Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef __LINUX_USB_H
0003 #define __LINUX_USB_H
0004 
0005 #include <linux/mod_devicetable.h>
0006 #include <linux/usb/ch9.h>
0007 
0008 #define USB_MAJOR           180
0009 #define USB_DEVICE_MAJOR        189
0010 
0011 
0012 #ifdef __KERNEL__
0013 
0014 #include <linux/errno.h>        /* for -ENODEV */
0015 #include <linux/delay.h>    /* for mdelay() */
0016 #include <linux/interrupt.h>    /* for in_interrupt() */
0017 #include <linux/list.h>     /* for struct list_head */
0018 #include <linux/kref.h>     /* for struct kref */
0019 #include <linux/device.h>   /* for struct device */
0020 #include <linux/fs.h>       /* for struct file_operations */
0021 #include <linux/completion.h>   /* for struct completion */
0022 #include <linux/sched.h>    /* for current && schedule_timeout */
0023 #include <linux/mutex.h>    /* for struct mutex */
0024 #include <linux/pm_runtime.h>   /* for runtime PM */
0025 
0026 struct usb_device;
0027 struct usb_driver;
0028 struct wusb_dev;
0029 
0030 /*-------------------------------------------------------------------------*/
0031 
0032 /*
0033  * Host-side wrappers for standard USB descriptors ... these are parsed
0034  * from the data provided by devices.  Parsing turns them from a flat
0035  * sequence of descriptors into a hierarchy:
0036  *
0037  *  - devices have one (usually) or more configs;
0038  *  - configs have one (often) or more interfaces;
0039  *  - interfaces have one (usually) or more settings;
0040  *  - each interface setting has zero or (usually) more endpoints.
0041  *  - a SuperSpeed endpoint has a companion descriptor
0042  *
0043  * And there might be other descriptors mixed in with those.
0044  *
0045  * Devices may also have class-specific or vendor-specific descriptors.
0046  */
0047 
0048 struct ep_device;
0049 
0050 /**
0051  * struct usb_host_endpoint - host-side endpoint descriptor and queue
0052  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
0053  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
0054  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
0055  * @urb_list: urbs queued to this endpoint; maintained by usbcore
0056  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
0057  *  with one or more transfer descriptors (TDs) per urb
0058  * @ep_dev: ep_device for sysfs info
0059  * @extra: descriptors following this endpoint in the configuration
0060  * @extralen: how many bytes of "extra" are valid
0061  * @enabled: URBs may be submitted to this endpoint
0062  * @streams: number of USB-3 streams allocated on the endpoint
0063  *
0064  * USB requests are always queued to a given endpoint, identified by a
0065  * descriptor within an active interface in a given USB configuration.
0066  */
0067 struct usb_host_endpoint {
0068     struct usb_endpoint_descriptor      desc;
0069     struct usb_ss_ep_comp_descriptor    ss_ep_comp;
0070     struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
0071     struct list_head        urb_list;
0072     void                *hcpriv;
0073     struct ep_device        *ep_dev;    /* For sysfs info */
0074 
0075     unsigned char *extra;   /* Extra descriptors */
0076     int extralen;
0077     int enabled;
0078     int streams;
0079 };
0080 
0081 /* host-side wrapper for one interface setting's parsed descriptors */
0082 struct usb_host_interface {
0083     struct usb_interface_descriptor desc;
0084 
0085     int extralen;
0086     unsigned char *extra;   /* Extra descriptors */
0087 
0088     /* array of desc.bNumEndpoints endpoints associated with this
0089      * interface setting.  these will be in no particular order.
0090      */
0091     struct usb_host_endpoint *endpoint;
0092 
0093     char *string;       /* iInterface string, if present */
0094 };
0095 
0096 enum usb_interface_condition {
0097     USB_INTERFACE_UNBOUND = 0,
0098     USB_INTERFACE_BINDING,
0099     USB_INTERFACE_BOUND,
0100     USB_INTERFACE_UNBINDING,
0101 };
0102 
0103 int __must_check
0104 usb_find_common_endpoints(struct usb_host_interface *alt,
0105         struct usb_endpoint_descriptor **bulk_in,
0106         struct usb_endpoint_descriptor **bulk_out,
0107         struct usb_endpoint_descriptor **int_in,
0108         struct usb_endpoint_descriptor **int_out);
0109 
0110 int __must_check
0111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
0112         struct usb_endpoint_descriptor **bulk_in,
0113         struct usb_endpoint_descriptor **bulk_out,
0114         struct usb_endpoint_descriptor **int_in,
0115         struct usb_endpoint_descriptor **int_out);
0116 
0117 static inline int __must_check
0118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
0119         struct usb_endpoint_descriptor **bulk_in)
0120 {
0121     return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
0122 }
0123 
0124 static inline int __must_check
0125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
0126         struct usb_endpoint_descriptor **bulk_out)
0127 {
0128     return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
0129 }
0130 
0131 static inline int __must_check
0132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
0133         struct usb_endpoint_descriptor **int_in)
0134 {
0135     return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
0136 }
0137 
0138 static inline int __must_check
0139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
0140         struct usb_endpoint_descriptor **int_out)
0141 {
0142     return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
0143 }
0144 
0145 static inline int __must_check
0146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
0147         struct usb_endpoint_descriptor **bulk_in)
0148 {
0149     return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
0150 }
0151 
0152 static inline int __must_check
0153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
0154         struct usb_endpoint_descriptor **bulk_out)
0155 {
0156     return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
0157 }
0158 
0159 static inline int __must_check
0160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
0161         struct usb_endpoint_descriptor **int_in)
0162 {
0163     return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
0164 }
0165 
0166 static inline int __must_check
0167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
0168         struct usb_endpoint_descriptor **int_out)
0169 {
0170     return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
0171 }
0172 
0173 /**
0174  * struct usb_interface - what usb device drivers talk to
0175  * @altsetting: array of interface structures, one for each alternate
0176  *  setting that may be selected.  Each one includes a set of
0177  *  endpoint configurations.  They will be in no particular order.
0178  * @cur_altsetting: the current altsetting.
0179  * @num_altsetting: number of altsettings defined.
0180  * @intf_assoc: interface association descriptor
0181  * @minor: the minor number assigned to this interface, if this
0182  *  interface is bound to a driver that uses the USB major number.
0183  *  If this interface does not use the USB major, this field should
0184  *  be unused.  The driver should set this value in the probe()
0185  *  function of the driver, after it has been assigned a minor
0186  *  number from the USB core by calling usb_register_dev().
0187  * @condition: binding state of the interface: not bound, binding
0188  *  (in probe()), bound to a driver, or unbinding (in disconnect())
0189  * @sysfs_files_created: sysfs attributes exist
0190  * @ep_devs_created: endpoint child pseudo-devices exist
0191  * @unregistering: flag set when the interface is being unregistered
0192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
0193  *  capability during autosuspend.
0194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
0195  *  has been deferred.
0196  * @needs_binding: flag set when the driver should be re-probed or unbound
0197  *  following a reset or suspend operation it doesn't support.
0198  * @authorized: This allows to (de)authorize individual interfaces instead
0199  *  a whole device in contrast to the device authorization.
0200  * @dev: driver model's view of this device
0201  * @usb_dev: if an interface is bound to the USB major, this will point
0202  *  to the sysfs representation for that device.
0203  * @reset_ws: Used for scheduling resets from atomic context.
0204  * @resetting_device: USB core reset the device, so use alt setting 0 as
0205  *  current; needs bandwidth alloc after reset.
0206  *
0207  * USB device drivers attach to interfaces on a physical device.  Each
0208  * interface encapsulates a single high level function, such as feeding
0209  * an audio stream to a speaker or reporting a change in a volume control.
0210  * Many USB devices only have one interface.  The protocol used to talk to
0211  * an interface's endpoints can be defined in a usb "class" specification,
0212  * or by a product's vendor.  The (default) control endpoint is part of
0213  * every interface, but is never listed among the interface's descriptors.
0214  *
0215  * The driver that is bound to the interface can use standard driver model
0216  * calls such as dev_get_drvdata() on the dev member of this structure.
0217  *
0218  * Each interface may have alternate settings.  The initial configuration
0219  * of a device sets altsetting 0, but the device driver can change
0220  * that setting using usb_set_interface().  Alternate settings are often
0221  * used to control the use of periodic endpoints, such as by having
0222  * different endpoints use different amounts of reserved USB bandwidth.
0223  * All standards-conformant USB devices that use isochronous endpoints
0224  * will use them in non-default settings.
0225  *
0226  * The USB specification says that alternate setting numbers must run from
0227  * 0 to one less than the total number of alternate settings.  But some
0228  * devices manage to mess this up, and the structures aren't necessarily
0229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
0230  * look up an alternate setting in the altsetting array based on its number.
0231  */
0232 struct usb_interface {
0233     /* array of alternate settings for this interface,
0234      * stored in no particular order */
0235     struct usb_host_interface *altsetting;
0236 
0237     struct usb_host_interface *cur_altsetting;  /* the currently
0238                      * active alternate setting */
0239     unsigned num_altsetting;    /* number of alternate settings */
0240 
0241     /* If there is an interface association descriptor then it will list
0242      * the associated interfaces */
0243     struct usb_interface_assoc_descriptor *intf_assoc;
0244 
0245     int minor;          /* minor number this interface is
0246                      * bound to */
0247     enum usb_interface_condition condition;     /* state of binding */
0248     unsigned sysfs_files_created:1; /* the sysfs attributes exist */
0249     unsigned ep_devs_created:1; /* endpoint "devices" exist */
0250     unsigned unregistering:1;   /* unregistration is in progress */
0251     unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
0252     unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
0253     unsigned needs_binding:1;   /* needs delayed unbind/rebind */
0254     unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
0255     unsigned authorized:1;      /* used for interface authorization */
0256 
0257     struct device dev;      /* interface specific device info */
0258     struct device *usb_dev;
0259     struct work_struct reset_ws;    /* for resets in atomic context */
0260 };
0261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
0262 
0263 static inline void *usb_get_intfdata(struct usb_interface *intf)
0264 {
0265     return dev_get_drvdata(&intf->dev);
0266 }
0267 
0268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
0269 {
0270     dev_set_drvdata(&intf->dev, data);
0271 }
0272 
0273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
0274 void usb_put_intf(struct usb_interface *intf);
0275 
0276 /* Hard limit */
0277 #define USB_MAXENDPOINTS    30
0278 /* this maximum is arbitrary */
0279 #define USB_MAXINTERFACES   32
0280 #define USB_MAXIADS     (USB_MAXINTERFACES/2)
0281 
0282 /*
0283  * USB Resume Timer: Every Host controller driver should drive the resume
0284  * signalling on the bus for the amount of time defined by this macro.
0285  *
0286  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
0287  *
0288  * Note that the USB Specification states we should drive resume for *at least*
0289  * 20 ms, but it doesn't give an upper bound. This creates two possible
0290  * situations which we want to avoid:
0291  *
0292  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
0293  * us to fail USB Electrical Tests, thus failing Certification
0294  *
0295  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
0296  * and while we can argue that's against the USB Specification, we don't have
0297  * control over which devices a certification laboratory will be using for
0298  * certification. If CertLab uses a device which was tested against Windows and
0299  * that happens to have relaxed resume signalling rules, we might fall into
0300  * situations where we fail interoperability and electrical tests.
0301  *
0302  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
0303  * should cope with both LPJ calibration errors and devices not following every
0304  * detail of the USB Specification.
0305  */
0306 #define USB_RESUME_TIMEOUT  40 /* ms */
0307 
0308 /**
0309  * struct usb_interface_cache - long-term representation of a device interface
0310  * @num_altsetting: number of altsettings defined.
0311  * @ref: reference counter.
0312  * @altsetting: variable-length array of interface structures, one for
0313  *  each alternate setting that may be selected.  Each one includes a
0314  *  set of endpoint configurations.  They will be in no particular order.
0315  *
0316  * These structures persist for the lifetime of a usb_device, unlike
0317  * struct usb_interface (which persists only as long as its configuration
0318  * is installed).  The altsetting arrays can be accessed through these
0319  * structures at any time, permitting comparison of configurations and
0320  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
0321  */
0322 struct usb_interface_cache {
0323     unsigned num_altsetting;    /* number of alternate settings */
0324     struct kref ref;        /* reference counter */
0325 
0326     /* variable-length array of alternate settings for this interface,
0327      * stored in no particular order */
0328     struct usb_host_interface altsetting[];
0329 };
0330 #define ref_to_usb_interface_cache(r) \
0331         container_of(r, struct usb_interface_cache, ref)
0332 #define altsetting_to_usb_interface_cache(a) \
0333         container_of(a, struct usb_interface_cache, altsetting[0])
0334 
0335 /**
0336  * struct usb_host_config - representation of a device's configuration
0337  * @desc: the device's configuration descriptor.
0338  * @string: pointer to the cached version of the iConfiguration string, if
0339  *  present for this configuration.
0340  * @intf_assoc: list of any interface association descriptors in this config
0341  * @interface: array of pointers to usb_interface structures, one for each
0342  *  interface in the configuration.  The number of interfaces is stored
0343  *  in desc.bNumInterfaces.  These pointers are valid only while the
0344  *  configuration is active.
0345  * @intf_cache: array of pointers to usb_interface_cache structures, one
0346  *  for each interface in the configuration.  These structures exist
0347  *  for the entire life of the device.
0348  * @extra: pointer to buffer containing all extra descriptors associated
0349  *  with this configuration (those preceding the first interface
0350  *  descriptor).
0351  * @extralen: length of the extra descriptors buffer.
0352  *
0353  * USB devices may have multiple configurations, but only one can be active
0354  * at any time.  Each encapsulates a different operational environment;
0355  * for example, a dual-speed device would have separate configurations for
0356  * full-speed and high-speed operation.  The number of configurations
0357  * available is stored in the device descriptor as bNumConfigurations.
0358  *
0359  * A configuration can contain multiple interfaces.  Each corresponds to
0360  * a different function of the USB device, and all are available whenever
0361  * the configuration is active.  The USB standard says that interfaces
0362  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
0363  * of devices get this wrong.  In addition, the interface array is not
0364  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
0365  * look up an interface entry based on its number.
0366  *
0367  * Device drivers should not attempt to activate configurations.  The choice
0368  * of which configuration to install is a policy decision based on such
0369  * considerations as available power, functionality provided, and the user's
0370  * desires (expressed through userspace tools).  However, drivers can call
0371  * usb_reset_configuration() to reinitialize the current configuration and
0372  * all its interfaces.
0373  */
0374 struct usb_host_config {
0375     struct usb_config_descriptor    desc;
0376 
0377     char *string;       /* iConfiguration string, if present */
0378 
0379     /* List of any Interface Association Descriptors in this
0380      * configuration. */
0381     struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
0382 
0383     /* the interfaces associated with this configuration,
0384      * stored in no particular order */
0385     struct usb_interface *interface[USB_MAXINTERFACES];
0386 
0387     /* Interface information available even when this is not the
0388      * active configuration */
0389     struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
0390 
0391     unsigned char *extra;   /* Extra descriptors */
0392     int extralen;
0393 };
0394 
0395 /* USB2.0 and USB3.0 device BOS descriptor set */
0396 struct usb_host_bos {
0397     struct usb_bos_descriptor   *desc;
0398 
0399     /* wireless cap descriptor is handled by wusb */
0400     struct usb_ext_cap_descriptor   *ext_cap;
0401     struct usb_ss_cap_descriptor    *ss_cap;
0402     struct usb_ssp_cap_descriptor   *ssp_cap;
0403     struct usb_ss_container_id_descriptor   *ss_id;
0404     struct usb_ptm_cap_descriptor   *ptm_cap;
0405 };
0406 
0407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
0408     unsigned char type, void **ptr, size_t min);
0409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
0410                 __usb_get_extra_descriptor((ifpoint)->extra, \
0411                 (ifpoint)->extralen, \
0412                 type, (void **)ptr, sizeof(**(ptr)))
0413 
0414 /* ----------------------------------------------------------------------- */
0415 
0416 /* USB device number allocation bitmap */
0417 struct usb_devmap {
0418     unsigned long devicemap[128 / (8*sizeof(unsigned long))];
0419 };
0420 
0421 /*
0422  * Allocated per bus (tree of devices) we have:
0423  */
0424 struct usb_bus {
0425     struct device *controller;  /* host side hardware */
0426     struct device *sysdev;      /* as seen from firmware or bus */
0427     int busnum;         /* Bus number (in order of reg) */
0428     const char *bus_name;       /* stable id (PCI slot_name etc) */
0429     u8 uses_pio_for_control;    /*
0430                      * Does the host controller use PIO
0431                      * for control transfers?
0432                      */
0433     u8 otg_port;            /* 0, or number of OTG/HNP port */
0434     unsigned is_b_host:1;       /* true during some HNP roleswitches */
0435     unsigned b_hnp_enable:1;    /* OTG: did A-Host enable HNP? */
0436     unsigned no_stop_on_short:1;    /*
0437                      * Quirk: some controllers don't stop
0438                      * the ep queue on a short transfer
0439                      * with the URB_SHORT_NOT_OK flag set.
0440                      */
0441     unsigned no_sg_constraint:1;    /* no sg constraint */
0442     unsigned sg_tablesize;      /* 0 or largest number of sg list entries */
0443 
0444     int devnum_next;        /* Next open device number in
0445                      * round-robin allocation */
0446     struct mutex devnum_next_mutex; /* devnum_next mutex */
0447 
0448     struct usb_devmap devmap;   /* device address allocation map */
0449     struct usb_device *root_hub;    /* Root hub */
0450     struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
0451 
0452     int bandwidth_allocated;    /* on this bus: how much of the time
0453                      * reserved for periodic (intr/iso)
0454                      * requests is used, on average?
0455                      * Units: microseconds/frame.
0456                      * Limits: Full/low speed reserve 90%,
0457                      * while high speed reserves 80%.
0458                      */
0459     int bandwidth_int_reqs;     /* number of Interrupt requests */
0460     int bandwidth_isoc_reqs;    /* number of Isoc. requests */
0461 
0462     unsigned resuming_ports;    /* bit array: resuming root-hub ports */
0463 
0464 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
0465     struct mon_bus *mon_bus;    /* non-null when associated */
0466     int monitored;          /* non-zero when monitored */
0467 #endif
0468 };
0469 
0470 struct usb_dev_state;
0471 
0472 /* ----------------------------------------------------------------------- */
0473 
0474 struct usb_tt;
0475 
0476 enum usb_port_connect_type {
0477     USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
0478     USB_PORT_CONNECT_TYPE_HOT_PLUG,
0479     USB_PORT_CONNECT_TYPE_HARD_WIRED,
0480     USB_PORT_NOT_USED,
0481 };
0482 
0483 /*
0484  * USB port quirks.
0485  */
0486 
0487 /* For the given port, prefer the old (faster) enumeration scheme. */
0488 #define USB_PORT_QUIRK_OLD_SCHEME   BIT(0)
0489 
0490 /* Decrease TRSTRCY to 10ms during device enumeration. */
0491 #define USB_PORT_QUIRK_FAST_ENUM    BIT(1)
0492 
0493 /*
0494  * USB 2.0 Link Power Management (LPM) parameters.
0495  */
0496 struct usb2_lpm_parameters {
0497     /* Best effort service latency indicate how long the host will drive
0498      * resume on an exit from L1.
0499      */
0500     unsigned int besl;
0501 
0502     /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
0503      * When the timer counts to zero, the parent hub will initiate a LPM
0504      * transition to L1.
0505      */
0506     int timeout;
0507 };
0508 
0509 /*
0510  * USB 3.0 Link Power Management (LPM) parameters.
0511  *
0512  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
0513  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
0514  * All three are stored in nanoseconds.
0515  */
0516 struct usb3_lpm_parameters {
0517     /*
0518      * Maximum exit latency (MEL) for the host to send a packet to the
0519      * device (either a Ping for isoc endpoints, or a data packet for
0520      * interrupt endpoints), the hubs to decode the packet, and for all hubs
0521      * in the path to transition the links to U0.
0522      */
0523     unsigned int mel;
0524     /*
0525      * Maximum exit latency for a device-initiated LPM transition to bring
0526      * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
0527      * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
0528      */
0529     unsigned int pel;
0530 
0531     /*
0532      * The System Exit Latency (SEL) includes PEL, and three other
0533      * latencies.  After a device initiates a U0 transition, it will take
0534      * some time from when the device sends the ERDY to when it will finally
0535      * receive the data packet.  Basically, SEL should be the worse-case
0536      * latency from when a device starts initiating a U0 transition to when
0537      * it will get data.
0538      */
0539     unsigned int sel;
0540     /*
0541      * The idle timeout value that is currently programmed into the parent
0542      * hub for this device.  When the timer counts to zero, the parent hub
0543      * will initiate an LPM transition to either U1 or U2.
0544      */
0545     int timeout;
0546 };
0547 
0548 /**
0549  * struct usb_device - kernel's representation of a USB device
0550  * @devnum: device number; address on a USB bus
0551  * @devpath: device ID string for use in messages (e.g., /port/...)
0552  * @route: tree topology hex string for use with xHCI
0553  * @state: device state: configured, not attached, etc.
0554  * @speed: device speed: high/full/low (or error)
0555  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
0556  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
0557  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
0558  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
0559  * @ttport: device port on that tt hub
0560  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
0561  * @parent: our hub, unless we're the root
0562  * @bus: bus we're part of
0563  * @ep0: endpoint 0 data (default control pipe)
0564  * @dev: generic device interface
0565  * @descriptor: USB device descriptor
0566  * @bos: USB device BOS descriptor set
0567  * @config: all of the device's configs
0568  * @actconfig: the active configuration
0569  * @ep_in: array of IN endpoints
0570  * @ep_out: array of OUT endpoints
0571  * @rawdescriptors: raw descriptors for each config
0572  * @bus_mA: Current available from the bus
0573  * @portnum: parent port number (origin 1)
0574  * @level: number of USB hub ancestors
0575  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
0576  * @can_submit: URBs may be submitted
0577  * @persist_enabled:  USB_PERSIST enabled for this device
0578  * @reset_in_progress: the device is being reset
0579  * @have_langid: whether string_langid is valid
0580  * @authorized: policy has said we can use it;
0581  *  (user space) policy determines if we authorize this device to be
0582  *  used or not. By default, wired USB devices are authorized.
0583  *  WUSB devices are not, until we authorize them from user space.
0584  *  FIXME -- complete doc
0585  * @authenticated: Crypto authentication passed
0586  * @wusb: device is Wireless USB
0587  * @lpm_capable: device supports LPM
0588  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
0589  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
0590  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
0591  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
0592  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
0593  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
0594  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
0595  * @string_langid: language ID for strings
0596  * @product: iProduct string, if present (static)
0597  * @manufacturer: iManufacturer string, if present (static)
0598  * @serial: iSerialNumber string, if present (static)
0599  * @filelist: usbfs files that are open to this device
0600  * @maxchild: number of ports if hub
0601  * @quirks: quirks of the whole device
0602  * @urbnum: number of URBs submitted for the whole device
0603  * @active_duration: total time device is not suspended
0604  * @connect_time: time device was first connected
0605  * @do_remote_wakeup:  remote wakeup should be enabled
0606  * @reset_resume: needs reset instead of resume
0607  * @port_is_suspended: the upstream port is suspended (L2 or U3)
0608  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
0609  *  specific data for the device.
0610  * @slot_id: Slot ID assigned by xHCI
0611  * @removable: Device can be physically removed from this port
0612  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
0613  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
0614  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
0615  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
0616  *  to keep track of the number of functions that require USB 3.0 Link Power
0617  *  Management to be disabled for this usb_device.  This count should only
0618  *  be manipulated by those functions, with the bandwidth_mutex is held.
0619  * @hub_delay: cached value consisting of:
0620  *  parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
0621  *  Will be used as wValue for SetIsochDelay requests.
0622  * @use_generic_driver: ask driver core to reprobe using the generic driver.
0623  *
0624  * Notes:
0625  * Usbcore drivers should not set usbdev->state directly.  Instead use
0626  * usb_set_device_state().
0627  */
0628 struct usb_device {
0629     int     devnum;
0630     char        devpath[16];
0631     u32     route;
0632     enum usb_device_state   state;
0633     enum usb_device_speed   speed;
0634     unsigned int        rx_lanes;
0635     unsigned int        tx_lanes;
0636     enum usb_ssp_rate   ssp_rate;
0637 
0638     struct usb_tt   *tt;
0639     int     ttport;
0640 
0641     unsigned int toggle[2];
0642 
0643     struct usb_device *parent;
0644     struct usb_bus *bus;
0645     struct usb_host_endpoint ep0;
0646 
0647     struct device dev;
0648 
0649     struct usb_device_descriptor descriptor;
0650     struct usb_host_bos *bos;
0651     struct usb_host_config *config;
0652 
0653     struct usb_host_config *actconfig;
0654     struct usb_host_endpoint *ep_in[16];
0655     struct usb_host_endpoint *ep_out[16];
0656 
0657     char **rawdescriptors;
0658 
0659     unsigned short bus_mA;
0660     u8 portnum;
0661     u8 level;
0662     u8 devaddr;
0663 
0664     unsigned can_submit:1;
0665     unsigned persist_enabled:1;
0666     unsigned reset_in_progress:1;
0667     unsigned have_langid:1;
0668     unsigned authorized:1;
0669     unsigned authenticated:1;
0670     unsigned wusb:1;
0671     unsigned lpm_capable:1;
0672     unsigned lpm_devinit_allow:1;
0673     unsigned usb2_hw_lpm_capable:1;
0674     unsigned usb2_hw_lpm_besl_capable:1;
0675     unsigned usb2_hw_lpm_enabled:1;
0676     unsigned usb2_hw_lpm_allowed:1;
0677     unsigned usb3_lpm_u1_enabled:1;
0678     unsigned usb3_lpm_u2_enabled:1;
0679     int string_langid;
0680 
0681     /* static strings from the device */
0682     char *product;
0683     char *manufacturer;
0684     char *serial;
0685 
0686     struct list_head filelist;
0687 
0688     int maxchild;
0689 
0690     u32 quirks;
0691     atomic_t urbnum;
0692 
0693     unsigned long active_duration;
0694 
0695 #ifdef CONFIG_PM
0696     unsigned long connect_time;
0697 
0698     unsigned do_remote_wakeup:1;
0699     unsigned reset_resume:1;
0700     unsigned port_is_suspended:1;
0701 #endif
0702     struct wusb_dev *wusb_dev;
0703     int slot_id;
0704     struct usb2_lpm_parameters l1_params;
0705     struct usb3_lpm_parameters u1_params;
0706     struct usb3_lpm_parameters u2_params;
0707     unsigned lpm_disable_count;
0708 
0709     u16 hub_delay;
0710     unsigned use_generic_driver:1;
0711 };
0712 #define to_usb_device(d) container_of(d, struct usb_device, dev)
0713 
0714 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
0715 {
0716     return to_usb_device(intf->dev.parent);
0717 }
0718 
0719 extern struct usb_device *usb_get_dev(struct usb_device *dev);
0720 extern void usb_put_dev(struct usb_device *dev);
0721 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
0722     int port1);
0723 
0724 /**
0725  * usb_hub_for_each_child - iterate over all child devices on the hub
0726  * @hdev:  USB device belonging to the usb hub
0727  * @port1: portnum associated with child device
0728  * @child: child device pointer
0729  */
0730 #define usb_hub_for_each_child(hdev, port1, child) \
0731     for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
0732             port1 <= hdev->maxchild; \
0733             child = usb_hub_find_child(hdev, ++port1)) \
0734         if (!child) continue; else
0735 
0736 /* USB device locking */
0737 #define usb_lock_device(udev)           device_lock(&(udev)->dev)
0738 #define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
0739 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
0740 #define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
0741 extern int usb_lock_device_for_reset(struct usb_device *udev,
0742                      const struct usb_interface *iface);
0743 
0744 /* USB port reset for device reinitialization */
0745 extern int usb_reset_device(struct usb_device *dev);
0746 extern void usb_queue_reset_device(struct usb_interface *dev);
0747 
0748 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
0749 
0750 #ifdef CONFIG_ACPI
0751 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
0752     bool enable);
0753 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
0754 #else
0755 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
0756     bool enable) { return 0; }
0757 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
0758     { return true; }
0759 #endif
0760 
0761 /* USB autosuspend and autoresume */
0762 #ifdef CONFIG_PM
0763 extern void usb_enable_autosuspend(struct usb_device *udev);
0764 extern void usb_disable_autosuspend(struct usb_device *udev);
0765 
0766 extern int usb_autopm_get_interface(struct usb_interface *intf);
0767 extern void usb_autopm_put_interface(struct usb_interface *intf);
0768 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
0769 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
0770 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
0771 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
0772 
0773 static inline void usb_mark_last_busy(struct usb_device *udev)
0774 {
0775     pm_runtime_mark_last_busy(&udev->dev);
0776 }
0777 
0778 #else
0779 
0780 static inline int usb_enable_autosuspend(struct usb_device *udev)
0781 { return 0; }
0782 static inline int usb_disable_autosuspend(struct usb_device *udev)
0783 { return 0; }
0784 
0785 static inline int usb_autopm_get_interface(struct usb_interface *intf)
0786 { return 0; }
0787 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
0788 { return 0; }
0789 
0790 static inline void usb_autopm_put_interface(struct usb_interface *intf)
0791 { }
0792 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
0793 { }
0794 static inline void usb_autopm_get_interface_no_resume(
0795         struct usb_interface *intf)
0796 { }
0797 static inline void usb_autopm_put_interface_no_suspend(
0798         struct usb_interface *intf)
0799 { }
0800 static inline void usb_mark_last_busy(struct usb_device *udev)
0801 { }
0802 #endif
0803 
0804 extern int usb_disable_lpm(struct usb_device *udev);
0805 extern void usb_enable_lpm(struct usb_device *udev);
0806 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
0807 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
0808 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
0809 
0810 extern int usb_disable_ltm(struct usb_device *udev);
0811 extern void usb_enable_ltm(struct usb_device *udev);
0812 
0813 static inline bool usb_device_supports_ltm(struct usb_device *udev)
0814 {
0815     if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
0816         return false;
0817     return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
0818 }
0819 
0820 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
0821 {
0822     return udev && udev->bus && udev->bus->no_sg_constraint;
0823 }
0824 
0825 
0826 /*-------------------------------------------------------------------------*/
0827 
0828 /* for drivers using iso endpoints */
0829 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
0830 
0831 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
0832 extern int usb_alloc_streams(struct usb_interface *interface,
0833         struct usb_host_endpoint **eps, unsigned int num_eps,
0834         unsigned int num_streams, gfp_t mem_flags);
0835 
0836 /* Reverts a group of bulk endpoints back to not using stream IDs. */
0837 extern int usb_free_streams(struct usb_interface *interface,
0838         struct usb_host_endpoint **eps, unsigned int num_eps,
0839         gfp_t mem_flags);
0840 
0841 /* used these for multi-interface device registration */
0842 extern int usb_driver_claim_interface(struct usb_driver *driver,
0843             struct usb_interface *iface, void *data);
0844 
0845 /**
0846  * usb_interface_claimed - returns true iff an interface is claimed
0847  * @iface: the interface being checked
0848  *
0849  * Return: %true (nonzero) iff the interface is claimed, else %false
0850  * (zero).
0851  *
0852  * Note:
0853  * Callers must own the driver model's usb bus readlock.  So driver
0854  * probe() entries don't need extra locking, but other call contexts
0855  * may need to explicitly claim that lock.
0856  *
0857  */
0858 static inline int usb_interface_claimed(struct usb_interface *iface)
0859 {
0860     return (iface->dev.driver != NULL);
0861 }
0862 
0863 extern void usb_driver_release_interface(struct usb_driver *driver,
0864             struct usb_interface *iface);
0865 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
0866                      const struct usb_device_id *id);
0867 extern int usb_match_one_id(struct usb_interface *interface,
0868                 const struct usb_device_id *id);
0869 
0870 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
0871 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
0872         int minor);
0873 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
0874         unsigned ifnum);
0875 extern struct usb_host_interface *usb_altnum_to_altsetting(
0876         const struct usb_interface *intf, unsigned int altnum);
0877 extern struct usb_host_interface *usb_find_alt_setting(
0878         struct usb_host_config *config,
0879         unsigned int iface_num,
0880         unsigned int alt_num);
0881 
0882 /* port claiming functions */
0883 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
0884         struct usb_dev_state *owner);
0885 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
0886         struct usb_dev_state *owner);
0887 
0888 /**
0889  * usb_make_path - returns stable device path in the usb tree
0890  * @dev: the device whose path is being constructed
0891  * @buf: where to put the string
0892  * @size: how big is "buf"?
0893  *
0894  * Return: Length of the string (> 0) or negative if size was too small.
0895  *
0896  * Note:
0897  * This identifier is intended to be "stable", reflecting physical paths in
0898  * hardware such as physical bus addresses for host controllers or ports on
0899  * USB hubs.  That makes it stay the same until systems are physically
0900  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
0901  * controllers.  Adding and removing devices, including virtual root hubs
0902  * in host controller driver modules, does not change these path identifiers;
0903  * neither does rebooting or re-enumerating.  These are more useful identifiers
0904  * than changeable ("unstable") ones like bus numbers or device addresses.
0905  *
0906  * With a partial exception for devices connected to USB 2.0 root hubs, these
0907  * identifiers are also predictable.  So long as the device tree isn't changed,
0908  * plugging any USB device into a given hub port always gives it the same path.
0909  * Because of the use of "companion" controllers, devices connected to ports on
0910  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
0911  * high speed, and a different one if they are full or low speed.
0912  */
0913 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
0914 {
0915     int actual;
0916     actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
0917               dev->devpath);
0918     return (actual >= (int)size) ? -1 : actual;
0919 }
0920 
0921 /*-------------------------------------------------------------------------*/
0922 
0923 #define USB_DEVICE_ID_MATCH_DEVICE \
0924         (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
0925 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
0926         (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
0927 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
0928         (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
0929 #define USB_DEVICE_ID_MATCH_DEV_INFO \
0930         (USB_DEVICE_ID_MATCH_DEV_CLASS | \
0931         USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
0932         USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
0933 #define USB_DEVICE_ID_MATCH_INT_INFO \
0934         (USB_DEVICE_ID_MATCH_INT_CLASS | \
0935         USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
0936         USB_DEVICE_ID_MATCH_INT_PROTOCOL)
0937 
0938 /**
0939  * USB_DEVICE - macro used to describe a specific usb device
0940  * @vend: the 16 bit USB Vendor ID
0941  * @prod: the 16 bit USB Product ID
0942  *
0943  * This macro is used to create a struct usb_device_id that matches a
0944  * specific device.
0945  */
0946 #define USB_DEVICE(vend, prod) \
0947     .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
0948     .idVendor = (vend), \
0949     .idProduct = (prod)
0950 /**
0951  * USB_DEVICE_VER - describe a specific usb device with a version range
0952  * @vend: the 16 bit USB Vendor ID
0953  * @prod: the 16 bit USB Product ID
0954  * @lo: the bcdDevice_lo value
0955  * @hi: the bcdDevice_hi value
0956  *
0957  * This macro is used to create a struct usb_device_id that matches a
0958  * specific device, with a version range.
0959  */
0960 #define USB_DEVICE_VER(vend, prod, lo, hi) \
0961     .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
0962     .idVendor = (vend), \
0963     .idProduct = (prod), \
0964     .bcdDevice_lo = (lo), \
0965     .bcdDevice_hi = (hi)
0966 
0967 /**
0968  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
0969  * @vend: the 16 bit USB Vendor ID
0970  * @prod: the 16 bit USB Product ID
0971  * @cl: bInterfaceClass value
0972  *
0973  * This macro is used to create a struct usb_device_id that matches a
0974  * specific interface class of devices.
0975  */
0976 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
0977     .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
0978                USB_DEVICE_ID_MATCH_INT_CLASS, \
0979     .idVendor = (vend), \
0980     .idProduct = (prod), \
0981     .bInterfaceClass = (cl)
0982 
0983 /**
0984  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
0985  * @vend: the 16 bit USB Vendor ID
0986  * @prod: the 16 bit USB Product ID
0987  * @pr: bInterfaceProtocol value
0988  *
0989  * This macro is used to create a struct usb_device_id that matches a
0990  * specific interface protocol of devices.
0991  */
0992 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
0993     .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
0994                USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
0995     .idVendor = (vend), \
0996     .idProduct = (prod), \
0997     .bInterfaceProtocol = (pr)
0998 
0999 /**
1000  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1001  * @vend: the 16 bit USB Vendor ID
1002  * @prod: the 16 bit USB Product ID
1003  * @num: bInterfaceNumber value
1004  *
1005  * This macro is used to create a struct usb_device_id that matches a
1006  * specific interface number of devices.
1007  */
1008 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1009     .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1010                USB_DEVICE_ID_MATCH_INT_NUMBER, \
1011     .idVendor = (vend), \
1012     .idProduct = (prod), \
1013     .bInterfaceNumber = (num)
1014 
1015 /**
1016  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1017  * @cl: bDeviceClass value
1018  * @sc: bDeviceSubClass value
1019  * @pr: bDeviceProtocol value
1020  *
1021  * This macro is used to create a struct usb_device_id that matches a
1022  * specific class of devices.
1023  */
1024 #define USB_DEVICE_INFO(cl, sc, pr) \
1025     .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1026     .bDeviceClass = (cl), \
1027     .bDeviceSubClass = (sc), \
1028     .bDeviceProtocol = (pr)
1029 
1030 /**
1031  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1032  * @cl: bInterfaceClass value
1033  * @sc: bInterfaceSubClass value
1034  * @pr: bInterfaceProtocol value
1035  *
1036  * This macro is used to create a struct usb_device_id that matches a
1037  * specific class of interfaces.
1038  */
1039 #define USB_INTERFACE_INFO(cl, sc, pr) \
1040     .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1041     .bInterfaceClass = (cl), \
1042     .bInterfaceSubClass = (sc), \
1043     .bInterfaceProtocol = (pr)
1044 
1045 /**
1046  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1047  * @vend: the 16 bit USB Vendor ID
1048  * @prod: the 16 bit USB Product ID
1049  * @cl: bInterfaceClass value
1050  * @sc: bInterfaceSubClass value
1051  * @pr: bInterfaceProtocol value
1052  *
1053  * This macro is used to create a struct usb_device_id that matches a
1054  * specific device with a specific class of interfaces.
1055  *
1056  * This is especially useful when explicitly matching devices that have
1057  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1058  */
1059 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1060     .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1061         | USB_DEVICE_ID_MATCH_DEVICE, \
1062     .idVendor = (vend), \
1063     .idProduct = (prod), \
1064     .bInterfaceClass = (cl), \
1065     .bInterfaceSubClass = (sc), \
1066     .bInterfaceProtocol = (pr)
1067 
1068 /**
1069  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1070  * @vend: the 16 bit USB Vendor ID
1071  * @cl: bInterfaceClass value
1072  * @sc: bInterfaceSubClass value
1073  * @pr: bInterfaceProtocol value
1074  *
1075  * This macro is used to create a struct usb_device_id that matches a
1076  * specific vendor with a specific class of interfaces.
1077  *
1078  * This is especially useful when explicitly matching devices that have
1079  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1080  */
1081 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1082     .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1083         | USB_DEVICE_ID_MATCH_VENDOR, \
1084     .idVendor = (vend), \
1085     .bInterfaceClass = (cl), \
1086     .bInterfaceSubClass = (sc), \
1087     .bInterfaceProtocol = (pr)
1088 
1089 /* ----------------------------------------------------------------------- */
1090 
1091 /* Stuff for dynamic usb ids */
1092 struct usb_dynids {
1093     spinlock_t lock;
1094     struct list_head list;
1095 };
1096 
1097 struct usb_dynid {
1098     struct list_head node;
1099     struct usb_device_id id;
1100 };
1101 
1102 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1103                 const struct usb_device_id *id_table,
1104                 struct device_driver *driver,
1105                 const char *buf, size_t count);
1106 
1107 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1108 
1109 /**
1110  * struct usbdrv_wrap - wrapper for driver-model structure
1111  * @driver: The driver-model core driver structure.
1112  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1113  */
1114 struct usbdrv_wrap {
1115     struct device_driver driver;
1116     int for_devices;
1117 };
1118 
1119 /**
1120  * struct usb_driver - identifies USB interface driver to usbcore
1121  * @name: The driver name should be unique among USB drivers,
1122  *  and should normally be the same as the module name.
1123  * @probe: Called to see if the driver is willing to manage a particular
1124  *  interface on a device.  If it is, probe returns zero and uses
1125  *  usb_set_intfdata() to associate driver-specific data with the
1126  *  interface.  It may also use usb_set_interface() to specify the
1127  *  appropriate altsetting.  If unwilling to manage the interface,
1128  *  return -ENODEV, if genuine IO errors occurred, an appropriate
1129  *  negative errno value.
1130  * @disconnect: Called when the interface is no longer accessible, usually
1131  *  because its device has been (or is being) disconnected or the
1132  *  driver module is being unloaded.
1133  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1134  *  the "usbfs" filesystem.  This lets devices provide ways to
1135  *  expose information to user space regardless of where they
1136  *  do (or don't) show up otherwise in the filesystem.
1137  * @suspend: Called when the device is going to be suspended by the
1138  *  system either from system sleep or runtime suspend context. The
1139  *  return value will be ignored in system sleep context, so do NOT
1140  *  try to continue using the device if suspend fails in this case.
1141  *  Instead, let the resume or reset-resume routine recover from
1142  *  the failure.
1143  * @resume: Called when the device is being resumed by the system.
1144  * @reset_resume: Called when the suspended device has been reset instead
1145  *  of being resumed.
1146  * @pre_reset: Called by usb_reset_device() when the device is about to be
1147  *  reset.  This routine must not return until the driver has no active
1148  *  URBs for the device, and no more URBs may be submitted until the
1149  *  post_reset method is called.
1150  * @post_reset: Called by usb_reset_device() after the device
1151  *  has been reset
1152  * @id_table: USB drivers use ID table to support hotplugging.
1153  *  Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1154  *  or your driver's probe function will never get called.
1155  * @dev_groups: Attributes attached to the device that will be created once it
1156  *  is bound to the driver.
1157  * @dynids: used internally to hold the list of dynamically added device
1158  *  ids for this driver.
1159  * @drvwrap: Driver-model core structure wrapper.
1160  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1161  *  added to this driver by preventing the sysfs file from being created.
1162  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1163  *  for interfaces bound to this driver.
1164  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1165  *  endpoints before calling the driver's disconnect method.
1166  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1167  *  to initiate lower power link state transitions when an idle timeout
1168  *  occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1169  *
1170  * USB interface drivers must provide a name, probe() and disconnect()
1171  * methods, and an id_table.  Other driver fields are optional.
1172  *
1173  * The id_table is used in hotplugging.  It holds a set of descriptors,
1174  * and specialized data may be associated with each entry.  That table
1175  * is used by both user and kernel mode hotplugging support.
1176  *
1177  * The probe() and disconnect() methods are called in a context where
1178  * they can sleep, but they should avoid abusing the privilege.  Most
1179  * work to connect to a device should be done when the device is opened,
1180  * and undone at the last close.  The disconnect code needs to address
1181  * concurrency issues with respect to open() and close() methods, as
1182  * well as forcing all pending I/O requests to complete (by unlinking
1183  * them as necessary, and blocking until the unlinks complete).
1184  */
1185 struct usb_driver {
1186     const char *name;
1187 
1188     int (*probe) (struct usb_interface *intf,
1189               const struct usb_device_id *id);
1190 
1191     void (*disconnect) (struct usb_interface *intf);
1192 
1193     int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1194             void *buf);
1195 
1196     int (*suspend) (struct usb_interface *intf, pm_message_t message);
1197     int (*resume) (struct usb_interface *intf);
1198     int (*reset_resume)(struct usb_interface *intf);
1199 
1200     int (*pre_reset)(struct usb_interface *intf);
1201     int (*post_reset)(struct usb_interface *intf);
1202 
1203     const struct usb_device_id *id_table;
1204     const struct attribute_group **dev_groups;
1205 
1206     struct usb_dynids dynids;
1207     struct usbdrv_wrap drvwrap;
1208     unsigned int no_dynamic_id:1;
1209     unsigned int supports_autosuspend:1;
1210     unsigned int disable_hub_initiated_lpm:1;
1211     unsigned int soft_unbind:1;
1212 };
1213 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1214 
1215 /**
1216  * struct usb_device_driver - identifies USB device driver to usbcore
1217  * @name: The driver name should be unique among USB drivers,
1218  *  and should normally be the same as the module name.
1219  * @match: If set, used for better device/driver matching.
1220  * @probe: Called to see if the driver is willing to manage a particular
1221  *  device.  If it is, probe returns zero and uses dev_set_drvdata()
1222  *  to associate driver-specific data with the device.  If unwilling
1223  *  to manage the device, return a negative errno value.
1224  * @disconnect: Called when the device is no longer accessible, usually
1225  *  because it has been (or is being) disconnected or the driver's
1226  *  module is being unloaded.
1227  * @suspend: Called when the device is going to be suspended by the system.
1228  * @resume: Called when the device is being resumed by the system.
1229  * @dev_groups: Attributes attached to the device that will be created once it
1230  *  is bound to the driver.
1231  * @drvwrap: Driver-model core structure wrapper.
1232  * @id_table: used with @match() to select better matching driver at
1233  *  probe() time.
1234  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1235  *  for devices bound to this driver.
1236  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1237  *  resume and suspend functions will be called in addition to the driver's
1238  *  own, so this part of the setup does not need to be replicated.
1239  *
1240  * USB drivers must provide all the fields listed above except drvwrap,
1241  * match, and id_table.
1242  */
1243 struct usb_device_driver {
1244     const char *name;
1245 
1246     bool (*match) (struct usb_device *udev);
1247     int (*probe) (struct usb_device *udev);
1248     void (*disconnect) (struct usb_device *udev);
1249 
1250     int (*suspend) (struct usb_device *udev, pm_message_t message);
1251     int (*resume) (struct usb_device *udev, pm_message_t message);
1252     const struct attribute_group **dev_groups;
1253     struct usbdrv_wrap drvwrap;
1254     const struct usb_device_id *id_table;
1255     unsigned int supports_autosuspend:1;
1256     unsigned int generic_subclass:1;
1257 };
1258 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1259         drvwrap.driver)
1260 
1261 /**
1262  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1263  * @name: the usb class device name for this driver.  Will show up in sysfs.
1264  * @devnode: Callback to provide a naming hint for a possible
1265  *  device node to create.
1266  * @fops: pointer to the struct file_operations of this driver.
1267  * @minor_base: the start of the minor range for this driver.
1268  *
1269  * This structure is used for the usb_register_dev() and
1270  * usb_deregister_dev() functions, to consolidate a number of the
1271  * parameters used for them.
1272  */
1273 struct usb_class_driver {
1274     char *name;
1275     char *(*devnode)(struct device *dev, umode_t *mode);
1276     const struct file_operations *fops;
1277     int minor_base;
1278 };
1279 
1280 /*
1281  * use these in module_init()/module_exit()
1282  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1283  */
1284 extern int usb_register_driver(struct usb_driver *, struct module *,
1285                    const char *);
1286 
1287 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1288 #define usb_register(driver) \
1289     usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1290 
1291 extern void usb_deregister(struct usb_driver *);
1292 
1293 /**
1294  * module_usb_driver() - Helper macro for registering a USB driver
1295  * @__usb_driver: usb_driver struct
1296  *
1297  * Helper macro for USB drivers which do not do anything special in module
1298  * init/exit. This eliminates a lot of boilerplate. Each module may only
1299  * use this macro once, and calling it replaces module_init() and module_exit()
1300  */
1301 #define module_usb_driver(__usb_driver) \
1302     module_driver(__usb_driver, usb_register, \
1303                usb_deregister)
1304 
1305 extern int usb_register_device_driver(struct usb_device_driver *,
1306             struct module *);
1307 extern void usb_deregister_device_driver(struct usb_device_driver *);
1308 
1309 extern int usb_register_dev(struct usb_interface *intf,
1310                 struct usb_class_driver *class_driver);
1311 extern void usb_deregister_dev(struct usb_interface *intf,
1312                    struct usb_class_driver *class_driver);
1313 
1314 extern int usb_disabled(void);
1315 
1316 /* ----------------------------------------------------------------------- */
1317 
1318 /*
1319  * URB support, for asynchronous request completions
1320  */
1321 
1322 /*
1323  * urb->transfer_flags:
1324  *
1325  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1326  */
1327 #define URB_SHORT_NOT_OK    0x0001  /* report short reads as errors */
1328 #define URB_ISO_ASAP        0x0002  /* iso-only; use the first unexpired
1329                      * slot in the schedule */
1330 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1331 #define URB_ZERO_PACKET     0x0040  /* Finish bulk OUT with short packet */
1332 #define URB_NO_INTERRUPT    0x0080  /* HINT: no non-error interrupt
1333                      * needed */
1334 #define URB_FREE_BUFFER     0x0100  /* Free transfer buffer with the URB */
1335 
1336 /* The following flags are used internally by usbcore and HCDs */
1337 #define URB_DIR_IN      0x0200  /* Transfer from device to host */
1338 #define URB_DIR_OUT     0
1339 #define URB_DIR_MASK        URB_DIR_IN
1340 
1341 #define URB_DMA_MAP_SINGLE  0x00010000  /* Non-scatter-gather mapping */
1342 #define URB_DMA_MAP_PAGE    0x00020000  /* HCD-unsupported S-G */
1343 #define URB_DMA_MAP_SG      0x00040000  /* HCD-supported S-G */
1344 #define URB_MAP_LOCAL       0x00080000  /* HCD-local-memory mapping */
1345 #define URB_SETUP_MAP_SINGLE    0x00100000  /* Setup packet DMA mapped */
1346 #define URB_SETUP_MAP_LOCAL 0x00200000  /* HCD-local setup packet */
1347 #define URB_DMA_SG_COMBINED 0x00400000  /* S-G entries were combined */
1348 #define URB_ALIGNED_TEMP_BUFFER 0x00800000  /* Temp buffer was alloc'd */
1349 
1350 struct usb_iso_packet_descriptor {
1351     unsigned int offset;
1352     unsigned int length;        /* expected length */
1353     unsigned int actual_length;
1354     int status;
1355 };
1356 
1357 struct urb;
1358 
1359 struct usb_anchor {
1360     struct list_head urb_list;
1361     wait_queue_head_t wait;
1362     spinlock_t lock;
1363     atomic_t suspend_wakeups;
1364     unsigned int poisoned:1;
1365 };
1366 
1367 static inline void init_usb_anchor(struct usb_anchor *anchor)
1368 {
1369     memset(anchor, 0, sizeof(*anchor));
1370     INIT_LIST_HEAD(&anchor->urb_list);
1371     init_waitqueue_head(&anchor->wait);
1372     spin_lock_init(&anchor->lock);
1373 }
1374 
1375 typedef void (*usb_complete_t)(struct urb *);
1376 
1377 /**
1378  * struct urb - USB Request Block
1379  * @urb_list: For use by current owner of the URB.
1380  * @anchor_list: membership in the list of an anchor
1381  * @anchor: to anchor URBs to a common mooring
1382  * @ep: Points to the endpoint's data structure.  Will eventually
1383  *  replace @pipe.
1384  * @pipe: Holds endpoint number, direction, type, and more.
1385  *  Create these values with the eight macros available;
1386  *  usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1387  *  (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1388  *  For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1389  *  numbers range from zero to fifteen.  Note that "in" endpoint two
1390  *  is a different endpoint (and pipe) from "out" endpoint two.
1391  *  The current configuration controls the existence, type, and
1392  *  maximum packet size of any given endpoint.
1393  * @stream_id: the endpoint's stream ID for bulk streams
1394  * @dev: Identifies the USB device to perform the request.
1395  * @status: This is read in non-iso completion functions to get the
1396  *  status of the particular request.  ISO requests only use it
1397  *  to tell whether the URB was unlinked; detailed status for
1398  *  each frame is in the fields of the iso_frame-desc.
1399  * @transfer_flags: A variety of flags may be used to affect how URB
1400  *  submission, unlinking, or operation are handled.  Different
1401  *  kinds of URB can use different flags.
1402  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1403  *  request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1404  *  (however, do not leave garbage in transfer_buffer even then).
1405  *  This buffer must be suitable for DMA; allocate it with
1406  *  kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1407  *  of this buffer will be modified.  This buffer is used for the data
1408  *  stage of control transfers.
1409  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1410  *  the device driver is saying that it provided this DMA address,
1411  *  which the host controller driver should use in preference to the
1412  *  transfer_buffer.
1413  * @sg: scatter gather buffer list, the buffer size of each element in
1414  *  the list (except the last) must be divisible by the endpoint's
1415  *  max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1416  * @num_mapped_sgs: (internal) number of mapped sg entries
1417  * @num_sgs: number of entries in the sg list
1418  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1419  *  be broken up into chunks according to the current maximum packet
1420  *  size for the endpoint, which is a function of the configuration
1421  *  and is encoded in the pipe.  When the length is zero, neither
1422  *  transfer_buffer nor transfer_dma is used.
1423  * @actual_length: This is read in non-iso completion functions, and
1424  *  it tells how many bytes (out of transfer_buffer_length) were
1425  *  transferred.  It will normally be the same as requested, unless
1426  *  either an error was reported or a short read was performed.
1427  *  The URB_SHORT_NOT_OK transfer flag may be used to make such
1428  *  short reads be reported as errors.
1429  * @setup_packet: Only used for control transfers, this points to eight bytes
1430  *  of setup data.  Control transfers always start by sending this data
1431  *  to the device.  Then transfer_buffer is read or written, if needed.
1432  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1433  *  this field; setup_packet must point to a valid buffer.
1434  * @start_frame: Returns the initial frame for isochronous transfers.
1435  * @number_of_packets: Lists the number of ISO transfer buffers.
1436  * @interval: Specifies the polling interval for interrupt or isochronous
1437  *  transfers.  The units are frames (milliseconds) for full and low
1438  *  speed devices, and microframes (1/8 millisecond) for highspeed
1439  *  and SuperSpeed devices.
1440  * @error_count: Returns the number of ISO transfers that reported errors.
1441  * @context: For use in completion functions.  This normally points to
1442  *  request-specific driver context.
1443  * @complete: Completion handler. This URB is passed as the parameter to the
1444  *  completion function.  The completion function may then do what
1445  *  it likes with the URB, including resubmitting or freeing it.
1446  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1447  *  collect the transfer status for each buffer.
1448  *
1449  * This structure identifies USB transfer requests.  URBs must be allocated by
1450  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1451  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1452  * are submitted using usb_submit_urb(), and pending requests may be canceled
1453  * using usb_unlink_urb() or usb_kill_urb().
1454  *
1455  * Data Transfer Buffers:
1456  *
1457  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1458  * taken from the general page pool.  That is provided by transfer_buffer
1459  * (control requests also use setup_packet), and host controller drivers
1460  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1461  * mapping operations can be expensive on some platforms (perhaps using a dma
1462  * bounce buffer or talking to an IOMMU),
1463  * although they're cheap on commodity x86 and ppc hardware.
1464  *
1465  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1466  * which tells the host controller driver that no such mapping is needed for
1467  * the transfer_buffer since
1468  * the device driver is DMA-aware.  For example, a device driver might
1469  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1470  * When this transfer flag is provided, host controller drivers will
1471  * attempt to use the dma address found in the transfer_dma
1472  * field rather than determining a dma address themselves.
1473  *
1474  * Note that transfer_buffer must still be set if the controller
1475  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1476  * to root hub. If you have to transfer between highmem zone and the device
1477  * on such controller, create a bounce buffer or bail out with an error.
1478  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1479  * capable, assign NULL to it, so that usbmon knows not to use the value.
1480  * The setup_packet must always be set, so it cannot be located in highmem.
1481  *
1482  * Initialization:
1483  *
1484  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1485  * zero), and complete fields.  All URBs must also initialize
1486  * transfer_buffer and transfer_buffer_length.  They may provide the
1487  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1488  * to be treated as errors; that flag is invalid for write requests.
1489  *
1490  * Bulk URBs may
1491  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1492  * should always terminate with a short packet, even if it means adding an
1493  * extra zero length packet.
1494  *
1495  * Control URBs must provide a valid pointer in the setup_packet field.
1496  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1497  * beforehand.
1498  *
1499  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1500  * or, for highspeed devices, 125 microsecond units)
1501  * to poll for transfers.  After the URB has been submitted, the interval
1502  * field reflects how the transfer was actually scheduled.
1503  * The polling interval may be more frequent than requested.
1504  * For example, some controllers have a maximum interval of 32 milliseconds,
1505  * while others support intervals of up to 1024 milliseconds.
1506  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1507  * endpoints, as well as high speed interrupt endpoints, the encoding of
1508  * the transfer interval in the endpoint descriptor is logarithmic.
1509  * Device drivers must convert that value to linear units themselves.)
1510  *
1511  * If an isochronous endpoint queue isn't already running, the host
1512  * controller will schedule a new URB to start as soon as bandwidth
1513  * utilization allows.  If the queue is running then a new URB will be
1514  * scheduled to start in the first transfer slot following the end of the
1515  * preceding URB, if that slot has not already expired.  If the slot has
1516  * expired (which can happen when IRQ delivery is delayed for a long time),
1517  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1518  * is clear then the URB will be scheduled to start in the expired slot,
1519  * implying that some of its packets will not be transferred; if the flag
1520  * is set then the URB will be scheduled in the first unexpired slot,
1521  * breaking the queue's synchronization.  Upon URB completion, the
1522  * start_frame field will be set to the (micro)frame number in which the
1523  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1524  * and can go from as low as 256 to as high as 65536 frames.
1525  *
1526  * Isochronous URBs have a different data transfer model, in part because
1527  * the quality of service is only "best effort".  Callers provide specially
1528  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1529  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1530  * URBs are normally queued, submitted by drivers to arrange that
1531  * transfers are at least double buffered, and then explicitly resubmitted
1532  * in completion handlers, so
1533  * that data (such as audio or video) streams at as constant a rate as the
1534  * host controller scheduler can support.
1535  *
1536  * Completion Callbacks:
1537  *
1538  * The completion callback is made in_interrupt(), and one of the first
1539  * things that a completion handler should do is check the status field.
1540  * The status field is provided for all URBs.  It is used to report
1541  * unlinked URBs, and status for all non-ISO transfers.  It should not
1542  * be examined before the URB is returned to the completion handler.
1543  *
1544  * The context field is normally used to link URBs back to the relevant
1545  * driver or request state.
1546  *
1547  * When the completion callback is invoked for non-isochronous URBs, the
1548  * actual_length field tells how many bytes were transferred.  This field
1549  * is updated even when the URB terminated with an error or was unlinked.
1550  *
1551  * ISO transfer status is reported in the status and actual_length fields
1552  * of the iso_frame_desc array, and the number of errors is reported in
1553  * error_count.  Completion callbacks for ISO transfers will normally
1554  * (re)submit URBs to ensure a constant transfer rate.
1555  *
1556  * Note that even fields marked "public" should not be touched by the driver
1557  * when the urb is owned by the hcd, that is, since the call to
1558  * usb_submit_urb() till the entry into the completion routine.
1559  */
1560 struct urb {
1561     /* private: usb core and host controller only fields in the urb */
1562     struct kref kref;       /* reference count of the URB */
1563     int unlinked;           /* unlink error code */
1564     void *hcpriv;           /* private data for host controller */
1565     atomic_t use_count;     /* concurrent submissions counter */
1566     atomic_t reject;        /* submissions will fail */
1567 
1568     /* public: documented fields in the urb that can be used by drivers */
1569     struct list_head urb_list;  /* list head for use by the urb's
1570                      * current owner */
1571     struct list_head anchor_list;   /* the URB may be anchored */
1572     struct usb_anchor *anchor;
1573     struct usb_device *dev;     /* (in) pointer to associated device */
1574     struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1575     unsigned int pipe;      /* (in) pipe information */
1576     unsigned int stream_id;     /* (in) stream ID */
1577     int status;         /* (return) non-ISO status */
1578     unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1579     void *transfer_buffer;      /* (in) associated data buffer */
1580     dma_addr_t transfer_dma;    /* (in) dma addr for transfer_buffer */
1581     struct scatterlist *sg;     /* (in) scatter gather buffer list */
1582     int num_mapped_sgs;     /* (internal) mapped sg entries */
1583     int num_sgs;            /* (in) number of entries in the sg list */
1584     u32 transfer_buffer_length; /* (in) data buffer length */
1585     u32 actual_length;      /* (return) actual transfer length */
1586     unsigned char *setup_packet;    /* (in) setup packet (control only) */
1587     dma_addr_t setup_dma;       /* (in) dma addr for setup_packet */
1588     int start_frame;        /* (modify) start frame (ISO) */
1589     int number_of_packets;      /* (in) number of ISO packets */
1590     int interval;           /* (modify) transfer interval
1591                      * (INT/ISO) */
1592     int error_count;        /* (return) number of ISO errors */
1593     void *context;          /* (in) context for completion */
1594     usb_complete_t complete;    /* (in) completion routine */
1595     struct usb_iso_packet_descriptor iso_frame_desc[];
1596                     /* (in) ISO ONLY */
1597 };
1598 
1599 /* ----------------------------------------------------------------------- */
1600 
1601 /**
1602  * usb_fill_control_urb - initializes a control urb
1603  * @urb: pointer to the urb to initialize.
1604  * @dev: pointer to the struct usb_device for this urb.
1605  * @pipe: the endpoint pipe
1606  * @setup_packet: pointer to the setup_packet buffer
1607  * @transfer_buffer: pointer to the transfer buffer
1608  * @buffer_length: length of the transfer buffer
1609  * @complete_fn: pointer to the usb_complete_t function
1610  * @context: what to set the urb context to.
1611  *
1612  * Initializes a control urb with the proper information needed to submit
1613  * it to a device.
1614  */
1615 static inline void usb_fill_control_urb(struct urb *urb,
1616                     struct usb_device *dev,
1617                     unsigned int pipe,
1618                     unsigned char *setup_packet,
1619                     void *transfer_buffer,
1620                     int buffer_length,
1621                     usb_complete_t complete_fn,
1622                     void *context)
1623 {
1624     urb->dev = dev;
1625     urb->pipe = pipe;
1626     urb->setup_packet = setup_packet;
1627     urb->transfer_buffer = transfer_buffer;
1628     urb->transfer_buffer_length = buffer_length;
1629     urb->complete = complete_fn;
1630     urb->context = context;
1631 }
1632 
1633 /**
1634  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1635  * @urb: pointer to the urb to initialize.
1636  * @dev: pointer to the struct usb_device for this urb.
1637  * @pipe: the endpoint pipe
1638  * @transfer_buffer: pointer to the transfer buffer
1639  * @buffer_length: length of the transfer buffer
1640  * @complete_fn: pointer to the usb_complete_t function
1641  * @context: what to set the urb context to.
1642  *
1643  * Initializes a bulk urb with the proper information needed to submit it
1644  * to a device.
1645  */
1646 static inline void usb_fill_bulk_urb(struct urb *urb,
1647                      struct usb_device *dev,
1648                      unsigned int pipe,
1649                      void *transfer_buffer,
1650                      int buffer_length,
1651                      usb_complete_t complete_fn,
1652                      void *context)
1653 {
1654     urb->dev = dev;
1655     urb->pipe = pipe;
1656     urb->transfer_buffer = transfer_buffer;
1657     urb->transfer_buffer_length = buffer_length;
1658     urb->complete = complete_fn;
1659     urb->context = context;
1660 }
1661 
1662 /**
1663  * usb_fill_int_urb - macro to help initialize a interrupt urb
1664  * @urb: pointer to the urb to initialize.
1665  * @dev: pointer to the struct usb_device for this urb.
1666  * @pipe: the endpoint pipe
1667  * @transfer_buffer: pointer to the transfer buffer
1668  * @buffer_length: length of the transfer buffer
1669  * @complete_fn: pointer to the usb_complete_t function
1670  * @context: what to set the urb context to.
1671  * @interval: what to set the urb interval to, encoded like
1672  *  the endpoint descriptor's bInterval value.
1673  *
1674  * Initializes a interrupt urb with the proper information needed to submit
1675  * it to a device.
1676  *
1677  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1678  * encoding of the endpoint interval, and express polling intervals in
1679  * microframes (eight per millisecond) rather than in frames (one per
1680  * millisecond).
1681  *
1682  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1683  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1684  * through to the host controller, rather than being translated into microframe
1685  * units.
1686  */
1687 static inline void usb_fill_int_urb(struct urb *urb,
1688                     struct usb_device *dev,
1689                     unsigned int pipe,
1690                     void *transfer_buffer,
1691                     int buffer_length,
1692                     usb_complete_t complete_fn,
1693                     void *context,
1694                     int interval)
1695 {
1696     urb->dev = dev;
1697     urb->pipe = pipe;
1698     urb->transfer_buffer = transfer_buffer;
1699     urb->transfer_buffer_length = buffer_length;
1700     urb->complete = complete_fn;
1701     urb->context = context;
1702 
1703     if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1704         /* make sure interval is within allowed range */
1705         interval = clamp(interval, 1, 16);
1706 
1707         urb->interval = 1 << (interval - 1);
1708     } else {
1709         urb->interval = interval;
1710     }
1711 
1712     urb->start_frame = -1;
1713 }
1714 
1715 extern void usb_init_urb(struct urb *urb);
1716 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1717 extern void usb_free_urb(struct urb *urb);
1718 #define usb_put_urb usb_free_urb
1719 extern struct urb *usb_get_urb(struct urb *urb);
1720 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1721 extern int usb_unlink_urb(struct urb *urb);
1722 extern void usb_kill_urb(struct urb *urb);
1723 extern void usb_poison_urb(struct urb *urb);
1724 extern void usb_unpoison_urb(struct urb *urb);
1725 extern void usb_block_urb(struct urb *urb);
1726 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1727 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1728 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1729 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1730 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1731 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1732 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1733 extern void usb_unanchor_urb(struct urb *urb);
1734 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1735                      unsigned int timeout);
1736 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1737 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1738 extern int usb_anchor_empty(struct usb_anchor *anchor);
1739 
1740 #define usb_unblock_urb usb_unpoison_urb
1741 
1742 /**
1743  * usb_urb_dir_in - check if an URB describes an IN transfer
1744  * @urb: URB to be checked
1745  *
1746  * Return: 1 if @urb describes an IN transfer (device-to-host),
1747  * otherwise 0.
1748  */
1749 static inline int usb_urb_dir_in(struct urb *urb)
1750 {
1751     return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1752 }
1753 
1754 /**
1755  * usb_urb_dir_out - check if an URB describes an OUT transfer
1756  * @urb: URB to be checked
1757  *
1758  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1759  * otherwise 0.
1760  */
1761 static inline int usb_urb_dir_out(struct urb *urb)
1762 {
1763     return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1764 }
1765 
1766 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1767 int usb_urb_ep_type_check(const struct urb *urb);
1768 
1769 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1770     gfp_t mem_flags, dma_addr_t *dma);
1771 void usb_free_coherent(struct usb_device *dev, size_t size,
1772     void *addr, dma_addr_t dma);
1773 
1774 #if 0
1775 struct urb *usb_buffer_map(struct urb *urb);
1776 void usb_buffer_dmasync(struct urb *urb);
1777 void usb_buffer_unmap(struct urb *urb);
1778 #endif
1779 
1780 struct scatterlist;
1781 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1782               struct scatterlist *sg, int nents);
1783 #if 0
1784 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1785                struct scatterlist *sg, int n_hw_ents);
1786 #endif
1787 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1788              struct scatterlist *sg, int n_hw_ents);
1789 
1790 /*-------------------------------------------------------------------*
1791  *                         SYNCHRONOUS CALL SUPPORT                  *
1792  *-------------------------------------------------------------------*/
1793 
1794 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1795     __u8 request, __u8 requesttype, __u16 value, __u16 index,
1796     void *data, __u16 size, int timeout);
1797 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1798     void *data, int len, int *actual_length, int timeout);
1799 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1800     void *data, int len, int *actual_length,
1801     int timeout);
1802 
1803 /* wrappers around usb_control_msg() for the most common standard requests */
1804 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1805              __u8 requesttype, __u16 value, __u16 index,
1806              const void *data, __u16 size, int timeout,
1807              gfp_t memflags);
1808 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1809              __u8 requesttype, __u16 value, __u16 index,
1810              void *data, __u16 size, int timeout,
1811              gfp_t memflags);
1812 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1813     unsigned char descindex, void *buf, int size);
1814 extern int usb_get_status(struct usb_device *dev,
1815     int recip, int type, int target, void *data);
1816 
1817 static inline int usb_get_std_status(struct usb_device *dev,
1818     int recip, int target, void *data)
1819 {
1820     return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1821         data);
1822 }
1823 
1824 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1825 {
1826     return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1827         0, data);
1828 }
1829 
1830 extern int usb_string(struct usb_device *dev, int index,
1831     char *buf, size_t size);
1832 
1833 /* wrappers that also update important state inside usbcore */
1834 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1835 extern int usb_reset_configuration(struct usb_device *dev);
1836 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1837 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1838 
1839 /* this request isn't really synchronous, but it belongs with the others */
1840 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1841 
1842 /* choose and set configuration for device */
1843 extern int usb_choose_configuration(struct usb_device *udev);
1844 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1845 
1846 /*
1847  * timeouts, in milliseconds, used for sending/receiving control messages
1848  * they typically complete within a few frames (msec) after they're issued
1849  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1850  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1851  */
1852 #define USB_CTRL_GET_TIMEOUT    5000
1853 #define USB_CTRL_SET_TIMEOUT    5000
1854 
1855 
1856 /**
1857  * struct usb_sg_request - support for scatter/gather I/O
1858  * @status: zero indicates success, else negative errno
1859  * @bytes: counts bytes transferred.
1860  *
1861  * These requests are initialized using usb_sg_init(), and then are used
1862  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1863  * members of the request object aren't for driver access.
1864  *
1865  * The status and bytecount values are valid only after usb_sg_wait()
1866  * returns.  If the status is zero, then the bytecount matches the total
1867  * from the request.
1868  *
1869  * After an error completion, drivers may need to clear a halt condition
1870  * on the endpoint.
1871  */
1872 struct usb_sg_request {
1873     int         status;
1874     size_t          bytes;
1875 
1876     /* private:
1877      * members below are private to usbcore,
1878      * and are not provided for driver access!
1879      */
1880     spinlock_t      lock;
1881 
1882     struct usb_device   *dev;
1883     int         pipe;
1884 
1885     int         entries;
1886     struct urb      **urbs;
1887 
1888     int         count;
1889     struct completion   complete;
1890 };
1891 
1892 int usb_sg_init(
1893     struct usb_sg_request   *io,
1894     struct usb_device   *dev,
1895     unsigned        pipe,
1896     unsigned        period,
1897     struct scatterlist  *sg,
1898     int         nents,
1899     size_t          length,
1900     gfp_t           mem_flags
1901 );
1902 void usb_sg_cancel(struct usb_sg_request *io);
1903 void usb_sg_wait(struct usb_sg_request *io);
1904 
1905 
1906 /* ----------------------------------------------------------------------- */
1907 
1908 /*
1909  * For various legacy reasons, Linux has a small cookie that's paired with
1910  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1911  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1912  * an unsigned int encoded as:
1913  *
1914  *  - direction:    bit 7       (0 = Host-to-Device [Out],
1915  *                   1 = Device-to-Host [In] ...
1916  *                  like endpoint bEndpointAddress)
1917  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1918  *  - endpoint:     bits 15-18      ... bit positions known to uhci-hcd
1919  *  - pipe type:    bits 30-31  (00 = isochronous, 01 = interrupt,
1920  *                   10 = control, 11 = bulk)
1921  *
1922  * Given the device address and endpoint descriptor, pipes are redundant.
1923  */
1924 
1925 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1926 /* (yet ... they're the values used by usbfs) */
1927 #define PIPE_ISOCHRONOUS        0
1928 #define PIPE_INTERRUPT          1
1929 #define PIPE_CONTROL            2
1930 #define PIPE_BULK           3
1931 
1932 #define usb_pipein(pipe)    ((pipe) & USB_DIR_IN)
1933 #define usb_pipeout(pipe)   (!usb_pipein(pipe))
1934 
1935 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1936 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1937 
1938 #define usb_pipetype(pipe)  (((pipe) >> 30) & 3)
1939 #define usb_pipeisoc(pipe)  (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1940 #define usb_pipeint(pipe)   (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1941 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1942 #define usb_pipebulk(pipe)  (usb_pipetype((pipe)) == PIPE_BULK)
1943 
1944 static inline unsigned int __create_pipe(struct usb_device *dev,
1945         unsigned int endpoint)
1946 {
1947     return (dev->devnum << 8) | (endpoint << 15);
1948 }
1949 
1950 /* Create various pipes... */
1951 #define usb_sndctrlpipe(dev, endpoint)  \
1952     ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1953 #define usb_rcvctrlpipe(dev, endpoint)  \
1954     ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1955 #define usb_sndisocpipe(dev, endpoint)  \
1956     ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1957 #define usb_rcvisocpipe(dev, endpoint)  \
1958     ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1959 #define usb_sndbulkpipe(dev, endpoint)  \
1960     ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1961 #define usb_rcvbulkpipe(dev, endpoint)  \
1962     ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1963 #define usb_sndintpipe(dev, endpoint)   \
1964     ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1965 #define usb_rcvintpipe(dev, endpoint)   \
1966     ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1967 
1968 static inline struct usb_host_endpoint *
1969 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1970 {
1971     struct usb_host_endpoint **eps;
1972     eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1973     return eps[usb_pipeendpoint(pipe)];
1974 }
1975 
1976 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
1977 {
1978     struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
1979 
1980     if (!ep)
1981         return 0;
1982 
1983     /* NOTE:  only 0x07ff bits are for packet size... */
1984     return usb_endpoint_maxp(&ep->desc);
1985 }
1986 
1987 /* translate USB error codes to codes user space understands */
1988 static inline int usb_translate_errors(int error_code)
1989 {
1990     switch (error_code) {
1991     case 0:
1992     case -ENOMEM:
1993     case -ENODEV:
1994     case -EOPNOTSUPP:
1995         return error_code;
1996     default:
1997         return -EIO;
1998     }
1999 }
2000 
2001 /* Events from the usb core */
2002 #define USB_DEVICE_ADD      0x0001
2003 #define USB_DEVICE_REMOVE   0x0002
2004 #define USB_BUS_ADD     0x0003
2005 #define USB_BUS_REMOVE      0x0004
2006 extern void usb_register_notify(struct notifier_block *nb);
2007 extern void usb_unregister_notify(struct notifier_block *nb);
2008 
2009 /* debugfs stuff */
2010 extern struct dentry *usb_debug_root;
2011 
2012 /* LED triggers */
2013 enum usb_led_event {
2014     USB_LED_EVENT_HOST = 0,
2015     USB_LED_EVENT_GADGET = 1,
2016 };
2017 
2018 #ifdef CONFIG_USB_LED_TRIG
2019 extern void usb_led_activity(enum usb_led_event ev);
2020 #else
2021 static inline void usb_led_activity(enum usb_led_event ev) {}
2022 #endif
2023 
2024 #endif  /* __KERNEL__ */
2025 
2026 #endif