * @sk_protocol: which protocol this socket belongs in this network family
0308   * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
0309   * @sk_peer_pid: &struct pid for this socket's peer
0310   * @sk_peer_cred: %SO_PEERCRED setting
0311   * @sk_rcvlowat: %SO_RCVLOWAT setting
0312   * @sk_rcvtimeo: %SO_RCVTIMEO setting
0313   * @sk_sndtimeo: %SO_SNDTIMEO setting
0314   * @sk_txhash: computed flow hash for use on transmit
0315   * @sk_txrehash: enable TX hash rethink
0316   * @sk_filter: socket filtering instructions
0317   * @sk_timer: sock cleanup timer
0318   * @sk_stamp: time stamp of last packet received
0319   * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
0320   * @sk_tsflags: SO_TIMESTAMPING flags
0321   * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
0322   *               for timestamping
0323   * @sk_tskey: counter to disambiguate concurrent tstamp requests
0324   * @sk_zckey: counter to order MSG_ZEROCOPY notifications
0325   * @sk_socket: Identd and reporting IO signals
0326   * @sk_user_data: RPC layer private data
0327   * @sk_frag: cached page frag
0328   * @sk_peek_off: current peek_offset value
0329   * @sk_send_head: front of stuff to transmit
0330   * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
0331   * @sk_security: used by security modules
0332   * @sk_mark: generic packet mark
0333   * @sk_cgrp_data: cgroup data for this cgroup
0334   * @sk_memcg: this socket's memory cgroup association
0335   * @sk_write_pending: a write to stream socket waits to start
0336   * @sk_state_change: callback to indicate change in the state of the sock
0337   * @sk_data_ready: callback to indicate there is data to be processed
0338   * @sk_write_space: callback to indicate there is bf sending space available
0339   * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
0340   * @sk_backlog_rcv: callback to process the backlog
0341   * @sk_validate_xmit_skb: ptr to an optional validate function
0342   * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
0343   * @sk_reuseport_cb: reuseport group container
0344   * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
0345   * @sk_rcu: used during RCU grace period
0346   * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
0347   * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
0348   * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
0349   * @sk_txtime_unused: unused txtime flags
0350   * @ns_tracker: tracker for netns reference
0351   */
0352 struct sock {
0353     /*
0354      * Now struct inet_timewait_sock also uses sock_common, so please just
0355      * don't add nothing before this first member (__sk_common) --acme
0356      */
0357     struct sock_common  __sk_common;
0358 #define sk_node         __sk_common.skc_node
0359 #define sk_nulls_node       __sk_common.skc_nulls_node
0360 #define sk_refcnt       __sk_common.skc_refcnt
0361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
0362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
0363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
0364 #endif
0365 
0366 #define sk_dontcopy_begin   __sk_common.skc_dontcopy_begin
0367 #define sk_dontcopy_end     __sk_common.skc_dontcopy_end
0368 #define sk_hash         __sk_common.skc_hash
0369 #define sk_portpair     __sk_common.skc_portpair
0370 #define sk_num          __sk_common.skc_num
0371 #define sk_dport        __sk_common.skc_dport
0372 #define sk_addrpair     __sk_common.skc_addrpair
0373 #define sk_daddr        __sk_common.skc_daddr
0374 #define sk_rcv_saddr        __sk_common.skc_rcv_saddr
0375 #define sk_family       __sk_common.skc_family
0376 #define sk_state        __sk_common.skc_state
0377 #define sk_reuse        __sk_common.skc_reuse
0378 #define sk_reuseport        __sk_common.skc_reuseport
0379 #define sk_ipv6only     __sk_common.skc_ipv6only
0380 #define sk_net_refcnt       __sk_common.skc_net_refcnt
0381 #define sk_bound_dev_if     __sk_common.skc_bound_dev_if
0382 #define sk_bind_node        __sk_common.skc_bind_node
0383 #define sk_prot         __sk_common.skc_prot
0384 #define sk_net          __sk_common.skc_net
0385 #define sk_v6_daddr     __sk_common.skc_v6_daddr
0386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
0387 #define sk_cookie       __sk_common.skc_cookie
0388 #define sk_incoming_cpu     __sk_common.skc_incoming_cpu
0389 #define sk_flags        __sk_common.skc_flags
0390 #define sk_rxhash       __sk_common.skc_rxhash
0391 
0392     /* early demux fields */
0393     struct dst_entry __rcu  *sk_rx_dst;
0394     int         sk_rx_dst_ifindex;
0395     u32         sk_rx_dst_cookie;
0396 
0397     socket_lock_t       sk_lock;
0398     atomic_t        sk_drops;
0399     int         sk_rcvlowat;
0400     struct sk_buff_head sk_error_queue;
0401     struct sk_buff_head sk_receive_queue;
0402     /*
0403      * The backlog queue is special, it is always used with
0404      * the per-socket spinlock held and requires low latency
0405      * access. Therefore we special case it's implementation.
0406      * Note : rmem_alloc is in this structure to fill a hole
0407      * on 64bit arches, not because its logically part of
0408      * backlog.
0409      */
0410     struct {
0411         atomic_t    rmem_alloc;
0412         int     len;
0413         struct sk_buff  *head;
0414         struct sk_buff  *tail;
0415     } sk_backlog;
0416 
0417 #define sk_rmem_alloc sk_backlog.rmem_alloc
0418 
0419     int         sk_forward_alloc;
0420     u32         sk_reserved_mem;
0421 #ifdef CONFIG_NET_RX_BUSY_POLL
0422     unsigned int        sk_ll_usec;
0423     /* ===== mostly read cache line ===== */
0424     unsigned int        sk_napi_id;
0425 #endif
0426     int         sk_rcvbuf;
0427 
0428     struct sk_filter __rcu  *sk_filter;
0429     union {
0430         struct socket_wq __rcu  *sk_wq;
0431         /* private: */
0432         struct socket_wq    *sk_wq_raw;
0433         /* public: */
0434     };
0435 #ifdef CONFIG_XFRM
0436     struct xfrm_policy __rcu *sk_policy[2];
0437 #endif
0438 
0439     struct dst_entry __rcu  *sk_dst_cache;
0440     atomic_t        sk_omem_alloc;
0441     int         sk_sndbuf;
0442 
0443     /* ===== cache line for TX ===== */
0444     int         sk_wmem_queued;
0445     refcount_t      sk_wmem_alloc;
0446     unsigned long       sk_tsq_flags;
0447     union {
0448         struct sk_buff  *sk_send_head;
0449         struct rb_root  tcp_rtx_queue;
0450     };
0451     struct sk_buff_head sk_write_queue;
0452     __s32           sk_peek_off;
0453     int         sk_write_pending;
0454     __u32           sk_dst_pending_confirm;
0455     u32         sk_pacing_status; /* see enum sk_pacing */
0456     long            sk_sndtimeo;
0457     struct timer_list   sk_timer;
0458     __u32           sk_priority;
0459     __u32           sk_mark;
0460     unsigned long       sk_pacing_rate; /* bytes per second */
0461     unsigned long       sk_max_pacing_rate;
0462     struct page_frag    sk_frag;
0463     netdev_features_t   sk_route_caps;
0464     int         sk_gso_type;
0465     unsigned int        sk_gso_max_size;
0466     gfp_t           sk_allocation;
0467     __u32           sk_txhash;
0468 
0469     /*
0470      * Because of non atomicity rules, all
0471      * changes are protected by socket lock.
0472      */
0473     u8          sk_gso_disabled : 1,
0474                 sk_kern_sock : 1,
0475                 sk_no_check_tx : 1,
0476                 sk_no_check_rx : 1,
0477                 sk_userlocks : 4;
0478     u8          sk_pacing_shift;
0479     u16         sk_type;
0480     u16         sk_protocol;
0481     u16         sk_gso_max_segs;
0482     unsigned long           sk_lingertime;
0483     struct proto        *sk_prot_creator;
0484     rwlock_t        sk_callback_lock;
0485     int         sk_err,
0486                 sk_err_soft;
0487     u32         sk_ack_backlog;
0488     u32         sk_max_ack_backlog;
0489     kuid_t          sk_uid;
0490     u8          sk_txrehash;
0491 #ifdef CONFIG_NET_RX_BUSY_POLL
0492     u8          sk_prefer_busy_poll;
0493     u16         sk_busy_poll_budget;
0494 #endif
0495     spinlock_t      sk_peer_lock;
0496     int         sk_bind_phc;
0497     struct pid      *sk_peer_pid;
0498     const struct cred   *sk_peer_cred;
0499 
0500     long            sk_rcvtimeo;
0501     ktime_t         sk_stamp;
0502 #if BITS_PER_LONG==32
0503     seqlock_t       sk_stamp_seq;
0504 #endif
0505     u16         sk_tsflags;
0506     u8          sk_shutdown;
0507     atomic_t        sk_tskey;
0508     atomic_t        sk_zckey;
0509 
0510     u8          sk_clockid;
0511     u8          sk_txtime_deadline_mode : 1,
0512                 sk_txtime_report_errors : 1,
0513                 sk_txtime_unused : 6;
0514 
0515     struct socket       *sk_socket;
0516     void            *sk_user_data;
0517 #ifdef CONFIG_SECURITY
0518     void            *sk_security;
0519 #endif
0520     struct sock_cgroup_data sk_cgrp_data;
0521     struct mem_cgroup   *sk_memcg;
0522     void            (*sk_state_change)(struct sock *sk);
0523     void            (*sk_data_ready)(struct sock *sk);
0524     void            (*sk_write_space)(struct sock *sk);
0525     void            (*sk_error_report)(struct sock *sk);
0526     int         (*sk_backlog_rcv)(struct sock *sk,
0527                           struct sk_buff *skb);
0528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
0529     struct sk_buff*     (*sk_validate_xmit_skb)(struct sock *sk,
0530                             struct net_device *dev,
0531                             struct sk_buff *skb);
0532 #endif
0533     void                    (*sk_destruct)(struct sock *sk);
0534     struct sock_reuseport __rcu *sk_reuseport_cb;
0535 #ifdef CONFIG_BPF_SYSCALL
0536     struct bpf_local_storage __rcu  *sk_bpf_storage;
0537 #endif
0538     struct rcu_head     sk_rcu;
0539     netns_tracker       ns_tracker;
0540 };
0541 
0542 enum sk_pacing {
0543     SK_PACING_NONE      = 0,
0544     SK_PACING_NEEDED    = 1,
0545     SK_PACING_FQ        = 2,
0546 };
0547 
0548 /* flag bits in sk_user_data
0549  *
0550  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
0551  *   not be suitable for copying when cloning the socket. For instance,
0552  *   it can point to a reference counted object. sk_user_data bottom
0553  *   bit is set if pointer must not be copied.
0554  *
0555  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
0556  *   managed/owned by a BPF reuseport array. This bit should be set
0557  *   when sk_user_data's sk is added to the bpf's reuseport_array.
0558  *
0559  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
0560  *   sk_user_data points to psock type. This bit should be set
0561  *   when sk_user_data is assigned to a psock object.
0562  */
0563 #define SK_USER_DATA_NOCOPY 1UL
0564 #define SK_USER_DATA_BPF    2UL
0565 #define SK_USER_DATA_PSOCK  4UL
0566 #define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
0567                   SK_USER_DATA_PSOCK)
0568 
0569 /**
0570  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
0571  * @sk: socket
0572  */
0573 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
0574 {
0575     return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
0576 }
0577 
0578 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
0579 
0580 /**
0581  * __locked_read_sk_user_data_with_flags - return the pointer
0582  * only if argument flags all has been set in sk_user_data. Otherwise
0583  * return NULL
0584  *
0585  * @sk: socket
0586  * @flags: flag bits
0587  *
0588  * The caller must be holding sk->sk_callback_lock.
0589  */
0590 static inline void *
0591 __locked_read_sk_user_data_with_flags(const struct sock *sk,
0592                       uintptr_t flags)
0593 {
0594     uintptr_t sk_user_data =
0595         (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
0596                          lockdep_is_held(&sk->sk_callback_lock));
0597 
0598     WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
0599 
0600     if ((sk_user_data & flags) == flags)
0601         return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
0602     return NULL;
0603 }
0604 
0605 /**
0606  * __rcu_dereference_sk_user_data_with_flags - return the pointer
0607  * only if argument flags all has been set in sk_user_data. Otherwise
0608  * return NULL
0609  *
0610  * @sk: socket
0611  * @flags: flag bits
0612  */
0613 static inline void *
0614 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
0615                       uintptr_t flags)
0616 {
0617     uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
0618 
0619     WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
0620 
0621     if ((sk_user_data & flags) == flags)
0622         return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
0623     return NULL;
0624 }
0625 
0626 #define rcu_dereference_sk_user_data(sk)                \
0627     __rcu_dereference_sk_user_data_with_flags(sk, 0)
0628 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)        \
0629 ({                                  \
0630     uintptr_t __tmp1 = (uintptr_t)(ptr),                \
0631           __tmp2 = (uintptr_t)(flags);              \
0632     WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);           \
0633     WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);            \
0634     rcu_assign_pointer(__sk_user_data((sk)),            \
0635                __tmp1 | __tmp2);                \
0636 })
0637 #define rcu_assign_sk_user_data(sk, ptr)                \
0638     __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
0639 
0640 static inline
0641 struct net *sock_net(const struct sock *sk)
0642 {
0643     return read_pnet(&sk->sk_net);
0644 }
0645 
0646 static inline
0647 void sock_net_set(struct sock *sk, struct net *net)
0648 {
0649     write_pnet(&sk->sk_net, net);
0650 }
0651 
0652 /*
0653  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
0654  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
0655  * on a socket means that the socket will reuse everybody else's port
0656  * without looking at the other's sk_reuse value.
0657  */
0658 
0659 #define SK_NO_REUSE 0
0660 #define SK_CAN_REUSE    1
0661 #define SK_FORCE_REUSE  2
0662 
0663 int sk_set_peek_off(struct sock *sk, int val);
0664 
0665 static inline int sk_peek_offset(const struct sock *sk, int flags)
0666 {
0667     if (unlikely(flags & MSG_PEEK)) {
0668         return READ_ONCE(sk->sk_peek_off);
0669     }
0670 
0671     return 0;
0672 }
0673 
0674 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
0675 {
0676     s32 off = READ_ONCE(sk->sk_peek_off);
0677 
0678     if (unlikely(off >= 0)) {
0679         off = max_t(s32, off - val, 0);
0680         WRITE_ONCE(sk->sk_peek_off, off);
0681     }
0682 }
0683 
0684 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
0685 {
0686     sk_peek_offset_bwd(sk, -val);
0687 }
0688 
0689 /*
0690  * Hashed lists helper routines
0691  */
0692 static inline struct sock *sk_entry(const struct hlist_node *node)
0693 {
0694     return hlist_entry(node, struct sock, sk_node);
0695 }
0696 
0697 static inline struct sock *__sk_head(const struct hlist_head *head)
0698 {
0699     return hlist_entry(head->first, struct sock, sk_node);
0700 }
0701 
0702 static inline struct sock *sk_head(const struct hlist_head *head)
0703 {
0704     return hlist_empty(head) ? NULL : __sk_head(head);
0705 }
0706 
0707 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
0708 {
0709     return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
0710 }
0711 
0712 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
0713 {
0714     return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
0715 }
0716 
0717 static inline struct sock *sk_next(const struct sock *sk)
0718 {
0719     return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
0720 }
0721 
0722 static inline struct sock *sk_nulls_next(const struct sock *sk)
0723 {
0724     return (!is_a_nulls(sk->sk_nulls_node.next)) ?
0725         hlist_nulls_entry(sk->sk_nulls_node.next,
0726                   struct sock, sk_nulls_node) :
0727         NULL;
0728 }
0729 
0730 static inline bool sk_unhashed(const struct sock *sk)
0731 {
0732     return hlist_unhashed(&sk->sk_node);
0733 }
0734 
0735 static inline bool sk_hashed(const struct sock *sk)
0736 {
0737     return !sk_unhashed(sk);
0738 }
0739 
0740 static inline void sk_node_init(struct hlist_node *node)
0741 {
0742     node->pprev = NULL;
0743 }
0744 
0745 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
0746 {
0747     node->pprev = NULL;
0748 }
0749 
0750 static inline void __sk_del_node(struct sock *sk)
0751 {
0752     __hlist_del(&sk->sk_node);
0753 }
0754 
0755 /* NB: equivalent to hlist_del_init_rcu */
0756 static inline bool __sk_del_node_init(struct sock *sk)
0757 {
0758     if (sk_hashed(sk)) {
0759         __sk_del_node(sk);
0760         sk_node_init(&sk->sk_node);
0761         return true;
0762     }
0763     return false;
0764 }
0765 
0766 /* Grab socket reference count. This operation is valid only
0767    when sk is ALREADY grabbed f.e. it is found in hash table
0768    or a list and the lookup is made under lock preventing hash table
0769    modifications.
0770  */
0771 
0772 static __always_inline void sock_hold(struct sock *sk)
0773 {
0774     refcount_inc(&sk->sk_refcnt);
0775 }
0776 
0777 /* Ungrab socket in the context, which assumes that socket refcnt
0778    cannot hit zero, f.e. it is true in context of any socketcall.
0779  */
0780 static __always_inline void __sock_put(struct sock *sk)
0781 {
0782     refcount_dec(&sk->sk_refcnt);
0783 }
0784 
0785 static inline bool sk_del_node_init(struct sock *sk)
0786 {
0787     bool rc = __sk_del_node_init(sk);
0788 
0789     if (rc) {
0790         /* paranoid for a while -acme */
0791         WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
0792         __sock_put(sk);
0793     }
0794     return rc;
0795 }
0796 #define sk_del_node_init_rcu(sk)    sk_del_node_init(sk)
0797 
0798 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
0799 {
0800     if (sk_hashed(sk)) {
0801         hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
0802         return true;
0803     }
0804     return false;
0805 }
0806 
0807 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
0808 {
0809     bool rc = __sk_nulls_del_node_init_rcu(sk);
0810 
0811     if (rc) {
0812         /* paranoid for a while -acme */
0813         WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
0814         __sock_put(sk);
0815     }
0816     return rc;
0817 }
0818 
0819 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
0820 {
0821     hlist_add_head(&sk->sk_node, list);
0822 }
0823 
0824 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
0825 {
0826     sock_hold(sk);
0827     __sk_add_node(sk, list);
0828 }
0829 
0830 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
0831 {
0832     sock_hold(sk);
0833     if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
0834         sk->sk_family == AF_INET6)
0835         hlist_add_tail_rcu(&sk->sk_node, list);
0836     else
0837         hlist_add_head_rcu(&sk->sk_node, list);
0838 }
0839 
0840 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
0841 {
0842     sock_hold(sk);
0843     hlist_add_tail_rcu(&sk->sk_node, list);
0844 }
0845 
0846 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
0847 {
0848     hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
0849 }
0850 
0851 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
0852 {
0853     hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
0854 }
0855 
0856 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
0857 {
0858     sock_hold(sk);
0859     __sk_nulls_add_node_rcu(sk, list);
0860 }
0861 
0862 static inline void __sk_del_bind_node(struct sock *sk)
0863 {
0864     __hlist_del(&sk->sk_bind_node);
0865 }
0866 
0867 static inline void sk_add_bind_node(struct sock *sk,
0868                     struct hlist_head *list)
0869 {
0870     hlist_add_head(&sk->sk_bind_node, list);
0871 }
0872 
0873 #define sk_for_each(__sk, list) \
0874     hlist_for_each_entry(__sk, list, sk_node)
0875 #define sk_for_each_rcu(__sk, list) \
0876     hlist_for_each_entry_rcu(__sk, list, sk_node)
0877 #define sk_nulls_for_each(__sk, node, list) \
0878     hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
0879 #define sk_nulls_for_each_rcu(__sk, node, list) \
0880     hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
0881 #define sk_for_each_from(__sk) \
0882     hlist_for_each_entry_from(__sk, sk_node)
0883 #define sk_nulls_for_each_from(__sk, node) \
0884     if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
0885         hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
0886 #define sk_for_each_safe(__sk, tmp, list) \
0887     hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
0888 #define sk_for_each_bound(__sk, list) \
0889     hlist_for_each_entry(__sk, list, sk_bind_node)
0890 
0891 /**
0892  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
0893  * @tpos:   the type * to use as a loop cursor.
0894  * @pos:    the &struct hlist_node to use as a loop cursor.
0895  * @head:   the head for your list.
0896  * @offset: offset of hlist_node within the struct.
0897  *
0898  */
0899 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)              \
0900     for (pos = rcu_dereference(hlist_first_rcu(head));             \
0901          pos != NULL &&                            \
0902         ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
0903          pos = rcu_dereference(hlist_next_rcu(pos)))
0904 
0905 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
0906 {
0907     /* Careful only use this in a context where these parameters
0908      * can not change and must all be valid, such as recvmsg from
0909      * userspace.
0910      */
0911     return sk->sk_socket->file->f_cred->user_ns;
0912 }
0913 
0914 /* Sock flags */
0915 enum sock_flags {
0916     SOCK_DEAD,
0917     SOCK_DONE,
0918     SOCK_URGINLINE,
0919     SOCK_KEEPOPEN,
0920     SOCK_LINGER,
0921     SOCK_DESTROY,
0922     SOCK_BROADCAST,
0923     SOCK_TIMESTAMP,
0924     SOCK_ZAPPED,
0925     SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
0926     SOCK_DBG, /* %SO_DEBUG setting */
0927     SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
0928     SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
0929     SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
0930     SOCK_MEMALLOC, /* VM depends on this socket for swapping */
0931     SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
0932     SOCK_FASYNC, /* fasync() active */
0933     SOCK_RXQ_OVFL,
0934     SOCK_ZEROCOPY, /* buffers from userspace */
0935     SOCK_WIFI_STATUS, /* push wifi status to userspace */
0936     SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
0937              * Will use last 4 bytes of packet sent from
0938              * user-space instead.
0939              */
0940     SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
0941     SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
0942     SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
0943     SOCK_TXTIME,
0944     SOCK_XDP, /* XDP is attached */
0945     SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
0946     SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
0947 };
0948 
0949 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
0950 
0951 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
0952 {
0953     nsk->sk_flags = osk->sk_flags;
0954 }
0955 
0956 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
0957 {
0958     __set_bit(flag, &sk->sk_flags);
0959 }
0960 
0961 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
0962 {
0963     __clear_bit(flag, &sk->sk_flags);
0964 }
0965 
0966 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
0967                      int valbool)
0968 {
0969     if (valbool)
0970         sock_set_flag(sk, bit);
0971     else
0972         sock_reset_flag(sk, bit);
0973 }
0974 
0975 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
0976 {
0977     return test_bit(flag, &sk->sk_flags);
0978 }
0979 
0980 #ifdef CONFIG_NET
0981 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
0982 static inline int sk_memalloc_socks(void)
0983 {
0984     return static_branch_unlikely(&memalloc_socks_key);
0985 }
0986 
0987 void __receive_sock(struct file *file);
0988 #else
0989 
0990 static inline int sk_memalloc_socks(void)
0991 {
0992     return 0;
0993 }
0994 
0995 static inline void __receive_sock(struct file *file)
0996 { }
0997 #endif
0998 
0999 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000 {
1001     return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002 }
1003 
1004 static inline void sk_acceptq_removed(struct sock *sk)
1005 {
1006     WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007 }
1008 
1009 static inline void sk_acceptq_added(struct sock *sk)
1010 {
1011     WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012 }
1013 
1014 /* Note: If you think the test should be:
1015  *  return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017  */
1018 static inline bool sk_acceptq_is_full(const struct sock *sk)
1019 {
1020     return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021 }
1022 
1023 /*
1024  * Compute minimal free write space needed to queue new packets.
1025  */
1026 static inline int sk_stream_min_wspace(const struct sock *sk)
1027 {
1028     return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029 }
1030 
1031 static inline int sk_stream_wspace(const struct sock *sk)
1032 {
1033     return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034 }
1035 
1036 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037 {
1038     WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039 }
1040 
1041 void sk_stream_write_space(struct sock *sk);
1042 
1043 /* OOB backlog add */
1044 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1045 {
1046     /* dont let skb dst not refcounted, we are going to leave rcu lock */
1047     skb_dst_force(skb);
1048 
1049     if (!sk->sk_backlog.tail)
1050         WRITE_ONCE(sk->sk_backlog.head, skb);
1051     else
1052         sk->sk_backlog.tail->next = skb;
1053 
1054     WRITE_ONCE(sk->sk_backlog.tail, skb);
1055     skb->next = NULL;
1056 }
1057 
1058 /*
1059  * Take into account size of receive queue and backlog queue
1060  * Do not take into account this skb truesize,
1061  * to allow even a single big packet to come.
1062  */
1063 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1064 {
1065     unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1066 
1067     return qsize > limit;
1068 }
1069 
1070 /* The per-socket spinlock must be held here. */
1071 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1072                           unsigned int limit)
1073 {
1074     if (sk_rcvqueues_full(sk, limit))
1075         return -ENOBUFS;
1076 
1077     /*
1078      * If the skb was allocated from pfmemalloc reserves, only
1079      * allow SOCK_MEMALLOC sockets to use it as this socket is
1080      * helping free memory
1081      */
1082     if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1083         return -ENOMEM;
1084 
1085     __sk_add_backlog(sk, skb);
1086     sk->sk_backlog.len += skb->truesize;
1087     return 0;
1088 }
1089 
1090 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1091 
1092 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1093 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1094 
1095 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1096 {
1097     if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1098         return __sk_backlog_rcv(sk, skb);
1099 
1100     return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1101                   tcp_v6_do_rcv,
1102                   tcp_v4_do_rcv,
1103                   sk, skb);
1104 }
1105 
1106 static inline void sk_incoming_cpu_update(struct sock *sk)
1107 {
1108     int cpu = raw_smp_processor_id();
1109 
1110     if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1111         WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1112 }
1113 
1114 static inline void sock_rps_record_flow_hash(__u32 hash)
1115 {
1116 #ifdef CONFIG_RPS
1117     struct rps_sock_flow_table *sock_flow_table;
1118 
1119     rcu_read_lock();
1120     sock_flow_table = rcu_dereference(rps_sock_flow_table);
1121     rps_record_sock_flow(sock_flow_table, hash);
1122     rcu_read_unlock();
1123 #endif
1124 }
1125 
1126 static inline void sock_rps_record_flow(const struct sock *sk)
1127 {
1128 #ifdef CONFIG_RPS
1129     if (static_branch_unlikely(&rfs_needed)) {
1130         /* Reading sk->sk_rxhash might incur an expensive cache line
1131          * miss.
1132          *
1133          * TCP_ESTABLISHED does cover almost all states where RFS
1134          * might be useful, and is cheaper [1] than testing :
1135          *  IPv4: inet_sk(sk)->inet_daddr
1136          *  IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1137          * OR   an additional socket flag
1138          * [1] : sk_state and sk_prot are in the same cache line.
1139          */
1140         if (sk->sk_state == TCP_ESTABLISHED)
1141             sock_rps_record_flow_hash(sk->sk_rxhash);
1142     }
1143 #endif
1144 }
1145 
1146 static inline void sock_rps_save_rxhash(struct sock *sk,
1147                     const struct sk_buff *skb)
1148 {
1149 #ifdef CONFIG_RPS
1150     if (unlikely(sk->sk_rxhash != skb->hash))
1151         sk->sk_rxhash = skb->hash;
1152 #endif
1153 }
1154 
1155 static inline void sock_rps_reset_rxhash(struct sock *sk)
1156 {
1157 #ifdef CONFIG_RPS
1158     sk->sk_rxhash = 0;
1159 #endif
1160 }
1161 
1162 #define sk_wait_event(__sk, __timeo, __condition, __wait)       \
1163     ({  int __rc;                       \
1164         release_sock(__sk);                 \
1165         __rc = __condition;                 \
1166         if (!__rc) {                        \
1167             *(__timeo) = wait_woken(__wait,         \
1168                         TASK_INTERRUPTIBLE, \
1169                         *(__timeo));        \
1170         }                           \
1171         sched_annotate_sleep();                 \
1172         lock_sock(__sk);                    \
1173         __rc = __condition;                 \
1174         __rc;                           \
1175     })
1176 
1177 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1178 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1179 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1180 int sk_stream_error(struct sock *sk, int flags, int err);
1181 void sk_stream_kill_queues(struct sock *sk);
1182 void sk_set_memalloc(struct sock *sk);
1183 void sk_clear_memalloc(struct sock *sk);
1184 
1185 void __sk_flush_backlog(struct sock *sk);
1186 
1187 static inline bool sk_flush_backlog(struct sock *sk)
1188 {
1189     if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1190         __sk_flush_backlog(sk);
1191         return true;
1192     }
1193     return false;
1194 }
1195 
1196 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1197 
1198 struct request_sock_ops;
1199 struct timewait_sock_ops;
1200 struct inet_hashinfo;
1201 struct raw_hashinfo;
1202 struct smc_hashinfo;
1203 struct module;
1204 struct sk_psock;
1205 
1206 /*
1207  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1208  * un-modified. Special care is taken when initializing object to zero.
1209  */
1210 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1211 {
1212     if (offsetof(struct sock, sk_node.next) != 0)
1213         memset(sk, 0, offsetof(struct sock, sk_node.next));
1214     memset(&sk->sk_node.pprev, 0,
1215            size - offsetof(struct sock, sk_node.pprev));
1216 }
1217 
1218 /* Networking protocol blocks we attach to sockets.
1219  * socket layer -> transport layer interface
1220  */
1221 struct proto {
1222     void            (*close)(struct sock *sk,
1223                     long timeout);
1224     int         (*pre_connect)(struct sock *sk,
1225                     struct sockaddr *uaddr,
1226                     int addr_len);
1227     int         (*connect)(struct sock *sk,
1228                     struct sockaddr *uaddr,
1229                     int addr_len);
1230     int         (*disconnect)(struct sock *sk, int flags);
1231 
1232     struct sock *       (*accept)(struct sock *sk, int flags, int *err,
1233                       bool kern);
1234 
1235     int         (*ioctl)(struct sock *sk, int cmd,
1236                      unsigned long arg);
1237     int         (*init)(struct sock *sk);
1238     void            (*destroy)(struct sock *sk);
1239     void            (*shutdown)(struct sock *sk, int how);
1240     int         (*setsockopt)(struct sock *sk, int level,
1241                     int optname, sockptr_t optval,
1242                     unsigned int optlen);
1243     int         (*getsockopt)(struct sock *sk, int level,
1244                     int optname, char __user *optval,
1245                     int __user *option);
1246     void            (*keepalive)(struct sock *sk, int valbool);
1247 #ifdef CONFIG_COMPAT
1248     int         (*compat_ioctl)(struct sock *sk,
1249                     unsigned int cmd, unsigned long arg);
1250 #endif
1251     int         (*sendmsg)(struct sock *sk, struct msghdr *msg,
1252                        size_t len);
1253     int         (*recvmsg)(struct sock *sk, struct msghdr *msg,
1254                        size_t len, int flags, int *addr_len);
1255     int         (*sendpage)(struct sock *sk, struct page *page,
1256                     int offset, size_t size, int flags);
1257     int         (*bind)(struct sock *sk,
1258                     struct sockaddr *addr, int addr_len);
1259     int         (*bind_add)(struct sock *sk,
1260                     struct sockaddr *addr, int addr_len);
1261 
1262     int         (*backlog_rcv) (struct sock *sk,
1263                         struct sk_buff *skb);
1264     bool            (*bpf_bypass_getsockopt)(int level,
1265                              int optname);
1266 
1267     void        (*release_cb)(struct sock *sk);
1268 
1269     /* Keeping track of sk's, looking them up, and port selection methods. */
1270     int         (*hash)(struct sock *sk);
1271     void            (*unhash)(struct sock *sk);
1272     void            (*rehash)(struct sock *sk);
1273     int         (*get_port)(struct sock *sk, unsigned short snum);
1274     void            (*put_port)(struct sock *sk);
1275 #ifdef CONFIG_BPF_SYSCALL
1276     int         (*psock_update_sk_prot)(struct sock *sk,
1277                             struct sk_psock *psock,
1278                             bool restore);
1279 #endif
1280 
1281     /* Keeping track of sockets in use */
1282 #ifdef CONFIG_PROC_FS
1283     unsigned int        inuse_idx;
1284 #endif
1285 
1286 #if IS_ENABLED(CONFIG_MPTCP)
1287     int         (*forward_alloc_get)(const struct sock *sk);
1288 #endif
1289 
1290     bool            (*stream_memory_free)(const struct sock *sk, int wake);
1291     bool            (*sock_is_readable)(struct sock *sk);
1292     /* Memory pressure */
1293     void            (*enter_memory_pressure)(struct sock *sk);
1294     void            (*leave_memory_pressure)(struct sock *sk);
1295     atomic_long_t       *memory_allocated;  /* Current allocated memory. */
1296     int  __percpu       *per_cpu_fw_alloc;
1297     struct percpu_counter   *sockets_allocated; /* Current number of sockets. */
1298 
1299     /*
1300      * Pressure flag: try to collapse.
1301      * Technical note: it is used by multiple contexts non atomically.
1302      * All the __sk_mem_schedule() is of this nature: accounting
1303      * is strict, actions are advisory and have some latency.
1304      */
1305     unsigned long       *memory_pressure;
1306     long            *sysctl_mem;
1307 
1308     int         *sysctl_wmem;
1309     int         *sysctl_rmem;
1310     u32         sysctl_wmem_offset;
1311     u32         sysctl_rmem_offset;
1312 
1313     int         max_header;
1314     bool            no_autobind;
1315 
1316     struct kmem_cache   *slab;
1317     unsigned int        obj_size;
1318     slab_flags_t        slab_flags;
1319     unsigned int        useroffset; /* Usercopy region offset */
1320     unsigned int        usersize;   /* Usercopy region size */
1321 
1322     unsigned int __percpu   *orphan_count;
1323 
1324     struct request_sock_ops *rsk_prot;
1325     struct timewait_sock_ops *twsk_prot;
1326 
1327     union {
1328         struct inet_hashinfo    *hashinfo;
1329         struct udp_table    *udp_table;
1330         struct raw_hashinfo *raw_hash;
1331         struct smc_hashinfo *smc_hash;
1332     } h;
1333 
1334     struct module       *owner;
1335 
1336     char            name[32];
1337 
1338     struct list_head    node;
1339 #ifdef SOCK_REFCNT_DEBUG
1340     atomic_t        socks;
1341 #endif
1342     int         (*diag_destroy)(struct sock *sk, int err);
1343 } __randomize_layout;
1344 
1345 int proto_register(struct proto *prot, int alloc_slab);
1346 void proto_unregister(struct proto *prot);
1347 int sock_load_diag_module(int family, int protocol);
1348 
1349 #ifdef SOCK_REFCNT_DEBUG
1350 static inline void sk_refcnt_debug_inc(struct sock *sk)
1351 {
1352     atomic_inc(&sk->sk_prot->socks);
1353 }
1354 
1355 static inline void sk_refcnt_debug_dec(struct sock *sk)
1356 {
1357     atomic_dec(&sk->sk_prot->socks);
1358     printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1359            sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1360 }
1361 
1362 static inline void sk_refcnt_debug_release(const struct sock *sk)
1363 {
1364     if (refcount_read(&sk->sk_refcnt) != 1)
1365         printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1366                sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1367 }
1368 #else /* SOCK_REFCNT_DEBUG */
1369 #define sk_refcnt_debug_inc(sk) do { } while (0)
1370 #define sk_refcnt_debug_dec(sk) do { } while (0)
1371 #define sk_refcnt_debug_release(sk) do { } while (0)
1372 #endif /* SOCK_REFCNT_DEBUG */
1373 
1374 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1375 
1376 static inline int sk_forward_alloc_get(const struct sock *sk)
1377 {
1378 #if IS_ENABLED(CONFIG_MPTCP)
1379     if (sk->sk_prot->forward_alloc_get)
1380         return sk->sk_prot->forward_alloc_get(sk);
1381 #endif
1382     return sk->sk_forward_alloc;
1383 }
1384 
1385 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1386 {
1387     if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1388         return false;
1389 
1390     return sk->sk_prot->stream_memory_free ?
1391         INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1392                      tcp_stream_memory_free, sk, wake) : true;
1393 }
1394 
1395 static inline bool sk_stream_memory_free(const struct sock *sk)
1396 {
1397     return __sk_stream_memory_free(sk, 0);
1398 }
1399 
1400 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1401 {
1402     return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1403            __sk_stream_memory_free(sk, wake);
1404 }
1405 
1406 static inline bool sk_stream_is_writeable(const struct sock *sk)
1407 {
1408     return __sk_stream_is_writeable(sk, 0);
1409 }
1410 
1411 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1412                         struct cgroup *ancestor)
1413 {
1414 #ifdef CONFIG_SOCK_CGROUP_DATA
1415     return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1416                     ancestor);
1417 #else
1418     return -ENOTSUPP;
1419 #endif
1420 }
1421 
1422 static inline bool sk_has_memory_pressure(const struct sock *sk)
1423 {
1424     return sk->sk_prot->memory_pressure != NULL;
1425 }
1426 
1427 static inline bool sk_under_memory_pressure(const struct sock *sk)
1428 {
1429     if (!sk->sk_prot->memory_pressure)
1430         return false;
1431 
1432     if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1433         mem_cgroup_under_socket_pressure(sk->sk_memcg))
1434         return true;
1435 
1436     return !!*sk->sk_prot->memory_pressure;
1437 }
1438 
1439 static inline long
1440 proto_memory_allocated(const struct proto *prot)
1441 {
1442     return max(0L, atomic_long_read(prot->memory_allocated));
1443 }
1444 
1445 static inline long
1446 sk_memory_allocated(const struct sock *sk)
1447 {
1448     return proto_memory_allocated(sk->sk_prot);
1449 }
1450 
1451 /* 1 MB per cpu, in page units */
1452 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1453 
1454 static inline void
1455 sk_memory_allocated_add(struct sock *sk, int amt)
1456 {
1457     int local_reserve;
1458 
1459     preempt_disable();
1460     local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1461     if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1462         __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1463         atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1464     }
1465     preempt_enable();
1466 }
1467 
1468 static inline void
1469 sk_memory_allocated_sub(struct sock *sk, int amt)
1470 {
1471     int local_reserve;
1472 
1473     preempt_disable();
1474     local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1475     if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1476         __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1477         atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1478     }
1479     preempt_enable();
1480 }
1481 
1482 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1483 
1484 static inline void sk_sockets_allocated_dec(struct sock *sk)
1485 {
1486     percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1487                  SK_ALLOC_PERCPU_COUNTER_BATCH);
1488 }
1489 
1490 static inline void sk_sockets_allocated_inc(struct sock *sk)
1491 {
1492     percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1493                  SK_ALLOC_PERCPU_COUNTER_BATCH);
1494 }
1495 
1496 static inline u64
1497 sk_sockets_allocated_read_positive(struct sock *sk)
1498 {
1499     return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1500 }
1501 
1502 static inline int
1503 proto_sockets_allocated_sum_positive(struct proto *prot)
1504 {
1505     return percpu_counter_sum_positive(prot->sockets_allocated);
1506 }
1507 
1508 static inline bool
1509 proto_memory_pressure(struct proto *prot)
1510 {
1511     if (!prot->memory_pressure)
1512         return false;
1513     return !!*prot->memory_pressure;
1514 }
1515 
1516 
1517 #ifdef CONFIG_PROC_FS
1518 #define PROTO_INUSE_NR  64  /* should be enough for the first time */
1519 struct prot_inuse {
1520     int all;
1521     int val[PROTO_INUSE_NR];
1522 };
1523 
1524 static inline void sock_prot_inuse_add(const struct net *net,
1525                        const struct proto *prot, int val)
1526 {
1527     this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1528 }
1529 
1530 static inline void sock_inuse_add(const struct net *net, int val)
1531 {
1532     this_cpu_add(net->core.prot_inuse->all, val);
1533 }
1534 
1535 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1536 int sock_inuse_get(struct net *net);
1537 #else
1538 static inline void sock_prot_inuse_add(const struct net *net,
1539                        const struct proto *prot, int val)
1540 {
1541 }
1542 
1543 static inline void sock_inuse_add(const struct net *net, int val)
1544 {
1545 }
1546 #endif
1547 
1548 
1549 /* With per-bucket locks this operation is not-atomic, so that
1550  * this version is not worse.
1551  */
1552 static inline int __sk_prot_rehash(struct sock *sk)
1553 {
1554     sk->sk_prot->unhash(sk);
1555     return sk->sk_prot->hash(sk);
1556 }
1557 
1558 /* About 10 seconds */
1559 #define SOCK_DESTROY_TIME (10*HZ)
1560 
1561 /* Sockets 0-1023 can't be bound to unless you are superuser */
1562 #define PROT_SOCK   1024
1563 
1564 #define SHUTDOWN_MASK   3
1565 #define RCV_SHUTDOWN    1
1566 #define SEND_SHUTDOWN   2
1567 
1568 #define SOCK_BINDADDR_LOCK  4
1569 #define SOCK_BINDPORT_LOCK  8
1570 
1571 struct socket_alloc {
1572     struct socket socket;
1573     struct inode vfs_inode;
1574 };
1575 
1576 static inline struct socket *SOCKET_I(struct inode *inode)
1577 {
1578     return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1579 }
1580 
1581 static inline struct inode *SOCK_INODE(struct socket *socket)
1582 {
1583     return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1584 }
1585 
1586 /*
1587  * Functions for memory accounting
1588  */
1589 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1590 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1591 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1592 void __sk_mem_reclaim(struct sock *sk, int amount);
1593 
1594 #define SK_MEM_SEND 0
1595 #define SK_MEM_RECV 1
1596 
1597 /* sysctl_mem values are in pages */
1598 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1599 {
1600     return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1601 }
1602 
1603 static inline int sk_mem_pages(int amt)
1604 {
1605     return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1606 }
1607 
1608 static inline bool sk_has_account(struct sock *sk)
1609 {
1610     /* return true if protocol supports memory accounting */
1611     return !!sk->sk_prot->memory_allocated;
1612 }
1613 
1614 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1615 {
1616     int delta;
1617 
1618     if (!sk_has_account(sk))
1619         return true;
1620     delta = size - sk->sk_forward_alloc;
1621     return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1622 }
1623 
1624 static inline bool
1625 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1626 {
1627     int delta;
1628 
1629     if (!sk_has_account(sk))
1630         return true;
1631     delta = size - sk->sk_forward_alloc;
1632     return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1633         skb_pfmemalloc(skb);
1634 }
1635 
1636 static inline int sk_unused_reserved_mem(const struct sock *sk)
1637 {
1638     int unused_mem;
1639 
1640     if (likely(!sk->sk_reserved_mem))
1641         return 0;
1642 
1643     unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1644             atomic_read(&sk->sk_rmem_alloc);
1645 
1646     return unused_mem > 0 ? unused_mem : 0;
1647 }
1648 
1649 static inline void sk_mem_reclaim(struct sock *sk)
1650 {
1651     int reclaimable;
1652 
1653     if (!sk_has_account(sk))
1654         return;
1655 
1656     reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1657 
1658     if (reclaimable >= (int)PAGE_SIZE)
1659         __sk_mem_reclaim(sk, reclaimable);
1660 }
1661 
1662 static inline void sk_mem_reclaim_final(struct sock *sk)
1663 {
1664     sk->sk_reserved_mem = 0;
1665     sk_mem_reclaim(sk);
1666 }
1667 
1668 static inline void sk_mem_charge(struct sock *sk, int size)
1669 {
1670     if (!sk_has_account(sk))
1671         return;
1672     sk->sk_forward_alloc -= size;
1673 }
1674 
1675 static inline void sk_mem_uncharge(struct sock *sk, int size)
1676 {
1677     if (!sk_has_account(sk))
1678         return;
1679     sk->sk_forward_alloc += size;
1680     sk_mem_reclaim(sk);
1681 }
1682 
1683 /*
1684  * Macro so as to not evaluate some arguments when
1685  * lockdep is not enabled.
1686  *
1687  * Mark both the sk_lock and the sk_lock.slock as a
1688  * per-address-family lock class.
1689  */
1690 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)   \
1691 do {                                    \
1692     sk->sk_lock.owned = 0;                      \
1693     init_waitqueue_head(&sk->sk_lock.wq);               \
1694     spin_lock_init(&(sk)->sk_lock.slock);               \
1695     debug_check_no_locks_freed((void *)&(sk)->sk_lock,      \
1696             sizeof((sk)->sk_lock));             \
1697     lockdep_set_class_and_name(&(sk)->sk_lock.slock,        \
1698                 (skey), (sname));               \
1699     lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1700 } while (0)
1701 
1702 static inline bool lockdep_sock_is_held(const struct sock *sk)
1703 {
1704     return lockdep_is_held(&sk->sk_lock) ||
1705            lockdep_is_held(&sk->sk_lock.slock);
1706 }
1707 
1708 void lock_sock_nested(struct sock *sk, int subclass);
1709 
1710 static inline void lock_sock(struct sock *sk)
1711 {
1712     lock_sock_nested(sk, 0);
1713 }
1714 
1715 void __lock_sock(struct sock *sk);
1716 void __release_sock(struct sock *sk);
1717 void release_sock(struct sock *sk);
1718 
1719 /* BH context may only use the following locking interface. */
1720 #define bh_lock_sock(__sk)  spin_lock(&((__sk)->sk_lock.slock))
1721 #define bh_lock_sock_nested(__sk) \
1722                 spin_lock_nested(&((__sk)->sk_lock.slock), \
1723                 SINGLE_DEPTH_NESTING)
1724 #define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1725 
1726 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1727 
1728 /**
1729  * lock_sock_fast - fast version of lock_sock
1730  * @sk: socket
1731  *
1732  * This version should be used for very small section, where process wont block
1733  * return false if fast path is taken:
1734  *
1735  *   sk_lock.slock locked, owned = 0, BH disabled
1736  *
1737  * return true if slow path is taken:
1738  *
1739  *   sk_lock.slock unlocked, owned = 1, BH enabled
1740  */
1741 static inline bool lock_sock_fast(struct sock *sk)
1742 {
1743     /* The sk_lock has mutex_lock() semantics here. */
1744     mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1745 
1746     return __lock_sock_fast(sk);
1747 }
1748 
1749 /* fast socket lock variant for caller already holding a [different] socket lock */
1750 static inline bool lock_sock_fast_nested(struct sock *sk)
1751 {
1752     mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1753 
1754     return __lock_sock_fast(sk);
1755 }
1756 
1757 /**
1758  * unlock_sock_fast - complement of lock_sock_fast
1759  * @sk: socket
1760  * @slow: slow mode
1761  *
1762  * fast unlock socket for user context.
1763  * If slow mode is on, we call regular release_sock()
1764  */
1765 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1766     __releases(&sk->sk_lock.slock)
1767 {
1768     if (slow) {
1769         release_sock(sk);
1770         __release(&sk->sk_lock.slock);
1771     } else {
1772         mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1773         spin_unlock_bh(&sk->sk_lock.slock);
1774     }
1775 }
1776 
1777 /* Used by processes to "lock" a socket state, so that
1778  * interrupts and bottom half handlers won't change it
1779  * from under us. It essentially blocks any incoming
1780  * packets, so that we won't get any new data or any
1781  * packets that change the state of the socket.
1782  *
1783  * While locked, BH processing will add new packets to
1784  * the backlog queue.  This queue is processed by the
1785  * owner of the socket lock right before it is released.
1786  *
1787  * Since ~2.3.5 it is also exclusive sleep lock serializing
1788  * accesses from user process context.
1789  */
1790 
1791 static inline void sock_owned_by_me(const struct sock *sk)
1792 {
1793 #ifdef CONFIG_LOCKDEP
1794     WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1795 #endif
1796 }
1797 
1798 static inline bool sock_owned_by_user(const struct sock *sk)
1799 {
1800     sock_owned_by_me(sk);
1801     return sk->sk_lock.owned;
1802 }
1803 
1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1805 {
1806     return sk->sk_lock.owned;
1807 }
1808 
1809 static inline void sock_release_ownership(struct sock *sk)
1810 {
1811     if (sock_owned_by_user_nocheck(sk)) {
1812         sk->sk_lock.owned = 0;
1813 
1814         /* The sk_lock has mutex_unlock() semantics: */
1815         mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1816     }
1817 }
1818 
1819 /* no reclassification while locks are held */
1820 static inline bool sock_allow_reclassification(const struct sock *csk)
1821 {
1822     struct sock *sk = (struct sock *)csk;
1823 
1824     return !sock_owned_by_user_nocheck(sk) &&
1825         !spin_is_locked(&sk->sk_lock.slock);
1826 }
1827 
1828 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1829               struct proto *prot, int kern);
1830 void sk_free(struct sock *sk);
1831 void sk_destruct(struct sock *sk);
1832 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1833 void sk_free_unlock_clone(struct sock *sk);
1834 
1835 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1836                  gfp_t priority);
1837 void __sock_wfree(struct sk_buff *skb);
1838 void sock_wfree(struct sk_buff *skb);
1839 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1840                  gfp_t priority);
1841 void skb_orphan_partial(struct sk_buff *skb);
1842 void sock_rfree(struct sk_buff *skb);
1843 void sock_efree(struct sk_buff *skb);
1844 #ifdef CONFIG_INET
1845 void sock_edemux(struct sk_buff *skb);
1846 void sock_pfree(struct sk_buff *skb);
1847 #else
1848 #define sock_edemux sock_efree
1849 #endif
1850 
1851 int sock_setsockopt(struct socket *sock, int level, int op,
1852             sockptr_t optval, unsigned int optlen);
1853 
1854 int sock_getsockopt(struct socket *sock, int level, int op,
1855             char __user *optval, int __user *optlen);
1856 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1857            bool timeval, bool time32);
1858 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1859                      unsigned long data_len, int noblock,
1860                      int *errcode, int max_page_order);
1861 
1862 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1863                           unsigned long size,
1864                           int noblock, int *errcode)
1865 {
1866     return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1867 }
1868 
1869 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1870 void sock_kfree_s(struct sock *sk, void *mem, int size);
1871 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1872 void sk_send_sigurg(struct sock *sk);
1873 
1874 struct sockcm_cookie {
1875     u64 transmit_time;
1876     u32 mark;
1877     u16 tsflags;
1878 };
1879 
1880 static inline void sockcm_init(struct sockcm_cookie *sockc,
1881                    const struct sock *sk)
1882 {
1883     *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1884 }
1885 
1886 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1887              struct sockcm_cookie *sockc);
1888 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1889            struct sockcm_cookie *sockc);
1890 
1891 /*
1892  * Functions to fill in entries in struct proto_ops when a protocol
1893  * does not implement a particular function.
1894  */
1895 int sock_no_bind(struct socket *, struct sockaddr *, int);
1896 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1897 int sock_no_socketpair(struct socket *, struct socket *);
1898 int sock_no_accept(struct socket *, struct socket *, int, bool);
1899 int sock_no_getname(struct socket *, struct sockaddr *, int);
1900 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1901 int sock_no_listen(struct socket *, int);
1902 int sock_no_shutdown(struct socket *, int);
1903 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1904 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1905 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1906 int sock_no_mmap(struct file *file, struct socket *sock,
1907          struct vm_area_struct *vma);
1908 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1909              size_t size, int flags);
1910 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1911                 int offset, size_t size, int flags);
1912 
1913 /*
1914  * Functions to fill in entries in struct proto_ops when a protocol
1915  * uses the inet style.
1916  */
1917 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1918                   char __user *optval, int __user *optlen);
1919 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1920             int flags);
1921 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1922                sockptr_t optval, unsigned int optlen);
1923 
1924 void sk_common_release(struct sock *sk);
1925 
1926 /*
1927  *  Default socket callbacks and setup code
1928  */
1929 
1930 /* Initialise core socket variables */
1931 void sock_init_data(struct socket *sock, struct sock *sk);
1932 
1933 /*
1934  * Socket reference counting postulates.
1935  *
1936  * * Each user of socket SHOULD hold a reference count.
1937  * * Each access point to socket (an hash table bucket, reference from a list,
1938  *   running timer, skb in flight MUST hold a reference count.
1939  * * When reference count hits 0, it means it will never increase back.
1940  * * When reference count hits 0, it means that no references from
1941  *   outside exist to this socket and current process on current CPU
1942  *   is last user and may/should destroy this socket.
1943  * * sk_free is called from any context: process, BH, IRQ. When
1944  *   it is called, socket has no references from outside -> sk_free
1945  *   may release descendant resources allocated by the socket, but
1946  *   to the time when it is called, socket is NOT referenced by any
1947  *   hash tables, lists etc.
1948  * * Packets, delivered from outside (from network or from another process)
1949  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1950  *   when they sit in queue. Otherwise, packets will leak to hole, when
1951  *   socket is looked up by one cpu and unhasing is made by another CPU.
1952  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1953  *   (leak to backlog). Packet socket does all the processing inside
1954  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1955  *   use separate SMP lock, so that they are prone too.
1956  */
1957 
1958 /* Ungrab socket and destroy it, if it was the last reference. */
1959 static inline void sock_put(struct sock *sk)
1960 {
1961     if (refcount_dec_and_test(&sk->sk_refcnt))
1962         sk_free(sk);
1963 }
1964 /* Generic version of sock_put(), dealing with all sockets
1965  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1966  */
1967 void sock_gen_put(struct sock *sk);
1968 
1969 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1970              unsigned int trim_cap, bool refcounted);
1971 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1972                  const int nested)
1973 {
1974     return __sk_receive_skb(sk, skb, nested, 1, true);
1975 }
1976 
1977 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1978 {
1979     /* sk_tx_queue_mapping accept only upto a 16-bit value */
1980     if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1981         return;
1982     sk->sk_tx_queue_mapping = tx_queue;
1983 }
1984 
1985 #define NO_QUEUE_MAPPING    USHRT_MAX
1986 
1987 static inline void sk_tx_queue_clear(struct sock *sk)
1988 {
1989     sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1990 }
1991 
1992 static inline int sk_tx_queue_get(const struct sock *sk)
1993 {
1994     if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1995         return sk->sk_tx_queue_mapping;
1996 
1997     return -1;
1998 }
1999 
2000 static inline void __sk_rx_queue_set(struct sock *sk,
2001                      const struct sk_buff *skb,
2002                      bool force_set)
2003 {
2004 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005     if (skb_rx_queue_recorded(skb)) {
2006         u16 rx_queue = skb_get_rx_queue(skb);
2007 
2008         if (force_set ||
2009             unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010             WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011     }
2012 #endif
2013 }
2014 
2015 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016 {
2017     __sk_rx_queue_set(sk, skb, true);
2018 }
2019 
2020 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021 {
2022     __sk_rx_queue_set(sk, skb, false);
2023 }
2024 
2025 static inline void sk_rx_queue_clear(struct sock *sk)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028     WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029 #endif
2030 }
2031 
2032 static inline int sk_rx_queue_get(const struct sock *sk)
2033 {
2034 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035     if (sk) {
2036         int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037 
2038         if (res != NO_QUEUE_MAPPING)
2039             return res;
2040     }
2041 #endif
2042 
2043     return -1;
2044 }
2045 
2046 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047 {
2048     sk->sk_socket = sock;
2049 }
2050 
2051 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052 {
2053     BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054     return &rcu_dereference_raw(sk->sk_wq)->wait;
2055 }
2056 /* Detach socket from process context.
2057  * Announce socket dead, detach it from wait queue and inode.
2058  * Note that parent inode held reference count on this struct sock,
2059  * we do not release it in this function, because protocol
2060  * probably wants some additional cleanups or even continuing
2061  * to work with this socket (TCP).
2062  */
2063 static inline void sock_orphan(struct sock *sk)
2064 {
2065     write_lock_bh(&sk->sk_callback_lock);
2066     sock_set_flag(sk, SOCK_DEAD);
2067     sk_set_socket(sk, NULL);
2068     sk->sk_wq  = NULL;
2069     write_unlock_bh(&sk->sk_callback_lock);
2070 }
2071 
2072 static inline void sock_graft(struct sock *sk, struct socket *parent)
2073 {
2074     WARN_ON(parent->sk);
2075     write_lock_bh(&sk->sk_callback_lock);
2076     rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077     parent->sk = sk;
2078     sk_set_socket(sk, parent);
2079     sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080     security_sock_graft(sk, parent);
2081     write_unlock_bh(&sk->sk_callback_lock);
2082 }
2083 
2084 kuid_t sock_i_uid(struct sock *sk);
2085 unsigned long sock_i_ino(struct sock *sk);
2086 
2087 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2088 {
2089     return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2090 }
2091 
2092 static inline u32 net_tx_rndhash(void)
2093 {
2094     u32 v = prandom_u32();
2095 
2096     return v ?: 1;
2097 }
2098 
2099 static inline void sk_set_txhash(struct sock *sk)
2100 {
2101     /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2102     WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2103 }
2104 
2105 static inline bool sk_rethink_txhash(struct sock *sk)
2106 {
2107     if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2108         sk_set_txhash(sk);
2109         return true;
2110     }
2111     return false;
2112 }
2113 
2114 static inline struct dst_entry *
2115 __sk_dst_get(struct sock *sk)
2116 {
2117     return rcu_dereference_check(sk->sk_dst_cache,
2118                      lockdep_sock_is_held(sk));
2119 }
2120 
2121 static inline struct dst_entry *
2122 sk_dst_get(struct sock *sk)
2123 {
2124     struct dst_entry *dst;
2125 
2126     rcu_read_lock();
2127     dst = rcu_dereference(sk->sk_dst_cache);
2128     if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2129         dst = NULL;
2130     rcu_read_unlock();
2131     return dst;
2132 }
2133 
2134 static inline void __dst_negative_advice(struct sock *sk)
2135 {
2136     struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2137 
2138     if (dst && dst->ops->negative_advice) {
2139         ndst = dst->ops->negative_advice(dst);
2140 
2141         if (ndst != dst) {
2142             rcu_assign_pointer(sk->sk_dst_cache, ndst);
2143             sk_tx_queue_clear(sk);
2144             sk->sk_dst_pending_confirm = 0;
2145         }
2146     }
2147 }
2148 
2149 static inline void dst_negative_advice(struct sock *sk)
2150 {
2151     sk_rethink_txhash(sk);
2152     __dst_negative_advice(sk);
2153 }
2154 
2155 static inline void
2156 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2157 {
2158     struct dst_entry *old_dst;
2159 
2160     sk_tx_queue_clear(sk);
2161     sk->sk_dst_pending_confirm = 0;
2162     old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2163                         lockdep_sock_is_held(sk));
2164     rcu_assign_pointer(sk->sk_dst_cache, dst);
2165     dst_release(old_dst);
2166 }
2167 
2168 static inline void
2169 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2170 {
2171     struct dst_entry *old_dst;
2172 
2173     sk_tx_queue_clear(sk);
2174     sk->sk_dst_pending_confirm = 0;
2175     old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2176     dst_release(old_dst);
2177 }
2178 
2179 static inline void
2180 __sk_dst_reset(struct sock *sk)
2181 {
2182     __sk_dst_set(sk, NULL);
2183 }
2184 
2185 static inline void
2186 sk_dst_reset(struct sock *sk)
2187 {
2188     sk_dst_set(sk, NULL);
2189 }
2190 
2191 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2192 
2193 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2194 
2195 static inline void sk_dst_confirm(struct sock *sk)
2196 {
2197     if (!READ_ONCE(sk->sk_dst_pending_confirm))
2198         WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2199 }
2200 
2201 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2202 {
2203     if (skb_get_dst_pending_confirm(skb)) {
2204         struct sock *sk = skb->sk;
2205 
2206         if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2207             WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2208         neigh_confirm(n);
2209     }
2210 }
2211 
2212 bool sk_mc_loop(struct sock *sk);
2213 
2214 static inline bool sk_can_gso(const struct sock *sk)
2215 {
2216     return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2217 }
2218 
2219 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2220 
2221 static inline void sk_gso_disable(struct sock *sk)
2222 {
2223     sk->sk_gso_disabled = 1;
2224     sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2225 }
2226 
2227 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2228                        struct iov_iter *from, char *to,
2229                        int copy, int offset)
2230 {
2231     if (skb->ip_summed == CHECKSUM_NONE) {
2232         __wsum csum = 0;
2233         if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2234             return -EFAULT;
2235         skb->csum = csum_block_add(skb->csum, csum, offset);
2236     } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2237         if (!copy_from_iter_full_nocache(to, copy, from))
2238             return -EFAULT;
2239     } else if (!copy_from_iter_full(to, copy, from))
2240         return -EFAULT;
2241 
2242     return 0;
2243 }
2244 
2245 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2246                        struct iov_iter *from, int copy)
2247 {
2248     int err, offset = skb->len;
2249 
2250     err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2251                        copy, offset);
2252     if (err)
2253         __skb_trim(skb, offset);
2254 
2255     return err;
2256 }
2257 
2258 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2259                        struct sk_buff *skb,
2260                        struct page *page,
2261                        int off, int copy)
2262 {
2263     int err;
2264 
2265     err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2266                        copy, skb->len);
2267     if (err)
2268         return err;
2269 
2270     skb_len_add(skb, copy);
2271     sk_wmem_queued_add(sk, copy);
2272     sk_mem_charge(sk, copy);
2273     return 0;
2274 }
2275 
2276 /**
2277  * sk_wmem_alloc_get - returns write allocations
2278  * @sk: socket
2279  *
2280  * Return: sk_wmem_alloc minus initial offset of one
2281  */
2282 static inline int sk_wmem_alloc_get(const struct sock *sk)
2283 {
2284     return refcount_read(&sk->sk_wmem_alloc) - 1;
2285 }
2286 
2287 /**
2288  * sk_rmem_alloc_get - returns read allocations
2289  * @sk: socket
2290  *
2291  * Return: sk_rmem_alloc
2292  */
2293 static inline int sk_rmem_alloc_get(const struct sock *sk)
2294 {
2295     return atomic_read(&sk->sk_rmem_alloc);
2296 }
2297 
2298 /**
2299  * sk_has_allocations - check if allocations are outstanding
2300  * @sk: socket
2301  *
2302  * Return: true if socket has write or read allocations
2303  */
2304 static inline bool sk_has_allocations(const struct sock *sk)
2305 {
2306     return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2307 }
2308 
2309 /**
2310  * skwq_has_sleeper - check if there are any waiting processes
2311  * @wq: struct socket_wq
2312  *
2313  * Return: true if socket_wq has waiting processes
2314  *
2315  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2316  * barrier call. They were added due to the race found within the tcp code.
2317  *
2318  * Consider following tcp code paths::
2319  *
2320  *   CPU1                CPU2
2321  *   sys_select          receive packet
2322  *   ...                 ...
2323  *   __add_wait_queue    update tp->rcv_nxt
2324  *   ...                 ...
2325  *   tp->rcv_nxt check   sock_def_readable
2326  *   ...                 {
2327  *   schedule               rcu_read_lock();
2328  *                          wq = rcu_dereference(sk->sk_wq);
2329  *                          if (wq && waitqueue_active(&wq->wait))
2330  *                              wake_up_interruptible(&wq->wait)
2331  *                          ...
2332  *                       }
2333  *
2334  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2335  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2336  * could then endup calling schedule and sleep forever if there are no more
2337  * data on the socket.
2338  *
2339  */
2340 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2341 {
2342     return wq && wq_has_sleeper(&wq->wait);
2343 }
2344 
2345 /**
2346  * sock_poll_wait - place memory barrier behind the poll_wait call.
2347  * @filp:           file
2348  * @sock:           socket to wait on
2349  * @p:              poll_table
2350  *
2351  * See the comments in the wq_has_sleeper function.
2352  */
2353 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2354                   poll_table *p)
2355 {
2356     if (!poll_does_not_wait(p)) {
2357         poll_wait(filp, &sock->wq.wait, p);
2358         /* We need to be sure we are in sync with the
2359          * socket flags modification.
2360          *
2361          * This memory barrier is paired in the wq_has_sleeper.
2362          */
2363         smp_mb();
2364     }
2365 }
2366 
2367 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2368 {
2369     /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2370     u32 txhash = READ_ONCE(sk->sk_txhash);
2371 
2372     if (txhash) {
2373         skb->l4_hash = 1;
2374         skb->hash = txhash;
2375     }
2376 }
2377 
2378 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2379 
2380 /*
2381  *  Queue a received datagram if it will fit. Stream and sequenced
2382  *  protocols can't normally use this as they need to fit buffers in
2383  *  and play with them.
2384  *
2385  *  Inlined as it's very short and called for pretty much every
2386  *  packet ever received.
2387  */
2388 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2389 {
2390     skb_orphan(skb);
2391     skb->sk = sk;
2392     skb->destructor = sock_rfree;
2393     atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2394     sk_mem_charge(sk, skb->truesize);
2395 }
2396 
2397 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2398 {
2399     if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2400         skb_orphan(skb);
2401         skb->destructor = sock_efree;
2402         skb->sk = sk;
2403         return true;
2404     }
2405     return false;
2406 }
2407 
2408 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2409 {
2410     if (skb->destructor != sock_wfree) {
2411         skb_orphan(skb);
2412         return;
2413     }
2414     skb->slow_gro = 1;
2415 }
2416 
2417 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2418             unsigned long expires);
2419 
2420 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2421 
2422 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2423 
2424 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2425             struct sk_buff *skb, unsigned int flags,
2426             void (*destructor)(struct sock *sk,
2427                        struct sk_buff *skb));
2428 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2429 
2430 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2431                   enum skb_drop_reason *reason);
2432 
2433 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2434 {
2435     return sock_queue_rcv_skb_reason(sk, skb, NULL);
2436 }
2437 
2438 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2439 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2440 
2441 /*
2442  *  Recover an error report and clear atomically
2443  */
2444 
2445 static inline int sock_error(struct sock *sk)
2446 {
2447     int err;
2448 
2449     /* Avoid an atomic operation for the common case.
2450      * This is racy since another cpu/thread can change sk_err under us.
2451      */
2452     if (likely(data_race(!sk->sk_err)))
2453         return 0;
2454 
2455     err = xchg(&sk->sk_err, 0);
2456     return -err;
2457 }
2458 
2459 void sk_error_report(struct sock *sk);
2460 
2461 static inline unsigned long sock_wspace(struct sock *sk)
2462 {
2463     int amt = 0;
2464 
2465     if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2466         amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2467         if (amt < 0)
2468             amt = 0;
2469     }
2470     return amt;
2471 }
2472 
2473 /* Note:
2474  *  We use sk->sk_wq_raw, from contexts knowing this
2475  *  pointer is not NULL and cannot disappear/change.
2476  */
2477 static inline void sk_set_bit(int nr, struct sock *sk)
2478 {
2479     if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2480         !sock_flag(sk, SOCK_FASYNC))
2481         return;
2482 
2483     set_bit(nr, &sk->sk_wq_raw->flags);
2484 }
2485 
2486 static inline void sk_clear_bit(int nr, struct sock *sk)
2487 {
2488     if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2489         !sock_flag(sk, SOCK_FASYNC))
2490         return;
2491 
2492     clear_bit(nr, &sk->sk_wq_raw->flags);
2493 }
2494 
2495 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2496 {
2497     if (sock_flag(sk, SOCK_FASYNC)) {
2498         rcu_read_lock();
2499         sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2500         rcu_read_unlock();
2501     }
2502 }
2503 
2504 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2505  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2506  * Note: for send buffers, TCP works better if we can build two skbs at
2507  * minimum.
2508  */
2509 #define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2510 
2511 #define SOCK_MIN_SNDBUF     (TCP_SKB_MIN_TRUESIZE * 2)
2512 #define SOCK_MIN_RCVBUF      TCP_SKB_MIN_TRUESIZE
2513 
2514 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2515 {
2516     u32 val;
2517 
2518     if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2519         return;
2520 
2521     val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2522     val = max_t(u32, val, sk_unused_reserved_mem(sk));
2523 
2524     WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2525 }
2526 
2527 /**
2528  * sk_page_frag - return an appropriate page_frag
2529  * @sk: socket
2530  *
2531  * Use the per task page_frag instead of the per socket one for
2532  * optimization when we know that we're in process context and own
2533  * everything that's associated with %current.
2534  *
2535  * Both direct reclaim and page faults can nest inside other
2536  * socket operations and end up recursing into sk_page_frag()
2537  * while it's already in use: explicitly avoid task page_frag
2538  * usage if the caller is potentially doing any of them.
2539  * This assumes that page fault handlers use the GFP_NOFS flags.
2540  *
2541  * Return: a per task page_frag if context allows that,
2542  * otherwise a per socket one.
2543  */
2544 static inline struct page_frag *sk_page_frag(struct sock *sk)
2545 {
2546     if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2547         (__GFP_DIRECT_RECLAIM | __GFP_FS))
2548         return &current->task_frag;
2549 
2550     return &sk->sk_frag;
2551 }
2552 
2553 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2554 
2555 /*
2556  *  Default write policy as shown to user space via poll/select/SIGIO
2557  */
2558 static inline bool sock_writeable(const struct sock *sk)
2559 {
2560     return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2561 }
2562 
2563 static inline gfp_t gfp_any(void)
2564 {
2565     return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2566 }
2567 
2568 static inline gfp_t gfp_memcg_charge(void)
2569 {
2570     return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2571 }
2572 
2573 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2574 {
2575     return noblock ? 0 : sk->sk_rcvtimeo;
2576 }
2577 
2578 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2579 {
2580     return noblock ? 0 : sk->sk_sndtimeo;
2581 }
2582 
2583 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2584 {
2585     int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2586 
2587     return v ?: 1;
2588 }
2589 
2590 /* Alas, with timeout socket operations are not restartable.
2591  * Compare this to poll().
2592  */
2593 static inline int sock_intr_errno(long timeo)
2594 {
2595     return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2596 }
2597 
2598 struct sock_skb_cb {
2599     u32 dropcount;
2600 };
2601 
2602 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2603  * using skb->cb[] would keep using it directly and utilize its
2604  * alignement guarantee.
2605  */
2606 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2607                 sizeof(struct sock_skb_cb)))
2608 
2609 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2610                 SOCK_SKB_CB_OFFSET))
2611 
2612 #define sock_skb_cb_check_size(size) \
2613     BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2614 
2615 static inline void
2616 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2617 {
2618     SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2619                         atomic_read(&sk->sk_drops) : 0;
2620 }
2621 
2622 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2623 {
2624     int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2625 
2626     atomic_add(segs, &sk->sk_drops);
2627 }
2628 
2629 static inline ktime_t sock_read_timestamp(struct sock *sk)
2630 {
2631 #if BITS_PER_LONG==32
2632     unsigned int seq;
2633     ktime_t kt;
2634 
2635     do {
2636         seq = read_seqbegin(&sk->sk_stamp_seq);
2637         kt = sk->sk_stamp;
2638     } while (read_seqretry(&sk->sk_stamp_seq, seq));
2639 
2640     return kt;
2641 #else
2642     return READ_ONCE(sk->sk_stamp);
2643 #endif
2644 }
2645 
2646 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2647 {
2648 #if BITS_PER_LONG==32
2649     write_seqlock(&sk->sk_stamp_seq);
2650     sk->sk_stamp = kt;
2651     write_sequnlock(&sk->sk_stamp_seq);
2652 #else
2653     WRITE_ONCE(sk->sk_stamp, kt);
2654 #endif
2655 }
2656 
2657 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2658                struct sk_buff *skb);
2659 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2660                  struct sk_buff *skb);
2661 
2662 static inline void
2663 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2664 {
2665     ktime_t kt = skb->tstamp;
2666     struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2667 
2668     /*
2669      * generate control messages if
2670      * - receive time stamping in software requested
2671      * - software time stamp available and wanted
2672      * - hardware time stamps available and wanted
2673      */
2674     if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2675         (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2676         (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2677         (hwtstamps->hwtstamp &&
2678          (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2679         __sock_recv_timestamp(msg, sk, skb);
2680     else
2681         sock_write_timestamp(sk, kt);
2682 
2683     if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2684         __sock_recv_wifi_status(msg, sk, skb);
2685 }
2686 
2687 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2688                struct sk_buff *skb);
2689 
2690 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2691 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2692                    struct sk_buff *skb)
2693 {
2694 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)            | \
2695                (1UL << SOCK_RCVTSTAMP)          | \
2696                (1UL << SOCK_RCVMARK))
2697 #define TSFLAGS_ANY   (SOF_TIMESTAMPING_SOFTWARE            | \
2698                SOF_TIMESTAMPING_RAW_HARDWARE)
2699 
2700     if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2701         __sock_recv_cmsgs(msg, sk, skb);
2702     else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2703         sock_write_timestamp(sk, skb->tstamp);
2704     else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2705         sock_write_timestamp(sk, 0);
2706 }
2707 
2708 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2709 
2710 /**
2711  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2712  * @sk:     socket sending this packet
2713  * @tsflags:    timestamping flags to use
2714  * @tx_flags:   completed with instructions for time stamping
2715  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2716  *
2717  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2718  */
2719 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2720                       __u8 *tx_flags, __u32 *tskey)
2721 {
2722     if (unlikely(tsflags)) {
2723         __sock_tx_timestamp(tsflags, tx_flags);
2724         if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2725             tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2726             *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2727     }
2728     if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2729         *tx_flags |= SKBTX_WIFI_STATUS;
2730 }
2731 
2732 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2733                      __u8 *tx_flags)
2734 {
2735     _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2736 }
2737 
2738 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2739 {
2740     _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2741                &skb_shinfo(skb)->tskey);
2742 }
2743 
2744 static inline bool sk_is_tcp(const struct sock *sk)
2745 {
2746     return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2747 }
2748 
2749 /**
2750  * sk_eat_skb - Release a skb if it is no longer needed
2751  * @sk: socket to eat this skb from
2752  * @skb: socket buffer to eat
2753  *
2754  * This routine must be called with interrupts disabled or with the socket
2755  * locked so that the sk_buff queue operation is ok.
2756 */
2757 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2758 {
2759     __skb_unlink(skb, &sk->sk_receive_queue);
2760     __kfree_skb(skb);
2761 }
2762 
2763 static inline bool
2764 skb_sk_is_prefetched(struct sk_buff *skb)
2765 {
2766 #ifdef CONFIG_INET
2767     return skb->destructor == sock_pfree;
2768 #else
2769     return false;
2770 #endif /* CONFIG_INET */
2771 }
2772 
2773 /* This helper checks if a socket is a full socket,
2774  * ie _not_ a timewait or request socket.
2775  */
2776 static inline bool sk_fullsock(const struct sock *sk)
2777 {
2778     return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2779 }
2780 
2781 static inline bool
2782 sk_is_refcounted(struct sock *sk)
2783 {
2784     /* Only full sockets have sk->sk_flags. */
2785     return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2786 }
2787 
2788 /**
2789  * skb_steal_sock - steal a socket from an sk_buff
2790  * @skb: sk_buff to steal the socket from
2791  * @refcounted: is set to true if the socket is reference-counted
2792  */
2793 static inline struct sock *
2794 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2795 {
2796     if (skb->sk) {
2797         struct sock *sk = skb->sk;
2798 
2799         *refcounted = true;
2800         if (skb_sk_is_prefetched(skb))
2801             *refcounted = sk_is_refcounted(sk);
2802         skb->destructor = NULL;
2803         skb->sk = NULL;
2804         return sk;
2805     }
2806     *refcounted = false;
2807     return NULL;
2808 }
2809 
2810 /* Checks if this SKB belongs to an HW offloaded socket
2811  * and whether any SW fallbacks are required based on dev.
2812  * Check decrypted mark in case skb_orphan() cleared socket.
2813  */
2814 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2815                            struct net_device *dev)
2816 {
2817 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2818     struct sock *sk = skb->sk;
2819 
2820     if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2821         skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2822 #ifdef CONFIG_TLS_DEVICE
2823     } else if (unlikely(skb->decrypted)) {
2824         pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2825         kfree_skb(skb);
2826         skb = NULL;
2827 #endif
2828     }
2829 #endif
2830 
2831     return skb;
2832 }
2833 
2834 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2835  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2836  */
2837 static inline bool sk_listener(const struct sock *sk)
2838 {
2839     return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2840 }
2841 
2842 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2843 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2844                int type);
2845 
2846 bool sk_ns_capable(const struct sock *sk,
2847            struct user_namespace *user_ns, int cap);
2848 bool sk_capable(const struct sock *sk, int cap);
2849 bool sk_net_capable(const struct sock *sk, int cap);
2850 
2851 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2852 
2853 /* Take into consideration the size of the struct sk_buff overhead in the
2854  * determination of these values, since that is non-constant across
2855  * platforms.  This makes socket queueing behavior and performance
2856  * not depend upon such differences.
2857  */
2858 #define _SK_MEM_PACKETS     256
2859 #define _SK_MEM_OVERHEAD    SKB_TRUESIZE(256)
2860 #define SK_WMEM_MAX     (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2861 #define SK_RMEM_MAX     (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2862 
2863 extern __u32 sysctl_wmem_max;
2864 extern __u32 sysctl_rmem_max;
2865 
2866 extern int sysctl_tstamp_allow_data;
2867 extern int sysctl_optmem_max;
2868 
2869 extern __u32 sysctl_wmem_default;
2870 extern __u32 sysctl_rmem_default;
2871 
2872 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2873 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2874 
2875 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2876 {
2877     /* Does this proto have per netns sysctl_wmem ? */
2878     if (proto->sysctl_wmem_offset)
2879         return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2880 
2881     return READ_ONCE(*proto->sysctl_wmem);
2882 }
2883 
2884 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2885 {
2886     /* Does this proto have per netns sysctl_rmem ? */
2887     if (proto->sysctl_rmem_offset)
2888         return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2889 
2890     return READ_ONCE(*proto->sysctl_rmem);
2891 }
2892 
2893 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2894  * Some wifi drivers need to tweak it to get more chunks.
2895  * They can use this helper from their ndo_start_xmit()
2896  */
2897 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2898 {
2899     if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2900         return;
2901     WRITE_ONCE(sk->sk_pacing_shift, val);
2902 }
2903 
2904 /* if a socket is bound to a device, check that the given device
2905  * index is either the same or that the socket is bound to an L3
2906  * master device and the given device index is also enslaved to
2907  * that L3 master
2908  */
2909 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2910 {
2911     int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2912     int mdif;
2913 
2914     if (!bound_dev_if || bound_dev_if == dif)
2915         return true;
2916 
2917     mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2918     if (mdif && mdif == bound_dev_if)
2919         return true;
2920 
2921     return false;
2922 }
2923 
2924 void sock_def_readable(struct sock *sk);
2925 
2926 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2927 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2928 int sock_set_timestamping(struct sock *sk, int optname,
2929               struct so_timestamping timestamping);
2930 
2931 void sock_enable_timestamps(struct sock *sk);
2932 void sock_no_linger(struct sock *sk);
2933 void sock_set_keepalive(struct sock *sk);
2934 void sock_set_priority(struct sock *sk, u32 priority);
2935 void sock_set_rcvbuf(struct sock *sk, int val);
2936 void sock_set_mark(struct sock *sk, u32 val);
2937 void sock_set_reuseaddr(struct sock *sk);
2938 void sock_set_reuseport(struct sock *sk);
2939 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2940 
2941 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2942 
2943 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2944 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2945                sockptr_t optval, int optlen, bool old_timeval);
2946 
2947 static inline bool sk_is_readable(struct sock *sk)
2948 {
2949     if (sk->sk_prot->sock_is_readable)
2950         return sk->sk_prot->sock_is_readable(sk);
2951     return false;
2952 }
2953 #endif  /* _SOCK_H */