![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0 */ 0002 #ifndef __LINUX_USB_H 0003 #define __LINUX_USB_H 0004 0005 #include <linux/mod_devicetable.h> 0006 #include <linux/usb/ch9.h> 0007 0008 #define USB_MAJOR 180 0009 #define USB_DEVICE_MAJOR 189 0010 0011 0012 #ifdef __KERNEL__ 0013 0014 #include <linux/errno.h> /* for -ENODEV */ 0015 #include <linux/delay.h> /* for mdelay() */ 0016 #include <linux/interrupt.h> /* for in_interrupt() */ 0017 #include <linux/list.h> /* for struct list_head */ 0018 #include <linux/kref.h> /* for struct kref */ 0019 #include <linux/device.h> /* for struct device */ 0020 #include <linux/fs.h> /* for struct file_operations */ 0021 #include <linux/completion.h> /* for struct completion */ 0022 #include <linux/sched.h> /* for current && schedule_timeout */ 0023 #include <linux/mutex.h> /* for struct mutex */ 0024 #include <linux/pm_runtime.h> /* for runtime PM */ 0025 0026 struct usb_device; 0027 struct usb_driver; 0028 struct wusb_dev; 0029 0030 /*-------------------------------------------------------------------------*/ 0031 0032 /* 0033 * Host-side wrappers for standard USB descriptors ... these are parsed 0034 * from the data provided by devices. Parsing turns them from a flat 0035 * sequence of descriptors into a hierarchy: 0036 * 0037 * - devices have one (usually) or more configs; 0038 * - configs have one (often) or more interfaces; 0039 * - interfaces have one (usually) or more settings; 0040 * - each interface setting has zero or (usually) more endpoints. 0041 * - a SuperSpeed endpoint has a companion descriptor 0042 * 0043 * And there might be other descriptors mixed in with those. 0044 * 0045 * Devices may also have class-specific or vendor-specific descriptors. 0046 */ 0047 0048 struct ep_device; 0049 0050 /** 0051 * struct usb_host_endpoint - host-side endpoint descriptor and queue 0052 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 0053 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 0054 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 0055 * @urb_list: urbs queued to this endpoint; maintained by usbcore 0056 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 0057 * with one or more transfer descriptors (TDs) per urb 0058 * @ep_dev: ep_device for sysfs info 0059 * @extra: descriptors following this endpoint in the configuration 0060 * @extralen: how many bytes of "extra" are valid 0061 * @enabled: URBs may be submitted to this endpoint 0062 * @streams: number of USB-3 streams allocated on the endpoint 0063 * 0064 * USB requests are always queued to a given endpoint, identified by a 0065 * descriptor within an active interface in a given USB configuration. 0066 */ 0067 struct usb_host_endpoint { 0068 struct usb_endpoint_descriptor desc; 0069 struct usb_ss_ep_comp_descriptor ss_ep_comp; 0070 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 0071 struct list_head urb_list; 0072 void *hcpriv; 0073 struct ep_device *ep_dev; /* For sysfs info */ 0074 0075 unsigned char *extra; /* Extra descriptors */ 0076 int extralen; 0077 int enabled; 0078 int streams; 0079 }; 0080 0081 /* host-side wrapper for one interface setting's parsed descriptors */ 0082 struct usb_host_interface { 0083 struct usb_interface_descriptor desc; 0084 0085 int extralen; 0086 unsigned char *extra; /* Extra descriptors */ 0087 0088 /* array of desc.bNumEndpoints endpoints associated with this 0089 * interface setting. these will be in no particular order. 0090 */ 0091 struct usb_host_endpoint *endpoint; 0092 0093 char *string; /* iInterface string, if present */ 0094 }; 0095 0096 enum usb_interface_condition { 0097 USB_INTERFACE_UNBOUND = 0, 0098 USB_INTERFACE_BINDING, 0099 USB_INTERFACE_BOUND, 0100 USB_INTERFACE_UNBINDING, 0101 }; 0102 0103 int __must_check 0104 usb_find_common_endpoints(struct usb_host_interface *alt, 0105 struct usb_endpoint_descriptor **bulk_in, 0106 struct usb_endpoint_descriptor **bulk_out, 0107 struct usb_endpoint_descriptor **int_in, 0108 struct usb_endpoint_descriptor **int_out); 0109 0110 int __must_check 0111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 0112 struct usb_endpoint_descriptor **bulk_in, 0113 struct usb_endpoint_descriptor **bulk_out, 0114 struct usb_endpoint_descriptor **int_in, 0115 struct usb_endpoint_descriptor **int_out); 0116 0117 static inline int __must_check 0118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 0119 struct usb_endpoint_descriptor **bulk_in) 0120 { 0121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 0122 } 0123 0124 static inline int __must_check 0125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 0126 struct usb_endpoint_descriptor **bulk_out) 0127 { 0128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 0129 } 0130 0131 static inline int __must_check 0132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 0133 struct usb_endpoint_descriptor **int_in) 0134 { 0135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 0136 } 0137 0138 static inline int __must_check 0139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 0140 struct usb_endpoint_descriptor **int_out) 0141 { 0142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 0143 } 0144 0145 static inline int __must_check 0146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 0147 struct usb_endpoint_descriptor **bulk_in) 0148 { 0149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 0150 } 0151 0152 static inline int __must_check 0153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 0154 struct usb_endpoint_descriptor **bulk_out) 0155 { 0156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 0157 } 0158 0159 static inline int __must_check 0160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 0161 struct usb_endpoint_descriptor **int_in) 0162 { 0163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 0164 } 0165 0166 static inline int __must_check 0167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 0168 struct usb_endpoint_descriptor **int_out) 0169 { 0170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 0171 } 0172 0173 /** 0174 * struct usb_interface - what usb device drivers talk to 0175 * @altsetting: array of interface structures, one for each alternate 0176 * setting that may be selected. Each one includes a set of 0177 * endpoint configurations. They will be in no particular order. 0178 * @cur_altsetting: the current altsetting. 0179 * @num_altsetting: number of altsettings defined. 0180 * @intf_assoc: interface association descriptor 0181 * @minor: the minor number assigned to this interface, if this 0182 * interface is bound to a driver that uses the USB major number. 0183 * If this interface does not use the USB major, this field should 0184 * be unused. The driver should set this value in the probe() 0185 * function of the driver, after it has been assigned a minor 0186 * number from the USB core by calling usb_register_dev(). 0187 * @condition: binding state of the interface: not bound, binding 0188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 0189 * @sysfs_files_created: sysfs attributes exist 0190 * @ep_devs_created: endpoint child pseudo-devices exist 0191 * @unregistering: flag set when the interface is being unregistered 0192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 0193 * capability during autosuspend. 0194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 0195 * has been deferred. 0196 * @needs_binding: flag set when the driver should be re-probed or unbound 0197 * following a reset or suspend operation it doesn't support. 0198 * @authorized: This allows to (de)authorize individual interfaces instead 0199 * a whole device in contrast to the device authorization. 0200 * @dev: driver model's view of this device 0201 * @usb_dev: if an interface is bound to the USB major, this will point 0202 * to the sysfs representation for that device. 0203 * @reset_ws: Used for scheduling resets from atomic context. 0204 * @resetting_device: USB core reset the device, so use alt setting 0 as 0205 * current; needs bandwidth alloc after reset. 0206 * 0207 * USB device drivers attach to interfaces on a physical device. Each 0208 * interface encapsulates a single high level function, such as feeding 0209 * an audio stream to a speaker or reporting a change in a volume control. 0210 * Many USB devices only have one interface. The protocol used to talk to 0211 * an interface's endpoints can be defined in a usb "class" specification, 0212 * or by a product's vendor. The (default) control endpoint is part of 0213 * every interface, but is never listed among the interface's descriptors. 0214 * 0215 * The driver that is bound to the interface can use standard driver model 0216 * calls such as dev_get_drvdata() on the dev member of this structure. 0217 * 0218 * Each interface may have alternate settings. The initial configuration 0219 * of a device sets altsetting 0, but the device driver can change 0220 * that setting using usb_set_interface(). Alternate settings are often 0221 * used to control the use of periodic endpoints, such as by having 0222 * different endpoints use different amounts of reserved USB bandwidth. 0223 * All standards-conformant USB devices that use isochronous endpoints 0224 * will use them in non-default settings. 0225 * 0226 * The USB specification says that alternate setting numbers must run from 0227 * 0 to one less than the total number of alternate settings. But some 0228 * devices manage to mess this up, and the structures aren't necessarily 0229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 0230 * look up an alternate setting in the altsetting array based on its number. 0231 */ 0232 struct usb_interface { 0233 /* array of alternate settings for this interface, 0234 * stored in no particular order */ 0235 struct usb_host_interface *altsetting; 0236 0237 struct usb_host_interface *cur_altsetting; /* the currently 0238 * active alternate setting */ 0239 unsigned num_altsetting; /* number of alternate settings */ 0240 0241 /* If there is an interface association descriptor then it will list 0242 * the associated interfaces */ 0243 struct usb_interface_assoc_descriptor *intf_assoc; 0244 0245 int minor; /* minor number this interface is 0246 * bound to */ 0247 enum usb_interface_condition condition; /* state of binding */ 0248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 0249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 0250 unsigned unregistering:1; /* unregistration is in progress */ 0251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 0252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 0253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 0254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 0255 unsigned authorized:1; /* used for interface authorization */ 0256 0257 struct device dev; /* interface specific device info */ 0258 struct device *usb_dev; 0259 struct work_struct reset_ws; /* for resets in atomic context */ 0260 }; 0261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 0262 0263 static inline void *usb_get_intfdata(struct usb_interface *intf) 0264 { 0265 return dev_get_drvdata(&intf->dev); 0266 } 0267 0268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 0269 { 0270 dev_set_drvdata(&intf->dev, data); 0271 } 0272 0273 struct usb_interface *usb_get_intf(struct usb_interface *intf); 0274 void usb_put_intf(struct usb_interface *intf); 0275 0276 /* Hard limit */ 0277 #define USB_MAXENDPOINTS 30 0278 /* this maximum is arbitrary */ 0279 #define USB_MAXINTERFACES 32 0280 #define USB_MAXIADS (USB_MAXINTERFACES/2) 0281 0282 /* 0283 * USB Resume Timer: Every Host controller driver should drive the resume 0284 * signalling on the bus for the amount of time defined by this macro. 0285 * 0286 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 0287 * 0288 * Note that the USB Specification states we should drive resume for *at least* 0289 * 20 ms, but it doesn't give an upper bound. This creates two possible 0290 * situations which we want to avoid: 0291 * 0292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 0293 * us to fail USB Electrical Tests, thus failing Certification 0294 * 0295 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 0296 * and while we can argue that's against the USB Specification, we don't have 0297 * control over which devices a certification laboratory will be using for 0298 * certification. If CertLab uses a device which was tested against Windows and 0299 * that happens to have relaxed resume signalling rules, we might fall into 0300 * situations where we fail interoperability and electrical tests. 0301 * 0302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 0303 * should cope with both LPJ calibration errors and devices not following every 0304 * detail of the USB Specification. 0305 */ 0306 #define USB_RESUME_TIMEOUT 40 /* ms */ 0307 0308 /** 0309 * struct usb_interface_cache - long-term representation of a device interface 0310 * @num_altsetting: number of altsettings defined. 0311 * @ref: reference counter. 0312 * @altsetting: variable-length array of interface structures, one for 0313 * each alternate setting that may be selected. Each one includes a 0314 * set of endpoint configurations. They will be in no particular order. 0315 * 0316 * These structures persist for the lifetime of a usb_device, unlike 0317 * struct usb_interface (which persists only as long as its configuration 0318 * is installed). The altsetting arrays can be accessed through these 0319 * structures at any time, permitting comparison of configurations and 0320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 0321 */ 0322 struct usb_interface_cache { 0323 unsigned num_altsetting; /* number of alternate settings */ 0324 struct kref ref; /* reference counter */ 0325 0326 /* variable-length array of alternate settings for this interface, 0327 * stored in no particular order */ 0328 struct usb_host_interface altsetting[]; 0329 }; 0330 #define ref_to_usb_interface_cache(r) \ 0331 container_of(r, struct usb_interface_cache, ref) 0332 #define altsetting_to_usb_interface_cache(a) \ 0333 container_of(a, struct usb_interface_cache, altsetting[0]) 0334 0335 /** 0336 * struct usb_host_config - representation of a device's configuration 0337 * @desc: the device's configuration descriptor. 0338 * @string: pointer to the cached version of the iConfiguration string, if 0339 * present for this configuration. 0340 * @intf_assoc: list of any interface association descriptors in this config 0341 * @interface: array of pointers to usb_interface structures, one for each 0342 * interface in the configuration. The number of interfaces is stored 0343 * in desc.bNumInterfaces. These pointers are valid only while the 0344 * configuration is active. 0345 * @intf_cache: array of pointers to usb_interface_cache structures, one 0346 * for each interface in the configuration. These structures exist 0347 * for the entire life of the device. 0348 * @extra: pointer to buffer containing all extra descriptors associated 0349 * with this configuration (those preceding the first interface 0350 * descriptor). 0351 * @extralen: length of the extra descriptors buffer. 0352 * 0353 * USB devices may have multiple configurations, but only one can be active 0354 * at any time. Each encapsulates a different operational environment; 0355 * for example, a dual-speed device would have separate configurations for 0356 * full-speed and high-speed operation. The number of configurations 0357 * available is stored in the device descriptor as bNumConfigurations. 0358 * 0359 * A configuration can contain multiple interfaces. Each corresponds to 0360 * a different function of the USB device, and all are available whenever 0361 * the configuration is active. The USB standard says that interfaces 0362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 0363 * of devices get this wrong. In addition, the interface array is not 0364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 0365 * look up an interface entry based on its number. 0366 * 0367 * Device drivers should not attempt to activate configurations. The choice 0368 * of which configuration to install is a policy decision based on such 0369 * considerations as available power, functionality provided, and the user's 0370 * desires (expressed through userspace tools). However, drivers can call 0371 * usb_reset_configuration() to reinitialize the current configuration and 0372 * all its interfaces. 0373 */ 0374 struct usb_host_config { 0375 struct usb_config_descriptor desc; 0376 0377 char *string; /* iConfiguration string, if present */ 0378 0379 /* List of any Interface Association Descriptors in this 0380 * configuration. */ 0381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 0382 0383 /* the interfaces associated with this configuration, 0384 * stored in no particular order */ 0385 struct usb_interface *interface[USB_MAXINTERFACES]; 0386 0387 /* Interface information available even when this is not the 0388 * active configuration */ 0389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 0390 0391 unsigned char *extra; /* Extra descriptors */ 0392 int extralen; 0393 }; 0394 0395 /* USB2.0 and USB3.0 device BOS descriptor set */ 0396 struct usb_host_bos { 0397 struct usb_bos_descriptor *desc; 0398 0399 /* wireless cap descriptor is handled by wusb */ 0400 struct usb_ext_cap_descriptor *ext_cap; 0401 struct usb_ss_cap_descriptor *ss_cap; 0402 struct usb_ssp_cap_descriptor *ssp_cap; 0403 struct usb_ss_container_id_descriptor *ss_id; 0404 struct usb_ptm_cap_descriptor *ptm_cap; 0405 }; 0406 0407 int __usb_get_extra_descriptor(char *buffer, unsigned size, 0408 unsigned char type, void **ptr, size_t min); 0409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 0410 __usb_get_extra_descriptor((ifpoint)->extra, \ 0411 (ifpoint)->extralen, \ 0412 type, (void **)ptr, sizeof(**(ptr))) 0413 0414 /* ----------------------------------------------------------------------- */ 0415 0416 /* USB device number allocation bitmap */ 0417 struct usb_devmap { 0418 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 0419 }; 0420 0421 /* 0422 * Allocated per bus (tree of devices) we have: 0423 */ 0424 struct usb_bus { 0425 struct device *controller; /* host side hardware */ 0426 struct device *sysdev; /* as seen from firmware or bus */ 0427 int busnum; /* Bus number (in order of reg) */ 0428 const char *bus_name; /* stable id (PCI slot_name etc) */ 0429 u8 uses_pio_for_control; /* 0430 * Does the host controller use PIO 0431 * for control transfers? 0432 */ 0433 u8 otg_port; /* 0, or number of OTG/HNP port */ 0434 unsigned is_b_host:1; /* true during some HNP roleswitches */ 0435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 0436 unsigned no_stop_on_short:1; /* 0437 * Quirk: some controllers don't stop 0438 * the ep queue on a short transfer 0439 * with the URB_SHORT_NOT_OK flag set. 0440 */ 0441 unsigned no_sg_constraint:1; /* no sg constraint */ 0442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 0443 0444 int devnum_next; /* Next open device number in 0445 * round-robin allocation */ 0446 struct mutex devnum_next_mutex; /* devnum_next mutex */ 0447 0448 struct usb_devmap devmap; /* device address allocation map */ 0449 struct usb_device *root_hub; /* Root hub */ 0450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 0451 0452 int bandwidth_allocated; /* on this bus: how much of the time 0453 * reserved for periodic (intr/iso) 0454 * requests is used, on average? 0455 * Units: microseconds/frame. 0456 * Limits: Full/low speed reserve 90%, 0457 * while high speed reserves 80%. 0458 */ 0459 int bandwidth_int_reqs; /* number of Interrupt requests */ 0460 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 0461 0462 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 0463 0464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 0465 struct mon_bus *mon_bus; /* non-null when associated */ 0466 int monitored; /* non-zero when monitored */ 0467 #endif 0468 }; 0469 0470 struct usb_dev_state; 0471 0472 /* ----------------------------------------------------------------------- */ 0473 0474 struct usb_tt; 0475 0476 enum usb_port_connect_type { 0477 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 0478 USB_PORT_CONNECT_TYPE_HOT_PLUG, 0479 USB_PORT_CONNECT_TYPE_HARD_WIRED, 0480 USB_PORT_NOT_USED, 0481 }; 0482 0483 /* 0484 * USB port quirks. 0485 */ 0486 0487 /* For the given port, prefer the old (faster) enumeration scheme. */ 0488 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 0489 0490 /* Decrease TRSTRCY to 10ms during device enumeration. */ 0491 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 0492 0493 /* 0494 * USB 2.0 Link Power Management (LPM) parameters. 0495 */ 0496 struct usb2_lpm_parameters { 0497 /* Best effort service latency indicate how long the host will drive 0498 * resume on an exit from L1. 0499 */ 0500 unsigned int besl; 0501 0502 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 0503 * When the timer counts to zero, the parent hub will initiate a LPM 0504 * transition to L1. 0505 */ 0506 int timeout; 0507 }; 0508 0509 /* 0510 * USB 3.0 Link Power Management (LPM) parameters. 0511 * 0512 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 0513 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 0514 * All three are stored in nanoseconds. 0515 */ 0516 struct usb3_lpm_parameters { 0517 /* 0518 * Maximum exit latency (MEL) for the host to send a packet to the 0519 * device (either a Ping for isoc endpoints, or a data packet for 0520 * interrupt endpoints), the hubs to decode the packet, and for all hubs 0521 * in the path to transition the links to U0. 0522 */ 0523 unsigned int mel; 0524 /* 0525 * Maximum exit latency for a device-initiated LPM transition to bring 0526 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 0527 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 0528 */ 0529 unsigned int pel; 0530 0531 /* 0532 * The System Exit Latency (SEL) includes PEL, and three other 0533 * latencies. After a device initiates a U0 transition, it will take 0534 * some time from when the device sends the ERDY to when it will finally 0535 * receive the data packet. Basically, SEL should be the worse-case 0536 * latency from when a device starts initiating a U0 transition to when 0537 * it will get data. 0538 */ 0539 unsigned int sel; 0540 /* 0541 * The idle timeout value that is currently programmed into the parent 0542 * hub for this device. When the timer counts to zero, the parent hub 0543 * will initiate an LPM transition to either U1 or U2. 0544 */ 0545 int timeout; 0546 }; 0547 0548 /** 0549 * struct usb_device - kernel's representation of a USB device 0550 * @devnum: device number; address on a USB bus 0551 * @devpath: device ID string for use in messages (e.g., /port/...) 0552 * @route: tree topology hex string for use with xHCI 0553 * @state: device state: configured, not attached, etc. 0554 * @speed: device speed: high/full/low (or error) 0555 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 0556 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 0557 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 0558 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 0559 * @ttport: device port on that tt hub 0560 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 0561 * @parent: our hub, unless we're the root 0562 * @bus: bus we're part of 0563 * @ep0: endpoint 0 data (default control pipe) 0564 * @dev: generic device interface 0565 * @descriptor: USB device descriptor 0566 * @bos: USB device BOS descriptor set 0567 * @config: all of the device's configs 0568 * @actconfig: the active configuration 0569 * @ep_in: array of IN endpoints 0570 * @ep_out: array of OUT endpoints 0571 * @rawdescriptors: raw descriptors for each config 0572 * @bus_mA: Current available from the bus 0573 * @portnum: parent port number (origin 1) 0574 * @level: number of USB hub ancestors 0575 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 0576 * @can_submit: URBs may be submitted 0577 * @persist_enabled: USB_PERSIST enabled for this device 0578 * @reset_in_progress: the device is being reset 0579 * @have_langid: whether string_langid is valid 0580 * @authorized: policy has said we can use it; 0581 * (user space) policy determines if we authorize this device to be 0582 * used or not. By default, wired USB devices are authorized. 0583 * WUSB devices are not, until we authorize them from user space. 0584 * FIXME -- complete doc 0585 * @authenticated: Crypto authentication passed 0586 * @wusb: device is Wireless USB 0587 * @lpm_capable: device supports LPM 0588 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 0589 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 0590 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 0591 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 0592 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 0593 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 0594 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 0595 * @string_langid: language ID for strings 0596 * @product: iProduct string, if present (static) 0597 * @manufacturer: iManufacturer string, if present (static) 0598 * @serial: iSerialNumber string, if present (static) 0599 * @filelist: usbfs files that are open to this device 0600 * @maxchild: number of ports if hub 0601 * @quirks: quirks of the whole device 0602 * @urbnum: number of URBs submitted for the whole device 0603 * @active_duration: total time device is not suspended 0604 * @connect_time: time device was first connected 0605 * @do_remote_wakeup: remote wakeup should be enabled 0606 * @reset_resume: needs reset instead of resume 0607 * @port_is_suspended: the upstream port is suspended (L2 or U3) 0608 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 0609 * specific data for the device. 0610 * @slot_id: Slot ID assigned by xHCI 0611 * @removable: Device can be physically removed from this port 0612 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 0613 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 0614 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 0615 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 0616 * to keep track of the number of functions that require USB 3.0 Link Power 0617 * Management to be disabled for this usb_device. This count should only 0618 * be manipulated by those functions, with the bandwidth_mutex is held. 0619 * @hub_delay: cached value consisting of: 0620 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 0621 * Will be used as wValue for SetIsochDelay requests. 0622 * @use_generic_driver: ask driver core to reprobe using the generic driver. 0623 * 0624 * Notes: 0625 * Usbcore drivers should not set usbdev->state directly. Instead use 0626 * usb_set_device_state(). 0627 */ 0628 struct usb_device { 0629 int devnum; 0630 char devpath[16]; 0631 u32 route; 0632 enum usb_device_state state; 0633 enum usb_device_speed speed; 0634 unsigned int rx_lanes; 0635 unsigned int tx_lanes; 0636 enum usb_ssp_rate ssp_rate; 0637 0638 struct usb_tt *tt; 0639 int ttport; 0640 0641 unsigned int toggle[2]; 0642 0643 struct usb_device *parent; 0644 struct usb_bus *bus; 0645 struct usb_host_endpoint ep0; 0646 0647 struct device dev; 0648 0649 struct usb_device_descriptor descriptor; 0650 struct usb_host_bos *bos; 0651 struct usb_host_config *config; 0652 0653 struct usb_host_config *actconfig; 0654 struct usb_host_endpoint *ep_in[16]; 0655 struct usb_host_endpoint *ep_out[16]; 0656 0657 char **rawdescriptors; 0658 0659 unsigned short bus_mA; 0660 u8 portnum; 0661 u8 level; 0662 u8 devaddr; 0663 0664 unsigned can_submit:1; 0665 unsigned persist_enabled:1; 0666 unsigned reset_in_progress:1; 0667 unsigned have_langid:1; 0668 unsigned authorized:1; 0669 unsigned authenticated:1; 0670 unsigned wusb:1; 0671 unsigned lpm_capable:1; 0672 unsigned lpm_devinit_allow:1; 0673 unsigned usb2_hw_lpm_capable:1; 0674 unsigned usb2_hw_lpm_besl_capable:1; 0675 unsigned usb2_hw_lpm_enabled:1; 0676 unsigned usb2_hw_lpm_allowed:1; 0677 unsigned usb3_lpm_u1_enabled:1; 0678 unsigned usb3_lpm_u2_enabled:1; 0679 int string_langid; 0680 0681 /* static strings from the device */ 0682 char *product; 0683 char *manufacturer; 0684 char *serial; 0685 0686 struct list_head filelist; 0687 0688 int maxchild; 0689 0690 u32 quirks; 0691 atomic_t urbnum; 0692 0693 unsigned long active_duration; 0694 0695 #ifdef CONFIG_PM 0696 unsigned long connect_time; 0697 0698 unsigned do_remote_wakeup:1; 0699 unsigned reset_resume:1; 0700 unsigned port_is_suspended:1; 0701 #endif 0702 struct wusb_dev *wusb_dev; 0703 int slot_id; 0704 struct usb2_lpm_parameters l1_params; 0705 struct usb3_lpm_parameters u1_params; 0706 struct usb3_lpm_parameters u2_params; 0707 unsigned lpm_disable_count; 0708 0709 u16 hub_delay; 0710 unsigned use_generic_driver:1; 0711 }; 0712 #define to_usb_device(d) container_of(d, struct usb_device, dev) 0713 0714 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 0715 { 0716 return to_usb_device(intf->dev.parent); 0717 } 0718 0719 extern struct usb_device *usb_get_dev(struct usb_device *dev); 0720 extern void usb_put_dev(struct usb_device *dev); 0721 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 0722 int port1); 0723 0724 /** 0725 * usb_hub_for_each_child - iterate over all child devices on the hub 0726 * @hdev: USB device belonging to the usb hub 0727 * @port1: portnum associated with child device 0728 * @child: child device pointer 0729 */ 0730 #define usb_hub_for_each_child(hdev, port1, child) \ 0731 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 0732 port1 <= hdev->maxchild; \ 0733 child = usb_hub_find_child(hdev, ++port1)) \ 0734 if (!child) continue; else 0735 0736 /* USB device locking */ 0737 #define usb_lock_device(udev) device_lock(&(udev)->dev) 0738 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 0739 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 0740 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 0741 extern int usb_lock_device_for_reset(struct usb_device *udev, 0742 const struct usb_interface *iface); 0743 0744 /* USB port reset for device reinitialization */ 0745 extern int usb_reset_device(struct usb_device *dev); 0746 extern void usb_queue_reset_device(struct usb_interface *dev); 0747 0748 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 0749 0750 #ifdef CONFIG_ACPI 0751 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 0752 bool enable); 0753 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 0754 #else 0755 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 0756 bool enable) { return 0; } 0757 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 0758 { return true; } 0759 #endif 0760 0761 /* USB autosuspend and autoresume */ 0762 #ifdef CONFIG_PM 0763 extern void usb_enable_autosuspend(struct usb_device *udev); 0764 extern void usb_disable_autosuspend(struct usb_device *udev); 0765 0766 extern int usb_autopm_get_interface(struct usb_interface *intf); 0767 extern void usb_autopm_put_interface(struct usb_interface *intf); 0768 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 0769 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 0770 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 0771 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 0772 0773 static inline void usb_mark_last_busy(struct usb_device *udev) 0774 { 0775 pm_runtime_mark_last_busy(&udev->dev); 0776 } 0777 0778 #else 0779 0780 static inline int usb_enable_autosuspend(struct usb_device *udev) 0781 { return 0; } 0782 static inline int usb_disable_autosuspend(struct usb_device *udev) 0783 { return 0; } 0784 0785 static inline int usb_autopm_get_interface(struct usb_interface *intf) 0786 { return 0; } 0787 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 0788 { return 0; } 0789 0790 static inline void usb_autopm_put_interface(struct usb_interface *intf) 0791 { } 0792 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 0793 { } 0794 static inline void usb_autopm_get_interface_no_resume( 0795 struct usb_interface *intf) 0796 { } 0797 static inline void usb_autopm_put_interface_no_suspend( 0798 struct usb_interface *intf) 0799 { } 0800 static inline void usb_mark_last_busy(struct usb_device *udev) 0801 { } 0802 #endif 0803 0804 extern int usb_disable_lpm(struct usb_device *udev); 0805 extern void usb_enable_lpm(struct usb_device *udev); 0806 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 0807 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 0808 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 0809 0810 extern int usb_disable_ltm(struct usb_device *udev); 0811 extern void usb_enable_ltm(struct usb_device *udev); 0812 0813 static inline bool usb_device_supports_ltm(struct usb_device *udev) 0814 { 0815 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 0816 return false; 0817 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 0818 } 0819 0820 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 0821 { 0822 return udev && udev->bus && udev->bus->no_sg_constraint; 0823 } 0824 0825 0826 /*-------------------------------------------------------------------------*/ 0827 0828 /* for drivers using iso endpoints */ 0829 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 0830 0831 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 0832 extern int usb_alloc_streams(struct usb_interface *interface, 0833 struct usb_host_endpoint **eps, unsigned int num_eps, 0834 unsigned int num_streams, gfp_t mem_flags); 0835 0836 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 0837 extern int usb_free_streams(struct usb_interface *interface, 0838 struct usb_host_endpoint **eps, unsigned int num_eps, 0839 gfp_t mem_flags); 0840 0841 /* used these for multi-interface device registration */ 0842 extern int usb_driver_claim_interface(struct usb_driver *driver, 0843 struct usb_interface *iface, void *data); 0844 0845 /** 0846 * usb_interface_claimed - returns true iff an interface is claimed 0847 * @iface: the interface being checked 0848 * 0849 * Return: %true (nonzero) iff the interface is claimed, else %false 0850 * (zero). 0851 * 0852 * Note: 0853 * Callers must own the driver model's usb bus readlock. So driver 0854 * probe() entries don't need extra locking, but other call contexts 0855 * may need to explicitly claim that lock. 0856 * 0857 */ 0858 static inline int usb_interface_claimed(struct usb_interface *iface) 0859 { 0860 return (iface->dev.driver != NULL); 0861 } 0862 0863 extern void usb_driver_release_interface(struct usb_driver *driver, 0864 struct usb_interface *iface); 0865 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 0866 const struct usb_device_id *id); 0867 extern int usb_match_one_id(struct usb_interface *interface, 0868 const struct usb_device_id *id); 0869 0870 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 0871 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 0872 int minor); 0873 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 0874 unsigned ifnum); 0875 extern struct usb_host_interface *usb_altnum_to_altsetting( 0876 const struct usb_interface *intf, unsigned int altnum); 0877 extern struct usb_host_interface *usb_find_alt_setting( 0878 struct usb_host_config *config, 0879 unsigned int iface_num, 0880 unsigned int alt_num); 0881 0882 /* port claiming functions */ 0883 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 0884 struct usb_dev_state *owner); 0885 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 0886 struct usb_dev_state *owner); 0887 0888 /** 0889 * usb_make_path - returns stable device path in the usb tree 0890 * @dev: the device whose path is being constructed 0891 * @buf: where to put the string 0892 * @size: how big is "buf"? 0893 * 0894 * Return: Length of the string (> 0) or negative if size was too small. 0895 * 0896 * Note: 0897 * This identifier is intended to be "stable", reflecting physical paths in 0898 * hardware such as physical bus addresses for host controllers or ports on 0899 * USB hubs. That makes it stay the same until systems are physically 0900 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 0901 * controllers. Adding and removing devices, including virtual root hubs 0902 * in host controller driver modules, does not change these path identifiers; 0903 * neither does rebooting or re-enumerating. These are more useful identifiers 0904 * than changeable ("unstable") ones like bus numbers or device addresses. 0905 * 0906 * With a partial exception for devices connected to USB 2.0 root hubs, these 0907 * identifiers are also predictable. So long as the device tree isn't changed, 0908 * plugging any USB device into a given hub port always gives it the same path. 0909 * Because of the use of "companion" controllers, devices connected to ports on 0910 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 0911 * high speed, and a different one if they are full or low speed. 0912 */ 0913 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 0914 { 0915 int actual; 0916 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 0917 dev->devpath); 0918 return (actual >= (int)size) ? -1 : actual; 0919 } 0920 0921 /*-------------------------------------------------------------------------*/ 0922 0923 #define USB_DEVICE_ID_MATCH_DEVICE \ 0924 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 0925 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 0926 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 0927 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 0928 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 0929 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 0930 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 0931 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 0932 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 0933 #define USB_DEVICE_ID_MATCH_INT_INFO \ 0934 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 0935 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 0936 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 0937 0938 /** 0939 * USB_DEVICE - macro used to describe a specific usb device 0940 * @vend: the 16 bit USB Vendor ID 0941 * @prod: the 16 bit USB Product ID 0942 * 0943 * This macro is used to create a struct usb_device_id that matches a 0944 * specific device. 0945 */ 0946 #define USB_DEVICE(vend, prod) \ 0947 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 0948 .idVendor = (vend), \ 0949 .idProduct = (prod) 0950 /** 0951 * USB_DEVICE_VER - describe a specific usb device with a version range 0952 * @vend: the 16 bit USB Vendor ID 0953 * @prod: the 16 bit USB Product ID 0954 * @lo: the bcdDevice_lo value 0955 * @hi: the bcdDevice_hi value 0956 * 0957 * This macro is used to create a struct usb_device_id that matches a 0958 * specific device, with a version range. 0959 */ 0960 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 0961 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 0962 .idVendor = (vend), \ 0963 .idProduct = (prod), \ 0964 .bcdDevice_lo = (lo), \ 0965 .bcdDevice_hi = (hi) 0966 0967 /** 0968 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 0969 * @vend: the 16 bit USB Vendor ID 0970 * @prod: the 16 bit USB Product ID 0971 * @cl: bInterfaceClass value 0972 * 0973 * This macro is used to create a struct usb_device_id that matches a 0974 * specific interface class of devices. 0975 */ 0976 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 0977 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 0978 USB_DEVICE_ID_MATCH_INT_CLASS, \ 0979 .idVendor = (vend), \ 0980 .idProduct = (prod), \ 0981 .bInterfaceClass = (cl) 0982 0983 /** 0984 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 0985 * @vend: the 16 bit USB Vendor ID 0986 * @prod: the 16 bit USB Product ID 0987 * @pr: bInterfaceProtocol value 0988 * 0989 * This macro is used to create a struct usb_device_id that matches a 0990 * specific interface protocol of devices. 0991 */ 0992 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 0993 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 0994 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 0995 .idVendor = (vend), \ 0996 .idProduct = (prod), \ 0997 .bInterfaceProtocol = (pr) 0998 0999 /** 1000 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1001 * @vend: the 16 bit USB Vendor ID 1002 * @prod: the 16 bit USB Product ID 1003 * @num: bInterfaceNumber value 1004 * 1005 * This macro is used to create a struct usb_device_id that matches a 1006 * specific interface number of devices. 1007 */ 1008 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1009 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1010 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1011 .idVendor = (vend), \ 1012 .idProduct = (prod), \ 1013 .bInterfaceNumber = (num) 1014 1015 /** 1016 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1017 * @cl: bDeviceClass value 1018 * @sc: bDeviceSubClass value 1019 * @pr: bDeviceProtocol value 1020 * 1021 * This macro is used to create a struct usb_device_id that matches a 1022 * specific class of devices. 1023 */ 1024 #define USB_DEVICE_INFO(cl, sc, pr) \ 1025 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1026 .bDeviceClass = (cl), \ 1027 .bDeviceSubClass = (sc), \ 1028 .bDeviceProtocol = (pr) 1029 1030 /** 1031 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1032 * @cl: bInterfaceClass value 1033 * @sc: bInterfaceSubClass value 1034 * @pr: bInterfaceProtocol value 1035 * 1036 * This macro is used to create a struct usb_device_id that matches a 1037 * specific class of interfaces. 1038 */ 1039 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1040 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1041 .bInterfaceClass = (cl), \ 1042 .bInterfaceSubClass = (sc), \ 1043 .bInterfaceProtocol = (pr) 1044 1045 /** 1046 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1047 * @vend: the 16 bit USB Vendor ID 1048 * @prod: the 16 bit USB Product ID 1049 * @cl: bInterfaceClass value 1050 * @sc: bInterfaceSubClass value 1051 * @pr: bInterfaceProtocol value 1052 * 1053 * This macro is used to create a struct usb_device_id that matches a 1054 * specific device with a specific class of interfaces. 1055 * 1056 * This is especially useful when explicitly matching devices that have 1057 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1058 */ 1059 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1060 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1061 | USB_DEVICE_ID_MATCH_DEVICE, \ 1062 .idVendor = (vend), \ 1063 .idProduct = (prod), \ 1064 .bInterfaceClass = (cl), \ 1065 .bInterfaceSubClass = (sc), \ 1066 .bInterfaceProtocol = (pr) 1067 1068 /** 1069 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1070 * @vend: the 16 bit USB Vendor ID 1071 * @cl: bInterfaceClass value 1072 * @sc: bInterfaceSubClass value 1073 * @pr: bInterfaceProtocol value 1074 * 1075 * This macro is used to create a struct usb_device_id that matches a 1076 * specific vendor with a specific class of interfaces. 1077 * 1078 * This is especially useful when explicitly matching devices that have 1079 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1080 */ 1081 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1082 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1083 | USB_DEVICE_ID_MATCH_VENDOR, \ 1084 .idVendor = (vend), \ 1085 .bInterfaceClass = (cl), \ 1086 .bInterfaceSubClass = (sc), \ 1087 .bInterfaceProtocol = (pr) 1088 1089 /* ----------------------------------------------------------------------- */ 1090 1091 /* Stuff for dynamic usb ids */ 1092 struct usb_dynids { 1093 spinlock_t lock; 1094 struct list_head list; 1095 }; 1096 1097 struct usb_dynid { 1098 struct list_head node; 1099 struct usb_device_id id; 1100 }; 1101 1102 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1103 const struct usb_device_id *id_table, 1104 struct device_driver *driver, 1105 const char *buf, size_t count); 1106 1107 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1108 1109 /** 1110 * struct usbdrv_wrap - wrapper for driver-model structure 1111 * @driver: The driver-model core driver structure. 1112 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1113 */ 1114 struct usbdrv_wrap { 1115 struct device_driver driver; 1116 int for_devices; 1117 }; 1118 1119 /** 1120 * struct usb_driver - identifies USB interface driver to usbcore 1121 * @name: The driver name should be unique among USB drivers, 1122 * and should normally be the same as the module name. 1123 * @probe: Called to see if the driver is willing to manage a particular 1124 * interface on a device. If it is, probe returns zero and uses 1125 * usb_set_intfdata() to associate driver-specific data with the 1126 * interface. It may also use usb_set_interface() to specify the 1127 * appropriate altsetting. If unwilling to manage the interface, 1128 * return -ENODEV, if genuine IO errors occurred, an appropriate 1129 * negative errno value. 1130 * @disconnect: Called when the interface is no longer accessible, usually 1131 * because its device has been (or is being) disconnected or the 1132 * driver module is being unloaded. 1133 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1134 * the "usbfs" filesystem. This lets devices provide ways to 1135 * expose information to user space regardless of where they 1136 * do (or don't) show up otherwise in the filesystem. 1137 * @suspend: Called when the device is going to be suspended by the 1138 * system either from system sleep or runtime suspend context. The 1139 * return value will be ignored in system sleep context, so do NOT 1140 * try to continue using the device if suspend fails in this case. 1141 * Instead, let the resume or reset-resume routine recover from 1142 * the failure. 1143 * @resume: Called when the device is being resumed by the system. 1144 * @reset_resume: Called when the suspended device has been reset instead 1145 * of being resumed. 1146 * @pre_reset: Called by usb_reset_device() when the device is about to be 1147 * reset. This routine must not return until the driver has no active 1148 * URBs for the device, and no more URBs may be submitted until the 1149 * post_reset method is called. 1150 * @post_reset: Called by usb_reset_device() after the device 1151 * has been reset 1152 * @id_table: USB drivers use ID table to support hotplugging. 1153 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1154 * or your driver's probe function will never get called. 1155 * @dev_groups: Attributes attached to the device that will be created once it 1156 * is bound to the driver. 1157 * @dynids: used internally to hold the list of dynamically added device 1158 * ids for this driver. 1159 * @drvwrap: Driver-model core structure wrapper. 1160 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1161 * added to this driver by preventing the sysfs file from being created. 1162 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1163 * for interfaces bound to this driver. 1164 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1165 * endpoints before calling the driver's disconnect method. 1166 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1167 * to initiate lower power link state transitions when an idle timeout 1168 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1169 * 1170 * USB interface drivers must provide a name, probe() and disconnect() 1171 * methods, and an id_table. Other driver fields are optional. 1172 * 1173 * The id_table is used in hotplugging. It holds a set of descriptors, 1174 * and specialized data may be associated with each entry. That table 1175 * is used by both user and kernel mode hotplugging support. 1176 * 1177 * The probe() and disconnect() methods are called in a context where 1178 * they can sleep, but they should avoid abusing the privilege. Most 1179 * work to connect to a device should be done when the device is opened, 1180 * and undone at the last close. The disconnect code needs to address 1181 * concurrency issues with respect to open() and close() methods, as 1182 * well as forcing all pending I/O requests to complete (by unlinking 1183 * them as necessary, and blocking until the unlinks complete). 1184 */ 1185 struct usb_driver { 1186 const char *name; 1187 1188 int (*probe) (struct usb_interface *intf, 1189 const struct usb_device_id *id); 1190 1191 void (*disconnect) (struct usb_interface *intf); 1192 1193 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1194 void *buf); 1195 1196 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1197 int (*resume) (struct usb_interface *intf); 1198 int (*reset_resume)(struct usb_interface *intf); 1199 1200 int (*pre_reset)(struct usb_interface *intf); 1201 int (*post_reset)(struct usb_interface *intf); 1202 1203 const struct usb_device_id *id_table; 1204 const struct attribute_group **dev_groups; 1205 1206 struct usb_dynids dynids; 1207 struct usbdrv_wrap drvwrap; 1208 unsigned int no_dynamic_id:1; 1209 unsigned int supports_autosuspend:1; 1210 unsigned int disable_hub_initiated_lpm:1; 1211 unsigned int soft_unbind:1; 1212 }; 1213 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1214 1215 /** 1216 * struct usb_device_driver - identifies USB device driver to usbcore 1217 * @name: The driver name should be unique among USB drivers, 1218 * and should normally be the same as the module name. 1219 * @match: If set, used for better device/driver matching. 1220 * @probe: Called to see if the driver is willing to manage a particular 1221 * device. If it is, probe returns zero and uses dev_set_drvdata() 1222 * to associate driver-specific data with the device. If unwilling 1223 * to manage the device, return a negative errno value. 1224 * @disconnect: Called when the device is no longer accessible, usually 1225 * because it has been (or is being) disconnected or the driver's 1226 * module is being unloaded. 1227 * @suspend: Called when the device is going to be suspended by the system. 1228 * @resume: Called when the device is being resumed by the system. 1229 * @dev_groups: Attributes attached to the device that will be created once it 1230 * is bound to the driver. 1231 * @drvwrap: Driver-model core structure wrapper. 1232 * @id_table: used with @match() to select better matching driver at 1233 * probe() time. 1234 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1235 * for devices bound to this driver. 1236 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1237 * resume and suspend functions will be called in addition to the driver's 1238 * own, so this part of the setup does not need to be replicated. 1239 * 1240 * USB drivers must provide all the fields listed above except drvwrap, 1241 * match, and id_table. 1242 */ 1243 struct usb_device_driver { 1244 const char *name; 1245 1246 bool (*match) (struct usb_device *udev); 1247 int (*probe) (struct usb_device *udev); 1248 void (*disconnect) (struct usb_device *udev); 1249 1250 int (*suspend) (struct usb_device *udev, pm_message_t message); 1251 int (*resume) (struct usb_device *udev, pm_message_t message); 1252 const struct attribute_group **dev_groups; 1253 struct usbdrv_wrap drvwrap; 1254 const struct usb_device_id *id_table; 1255 unsigned int supports_autosuspend:1; 1256 unsigned int generic_subclass:1; 1257 }; 1258 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1259 drvwrap.driver) 1260 1261 /** 1262 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1263 * @name: the usb class device name for this driver. Will show up in sysfs. 1264 * @devnode: Callback to provide a naming hint for a possible 1265 * device node to create. 1266 * @fops: pointer to the struct file_operations of this driver. 1267 * @minor_base: the start of the minor range for this driver. 1268 * 1269 * This structure is used for the usb_register_dev() and 1270 * usb_deregister_dev() functions, to consolidate a number of the 1271 * parameters used for them. 1272 */ 1273 struct usb_class_driver { 1274 char *name; 1275 char *(*devnode)(struct device *dev, umode_t *mode); 1276 const struct file_operations *fops; 1277 int minor_base; 1278 }; 1279 1280 /* 1281 * use these in module_init()/module_exit() 1282 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1283 */ 1284 extern int usb_register_driver(struct usb_driver *, struct module *, 1285 const char *); 1286 1287 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1288 #define usb_register(driver) \ 1289 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1290 1291 extern void usb_deregister(struct usb_driver *); 1292 1293 /** 1294 * module_usb_driver() - Helper macro for registering a USB driver 1295 * @__usb_driver: usb_driver struct 1296 * 1297 * Helper macro for USB drivers which do not do anything special in module 1298 * init/exit. This eliminates a lot of boilerplate. Each module may only 1299 * use this macro once, and calling it replaces module_init() and module_exit() 1300 */ 1301 #define module_usb_driver(__usb_driver) \ 1302 module_driver(__usb_driver, usb_register, \ 1303 usb_deregister) 1304 1305 extern int usb_register_device_driver(struct usb_device_driver *, 1306 struct module *); 1307 extern void usb_deregister_device_driver(struct usb_device_driver *); 1308 1309 extern int usb_register_dev(struct usb_interface *intf, 1310 struct usb_class_driver *class_driver); 1311 extern void usb_deregister_dev(struct usb_interface *intf, 1312 struct usb_class_driver *class_driver); 1313 1314 extern int usb_disabled(void); 1315 1316 /* ----------------------------------------------------------------------- */ 1317 1318 /* 1319 * URB support, for asynchronous request completions 1320 */ 1321 1322 /* 1323 * urb->transfer_flags: 1324 * 1325 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1326 */ 1327 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1328 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1329 * slot in the schedule */ 1330 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1331 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1332 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1333 * needed */ 1334 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1335 1336 /* The following flags are used internally by usbcore and HCDs */ 1337 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1338 #define URB_DIR_OUT 0 1339 #define URB_DIR_MASK URB_DIR_IN 1340 1341 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1342 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1343 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1344 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1345 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1346 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1347 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1348 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1349 1350 struct usb_iso_packet_descriptor { 1351 unsigned int offset; 1352 unsigned int length; /* expected length */ 1353 unsigned int actual_length; 1354 int status; 1355 }; 1356 1357 struct urb; 1358 1359 struct usb_anchor { 1360 struct list_head urb_list; 1361 wait_queue_head_t wait; 1362 spinlock_t lock; 1363 atomic_t suspend_wakeups; 1364 unsigned int poisoned:1; 1365 }; 1366 1367 static inline void init_usb_anchor(struct usb_anchor *anchor) 1368 { 1369 memset(anchor, 0, sizeof(*anchor)); 1370 INIT_LIST_HEAD(&anchor->urb_list); 1371 init_waitqueue_head(&anchor->wait); 1372 spin_lock_init(&anchor->lock); 1373 } 1374 1375 typedef void (*usb_complete_t)(struct urb *); 1376 1377 /** 1378 * struct urb - USB Request Block 1379 * @urb_list: For use by current owner of the URB. 1380 * @anchor_list: membership in the list of an anchor 1381 * @anchor: to anchor URBs to a common mooring 1382 * @ep: Points to the endpoint's data structure. Will eventually 1383 * replace @pipe. 1384 * @pipe: Holds endpoint number, direction, type, and more. 1385 * Create these values with the eight macros available; 1386 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1387 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1388 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1389 * numbers range from zero to fifteen. Note that "in" endpoint two 1390 * is a different endpoint (and pipe) from "out" endpoint two. 1391 * The current configuration controls the existence, type, and 1392 * maximum packet size of any given endpoint. 1393 * @stream_id: the endpoint's stream ID for bulk streams 1394 * @dev: Identifies the USB device to perform the request. 1395 * @status: This is read in non-iso completion functions to get the 1396 * status of the particular request. ISO requests only use it 1397 * to tell whether the URB was unlinked; detailed status for 1398 * each frame is in the fields of the iso_frame-desc. 1399 * @transfer_flags: A variety of flags may be used to affect how URB 1400 * submission, unlinking, or operation are handled. Different 1401 * kinds of URB can use different flags. 1402 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1403 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1404 * (however, do not leave garbage in transfer_buffer even then). 1405 * This buffer must be suitable for DMA; allocate it with 1406 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1407 * of this buffer will be modified. This buffer is used for the data 1408 * stage of control transfers. 1409 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1410 * the device driver is saying that it provided this DMA address, 1411 * which the host controller driver should use in preference to the 1412 * transfer_buffer. 1413 * @sg: scatter gather buffer list, the buffer size of each element in 1414 * the list (except the last) must be divisible by the endpoint's 1415 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1416 * @num_mapped_sgs: (internal) number of mapped sg entries 1417 * @num_sgs: number of entries in the sg list 1418 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1419 * be broken up into chunks according to the current maximum packet 1420 * size for the endpoint, which is a function of the configuration 1421 * and is encoded in the pipe. When the length is zero, neither 1422 * transfer_buffer nor transfer_dma is used. 1423 * @actual_length: This is read in non-iso completion functions, and 1424 * it tells how many bytes (out of transfer_buffer_length) were 1425 * transferred. It will normally be the same as requested, unless 1426 * either an error was reported or a short read was performed. 1427 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1428 * short reads be reported as errors. 1429 * @setup_packet: Only used for control transfers, this points to eight bytes 1430 * of setup data. Control transfers always start by sending this data 1431 * to the device. Then transfer_buffer is read or written, if needed. 1432 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1433 * this field; setup_packet must point to a valid buffer. 1434 * @start_frame: Returns the initial frame for isochronous transfers. 1435 * @number_of_packets: Lists the number of ISO transfer buffers. 1436 * @interval: Specifies the polling interval for interrupt or isochronous 1437 * transfers. The units are frames (milliseconds) for full and low 1438 * speed devices, and microframes (1/8 millisecond) for highspeed 1439 * and SuperSpeed devices. 1440 * @error_count: Returns the number of ISO transfers that reported errors. 1441 * @context: For use in completion functions. This normally points to 1442 * request-specific driver context. 1443 * @complete: Completion handler. This URB is passed as the parameter to the 1444 * completion function. The completion function may then do what 1445 * it likes with the URB, including resubmitting or freeing it. 1446 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1447 * collect the transfer status for each buffer. 1448 * 1449 * This structure identifies USB transfer requests. URBs must be allocated by 1450 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1451 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1452 * are submitted using usb_submit_urb(), and pending requests may be canceled 1453 * using usb_unlink_urb() or usb_kill_urb(). 1454 * 1455 * Data Transfer Buffers: 1456 * 1457 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1458 * taken from the general page pool. That is provided by transfer_buffer 1459 * (control requests also use setup_packet), and host controller drivers 1460 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1461 * mapping operations can be expensive on some platforms (perhaps using a dma 1462 * bounce buffer or talking to an IOMMU), 1463 * although they're cheap on commodity x86 and ppc hardware. 1464 * 1465 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1466 * which tells the host controller driver that no such mapping is needed for 1467 * the transfer_buffer since 1468 * the device driver is DMA-aware. For example, a device driver might 1469 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1470 * When this transfer flag is provided, host controller drivers will 1471 * attempt to use the dma address found in the transfer_dma 1472 * field rather than determining a dma address themselves. 1473 * 1474 * Note that transfer_buffer must still be set if the controller 1475 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1476 * to root hub. If you have to transfer between highmem zone and the device 1477 * on such controller, create a bounce buffer or bail out with an error. 1478 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1479 * capable, assign NULL to it, so that usbmon knows not to use the value. 1480 * The setup_packet must always be set, so it cannot be located in highmem. 1481 * 1482 * Initialization: 1483 * 1484 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1485 * zero), and complete fields. All URBs must also initialize 1486 * transfer_buffer and transfer_buffer_length. They may provide the 1487 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1488 * to be treated as errors; that flag is invalid for write requests. 1489 * 1490 * Bulk URBs may 1491 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1492 * should always terminate with a short packet, even if it means adding an 1493 * extra zero length packet. 1494 * 1495 * Control URBs must provide a valid pointer in the setup_packet field. 1496 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1497 * beforehand. 1498 * 1499 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1500 * or, for highspeed devices, 125 microsecond units) 1501 * to poll for transfers. After the URB has been submitted, the interval 1502 * field reflects how the transfer was actually scheduled. 1503 * The polling interval may be more frequent than requested. 1504 * For example, some controllers have a maximum interval of 32 milliseconds, 1505 * while others support intervals of up to 1024 milliseconds. 1506 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1507 * endpoints, as well as high speed interrupt endpoints, the encoding of 1508 * the transfer interval in the endpoint descriptor is logarithmic. 1509 * Device drivers must convert that value to linear units themselves.) 1510 * 1511 * If an isochronous endpoint queue isn't already running, the host 1512 * controller will schedule a new URB to start as soon as bandwidth 1513 * utilization allows. If the queue is running then a new URB will be 1514 * scheduled to start in the first transfer slot following the end of the 1515 * preceding URB, if that slot has not already expired. If the slot has 1516 * expired (which can happen when IRQ delivery is delayed for a long time), 1517 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1518 * is clear then the URB will be scheduled to start in the expired slot, 1519 * implying that some of its packets will not be transferred; if the flag 1520 * is set then the URB will be scheduled in the first unexpired slot, 1521 * breaking the queue's synchronization. Upon URB completion, the 1522 * start_frame field will be set to the (micro)frame number in which the 1523 * transfer was scheduled. Ranges for frame counter values are HC-specific 1524 * and can go from as low as 256 to as high as 65536 frames. 1525 * 1526 * Isochronous URBs have a different data transfer model, in part because 1527 * the quality of service is only "best effort". Callers provide specially 1528 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1529 * at the end. Each such packet is an individual ISO transfer. Isochronous 1530 * URBs are normally queued, submitted by drivers to arrange that 1531 * transfers are at least double buffered, and then explicitly resubmitted 1532 * in completion handlers, so 1533 * that data (such as audio or video) streams at as constant a rate as the 1534 * host controller scheduler can support. 1535 * 1536 * Completion Callbacks: 1537 * 1538 * The completion callback is made in_interrupt(), and one of the first 1539 * things that a completion handler should do is check the status field. 1540 * The status field is provided for all URBs. It is used to report 1541 * unlinked URBs, and status for all non-ISO transfers. It should not 1542 * be examined before the URB is returned to the completion handler. 1543 * 1544 * The context field is normally used to link URBs back to the relevant 1545 * driver or request state. 1546 * 1547 * When the completion callback is invoked for non-isochronous URBs, the 1548 * actual_length field tells how many bytes were transferred. This field 1549 * is updated even when the URB terminated with an error or was unlinked. 1550 * 1551 * ISO transfer status is reported in the status and actual_length fields 1552 * of the iso_frame_desc array, and the number of errors is reported in 1553 * error_count. Completion callbacks for ISO transfers will normally 1554 * (re)submit URBs to ensure a constant transfer rate. 1555 * 1556 * Note that even fields marked "public" should not be touched by the driver 1557 * when the urb is owned by the hcd, that is, since the call to 1558 * usb_submit_urb() till the entry into the completion routine. 1559 */ 1560 struct urb { 1561 /* private: usb core and host controller only fields in the urb */ 1562 struct kref kref; /* reference count of the URB */ 1563 int unlinked; /* unlink error code */ 1564 void *hcpriv; /* private data for host controller */ 1565 atomic_t use_count; /* concurrent submissions counter */ 1566 atomic_t reject; /* submissions will fail */ 1567 1568 /* public: documented fields in the urb that can be used by drivers */ 1569 struct list_head urb_list; /* list head for use by the urb's 1570 * current owner */ 1571 struct list_head anchor_list; /* the URB may be anchored */ 1572 struct usb_anchor *anchor; 1573 struct usb_device *dev; /* (in) pointer to associated device */ 1574 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1575 unsigned int pipe; /* (in) pipe information */ 1576 unsigned int stream_id; /* (in) stream ID */ 1577 int status; /* (return) non-ISO status */ 1578 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1579 void *transfer_buffer; /* (in) associated data buffer */ 1580 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1581 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1582 int num_mapped_sgs; /* (internal) mapped sg entries */ 1583 int num_sgs; /* (in) number of entries in the sg list */ 1584 u32 transfer_buffer_length; /* (in) data buffer length */ 1585 u32 actual_length; /* (return) actual transfer length */ 1586 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1587 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1588 int start_frame; /* (modify) start frame (ISO) */ 1589 int number_of_packets; /* (in) number of ISO packets */ 1590 int interval; /* (modify) transfer interval 1591 * (INT/ISO) */ 1592 int error_count; /* (return) number of ISO errors */ 1593 void *context; /* (in) context for completion */ 1594 usb_complete_t complete; /* (in) completion routine */ 1595 struct usb_iso_packet_descriptor iso_frame_desc[]; 1596 /* (in) ISO ONLY */ 1597 }; 1598 1599 /* ----------------------------------------------------------------------- */ 1600 1601 /** 1602 * usb_fill_control_urb - initializes a control urb 1603 * @urb: pointer to the urb to initialize. 1604 * @dev: pointer to the struct usb_device for this urb. 1605 * @pipe: the endpoint pipe 1606 * @setup_packet: pointer to the setup_packet buffer 1607 * @transfer_buffer: pointer to the transfer buffer 1608 * @buffer_length: length of the transfer buffer 1609 * @complete_fn: pointer to the usb_complete_t function 1610 * @context: what to set the urb context to. 1611 * 1612 * Initializes a control urb with the proper information needed to submit 1613 * it to a device. 1614 */ 1615 static inline void usb_fill_control_urb(struct urb *urb, 1616 struct usb_device *dev, 1617 unsigned int pipe, 1618 unsigned char *setup_packet, 1619 void *transfer_buffer, 1620 int buffer_length, 1621 usb_complete_t complete_fn, 1622 void *context) 1623 { 1624 urb->dev = dev; 1625 urb->pipe = pipe; 1626 urb->setup_packet = setup_packet; 1627 urb->transfer_buffer = transfer_buffer; 1628 urb->transfer_buffer_length = buffer_length; 1629 urb->complete = complete_fn; 1630 urb->context = context; 1631 } 1632 1633 /** 1634 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1635 * @urb: pointer to the urb to initialize. 1636 * @dev: pointer to the struct usb_device for this urb. 1637 * @pipe: the endpoint pipe 1638 * @transfer_buffer: pointer to the transfer buffer 1639 * @buffer_length: length of the transfer buffer 1640 * @complete_fn: pointer to the usb_complete_t function 1641 * @context: what to set the urb context to. 1642 * 1643 * Initializes a bulk urb with the proper information needed to submit it 1644 * to a device. 1645 */ 1646 static inline void usb_fill_bulk_urb(struct urb *urb, 1647 struct usb_device *dev, 1648 unsigned int pipe, 1649 void *transfer_buffer, 1650 int buffer_length, 1651 usb_complete_t complete_fn, 1652 void *context) 1653 { 1654 urb->dev = dev; 1655 urb->pipe = pipe; 1656 urb->transfer_buffer = transfer_buffer; 1657 urb->transfer_buffer_length = buffer_length; 1658 urb->complete = complete_fn; 1659 urb->context = context; 1660 } 1661 1662 /** 1663 * usb_fill_int_urb - macro to help initialize a interrupt urb 1664 * @urb: pointer to the urb to initialize. 1665 * @dev: pointer to the struct usb_device for this urb. 1666 * @pipe: the endpoint pipe 1667 * @transfer_buffer: pointer to the transfer buffer 1668 * @buffer_length: length of the transfer buffer 1669 * @complete_fn: pointer to the usb_complete_t function 1670 * @context: what to set the urb context to. 1671 * @interval: what to set the urb interval to, encoded like 1672 * the endpoint descriptor's bInterval value. 1673 * 1674 * Initializes a interrupt urb with the proper information needed to submit 1675 * it to a device. 1676 * 1677 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1678 * encoding of the endpoint interval, and express polling intervals in 1679 * microframes (eight per millisecond) rather than in frames (one per 1680 * millisecond). 1681 * 1682 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1683 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1684 * through to the host controller, rather than being translated into microframe 1685 * units. 1686 */ 1687 static inline void usb_fill_int_urb(struct urb *urb, 1688 struct usb_device *dev, 1689 unsigned int pipe, 1690 void *transfer_buffer, 1691 int buffer_length, 1692 usb_complete_t complete_fn, 1693 void *context, 1694 int interval) 1695 { 1696 urb->dev = dev; 1697 urb->pipe = pipe; 1698 urb->transfer_buffer = transfer_buffer; 1699 urb->transfer_buffer_length = buffer_length; 1700 urb->complete = complete_fn; 1701 urb->context = context; 1702 1703 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1704 /* make sure interval is within allowed range */ 1705 interval = clamp(interval, 1, 16); 1706 1707 urb->interval = 1 << (interval - 1); 1708 } else { 1709 urb->interval = interval; 1710 } 1711 1712 urb->start_frame = -1; 1713 } 1714 1715 extern void usb_init_urb(struct urb *urb); 1716 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1717 extern void usb_free_urb(struct urb *urb); 1718 #define usb_put_urb usb_free_urb 1719 extern struct urb *usb_get_urb(struct urb *urb); 1720 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1721 extern int usb_unlink_urb(struct urb *urb); 1722 extern void usb_kill_urb(struct urb *urb); 1723 extern void usb_poison_urb(struct urb *urb); 1724 extern void usb_unpoison_urb(struct urb *urb); 1725 extern void usb_block_urb(struct urb *urb); 1726 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1727 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1728 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1729 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1730 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1731 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1732 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1733 extern void usb_unanchor_urb(struct urb *urb); 1734 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1735 unsigned int timeout); 1736 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1737 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1738 extern int usb_anchor_empty(struct usb_anchor *anchor); 1739 1740 #define usb_unblock_urb usb_unpoison_urb 1741 1742 /** 1743 * usb_urb_dir_in - check if an URB describes an IN transfer 1744 * @urb: URB to be checked 1745 * 1746 * Return: 1 if @urb describes an IN transfer (device-to-host), 1747 * otherwise 0. 1748 */ 1749 static inline int usb_urb_dir_in(struct urb *urb) 1750 { 1751 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1752 } 1753 1754 /** 1755 * usb_urb_dir_out - check if an URB describes an OUT transfer 1756 * @urb: URB to be checked 1757 * 1758 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1759 * otherwise 0. 1760 */ 1761 static inline int usb_urb_dir_out(struct urb *urb) 1762 { 1763 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1764 } 1765 1766 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1767 int usb_urb_ep_type_check(const struct urb *urb); 1768 1769 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1770 gfp_t mem_flags, dma_addr_t *dma); 1771 void usb_free_coherent(struct usb_device *dev, size_t size, 1772 void *addr, dma_addr_t dma); 1773 1774 #if 0 1775 struct urb *usb_buffer_map(struct urb *urb); 1776 void usb_buffer_dmasync(struct urb *urb); 1777 void usb_buffer_unmap(struct urb *urb); 1778 #endif 1779 1780 struct scatterlist; 1781 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1782 struct scatterlist *sg, int nents); 1783 #if 0 1784 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1785 struct scatterlist *sg, int n_hw_ents); 1786 #endif 1787 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1788 struct scatterlist *sg, int n_hw_ents); 1789 1790 /*-------------------------------------------------------------------* 1791 * SYNCHRONOUS CALL SUPPORT * 1792 *-------------------------------------------------------------------*/ 1793 1794 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1795 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1796 void *data, __u16 size, int timeout); 1797 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1798 void *data, int len, int *actual_length, int timeout); 1799 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1800 void *data, int len, int *actual_length, 1801 int timeout); 1802 1803 /* wrappers around usb_control_msg() for the most common standard requests */ 1804 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1805 __u8 requesttype, __u16 value, __u16 index, 1806 const void *data, __u16 size, int timeout, 1807 gfp_t memflags); 1808 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1809 __u8 requesttype, __u16 value, __u16 index, 1810 void *data, __u16 size, int timeout, 1811 gfp_t memflags); 1812 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1813 unsigned char descindex, void *buf, int size); 1814 extern int usb_get_status(struct usb_device *dev, 1815 int recip, int type, int target, void *data); 1816 1817 static inline int usb_get_std_status(struct usb_device *dev, 1818 int recip, int target, void *data) 1819 { 1820 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1821 data); 1822 } 1823 1824 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1825 { 1826 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1827 0, data); 1828 } 1829 1830 extern int usb_string(struct usb_device *dev, int index, 1831 char *buf, size_t size); 1832 1833 /* wrappers that also update important state inside usbcore */ 1834 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1835 extern int usb_reset_configuration(struct usb_device *dev); 1836 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1837 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1838 1839 /* this request isn't really synchronous, but it belongs with the others */ 1840 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1841 1842 /* choose and set configuration for device */ 1843 extern int usb_choose_configuration(struct usb_device *udev); 1844 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1845 1846 /* 1847 * timeouts, in milliseconds, used for sending/receiving control messages 1848 * they typically complete within a few frames (msec) after they're issued 1849 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1850 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1851 */ 1852 #define USB_CTRL_GET_TIMEOUT 5000 1853 #define USB_CTRL_SET_TIMEOUT 5000 1854 1855 1856 /** 1857 * struct usb_sg_request - support for scatter/gather I/O 1858 * @status: zero indicates success, else negative errno 1859 * @bytes: counts bytes transferred. 1860 * 1861 * These requests are initialized using usb_sg_init(), and then are used 1862 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1863 * members of the request object aren't for driver access. 1864 * 1865 * The status and bytecount values are valid only after usb_sg_wait() 1866 * returns. If the status is zero, then the bytecount matches the total 1867 * from the request. 1868 * 1869 * After an error completion, drivers may need to clear a halt condition 1870 * on the endpoint. 1871 */ 1872 struct usb_sg_request { 1873 int status; 1874 size_t bytes; 1875 1876 /* private: 1877 * members below are private to usbcore, 1878 * and are not provided for driver access! 1879 */ 1880 spinlock_t lock; 1881 1882 struct usb_device *dev; 1883 int pipe; 1884 1885 int entries; 1886 struct urb **urbs; 1887 1888 int count; 1889 struct completion complete; 1890 }; 1891 1892 int usb_sg_init( 1893 struct usb_sg_request *io, 1894 struct usb_device *dev, 1895 unsigned pipe, 1896 unsigned period, 1897 struct scatterlist *sg, 1898 int nents, 1899 size_t length, 1900 gfp_t mem_flags 1901 ); 1902 void usb_sg_cancel(struct usb_sg_request *io); 1903 void usb_sg_wait(struct usb_sg_request *io); 1904 1905 1906 /* ----------------------------------------------------------------------- */ 1907 1908 /* 1909 * For various legacy reasons, Linux has a small cookie that's paired with 1910 * a struct usb_device to identify an endpoint queue. Queue characteristics 1911 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1912 * an unsigned int encoded as: 1913 * 1914 * - direction: bit 7 (0 = Host-to-Device [Out], 1915 * 1 = Device-to-Host [In] ... 1916 * like endpoint bEndpointAddress) 1917 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1918 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1919 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1920 * 10 = control, 11 = bulk) 1921 * 1922 * Given the device address and endpoint descriptor, pipes are redundant. 1923 */ 1924 1925 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1926 /* (yet ... they're the values used by usbfs) */ 1927 #define PIPE_ISOCHRONOUS 0 1928 #define PIPE_INTERRUPT 1 1929 #define PIPE_CONTROL 2 1930 #define PIPE_BULK 3 1931 1932 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1933 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1934 1935 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1936 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1937 1938 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1939 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1940 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1941 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1942 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1943 1944 static inline unsigned int __create_pipe(struct usb_device *dev, 1945 unsigned int endpoint) 1946 { 1947 return (dev->devnum << 8) | (endpoint << 15); 1948 } 1949 1950 /* Create various pipes... */ 1951 #define usb_sndctrlpipe(dev, endpoint) \ 1952 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1953 #define usb_rcvctrlpipe(dev, endpoint) \ 1954 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1955 #define usb_sndisocpipe(dev, endpoint) \ 1956 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1957 #define usb_rcvisocpipe(dev, endpoint) \ 1958 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1959 #define usb_sndbulkpipe(dev, endpoint) \ 1960 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1961 #define usb_rcvbulkpipe(dev, endpoint) \ 1962 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1963 #define usb_sndintpipe(dev, endpoint) \ 1964 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1965 #define usb_rcvintpipe(dev, endpoint) \ 1966 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1967 1968 static inline struct usb_host_endpoint * 1969 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1970 { 1971 struct usb_host_endpoint **eps; 1972 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1973 return eps[usb_pipeendpoint(pipe)]; 1974 } 1975 1976 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 1977 { 1978 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 1979 1980 if (!ep) 1981 return 0; 1982 1983 /* NOTE: only 0x07ff bits are for packet size... */ 1984 return usb_endpoint_maxp(&ep->desc); 1985 } 1986 1987 /* translate USB error codes to codes user space understands */ 1988 static inline int usb_translate_errors(int error_code) 1989 { 1990 switch (error_code) { 1991 case 0: 1992 case -ENOMEM: 1993 case -ENODEV: 1994 case -EOPNOTSUPP: 1995 return error_code; 1996 default: 1997 return -EIO; 1998 } 1999 } 2000 2001 /* Events from the usb core */ 2002 #define USB_DEVICE_ADD 0x0001 2003 #define USB_DEVICE_REMOVE 0x0002 2004 #define USB_BUS_ADD 0x0003 2005 #define USB_BUS_REMOVE 0x0004 2006 extern void usb_register_notify(struct notifier_block *nb); 2007 extern void usb_unregister_notify(struct notifier_block *nb); 2008 2009 /* debugfs stuff */ 2010 extern struct dentry *usb_debug_root; 2011 2012 /* LED triggers */ 2013 enum usb_led_event { 2014 USB_LED_EVENT_HOST = 0, 2015 USB_LED_EVENT_GADGET = 1, 2016 }; 2017 2018 #ifdef CONFIG_USB_LED_TRIG 2019 extern void usb_led_activity(enum usb_led_event ev); 2020 #else 2021 static inline void usb_led_activity(enum usb_led_event ev) {} 2022 #endif 2023 2024 #endif /* __KERNEL__ */ 2025 2026 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |