![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0-or-later 0002 * 0003 * Copyright (C) 2005 David Brownell 0004 */ 0005 0006 #ifndef __LINUX_SPI_H 0007 #define __LINUX_SPI_H 0008 0009 #include <linux/bits.h> 0010 #include <linux/device.h> 0011 #include <linux/mod_devicetable.h> 0012 #include <linux/slab.h> 0013 #include <linux/kthread.h> 0014 #include <linux/completion.h> 0015 #include <linux/scatterlist.h> 0016 #include <linux/gpio/consumer.h> 0017 0018 #include <uapi/linux/spi/spi.h> 0019 #include <linux/acpi.h> 0020 #include <linux/u64_stats_sync.h> 0021 0022 struct dma_chan; 0023 struct software_node; 0024 struct ptp_system_timestamp; 0025 struct spi_controller; 0026 struct spi_transfer; 0027 struct spi_controller_mem_ops; 0028 struct spi_controller_mem_caps; 0029 0030 /* 0031 * INTERFACES between SPI master-side drivers and SPI slave protocol handlers, 0032 * and SPI infrastructure. 0033 */ 0034 extern struct bus_type spi_bus_type; 0035 0036 /** 0037 * struct spi_statistics - statistics for spi transfers 0038 * @syncp: seqcount to protect members in this struct for per-cpu udate 0039 * on 32-bit systems 0040 * 0041 * @messages: number of spi-messages handled 0042 * @transfers: number of spi_transfers handled 0043 * @errors: number of errors during spi_transfer 0044 * @timedout: number of timeouts during spi_transfer 0045 * 0046 * @spi_sync: number of times spi_sync is used 0047 * @spi_sync_immediate: 0048 * number of times spi_sync is executed immediately 0049 * in calling context without queuing and scheduling 0050 * @spi_async: number of times spi_async is used 0051 * 0052 * @bytes: number of bytes transferred to/from device 0053 * @bytes_tx: number of bytes sent to device 0054 * @bytes_rx: number of bytes received from device 0055 * 0056 * @transfer_bytes_histo: 0057 * transfer bytes histogramm 0058 * 0059 * @transfers_split_maxsize: 0060 * number of transfers that have been split because of 0061 * maxsize limit 0062 */ 0063 struct spi_statistics { 0064 struct u64_stats_sync syncp; 0065 0066 u64_stats_t messages; 0067 u64_stats_t transfers; 0068 u64_stats_t errors; 0069 u64_stats_t timedout; 0070 0071 u64_stats_t spi_sync; 0072 u64_stats_t spi_sync_immediate; 0073 u64_stats_t spi_async; 0074 0075 u64_stats_t bytes; 0076 u64_stats_t bytes_rx; 0077 u64_stats_t bytes_tx; 0078 0079 #define SPI_STATISTICS_HISTO_SIZE 17 0080 u64_stats_t transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE]; 0081 0082 u64_stats_t transfers_split_maxsize; 0083 }; 0084 0085 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count) \ 0086 do { \ 0087 struct spi_statistics *__lstats; \ 0088 get_cpu(); \ 0089 __lstats = this_cpu_ptr(pcpu_stats); \ 0090 u64_stats_update_begin(&__lstats->syncp); \ 0091 u64_stats_add(&__lstats->field, count); \ 0092 u64_stats_update_end(&__lstats->syncp); \ 0093 put_cpu(); \ 0094 } while (0) 0095 0096 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field) \ 0097 do { \ 0098 struct spi_statistics *__lstats; \ 0099 get_cpu(); \ 0100 __lstats = this_cpu_ptr(pcpu_stats); \ 0101 u64_stats_update_begin(&__lstats->syncp); \ 0102 u64_stats_inc(&__lstats->field); \ 0103 u64_stats_update_end(&__lstats->syncp); \ 0104 put_cpu(); \ 0105 } while (0) 0106 0107 /** 0108 * struct spi_delay - SPI delay information 0109 * @value: Value for the delay 0110 * @unit: Unit for the delay 0111 */ 0112 struct spi_delay { 0113 #define SPI_DELAY_UNIT_USECS 0 0114 #define SPI_DELAY_UNIT_NSECS 1 0115 #define SPI_DELAY_UNIT_SCK 2 0116 u16 value; 0117 u8 unit; 0118 }; 0119 0120 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer); 0121 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer); 0122 0123 /** 0124 * struct spi_device - Controller side proxy for an SPI slave device 0125 * @dev: Driver model representation of the device. 0126 * @controller: SPI controller used with the device. 0127 * @master: Copy of controller, for backwards compatibility. 0128 * @max_speed_hz: Maximum clock rate to be used with this chip 0129 * (on this board); may be changed by the device's driver. 0130 * The spi_transfer.speed_hz can override this for each transfer. 0131 * @chip_select: Chipselect, distinguishing chips handled by @controller. 0132 * @mode: The spi mode defines how data is clocked out and in. 0133 * This may be changed by the device's driver. 0134 * The "active low" default for chipselect mode can be overridden 0135 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for 0136 * each word in a transfer (by specifying SPI_LSB_FIRST). 0137 * @bits_per_word: Data transfers involve one or more words; word sizes 0138 * like eight or 12 bits are common. In-memory wordsizes are 0139 * powers of two bytes (e.g. 20 bit samples use 32 bits). 0140 * This may be changed by the device's driver, or left at the 0141 * default (0) indicating protocol words are eight bit bytes. 0142 * The spi_transfer.bits_per_word can override this for each transfer. 0143 * @rt: Make the pump thread real time priority. 0144 * @irq: Negative, or the number passed to request_irq() to receive 0145 * interrupts from this device. 0146 * @controller_state: Controller's runtime state 0147 * @controller_data: Board-specific definitions for controller, such as 0148 * FIFO initialization parameters; from board_info.controller_data 0149 * @modalias: Name of the driver to use with this device, or an alias 0150 * for that name. This appears in the sysfs "modalias" attribute 0151 * for driver coldplugging, and in uevents used for hotplugging 0152 * @driver_override: If the name of a driver is written to this attribute, then 0153 * the device will bind to the named driver and only the named driver. 0154 * Do not set directly, because core frees it; use driver_set_override() to 0155 * set or clear it. 0156 * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when 0157 * not using a GPIO line) 0158 * @word_delay: delay to be inserted between consecutive 0159 * words of a transfer 0160 * @cs_setup: delay to be introduced by the controller after CS is asserted 0161 * @cs_hold: delay to be introduced by the controller before CS is deasserted 0162 * @cs_inactive: delay to be introduced by the controller after CS is 0163 * deasserted. If @cs_change_delay is used from @spi_transfer, then the 0164 * two delays will be added up. 0165 * @pcpu_statistics: statistics for the spi_device 0166 * 0167 * A @spi_device is used to interchange data between an SPI slave 0168 * (usually a discrete chip) and CPU memory. 0169 * 0170 * In @dev, the platform_data is used to hold information about this 0171 * device that's meaningful to the device's protocol driver, but not 0172 * to its controller. One example might be an identifier for a chip 0173 * variant with slightly different functionality; another might be 0174 * information about how this particular board wires the chip's pins. 0175 */ 0176 struct spi_device { 0177 struct device dev; 0178 struct spi_controller *controller; 0179 struct spi_controller *master; /* Compatibility layer */ 0180 u32 max_speed_hz; 0181 u8 chip_select; 0182 u8 bits_per_word; 0183 bool rt; 0184 #define SPI_NO_TX BIT(31) /* No transmit wire */ 0185 #define SPI_NO_RX BIT(30) /* No receive wire */ 0186 /* 0187 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK. 0188 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart, 0189 * which is defined in 'include/uapi/linux/spi/spi.h'. 0190 * The bits defined here are from bit 31 downwards, while in 0191 * SPI_MODE_USER_MASK are from 0 upwards. 0192 * These bits must not overlap. A static assert check should make sure of that. 0193 * If adding extra bits, make sure to decrease the bit index below as well. 0194 */ 0195 #define SPI_MODE_KERNEL_MASK (~(BIT(30) - 1)) 0196 u32 mode; 0197 int irq; 0198 void *controller_state; 0199 void *controller_data; 0200 char modalias[SPI_NAME_SIZE]; 0201 const char *driver_override; 0202 struct gpio_desc *cs_gpiod; /* Chip select gpio desc */ 0203 struct spi_delay word_delay; /* Inter-word delay */ 0204 /* CS delays */ 0205 struct spi_delay cs_setup; 0206 struct spi_delay cs_hold; 0207 struct spi_delay cs_inactive; 0208 0209 /* The statistics */ 0210 struct spi_statistics __percpu *pcpu_statistics; 0211 0212 /* 0213 * likely need more hooks for more protocol options affecting how 0214 * the controller talks to each chip, like: 0215 * - memory packing (12 bit samples into low bits, others zeroed) 0216 * - priority 0217 * - chipselect delays 0218 * - ... 0219 */ 0220 }; 0221 0222 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */ 0223 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0, 0224 "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap"); 0225 0226 static inline struct spi_device *to_spi_device(struct device *dev) 0227 { 0228 return dev ? container_of(dev, struct spi_device, dev) : NULL; 0229 } 0230 0231 /* Most drivers won't need to care about device refcounting */ 0232 static inline struct spi_device *spi_dev_get(struct spi_device *spi) 0233 { 0234 return (spi && get_device(&spi->dev)) ? spi : NULL; 0235 } 0236 0237 static inline void spi_dev_put(struct spi_device *spi) 0238 { 0239 if (spi) 0240 put_device(&spi->dev); 0241 } 0242 0243 /* ctldata is for the bus_controller driver's runtime state */ 0244 static inline void *spi_get_ctldata(struct spi_device *spi) 0245 { 0246 return spi->controller_state; 0247 } 0248 0249 static inline void spi_set_ctldata(struct spi_device *spi, void *state) 0250 { 0251 spi->controller_state = state; 0252 } 0253 0254 /* Device driver data */ 0255 0256 static inline void spi_set_drvdata(struct spi_device *spi, void *data) 0257 { 0258 dev_set_drvdata(&spi->dev, data); 0259 } 0260 0261 static inline void *spi_get_drvdata(struct spi_device *spi) 0262 { 0263 return dev_get_drvdata(&spi->dev); 0264 } 0265 0266 struct spi_message; 0267 0268 /** 0269 * struct spi_driver - Host side "protocol" driver 0270 * @id_table: List of SPI devices supported by this driver 0271 * @probe: Binds this driver to the spi device. Drivers can verify 0272 * that the device is actually present, and may need to configure 0273 * characteristics (such as bits_per_word) which weren't needed for 0274 * the initial configuration done during system setup. 0275 * @remove: Unbinds this driver from the spi device 0276 * @shutdown: Standard shutdown callback used during system state 0277 * transitions such as powerdown/halt and kexec 0278 * @driver: SPI device drivers should initialize the name and owner 0279 * field of this structure. 0280 * 0281 * This represents the kind of device driver that uses SPI messages to 0282 * interact with the hardware at the other end of a SPI link. It's called 0283 * a "protocol" driver because it works through messages rather than talking 0284 * directly to SPI hardware (which is what the underlying SPI controller 0285 * driver does to pass those messages). These protocols are defined in the 0286 * specification for the device(s) supported by the driver. 0287 * 0288 * As a rule, those device protocols represent the lowest level interface 0289 * supported by a driver, and it will support upper level interfaces too. 0290 * Examples of such upper levels include frameworks like MTD, networking, 0291 * MMC, RTC, filesystem character device nodes, and hardware monitoring. 0292 */ 0293 struct spi_driver { 0294 const struct spi_device_id *id_table; 0295 int (*probe)(struct spi_device *spi); 0296 void (*remove)(struct spi_device *spi); 0297 void (*shutdown)(struct spi_device *spi); 0298 struct device_driver driver; 0299 }; 0300 0301 static inline struct spi_driver *to_spi_driver(struct device_driver *drv) 0302 { 0303 return drv ? container_of(drv, struct spi_driver, driver) : NULL; 0304 } 0305 0306 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv); 0307 0308 /** 0309 * spi_unregister_driver - reverse effect of spi_register_driver 0310 * @sdrv: the driver to unregister 0311 * Context: can sleep 0312 */ 0313 static inline void spi_unregister_driver(struct spi_driver *sdrv) 0314 { 0315 if (sdrv) 0316 driver_unregister(&sdrv->driver); 0317 } 0318 0319 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select); 0320 0321 /* Use a define to avoid include chaining to get THIS_MODULE */ 0322 #define spi_register_driver(driver) \ 0323 __spi_register_driver(THIS_MODULE, driver) 0324 0325 /** 0326 * module_spi_driver() - Helper macro for registering a SPI driver 0327 * @__spi_driver: spi_driver struct 0328 * 0329 * Helper macro for SPI drivers which do not do anything special in module 0330 * init/exit. This eliminates a lot of boilerplate. Each module may only 0331 * use this macro once, and calling it replaces module_init() and module_exit() 0332 */ 0333 #define module_spi_driver(__spi_driver) \ 0334 module_driver(__spi_driver, spi_register_driver, \ 0335 spi_unregister_driver) 0336 0337 /** 0338 * struct spi_controller - interface to SPI master or slave controller 0339 * @dev: device interface to this driver 0340 * @list: link with the global spi_controller list 0341 * @bus_num: board-specific (and often SOC-specific) identifier for a 0342 * given SPI controller. 0343 * @num_chipselect: chipselects are used to distinguish individual 0344 * SPI slaves, and are numbered from zero to num_chipselects. 0345 * each slave has a chipselect signal, but it's common that not 0346 * every chipselect is connected to a slave. 0347 * @dma_alignment: SPI controller constraint on DMA buffers alignment. 0348 * @mode_bits: flags understood by this controller driver 0349 * @buswidth_override_bits: flags to override for this controller driver 0350 * @bits_per_word_mask: A mask indicating which values of bits_per_word are 0351 * supported by the driver. Bit n indicates that a bits_per_word n+1 is 0352 * supported. If set, the SPI core will reject any transfer with an 0353 * unsupported bits_per_word. If not set, this value is simply ignored, 0354 * and it's up to the individual driver to perform any validation. 0355 * @min_speed_hz: Lowest supported transfer speed 0356 * @max_speed_hz: Highest supported transfer speed 0357 * @flags: other constraints relevant to this driver 0358 * @slave: indicates that this is an SPI slave controller 0359 * @devm_allocated: whether the allocation of this struct is devres-managed 0360 * @max_transfer_size: function that returns the max transfer size for 0361 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used. 0362 * @max_message_size: function that returns the max message size for 0363 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used. 0364 * @io_mutex: mutex for physical bus access 0365 * @add_lock: mutex to avoid adding devices to the same chipselect 0366 * @bus_lock_spinlock: spinlock for SPI bus locking 0367 * @bus_lock_mutex: mutex for exclusion of multiple callers 0368 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use 0369 * @setup: updates the device mode and clocking records used by a 0370 * device's SPI controller; protocol code may call this. This 0371 * must fail if an unrecognized or unsupported mode is requested. 0372 * It's always safe to call this unless transfers are pending on 0373 * the device whose settings are being modified. 0374 * @set_cs_timing: optional hook for SPI devices to request SPI master 0375 * controller for configuring specific CS setup time, hold time and inactive 0376 * delay interms of clock counts 0377 * @transfer: adds a message to the controller's transfer queue. 0378 * @cleanup: frees controller-specific state 0379 * @can_dma: determine whether this controller supports DMA 0380 * @dma_map_dev: device which can be used for DMA mapping 0381 * @queued: whether this controller is providing an internal message queue 0382 * @kworker: pointer to thread struct for message pump 0383 * @pump_messages: work struct for scheduling work to the message pump 0384 * @queue_lock: spinlock to syncronise access to message queue 0385 * @queue: message queue 0386 * @cur_msg: the currently in-flight message 0387 * @cur_msg_completion: a completion for the current in-flight message 0388 * @cur_msg_incomplete: Flag used internally to opportunistically skip 0389 * the @cur_msg_completion. This flag is used to check if the driver has 0390 * already called spi_finalize_current_message(). 0391 * @cur_msg_need_completion: Flag used internally to opportunistically skip 0392 * the @cur_msg_completion. This flag is used to signal the context that 0393 * is running spi_finalize_current_message() that it needs to complete() 0394 * @cur_msg_mapped: message has been mapped for DMA 0395 * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip 0396 * selected 0397 * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs. 0398 * @xfer_completion: used by core transfer_one_message() 0399 * @busy: message pump is busy 0400 * @running: message pump is running 0401 * @rt: whether this queue is set to run as a realtime task 0402 * @auto_runtime_pm: the core should ensure a runtime PM reference is held 0403 * while the hardware is prepared, using the parent 0404 * device for the spidev 0405 * @max_dma_len: Maximum length of a DMA transfer for the device. 0406 * @prepare_transfer_hardware: a message will soon arrive from the queue 0407 * so the subsystem requests the driver to prepare the transfer hardware 0408 * by issuing this call 0409 * @transfer_one_message: the subsystem calls the driver to transfer a single 0410 * message while queuing transfers that arrive in the meantime. When the 0411 * driver is finished with this message, it must call 0412 * spi_finalize_current_message() so the subsystem can issue the next 0413 * message 0414 * @unprepare_transfer_hardware: there are currently no more messages on the 0415 * queue so the subsystem notifies the driver that it may relax the 0416 * hardware by issuing this call 0417 * 0418 * @set_cs: set the logic level of the chip select line. May be called 0419 * from interrupt context. 0420 * @prepare_message: set up the controller to transfer a single message, 0421 * for example doing DMA mapping. Called from threaded 0422 * context. 0423 * @transfer_one: transfer a single spi_transfer. 0424 * 0425 * - return 0 if the transfer is finished, 0426 * - return 1 if the transfer is still in progress. When 0427 * the driver is finished with this transfer it must 0428 * call spi_finalize_current_transfer() so the subsystem 0429 * can issue the next transfer. Note: transfer_one and 0430 * transfer_one_message are mutually exclusive; when both 0431 * are set, the generic subsystem does not call your 0432 * transfer_one callback. 0433 * @handle_err: the subsystem calls the driver to handle an error that occurs 0434 * in the generic implementation of transfer_one_message(). 0435 * @mem_ops: optimized/dedicated operations for interactions with SPI memory. 0436 * This field is optional and should only be implemented if the 0437 * controller has native support for memory like operations. 0438 * @mem_caps: controller capabilities for the handling of memory operations. 0439 * @unprepare_message: undo any work done by prepare_message(). 0440 * @slave_abort: abort the ongoing transfer request on an SPI slave controller 0441 * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS 0442 * number. Any individual value may be NULL for CS lines that 0443 * are not GPIOs (driven by the SPI controller itself). 0444 * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab 0445 * GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have 0446 * the cs_gpiod assigned if a GPIO line is found for the chipselect. 0447 * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will 0448 * fill in this field with the first unused native CS, to be used by SPI 0449 * controller drivers that need to drive a native CS when using GPIO CS. 0450 * @max_native_cs: When cs_gpiods is used, and this field is filled in, 0451 * spi_register_controller() will validate all native CS (including the 0452 * unused native CS) against this value. 0453 * @pcpu_statistics: statistics for the spi_controller 0454 * @dma_tx: DMA transmit channel 0455 * @dma_rx: DMA receive channel 0456 * @dummy_rx: dummy receive buffer for full-duplex devices 0457 * @dummy_tx: dummy transmit buffer for full-duplex devices 0458 * @fw_translate_cs: If the boot firmware uses different numbering scheme 0459 * what Linux expects, this optional hook can be used to translate 0460 * between the two. 0461 * @ptp_sts_supported: If the driver sets this to true, it must provide a 0462 * time snapshot in @spi_transfer->ptp_sts as close as possible to the 0463 * moment in time when @spi_transfer->ptp_sts_word_pre and 0464 * @spi_transfer->ptp_sts_word_post were transmitted. 0465 * If the driver does not set this, the SPI core takes the snapshot as 0466 * close to the driver hand-over as possible. 0467 * @irq_flags: Interrupt enable state during PTP system timestamping 0468 * @fallback: fallback to pio if dma transfer return failure with 0469 * SPI_TRANS_FAIL_NO_START. 0470 * @queue_empty: signal green light for opportunistically skipping the queue 0471 * for spi_sync transfers. 0472 * @must_async: disable all fast paths in the core 0473 * 0474 * Each SPI controller can communicate with one or more @spi_device 0475 * children. These make a small bus, sharing MOSI, MISO and SCK signals 0476 * but not chip select signals. Each device may be configured to use a 0477 * different clock rate, since those shared signals are ignored unless 0478 * the chip is selected. 0479 * 0480 * The driver for an SPI controller manages access to those devices through 0481 * a queue of spi_message transactions, copying data between CPU memory and 0482 * an SPI slave device. For each such message it queues, it calls the 0483 * message's completion function when the transaction completes. 0484 */ 0485 struct spi_controller { 0486 struct device dev; 0487 0488 struct list_head list; 0489 0490 /* Other than negative (== assign one dynamically), bus_num is fully 0491 * board-specific. usually that simplifies to being SOC-specific. 0492 * example: one SOC has three SPI controllers, numbered 0..2, 0493 * and one board's schematics might show it using SPI-2. software 0494 * would normally use bus_num=2 for that controller. 0495 */ 0496 s16 bus_num; 0497 0498 /* chipselects will be integral to many controllers; some others 0499 * might use board-specific GPIOs. 0500 */ 0501 u16 num_chipselect; 0502 0503 /* Some SPI controllers pose alignment requirements on DMAable 0504 * buffers; let protocol drivers know about these requirements. 0505 */ 0506 u16 dma_alignment; 0507 0508 /* spi_device.mode flags understood by this controller driver */ 0509 u32 mode_bits; 0510 0511 /* spi_device.mode flags override flags for this controller */ 0512 u32 buswidth_override_bits; 0513 0514 /* Bitmask of supported bits_per_word for transfers */ 0515 u32 bits_per_word_mask; 0516 #define SPI_BPW_MASK(bits) BIT((bits) - 1) 0517 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1) 0518 0519 /* Limits on transfer speed */ 0520 u32 min_speed_hz; 0521 u32 max_speed_hz; 0522 0523 /* Other constraints relevant to this driver */ 0524 u16 flags; 0525 #define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* Can't do full duplex */ 0526 #define SPI_CONTROLLER_NO_RX BIT(1) /* Can't do buffer read */ 0527 #define SPI_CONTROLLER_NO_TX BIT(2) /* Can't do buffer write */ 0528 #define SPI_CONTROLLER_MUST_RX BIT(3) /* Requires rx */ 0529 #define SPI_CONTROLLER_MUST_TX BIT(4) /* Requires tx */ 0530 0531 #define SPI_MASTER_GPIO_SS BIT(5) /* GPIO CS must select slave */ 0532 0533 /* Flag indicating if the allocation of this struct is devres-managed */ 0534 bool devm_allocated; 0535 0536 /* Flag indicating this is an SPI slave controller */ 0537 bool slave; 0538 0539 /* 0540 * on some hardware transfer / message size may be constrained 0541 * the limit may depend on device transfer settings 0542 */ 0543 size_t (*max_transfer_size)(struct spi_device *spi); 0544 size_t (*max_message_size)(struct spi_device *spi); 0545 0546 /* I/O mutex */ 0547 struct mutex io_mutex; 0548 0549 /* Used to avoid adding the same CS twice */ 0550 struct mutex add_lock; 0551 0552 /* Lock and mutex for SPI bus locking */ 0553 spinlock_t bus_lock_spinlock; 0554 struct mutex bus_lock_mutex; 0555 0556 /* Flag indicating that the SPI bus is locked for exclusive use */ 0557 bool bus_lock_flag; 0558 0559 /* Setup mode and clock, etc (spi driver may call many times). 0560 * 0561 * IMPORTANT: this may be called when transfers to another 0562 * device are active. DO NOT UPDATE SHARED REGISTERS in ways 0563 * which could break those transfers. 0564 */ 0565 int (*setup)(struct spi_device *spi); 0566 0567 /* 0568 * set_cs_timing() method is for SPI controllers that supports 0569 * configuring CS timing. 0570 * 0571 * This hook allows SPI client drivers to request SPI controllers 0572 * to configure specific CS timing through spi_set_cs_timing() after 0573 * spi_setup(). 0574 */ 0575 int (*set_cs_timing)(struct spi_device *spi); 0576 0577 /* Bidirectional bulk transfers 0578 * 0579 * + The transfer() method may not sleep; its main role is 0580 * just to add the message to the queue. 0581 * + For now there's no remove-from-queue operation, or 0582 * any other request management 0583 * + To a given spi_device, message queueing is pure fifo 0584 * 0585 * + The controller's main job is to process its message queue, 0586 * selecting a chip (for masters), then transferring data 0587 * + If there are multiple spi_device children, the i/o queue 0588 * arbitration algorithm is unspecified (round robin, fifo, 0589 * priority, reservations, preemption, etc) 0590 * 0591 * + Chipselect stays active during the entire message 0592 * (unless modified by spi_transfer.cs_change != 0). 0593 * + The message transfers use clock and SPI mode parameters 0594 * previously established by setup() for this device 0595 */ 0596 int (*transfer)(struct spi_device *spi, 0597 struct spi_message *mesg); 0598 0599 /* Called on release() to free memory provided by spi_controller */ 0600 void (*cleanup)(struct spi_device *spi); 0601 0602 /* 0603 * Used to enable core support for DMA handling, if can_dma() 0604 * exists and returns true then the transfer will be mapped 0605 * prior to transfer_one() being called. The driver should 0606 * not modify or store xfer and dma_tx and dma_rx must be set 0607 * while the device is prepared. 0608 */ 0609 bool (*can_dma)(struct spi_controller *ctlr, 0610 struct spi_device *spi, 0611 struct spi_transfer *xfer); 0612 struct device *dma_map_dev; 0613 0614 /* 0615 * These hooks are for drivers that want to use the generic 0616 * controller transfer queueing mechanism. If these are used, the 0617 * transfer() function above must NOT be specified by the driver. 0618 * Over time we expect SPI drivers to be phased over to this API. 0619 */ 0620 bool queued; 0621 struct kthread_worker *kworker; 0622 struct kthread_work pump_messages; 0623 spinlock_t queue_lock; 0624 struct list_head queue; 0625 struct spi_message *cur_msg; 0626 struct completion cur_msg_completion; 0627 bool cur_msg_incomplete; 0628 bool cur_msg_need_completion; 0629 bool busy; 0630 bool running; 0631 bool rt; 0632 bool auto_runtime_pm; 0633 bool cur_msg_mapped; 0634 char last_cs; 0635 bool last_cs_mode_high; 0636 bool fallback; 0637 struct completion xfer_completion; 0638 size_t max_dma_len; 0639 0640 int (*prepare_transfer_hardware)(struct spi_controller *ctlr); 0641 int (*transfer_one_message)(struct spi_controller *ctlr, 0642 struct spi_message *mesg); 0643 int (*unprepare_transfer_hardware)(struct spi_controller *ctlr); 0644 int (*prepare_message)(struct spi_controller *ctlr, 0645 struct spi_message *message); 0646 int (*unprepare_message)(struct spi_controller *ctlr, 0647 struct spi_message *message); 0648 int (*slave_abort)(struct spi_controller *ctlr); 0649 0650 /* 0651 * These hooks are for drivers that use a generic implementation 0652 * of transfer_one_message() provided by the core. 0653 */ 0654 void (*set_cs)(struct spi_device *spi, bool enable); 0655 int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi, 0656 struct spi_transfer *transfer); 0657 void (*handle_err)(struct spi_controller *ctlr, 0658 struct spi_message *message); 0659 0660 /* Optimized handlers for SPI memory-like operations. */ 0661 const struct spi_controller_mem_ops *mem_ops; 0662 const struct spi_controller_mem_caps *mem_caps; 0663 0664 /* gpio chip select */ 0665 struct gpio_desc **cs_gpiods; 0666 bool use_gpio_descriptors; 0667 s8 unused_native_cs; 0668 s8 max_native_cs; 0669 0670 /* Statistics */ 0671 struct spi_statistics __percpu *pcpu_statistics; 0672 0673 /* DMA channels for use with core dmaengine helpers */ 0674 struct dma_chan *dma_tx; 0675 struct dma_chan *dma_rx; 0676 0677 /* Dummy data for full duplex devices */ 0678 void *dummy_rx; 0679 void *dummy_tx; 0680 0681 int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs); 0682 0683 /* 0684 * Driver sets this field to indicate it is able to snapshot SPI 0685 * transfers (needed e.g. for reading the time of POSIX clocks) 0686 */ 0687 bool ptp_sts_supported; 0688 0689 /* Interrupt enable state during PTP system timestamping */ 0690 unsigned long irq_flags; 0691 0692 /* Flag for enabling opportunistic skipping of the queue in spi_sync */ 0693 bool queue_empty; 0694 bool must_async; 0695 }; 0696 0697 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr) 0698 { 0699 return dev_get_drvdata(&ctlr->dev); 0700 } 0701 0702 static inline void spi_controller_set_devdata(struct spi_controller *ctlr, 0703 void *data) 0704 { 0705 dev_set_drvdata(&ctlr->dev, data); 0706 } 0707 0708 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr) 0709 { 0710 if (!ctlr || !get_device(&ctlr->dev)) 0711 return NULL; 0712 return ctlr; 0713 } 0714 0715 static inline void spi_controller_put(struct spi_controller *ctlr) 0716 { 0717 if (ctlr) 0718 put_device(&ctlr->dev); 0719 } 0720 0721 static inline bool spi_controller_is_slave(struct spi_controller *ctlr) 0722 { 0723 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave; 0724 } 0725 0726 /* PM calls that need to be issued by the driver */ 0727 extern int spi_controller_suspend(struct spi_controller *ctlr); 0728 extern int spi_controller_resume(struct spi_controller *ctlr); 0729 0730 /* Calls the driver make to interact with the message queue */ 0731 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr); 0732 extern void spi_finalize_current_message(struct spi_controller *ctlr); 0733 extern void spi_finalize_current_transfer(struct spi_controller *ctlr); 0734 0735 /* Helper calls for driver to timestamp transfer */ 0736 void spi_take_timestamp_pre(struct spi_controller *ctlr, 0737 struct spi_transfer *xfer, 0738 size_t progress, bool irqs_off); 0739 void spi_take_timestamp_post(struct spi_controller *ctlr, 0740 struct spi_transfer *xfer, 0741 size_t progress, bool irqs_off); 0742 0743 /* The spi driver core manages memory for the spi_controller classdev */ 0744 extern struct spi_controller *__spi_alloc_controller(struct device *host, 0745 unsigned int size, bool slave); 0746 0747 static inline struct spi_controller *spi_alloc_master(struct device *host, 0748 unsigned int size) 0749 { 0750 return __spi_alloc_controller(host, size, false); 0751 } 0752 0753 static inline struct spi_controller *spi_alloc_slave(struct device *host, 0754 unsigned int size) 0755 { 0756 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 0757 return NULL; 0758 0759 return __spi_alloc_controller(host, size, true); 0760 } 0761 0762 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 0763 unsigned int size, 0764 bool slave); 0765 0766 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev, 0767 unsigned int size) 0768 { 0769 return __devm_spi_alloc_controller(dev, size, false); 0770 } 0771 0772 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev, 0773 unsigned int size) 0774 { 0775 if (!IS_ENABLED(CONFIG_SPI_SLAVE)) 0776 return NULL; 0777 0778 return __devm_spi_alloc_controller(dev, size, true); 0779 } 0780 0781 extern int spi_register_controller(struct spi_controller *ctlr); 0782 extern int devm_spi_register_controller(struct device *dev, 0783 struct spi_controller *ctlr); 0784 extern void spi_unregister_controller(struct spi_controller *ctlr); 0785 0786 #if IS_ENABLED(CONFIG_ACPI) 0787 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 0788 struct acpi_device *adev, 0789 int index); 0790 int acpi_spi_count_resources(struct acpi_device *adev); 0791 #endif 0792 0793 /* 0794 * SPI resource management while processing a SPI message 0795 */ 0796 0797 typedef void (*spi_res_release_t)(struct spi_controller *ctlr, 0798 struct spi_message *msg, 0799 void *res); 0800 0801 /** 0802 * struct spi_res - spi resource management structure 0803 * @entry: list entry 0804 * @release: release code called prior to freeing this resource 0805 * @data: extra data allocated for the specific use-case 0806 * 0807 * this is based on ideas from devres, but focused on life-cycle 0808 * management during spi_message processing 0809 */ 0810 struct spi_res { 0811 struct list_head entry; 0812 spi_res_release_t release; 0813 unsigned long long data[]; /* Guarantee ull alignment */ 0814 }; 0815 0816 /*---------------------------------------------------------------------------*/ 0817 0818 /* 0819 * I/O INTERFACE between SPI controller and protocol drivers 0820 * 0821 * Protocol drivers use a queue of spi_messages, each transferring data 0822 * between the controller and memory buffers. 0823 * 0824 * The spi_messages themselves consist of a series of read+write transfer 0825 * segments. Those segments always read the same number of bits as they 0826 * write; but one or the other is easily ignored by passing a null buffer 0827 * pointer. (This is unlike most types of I/O API, because SPI hardware 0828 * is full duplex.) 0829 * 0830 * NOTE: Allocation of spi_transfer and spi_message memory is entirely 0831 * up to the protocol driver, which guarantees the integrity of both (as 0832 * well as the data buffers) for as long as the message is queued. 0833 */ 0834 0835 /** 0836 * struct spi_transfer - a read/write buffer pair 0837 * @tx_buf: data to be written (dma-safe memory), or NULL 0838 * @rx_buf: data to be read (dma-safe memory), or NULL 0839 * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped 0840 * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped 0841 * @tx_nbits: number of bits used for writing. If 0 the default 0842 * (SPI_NBITS_SINGLE) is used. 0843 * @rx_nbits: number of bits used for reading. If 0 the default 0844 * (SPI_NBITS_SINGLE) is used. 0845 * @len: size of rx and tx buffers (in bytes) 0846 * @speed_hz: Select a speed other than the device default for this 0847 * transfer. If 0 the default (from @spi_device) is used. 0848 * @bits_per_word: select a bits_per_word other than the device default 0849 * for this transfer. If 0 the default (from @spi_device) is used. 0850 * @dummy_data: indicates transfer is dummy bytes transfer. 0851 * @cs_change: affects chipselect after this transfer completes 0852 * @cs_change_delay: delay between cs deassert and assert when 0853 * @cs_change is set and @spi_transfer is not the last in @spi_message 0854 * @delay: delay to be introduced after this transfer before 0855 * (optionally) changing the chipselect status, then starting 0856 * the next transfer or completing this @spi_message. 0857 * @word_delay: inter word delay to be introduced after each word size 0858 * (set by bits_per_word) transmission. 0859 * @effective_speed_hz: the effective SCK-speed that was used to 0860 * transfer this transfer. Set to 0 if the spi bus driver does 0861 * not support it. 0862 * @transfer_list: transfers are sequenced through @spi_message.transfers 0863 * @tx_sg: Scatterlist for transmit, currently not for client use 0864 * @rx_sg: Scatterlist for receive, currently not for client use 0865 * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset 0866 * within @tx_buf for which the SPI device is requesting that the time 0867 * snapshot for this transfer begins. Upon completing the SPI transfer, 0868 * this value may have changed compared to what was requested, depending 0869 * on the available snapshotting resolution (DMA transfer, 0870 * @ptp_sts_supported is false, etc). 0871 * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning 0872 * that a single byte should be snapshotted). 0873 * If the core takes care of the timestamp (if @ptp_sts_supported is false 0874 * for this controller), it will set @ptp_sts_word_pre to 0, and 0875 * @ptp_sts_word_post to the length of the transfer. This is done 0876 * purposefully (instead of setting to spi_transfer->len - 1) to denote 0877 * that a transfer-level snapshot taken from within the driver may still 0878 * be of higher quality. 0879 * @ptp_sts: Pointer to a memory location held by the SPI slave device where a 0880 * PTP system timestamp structure may lie. If drivers use PIO or their 0881 * hardware has some sort of assist for retrieving exact transfer timing, 0882 * they can (and should) assert @ptp_sts_supported and populate this 0883 * structure using the ptp_read_system_*ts helper functions. 0884 * The timestamp must represent the time at which the SPI slave device has 0885 * processed the word, i.e. the "pre" timestamp should be taken before 0886 * transmitting the "pre" word, and the "post" timestamp after receiving 0887 * transmit confirmation from the controller for the "post" word. 0888 * @timestamped: true if the transfer has been timestamped 0889 * @error: Error status logged by spi controller driver. 0890 * 0891 * SPI transfers always write the same number of bytes as they read. 0892 * Protocol drivers should always provide @rx_buf and/or @tx_buf. 0893 * In some cases, they may also want to provide DMA addresses for 0894 * the data being transferred; that may reduce overhead, when the 0895 * underlying driver uses dma. 0896 * 0897 * If the transmit buffer is null, zeroes will be shifted out 0898 * while filling @rx_buf. If the receive buffer is null, the data 0899 * shifted in will be discarded. Only "len" bytes shift out (or in). 0900 * It's an error to try to shift out a partial word. (For example, by 0901 * shifting out three bytes with word size of sixteen or twenty bits; 0902 * the former uses two bytes per word, the latter uses four bytes.) 0903 * 0904 * In-memory data values are always in native CPU byte order, translated 0905 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So 0906 * for example when bits_per_word is sixteen, buffers are 2N bytes long 0907 * (@len = 2N) and hold N sixteen bit words in CPU byte order. 0908 * 0909 * When the word size of the SPI transfer is not a power-of-two multiple 0910 * of eight bits, those in-memory words include extra bits. In-memory 0911 * words are always seen by protocol drivers as right-justified, so the 0912 * undefined (rx) or unused (tx) bits are always the most significant bits. 0913 * 0914 * All SPI transfers start with the relevant chipselect active. Normally 0915 * it stays selected until after the last transfer in a message. Drivers 0916 * can affect the chipselect signal using cs_change. 0917 * 0918 * (i) If the transfer isn't the last one in the message, this flag is 0919 * used to make the chipselect briefly go inactive in the middle of the 0920 * message. Toggling chipselect in this way may be needed to terminate 0921 * a chip command, letting a single spi_message perform all of group of 0922 * chip transactions together. 0923 * 0924 * (ii) When the transfer is the last one in the message, the chip may 0925 * stay selected until the next transfer. On multi-device SPI busses 0926 * with nothing blocking messages going to other devices, this is just 0927 * a performance hint; starting a message to another device deselects 0928 * this one. But in other cases, this can be used to ensure correctness. 0929 * Some devices need protocol transactions to be built from a series of 0930 * spi_message submissions, where the content of one message is determined 0931 * by the results of previous messages and where the whole transaction 0932 * ends when the chipselect goes intactive. 0933 * 0934 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information 0935 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these 0936 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x) 0937 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer. 0938 * 0939 * The code that submits an spi_message (and its spi_transfers) 0940 * to the lower layers is responsible for managing its memory. 0941 * Zero-initialize every field you don't set up explicitly, to 0942 * insulate against future API updates. After you submit a message 0943 * and its transfers, ignore them until its completion callback. 0944 */ 0945 struct spi_transfer { 0946 /* It's ok if tx_buf == rx_buf (right?) 0947 * for MicroWire, one buffer must be null 0948 * buffers must work with dma_*map_single() calls, unless 0949 * spi_message.is_dma_mapped reports a pre-existing mapping 0950 */ 0951 const void *tx_buf; 0952 void *rx_buf; 0953 unsigned len; 0954 0955 dma_addr_t tx_dma; 0956 dma_addr_t rx_dma; 0957 struct sg_table tx_sg; 0958 struct sg_table rx_sg; 0959 0960 unsigned dummy_data:1; 0961 unsigned cs_change:1; 0962 unsigned tx_nbits:3; 0963 unsigned rx_nbits:3; 0964 #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */ 0965 #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */ 0966 #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */ 0967 u8 bits_per_word; 0968 struct spi_delay delay; 0969 struct spi_delay cs_change_delay; 0970 struct spi_delay word_delay; 0971 u32 speed_hz; 0972 0973 u32 effective_speed_hz; 0974 0975 unsigned int ptp_sts_word_pre; 0976 unsigned int ptp_sts_word_post; 0977 0978 struct ptp_system_timestamp *ptp_sts; 0979 0980 bool timestamped; 0981 0982 struct list_head transfer_list; 0983 0984 #define SPI_TRANS_FAIL_NO_START BIT(0) 0985 u16 error; 0986 }; 0987 0988 /** 0989 * struct spi_message - one multi-segment SPI transaction 0990 * @transfers: list of transfer segments in this transaction 0991 * @spi: SPI device to which the transaction is queued 0992 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual 0993 * addresses for each transfer buffer 0994 * @complete: called to report transaction completions 0995 * @context: the argument to complete() when it's called 0996 * @frame_length: the total number of bytes in the message 0997 * @actual_length: the total number of bytes that were transferred in all 0998 * successful segments 0999 * @status: zero for success, else negative errno 1000 * @queue: for use by whichever driver currently owns the message 1001 * @state: for use by whichever driver currently owns the message 1002 * @resources: for resource management when the spi message is processed 1003 * @prepared: spi_prepare_message was called for the this message 1004 * 1005 * A @spi_message is used to execute an atomic sequence of data transfers, 1006 * each represented by a struct spi_transfer. The sequence is "atomic" 1007 * in the sense that no other spi_message may use that SPI bus until that 1008 * sequence completes. On some systems, many such sequences can execute as 1009 * a single programmed DMA transfer. On all systems, these messages are 1010 * queued, and might complete after transactions to other devices. Messages 1011 * sent to a given spi_device are always executed in FIFO order. 1012 * 1013 * The code that submits an spi_message (and its spi_transfers) 1014 * to the lower layers is responsible for managing its memory. 1015 * Zero-initialize every field you don't set up explicitly, to 1016 * insulate against future API updates. After you submit a message 1017 * and its transfers, ignore them until its completion callback. 1018 */ 1019 struct spi_message { 1020 struct list_head transfers; 1021 1022 struct spi_device *spi; 1023 1024 unsigned is_dma_mapped:1; 1025 1026 /* REVISIT: we might want a flag affecting the behavior of the 1027 * last transfer ... allowing things like "read 16 bit length L" 1028 * immediately followed by "read L bytes". Basically imposing 1029 * a specific message scheduling algorithm. 1030 * 1031 * Some controller drivers (message-at-a-time queue processing) 1032 * could provide that as their default scheduling algorithm. But 1033 * others (with multi-message pipelines) could need a flag to 1034 * tell them about such special cases. 1035 */ 1036 1037 /* Completion is reported through a callback */ 1038 void (*complete)(void *context); 1039 void *context; 1040 unsigned frame_length; 1041 unsigned actual_length; 1042 int status; 1043 1044 /* For optional use by whatever driver currently owns the 1045 * spi_message ... between calls to spi_async and then later 1046 * complete(), that's the spi_controller controller driver. 1047 */ 1048 struct list_head queue; 1049 void *state; 1050 1051 /* List of spi_res reources when the spi message is processed */ 1052 struct list_head resources; 1053 1054 /* spi_prepare_message() was called for this message */ 1055 bool prepared; 1056 }; 1057 1058 static inline void spi_message_init_no_memset(struct spi_message *m) 1059 { 1060 INIT_LIST_HEAD(&m->transfers); 1061 INIT_LIST_HEAD(&m->resources); 1062 } 1063 1064 static inline void spi_message_init(struct spi_message *m) 1065 { 1066 memset(m, 0, sizeof *m); 1067 spi_message_init_no_memset(m); 1068 } 1069 1070 static inline void 1071 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m) 1072 { 1073 list_add_tail(&t->transfer_list, &m->transfers); 1074 } 1075 1076 static inline void 1077 spi_transfer_del(struct spi_transfer *t) 1078 { 1079 list_del(&t->transfer_list); 1080 } 1081 1082 static inline int 1083 spi_transfer_delay_exec(struct spi_transfer *t) 1084 { 1085 return spi_delay_exec(&t->delay, t); 1086 } 1087 1088 /** 1089 * spi_message_init_with_transfers - Initialize spi_message and append transfers 1090 * @m: spi_message to be initialized 1091 * @xfers: An array of spi transfers 1092 * @num_xfers: Number of items in the xfer array 1093 * 1094 * This function initializes the given spi_message and adds each spi_transfer in 1095 * the given array to the message. 1096 */ 1097 static inline void 1098 spi_message_init_with_transfers(struct spi_message *m, 1099 struct spi_transfer *xfers, unsigned int num_xfers) 1100 { 1101 unsigned int i; 1102 1103 spi_message_init(m); 1104 for (i = 0; i < num_xfers; ++i) 1105 spi_message_add_tail(&xfers[i], m); 1106 } 1107 1108 /* It's fine to embed message and transaction structures in other data 1109 * structures so long as you don't free them while they're in use. 1110 */ 1111 1112 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags) 1113 { 1114 struct spi_message *m; 1115 1116 m = kzalloc(sizeof(struct spi_message) 1117 + ntrans * sizeof(struct spi_transfer), 1118 flags); 1119 if (m) { 1120 unsigned i; 1121 struct spi_transfer *t = (struct spi_transfer *)(m + 1); 1122 1123 spi_message_init_no_memset(m); 1124 for (i = 0; i < ntrans; i++, t++) 1125 spi_message_add_tail(t, m); 1126 } 1127 return m; 1128 } 1129 1130 static inline void spi_message_free(struct spi_message *m) 1131 { 1132 kfree(m); 1133 } 1134 1135 extern int spi_setup(struct spi_device *spi); 1136 extern int spi_async(struct spi_device *spi, struct spi_message *message); 1137 extern int spi_slave_abort(struct spi_device *spi); 1138 1139 static inline size_t 1140 spi_max_message_size(struct spi_device *spi) 1141 { 1142 struct spi_controller *ctlr = spi->controller; 1143 1144 if (!ctlr->max_message_size) 1145 return SIZE_MAX; 1146 return ctlr->max_message_size(spi); 1147 } 1148 1149 static inline size_t 1150 spi_max_transfer_size(struct spi_device *spi) 1151 { 1152 struct spi_controller *ctlr = spi->controller; 1153 size_t tr_max = SIZE_MAX; 1154 size_t msg_max = spi_max_message_size(spi); 1155 1156 if (ctlr->max_transfer_size) 1157 tr_max = ctlr->max_transfer_size(spi); 1158 1159 /* Transfer size limit must not be greater than message size limit */ 1160 return min(tr_max, msg_max); 1161 } 1162 1163 /** 1164 * spi_is_bpw_supported - Check if bits per word is supported 1165 * @spi: SPI device 1166 * @bpw: Bits per word 1167 * 1168 * This function checks to see if the SPI controller supports @bpw. 1169 * 1170 * Returns: 1171 * True if @bpw is supported, false otherwise. 1172 */ 1173 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw) 1174 { 1175 u32 bpw_mask = spi->master->bits_per_word_mask; 1176 1177 if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw))) 1178 return true; 1179 1180 return false; 1181 } 1182 1183 /*---------------------------------------------------------------------------*/ 1184 1185 /* SPI transfer replacement methods which make use of spi_res */ 1186 1187 struct spi_replaced_transfers; 1188 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr, 1189 struct spi_message *msg, 1190 struct spi_replaced_transfers *res); 1191 /** 1192 * struct spi_replaced_transfers - structure describing the spi_transfer 1193 * replacements that have occurred 1194 * so that they can get reverted 1195 * @release: some extra release code to get executed prior to 1196 * relasing this structure 1197 * @extradata: pointer to some extra data if requested or NULL 1198 * @replaced_transfers: transfers that have been replaced and which need 1199 * to get restored 1200 * @replaced_after: the transfer after which the @replaced_transfers 1201 * are to get re-inserted 1202 * @inserted: number of transfers inserted 1203 * @inserted_transfers: array of spi_transfers of array-size @inserted, 1204 * that have been replacing replaced_transfers 1205 * 1206 * note: that @extradata will point to @inserted_transfers[@inserted] 1207 * if some extra allocation is requested, so alignment will be the same 1208 * as for spi_transfers 1209 */ 1210 struct spi_replaced_transfers { 1211 spi_replaced_release_t release; 1212 void *extradata; 1213 struct list_head replaced_transfers; 1214 struct list_head *replaced_after; 1215 size_t inserted; 1216 struct spi_transfer inserted_transfers[]; 1217 }; 1218 1219 /*---------------------------------------------------------------------------*/ 1220 1221 /* SPI transfer transformation methods */ 1222 1223 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr, 1224 struct spi_message *msg, 1225 size_t maxsize, 1226 gfp_t gfp); 1227 1228 /*---------------------------------------------------------------------------*/ 1229 1230 /* All these synchronous SPI transfer routines are utilities layered 1231 * over the core async transfer primitive. Here, "synchronous" means 1232 * they will sleep uninterruptibly until the async transfer completes. 1233 */ 1234 1235 extern int spi_sync(struct spi_device *spi, struct spi_message *message); 1236 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message); 1237 extern int spi_bus_lock(struct spi_controller *ctlr); 1238 extern int spi_bus_unlock(struct spi_controller *ctlr); 1239 1240 /** 1241 * spi_sync_transfer - synchronous SPI data transfer 1242 * @spi: device with which data will be exchanged 1243 * @xfers: An array of spi_transfers 1244 * @num_xfers: Number of items in the xfer array 1245 * Context: can sleep 1246 * 1247 * Does a synchronous SPI data transfer of the given spi_transfer array. 1248 * 1249 * For more specific semantics see spi_sync(). 1250 * 1251 * Return: zero on success, else a negative error code. 1252 */ 1253 static inline int 1254 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers, 1255 unsigned int num_xfers) 1256 { 1257 struct spi_message msg; 1258 1259 spi_message_init_with_transfers(&msg, xfers, num_xfers); 1260 1261 return spi_sync(spi, &msg); 1262 } 1263 1264 /** 1265 * spi_write - SPI synchronous write 1266 * @spi: device to which data will be written 1267 * @buf: data buffer 1268 * @len: data buffer size 1269 * Context: can sleep 1270 * 1271 * This function writes the buffer @buf. 1272 * Callable only from contexts that can sleep. 1273 * 1274 * Return: zero on success, else a negative error code. 1275 */ 1276 static inline int 1277 spi_write(struct spi_device *spi, const void *buf, size_t len) 1278 { 1279 struct spi_transfer t = { 1280 .tx_buf = buf, 1281 .len = len, 1282 }; 1283 1284 return spi_sync_transfer(spi, &t, 1); 1285 } 1286 1287 /** 1288 * spi_read - SPI synchronous read 1289 * @spi: device from which data will be read 1290 * @buf: data buffer 1291 * @len: data buffer size 1292 * Context: can sleep 1293 * 1294 * This function reads the buffer @buf. 1295 * Callable only from contexts that can sleep. 1296 * 1297 * Return: zero on success, else a negative error code. 1298 */ 1299 static inline int 1300 spi_read(struct spi_device *spi, void *buf, size_t len) 1301 { 1302 struct spi_transfer t = { 1303 .rx_buf = buf, 1304 .len = len, 1305 }; 1306 1307 return spi_sync_transfer(spi, &t, 1); 1308 } 1309 1310 /* This copies txbuf and rxbuf data; for small transfers only! */ 1311 extern int spi_write_then_read(struct spi_device *spi, 1312 const void *txbuf, unsigned n_tx, 1313 void *rxbuf, unsigned n_rx); 1314 1315 /** 1316 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read 1317 * @spi: device with which data will be exchanged 1318 * @cmd: command to be written before data is read back 1319 * Context: can sleep 1320 * 1321 * Callable only from contexts that can sleep. 1322 * 1323 * Return: the (unsigned) eight bit number returned by the 1324 * device, or else a negative error code. 1325 */ 1326 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd) 1327 { 1328 ssize_t status; 1329 u8 result; 1330 1331 status = spi_write_then_read(spi, &cmd, 1, &result, 1); 1332 1333 /* Return negative errno or unsigned value */ 1334 return (status < 0) ? status : result; 1335 } 1336 1337 /** 1338 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read 1339 * @spi: device with which data will be exchanged 1340 * @cmd: command to be written before data is read back 1341 * Context: can sleep 1342 * 1343 * The number is returned in wire-order, which is at least sometimes 1344 * big-endian. 1345 * 1346 * Callable only from contexts that can sleep. 1347 * 1348 * Return: the (unsigned) sixteen bit number returned by the 1349 * device, or else a negative error code. 1350 */ 1351 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd) 1352 { 1353 ssize_t status; 1354 u16 result; 1355 1356 status = spi_write_then_read(spi, &cmd, 1, &result, 2); 1357 1358 /* Return negative errno or unsigned value */ 1359 return (status < 0) ? status : result; 1360 } 1361 1362 /** 1363 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read 1364 * @spi: device with which data will be exchanged 1365 * @cmd: command to be written before data is read back 1366 * Context: can sleep 1367 * 1368 * This function is similar to spi_w8r16, with the exception that it will 1369 * convert the read 16 bit data word from big-endian to native endianness. 1370 * 1371 * Callable only from contexts that can sleep. 1372 * 1373 * Return: the (unsigned) sixteen bit number returned by the device in cpu 1374 * endianness, or else a negative error code. 1375 */ 1376 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd) 1377 1378 { 1379 ssize_t status; 1380 __be16 result; 1381 1382 status = spi_write_then_read(spi, &cmd, 1, &result, 2); 1383 if (status < 0) 1384 return status; 1385 1386 return be16_to_cpu(result); 1387 } 1388 1389 /*---------------------------------------------------------------------------*/ 1390 1391 /* 1392 * INTERFACE between board init code and SPI infrastructure. 1393 * 1394 * No SPI driver ever sees these SPI device table segments, but 1395 * it's how the SPI core (or adapters that get hotplugged) grows 1396 * the driver model tree. 1397 * 1398 * As a rule, SPI devices can't be probed. Instead, board init code 1399 * provides a table listing the devices which are present, with enough 1400 * information to bind and set up the device's driver. There's basic 1401 * support for nonstatic configurations too; enough to handle adding 1402 * parport adapters, or microcontrollers acting as USB-to-SPI bridges. 1403 */ 1404 1405 /** 1406 * struct spi_board_info - board-specific template for a SPI device 1407 * @modalias: Initializes spi_device.modalias; identifies the driver. 1408 * @platform_data: Initializes spi_device.platform_data; the particular 1409 * data stored there is driver-specific. 1410 * @swnode: Software node for the device. 1411 * @controller_data: Initializes spi_device.controller_data; some 1412 * controllers need hints about hardware setup, e.g. for DMA. 1413 * @irq: Initializes spi_device.irq; depends on how the board is wired. 1414 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits 1415 * from the chip datasheet and board-specific signal quality issues. 1416 * @bus_num: Identifies which spi_controller parents the spi_device; unused 1417 * by spi_new_device(), and otherwise depends on board wiring. 1418 * @chip_select: Initializes spi_device.chip_select; depends on how 1419 * the board is wired. 1420 * @mode: Initializes spi_device.mode; based on the chip datasheet, board 1421 * wiring (some devices support both 3WIRE and standard modes), and 1422 * possibly presence of an inverter in the chipselect path. 1423 * 1424 * When adding new SPI devices to the device tree, these structures serve 1425 * as a partial device template. They hold information which can't always 1426 * be determined by drivers. Information that probe() can establish (such 1427 * as the default transfer wordsize) is not included here. 1428 * 1429 * These structures are used in two places. Their primary role is to 1430 * be stored in tables of board-specific device descriptors, which are 1431 * declared early in board initialization and then used (much later) to 1432 * populate a controller's device tree after the that controller's driver 1433 * initializes. A secondary (and atypical) role is as a parameter to 1434 * spi_new_device() call, which happens after those controller drivers 1435 * are active in some dynamic board configuration models. 1436 */ 1437 struct spi_board_info { 1438 /* The device name and module name are coupled, like platform_bus; 1439 * "modalias" is normally the driver name. 1440 * 1441 * platform_data goes to spi_device.dev.platform_data, 1442 * controller_data goes to spi_device.controller_data, 1443 * irq is copied too 1444 */ 1445 char modalias[SPI_NAME_SIZE]; 1446 const void *platform_data; 1447 const struct software_node *swnode; 1448 void *controller_data; 1449 int irq; 1450 1451 /* Slower signaling on noisy or low voltage boards */ 1452 u32 max_speed_hz; 1453 1454 1455 /* bus_num is board specific and matches the bus_num of some 1456 * spi_controller that will probably be registered later. 1457 * 1458 * chip_select reflects how this chip is wired to that master; 1459 * it's less than num_chipselect. 1460 */ 1461 u16 bus_num; 1462 u16 chip_select; 1463 1464 /* mode becomes spi_device.mode, and is essential for chips 1465 * where the default of SPI_CS_HIGH = 0 is wrong. 1466 */ 1467 u32 mode; 1468 1469 /* ... may need additional spi_device chip config data here. 1470 * avoid stuff protocol drivers can set; but include stuff 1471 * needed to behave without being bound to a driver: 1472 * - quirks like clock rate mattering when not selected 1473 */ 1474 }; 1475 1476 #ifdef CONFIG_SPI 1477 extern int 1478 spi_register_board_info(struct spi_board_info const *info, unsigned n); 1479 #else 1480 /* Board init code may ignore whether SPI is configured or not */ 1481 static inline int 1482 spi_register_board_info(struct spi_board_info const *info, unsigned n) 1483 { return 0; } 1484 #endif 1485 1486 /* If you're hotplugging an adapter with devices (parport, usb, etc) 1487 * use spi_new_device() to describe each device. You can also call 1488 * spi_unregister_device() to start making that device vanish, but 1489 * normally that would be handled by spi_unregister_controller(). 1490 * 1491 * You can also use spi_alloc_device() and spi_add_device() to use a two 1492 * stage registration sequence for each spi_device. This gives the caller 1493 * some more control over the spi_device structure before it is registered, 1494 * but requires that caller to initialize fields that would otherwise 1495 * be defined using the board info. 1496 */ 1497 extern struct spi_device * 1498 spi_alloc_device(struct spi_controller *ctlr); 1499 1500 extern int 1501 spi_add_device(struct spi_device *spi); 1502 1503 extern struct spi_device * 1504 spi_new_device(struct spi_controller *, struct spi_board_info *); 1505 1506 extern void spi_unregister_device(struct spi_device *spi); 1507 1508 extern const struct spi_device_id * 1509 spi_get_device_id(const struct spi_device *sdev); 1510 1511 static inline bool 1512 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer) 1513 { 1514 return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers); 1515 } 1516 1517 /* Compatibility layer */ 1518 #define spi_master spi_controller 1519 1520 #define SPI_MASTER_HALF_DUPLEX SPI_CONTROLLER_HALF_DUPLEX 1521 #define SPI_MASTER_NO_RX SPI_CONTROLLER_NO_RX 1522 #define SPI_MASTER_NO_TX SPI_CONTROLLER_NO_TX 1523 #define SPI_MASTER_MUST_RX SPI_CONTROLLER_MUST_RX 1524 #define SPI_MASTER_MUST_TX SPI_CONTROLLER_MUST_TX 1525 1526 #define spi_master_get_devdata(_ctlr) spi_controller_get_devdata(_ctlr) 1527 #define spi_master_set_devdata(_ctlr, _data) \ 1528 spi_controller_set_devdata(_ctlr, _data) 1529 #define spi_master_get(_ctlr) spi_controller_get(_ctlr) 1530 #define spi_master_put(_ctlr) spi_controller_put(_ctlr) 1531 #define spi_master_suspend(_ctlr) spi_controller_suspend(_ctlr) 1532 #define spi_master_resume(_ctlr) spi_controller_resume(_ctlr) 1533 1534 #define spi_register_master(_ctlr) spi_register_controller(_ctlr) 1535 #define devm_spi_register_master(_dev, _ctlr) \ 1536 devm_spi_register_controller(_dev, _ctlr) 1537 #define spi_unregister_master(_ctlr) spi_unregister_controller(_ctlr) 1538 1539 #endif /* __LINUX_SPI_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |